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Abstract: The current paper considers discrete stochastic inertial neural networks (SINNs) with
reaction diffusions. Firstly, we give the difference form of SINNs with reaction diffusions. Secondly,
stochastic synchronization and passivity-based control frames of discrete time and space SINNs
are newly formulated. Thirdly, by designing a boundary controller and constructing a Lyapunov-
Krasovskii functional, we address decision theorems for stochastic synchronization and passivity-
based control for the aforementioned discrete SINNs. Finally, to illustrate our main results, a
numerical illustration is provided.

Keywords: coupled networks; passivity-based control; stochastic synchronization; discrete spatial
diffusion
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1. Introduction

Neural networks (NNs) can be considered as complicated nonlinear models coupled
with numerous internal nodes, and they are capable of offering an effective approach to
solving many difficult tasks in the fields of engineering. Due to their huge potential in
real-world applications, they have become a significant research topic over the last few
decades and have garnered increasing interest in many areas of technology (please refer to
refs. [1–7]). On the other hand, it is necessary to address practical problems by studying the
dynamic properties of non-linear neural networks not only in the over-damped case but
also under weakly damped conditions [8]. Hence, inertial neural networks (INNs), which
can act as second-order differential systems, have been extensively studied. Additionally,
numerous publications have addressed synchronization problems, including finite-time
synchronization [9], nonfragile H∞ synchronization [10], event-triggered impulsive syn-
chronization [11], fuzzy synchronization [12], Mittag-Leffler synchronization [13], and
others.

Passivity, as a specific form of dissipativity, constitutes a fundamental characteristic of
physical problems. A system is considered passive when dissipative elements are present
in the modeled system, and the accumulated energies remain lower than the external
input over a certain time span. Consequently, passivity ensures internal stability of the
systems. Due to its widespread applicability in mechanical and electrical systems, the
concept of passivity has garnered increasing attention, leading to extensive studies on
the passivity of nonlinear systems. In the literature [14], Zhou et al. discussed passivity-
based boundary control for stochastic delay reaction-diffusion systems with boundary
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input-output. Padmaja and Balasubramaniam [15] analyzed passivity-based stability in
fractional-order delayed gene regulatory networks. By leveraging Lyapunov-Krasovskii
functionals, novel linear matrix inequality conditions were developed to guarantee certain
levels of passivity performance in the networks. For further details on this topic, please
consult the references [16–18].

Widely, NNs were implemented through IC in engineering applications; spatial diffu-
sions invariably occur when electronic motion takes place in an inhomogeneous electro-
magnetic domain. Therefore, it is important to consider NNs that incorporate the impact
of spatial diffusions. In recent years, greater attention has been devoted to NNs with
spatial diffusions; please refer to papers [19–24]. Stochastic neural networks have received
substantial attention in our everyday reality. Typically, actions of random networks are
heavily time- and space-dependent. As a result, reaction diffusion must be taken into
account. Relevant research topics are discussed in references [14,19,20,22,25,26], etc. While
there have been reports on space-time discrete models [27–29] to date, the problems of
synchronization and passivity-based control for discrete-time SINNs involving diffusions
have not been explored.

It is well known that discrete systems,(DSs) can be utilized to simulate a wide range
of phenomena, including biological dynamics and artificial NNs, among others. In many
scenarios, it has been demonstrated that DSs outperform continuous systems. As a re-
sult, the theory of DSs holds significant importance; please refer to references [30–38].
Reports [35–38] have explored various types of discrete INNs. However, they have not
focused on the effects of other variables, such as spatial variables. Addressing this gap,
the present paper investigates the issues of stochastic synchronization and passivity-based
control for time and space discrete SINNs by designing a novel boundary controller.

Our main contributions include the following:

(1) Establishment of a discrete space and time SINNs model, which complements the
continuous cases in literature [22–24] and the discrete-time cases in literature [35–38].

(2) Unlike prior works in the literature [22–24], a controller is formulated at the boundary
to achieve synchronization and passivity-based control of discrete space and time
SINNs.

In what follows, Section 2 establishes the discrete space and time SINNs based on
prior works in the literature [27,29]. Section 3 discusses synchronization and passivity-
based control of the discrete SINNs. In Section 4, in order to illustrate our main results, a
numerical illustration is provided. Finally, the conclusions and perspectives are described
in Section 5.

2. Problem Formulation
2.1. SINNs in Discrete Form

Now, our primary focus is dedicated to the time and space discrete SINNs, as noted
below

∆2z[ι]i,k+1 = (e−D◦h + e−Ih − 2I)∆z[ι]i,k +
(I − e−D◦h)(I − e−Ih)

D◦

[
M∆2

h̄z[ι−1]
i,k − Cz[ι]i,k

+A f (z[ι]i,k) + α
N

∑
j=1

bijΓ
(z[ι]j,k+1 − e−Ihz[ι]j,k

I − e−Ih

)
+ Ξg(z[ι]i,k)wi,k + Λγ

[ι]
i,k + J

]
, (1)
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where (ι, k) ∈ (0, `)Z × Z0 and ` ∈ Z+ (here, Z is the set of integral numbers,
Z0 := {0, 1, 2, . . .} and Z+ := Z0 \ {0}), zi = (zi1, . . . , zin)

T ∈ Rn is the state of node
i; i = 1, 2, . . . , N; ∆2z[·]i,k+1 = z[·]i,k+2 − 2z[·]i,k+1 + z[·]i,k, ∆z[·]i,k = z[·]i,k+1 − z[·]i,k for k ∈ Z0;

∆2
h̄z[·]i,· :=

z[·+2]
i,· − 2z[·+1]

i,· + z[·]i,·
h̄2 ,

h̄ and h of less than 1 denote the space and time steps’ length in order; C = diag{c1, c2, . . . , cn}
and D = diag{d1, d2, . . . , dn} are constant positive definite matrices, D◦ = D− I, I denotes
n-order identity matrix; M ∈ Rn×n with |M| 6= 0, A, Ξ and Λ are the connection weight
n-order matrices; α > 0 is the coupling strength, Γ ∈ Rn×n is the inner coupling matrix, and
B = (bij)N×N is the outer coupling configuration matrix satisfying bij > 0 (i 6= j) and bii =

−∑N
j=1,j 6=i bij; f (·) and g(·) are n dimensional activation functions; γi = (γi1, . . . , γin)

T ∈
Rn is the external input of the node i, J ∈ Rn is the external input; w1,k, . . . , wn,k, which are
scalar mutually independent random variables on complete probability space (Ω,F , P),
are ℱk := σ{(w1,q, . . . , wN,q) : q = 0, 1, . . . , k}-adaptive, independent of ℱk−1 and satisfy

Ewj,k = 0, Ew2
j,k = 1, E(wi,kwj,k) = 0 (i 6= j), E(wj,kwj,k′) = 0 (k 6= k′)

for k, k′ ∈ Z0, i, j = 1, 2, . . . , N. Hereby, E represents the expectation operator with respect
to probability space (Ω,F , P). The INNs Equation (1) possesses the following controlled
boundary conditions

∆h̄z[ι]i,k

∣∣∣
ι=0

= 0, ∆h̄z[ι]i,k

∣∣∣
ι=`−1

= ρi,k, (2)

where ∆h̄z[·]i,k := 1
h̄ (z

[·+1]
i,k − z[·]i,k) and ρi,k denotes the control input, k ∈ Z0, i = 1, 2, . . . , N.

Further, the initial condition of the INNs Equation (1) is given by

z〈ι〉i,0 = ϕ
〈ι〉
i,0 , ∆z〈ι〉i,0 = ϕ̃

〈ι〉
i,0 , ∀ι ∈ [0, `]Z, (3)

where ϕ
〈·〉
i,0 and ϕ̃

〈·〉
i,0 are ℱ0-adaptive and ℱ1-adaptive, respectively, i = 1, 2, . . . , N.

Let z[ι]i,k = zi(ιh̄, kh) for (ι, k) ∈ [0, `]Z × Z0. So discrete space and time INNs
Equation (1) provides a full discretization scheme for the following stochastic INNs with re-
action diffusions

∂2zi(x, t)
∂t2 = −D

∂zi(x, t)
∂t

+ M
∂2zi(x, t)

∂x2 − Czi(x, t) + A f (zi(x, t))

+α
N

∑
j=1

bijΓ
(

∂zj(x, t)
∂t

+ zj(x, t)
)
+ Ξg(zi(x, t))

dBi(t)
dt

+ Λγi(x, t) + J, (4)

where (x, t) ∈ (0, L)× [0,+∞) with L = `h̄, Bi is a one-dimensional Brownian motion on
some complete probability space, i = 1, 2, . . . , N.

Recently, continuous-time INNs Equation (4) with reaction diffusions has been studied
by a few authors (see refs. [21–24]) and the corresponding discrete networks have been
discussed in reports [27,29]. The different approach of INNs Equation (1) is similar to those
in refs. [27,29].
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Hereon, INNs Equation (1) can be regarded as slaver networks and the isolated node
w ∈ Rn satisfies the master networks below

∆2w[ι]
k+1 = (e−D◦h + e−Ih − 2I)∆w[ι]

k +
(I − e−D◦h)(I − e−Ih)

D◦

×
[

M∆2
h̄w[ι−1]

k − Cw[ι]
k + A f (w[ι]

k ) + Ξg(w[ι]
k )wi,k + J

]
,

∆h̄w[ι]
k

∣∣∣∣
ι=0

= ∆h̄w[ι]
k

∣∣∣∣
ι=`

= 0, ∀(ι, k) ∈ (0, `)Z × Z0.

(5)

The initial condition of INNs Equation (5) is described as

w〈ι〉0 = φ
〈ι〉
0 , ∆w〈ι〉0 = φ̃

〈ι〉
0 , ∀ι ∈ [0, `]Z, (6)

where φ
〈·〉
0 and φ̃

〈·〉
0 are ℱ0-adaptive and ℱ1-adaptive, respectively.

Let ui = zi−w, then the error networks of INNs Equations (1) and (5) are described by

∆2u[ι]
i,k+1 = (e−D◦h + e−Ih − 2I)∆u[ι]

i,k +
(I − e−D◦h)(I − e−Ih)

D◦

[
M∆2

h̄u[ι−1]
i,k − Cu[ι]

i,k

+A f̃ (u[ι]
i,k) + α

N

∑
j=1

bijΓ
(u[ι]

j,k+1 − e−Ihu[ι]
j,k

I − e−Ih

)
+ Ξg̃(u[ι]

i,k)wi,k + Λγ
[ι]
i,k

]
,

∆h̄u[ι]
i,k

∣∣∣
ι=0

= 0, ∆h̄u[ι]
i,k

∣∣∣
ι=`−1

= ρi,k, ∀(ι, k) ∈ (0, `)Z × Z0,

(7)

where f̃ (ui) := f (zi)− f (w) and g̃(ui) := g(zi)− g(w), i = 1, 2, . . . , N. With the help
of Equations (3) and (6), the initial condition for INNs in Equation (7) can be derived, as
depicted by

u〈ι〉i,0 = ϕ
〈ι〉
i,0 − φ

〈ι〉
0 , ∆u〈ι〉i,0 = ϕ̃

〈ι〉
i,0 − φ̃

〈ι〉
0 , ∀ι ∈ [0, `]Z, i = 1, 2, . . . , N. (8)

To study INNs Equation (1) effectively, let

u[ι]
i,k+1 = e−Ihu[ι]

i,k + ε(I − e−Ih)v[ι]
i,k, ∀(ι, k) ∈ (0, `)Z × Z, (9)

where ε > 0 is a controlling parameter, which can be adjusted freely, i = 1, 2, . . . , N. Then,
the first equation in INNs Equation (7) is changed into

v[ι]
i,k+1 = e−D◦hv[ι]

i,k +
I − e−D◦h

D◦

[
Mε∆2

h̄u[ι−1]
i,k + Cεu

[ι]
i,k

+Aε f̃ (u[ι]
i,k) + α

N

∑
j=1

bijΓv[ι]
j,k + Ξε g̃(u[ι]

i,k)wi,k + Λεγ
[ι]
i,k

]
, (10)

∀(ι, k) ∈ (0, `)Z×Z, Cε = ε−1(D−C− I), Mε = ε−1M, Aε = ε−1 A, Ξε = ε−1Ξ, Λε = ε−1Λ,
i = 1, 2, . . . , N.
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The vector forms of INNs Equations (9) and (10) are written as

e[ι]u,k+1 = (e−Ih)⊗e[ι]u,k + ε(I − e−Ih)⊗e[ι]v,k,

e[ι]v,k+1 = (e−D◦h)⊗e[ι]v,k +

[
(I − e−D◦h)Mε

D◦

]
⊗

∆2
h̄e[ι−1]

u,k

+

[
(I − e−D◦h)Cε

D◦

]
⊗

e[ι]u,k +

[
(I − e−D◦h)Aε

D◦

]
⊗

F(e[ι]u,k)

+α

[
(I − e−D◦h)Γ

D◦

]
⊗B

e[ι]v,k +

[
(I − e−D◦h)Λε

D◦

]
⊗

γ
[ι]
k

+

[
(I − e−D◦h)Ξε

D◦

]
⊗wk

G(e[ι]u,k),

∆h̄e[ι]u,k

∣∣∣
ι=0

= 0, ∆h̄e[ι]u,k

∣∣∣
ι=`−1

= ρk,

(11)

where
eu = (u1, . . . , uN)

T , ev = (v1, . . . , vN)
T ,

F(eu) := ( f̃ (u1), . . . , f̃ (uN))
T , G(eu) := (g̃(u1), . . . , g̃(uN))

T ,

w = diag(w1, . . . , wN)
T , γ = (γ1, . . . , γN)

T , ρ = (ρ1, . . . , ρN)
T ,

IN denotes the N-order identity matrix. Hereby, (A)⊗ := IN ⊗ A and (A)⊗B := B⊗ A.
In accordance with Equations (8) and (9), the initial condition of INNs Equation (11) is
expressed by

e〈ι〉u,0 = ψ
〈ι〉
0 , e〈ι〉v,0 = ε−1[(I − e−Ih)−1]

⊗ψ̃
〈ι〉
0 + ε−1 IN ⊗ ψ

〈ι〉
0 , (12)

where ι ∈ [0, `]Z, i = 1, 2, . . . , N, ψ
〈·〉
0 = (ϕ

〈·〉
1,0 − φ

〈·〉
0 , . . . , ϕ

〈·〉
N,0 − φ

〈·〉
0 )T and

ψ̃
〈·〉
0 = (ϕ̃

〈·〉
1,0 − φ̃

〈·〉
0 , . . . , ϕ̃

〈·〉
N,0 − φ̃

〈·〉
0 )T . Throughout this article, supposing that

`−1

∑
ι=1

E
∥∥∥ϕ
〈ι〉
i,0

∥∥∥2
< ∞,

`−1

∑
ι=1

E
∥∥∥φ
〈ι〉
0

∥∥∥2
< ∞,

`−1

∑
ι=1

E
∥∥∥ϕ̃
〈ι〉
i,0

∥∥∥2
< ∞,

`−1

∑
ι=1

E
∥∥∥φ̃
〈ι〉
0

∥∥∥2
< ∞

for i = 1, 2, . . . , N. Based on Equation (12), we have

`−1

∑
ι=1

E
∥∥∥e〈ι〉u,0

∥∥∥2
< ∞,

`−1

∑
ι=1

E
∥∥∥e〈ι〉v,0

∥∥∥2
< ∞. (13)

The current discussion will establish a boundary controller to synchronize and passivity-
based control the master INNs Equations (5) and slave INNs (1), which will be demon-
strated in Section 3.

Hereon, we need the following assumption for activation functions.

(F) L f and Lg are n-order matrices ensuring

[ f (x)− f (y)]T [ f (x)− f (y)] ≤ (x− y)T L f (x− y),

[g(x)− g(y)]T [g(x)− g(y)] ≤ (x− y)T Lg(x− y), ∀x, y ∈ Rn.

2.2. Some Important Inequalities

Lemma 1 ([39]). Let X, Y ∈ Rm. Then XTY + YTX ≤ αXTX + 1
α YTY for any α > 0.
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Lemma 2 ([40]). If X : [0, `]Z → Rm, P ∈ Rm×m, one has

`−1

∑
ι=1

XT
ι P∆2Xι−1 = XT

ι P∆Xι−1

∣∣∣∣`
1
−

`−1

∑
ι=1

∆XT
ι P∆Xι.

Lemma 3 ([41,42]). If X : [0, `]Z → Rm, P ∈ Rm×m, P ≥ 0, and X0 = 0, one has

ν`

`

∑
ι=0

XT
ι PXι ≤

`−1

∑
ι=0

∆XT
ι P∆Xι ≤ µ`

`

∑
ι=0

XT
ι PXι,

where µ` = 4 cos2 π
2`+1 and ν` = 4 sin2 π

2(2`+1) .

Lemma 4 ([41,43]). If X : [1, `]Z → Rm, P ∈ Rm×m, P ≥ 0, one has

κ`

`

∑
ι=1

XT
ι PXι ≤

`−1

∑
ι=1

∆XT
ι P∆Xι + (X1 + X`)

T P(X1 + X`),

`−1

∑
ι=1

∆XT
ι P∆Xι +

[
X1 + (−1)`X`

]T P
[
X1 + (−1)`X`

]
≤ (4− κ`)

`

∑
ι=1

XT
ι PXι.

Using Lemma 3, we get

`−2

∑
ι=0

∆2
h̄e[ι]Tu,k P∆2

h̄e[ι]u,k ≤
µ`−1

h̄2

`−1

∑
ι=0

∆h̄e[ι]Tu,k P∆h̄e[ι]u,k, ∀k ∈ Z0, (14)

where P is defined as in Lemma 3.

3. Stochastic Synchronization and Passivity-Based Control

The slave INNs Equation (1) is said to be stochastically synchronized with the master
INNs Equation (5) if the error vector networks Equation (11) achieves globally asymptoti-
cally stability in mean square, i.e.,

lim
k→∞

`−1

∑
ι=1

E
∥∥∥e[ι]u,k

∥∥∥2
= 0 = lim

k→∞

`−1

∑
ι=1

E
∥∥∥e[ι]v,k

∥∥∥2
.

3.1. Stochastic Synchronization

Define

ρk = −
`−1

∑
ι=1

Θ⊗e[ι]u,k, ∀k ∈ Z0, (15)

where Θ ∈ Rn×n. Set D := I−e−D◦h

D◦ .

Theorem 1. Assuming that (F) is valid, and ε > 0 is given in advance, D and Mε are nonsingular.
The slaver INNs Equation (1) stochastically synchronizes with the master INNs Equation (5); in
other words, model Equation (11) is globally mean-squared asymptotically stable if it has positive
constants λ f , λg and n-order matrices P > 0, Q > 0, H > 0, K > 0 such that
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O :=



O11 O12 O13 O14 O15 O16

∗ O22 O23 O24 O25 O26

∗ ∗ O33 O34 O35 O36

∗ ∗ ∗ O44 O45 O46

∗ ∗ ∗ ∗ O55 O56

∗ ∗ ∗ ∗ ∗ O66


< 0,

where

O11 = −1
h̄

sym(CεK)⊗ +
[
e−IhPe−Ih − P

]
⊗
+
[
CεDQDCε

]
⊗
+ λ f (L f )⊗ + λg(Lg)⊗,

O12 = ε
[
e−IhP(I − e−Ih)

]
⊗
+
[
e−D◦hQDCε

]T

⊗
+ α
[
CεDQDΓ

]
⊗B

, O13 = −1
h̄
(CεK)⊗,

O15 =
[
CεDQDAε

]
⊗

, O25 =
[
e−D◦hQDAε

]
⊗
+ α
[

AT
ε DQDΓ

]T

⊗B
,

O22 = −Q⊗ + ε2
[
(I − e−Ih)P(I − e−Ih)

]
⊗
+ αsym

[
e−D◦hQDΓ

]
⊗B

+2
[
e−D◦hQe−D◦h

]
⊗
+ 2α2

[
ΓTDQDΓ

]
⊗BT B

,

O33 = −H⊗, O44 = −sym
[
CεDQDMε

]
⊗
+

4µ`−1

h̄2

[
MT

ε DQDMε

]
⊗
+

h̄2`

κ`
H⊗,

O55 = −λ f I⊗ + 2
[

AT
ε DQDAε

]
⊗

, O66 = −λg I⊗ +
[
ΞT

ε DQDΞε

]
⊗

,

O14 = O16 = O23 = O24 = O26 = O34 = O35 = O36 = O45 = O46 = O56 = 0. Here
sym(A) = A + AT . The controller gain

Θ =

[
DQDMε

]−1

K.

Proof. Let us define a Lyapunov-Krasovskii function, which is described by

Vk = V1,k + V2,k,

where

V1,k =
`−1

∑
ι=1

e[ι]Tu,k (IN ⊗ P)e[ι]u,k, V2,k =
`−1

∑
ι=1

e[ι]Tv,k (IN ⊗Q)e[ι]v,k, ∀k ∈ Z0.

In the line with the first segment of the error networks Equation (11), we can derive

E[∆V1,k] = E
`−1

∑
ι=1

e[ι]Tu,k+1(IN ⊗ P)e[ι]u,k+1 −V1,k

= E
`−1

∑
ι=1

e[ι]Tu,k

[
e−IhPe−Ih − P

]
⊗

e[ι]u,k + εE
`−1

∑
ι=1

sym
{

e[ι]Tu,k

[
e−IhP(I − e−Ih)

]
⊗

e[ι]v,k

}

+ε2E
`−1

∑
ι=1

e[ι]Tv,k

[
(I − e−Ih)P(I − e−Ih)

]
⊗

e[ι]v,k, ∀k ∈ Z0. (16)
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According to the second equation of networks Equation (11), we get

E[V2,k+1] = E
`−1

∑
ι=1

e[ι]Tv,k+1(IN ⊗Q)e[ι]v,k+1

= E
`−1

∑
ι=1

e[ι]Tv,k

[
e−D◦hQe−D◦h

]
⊗

e[ι]v,k︸ ︷︷ ︸
U1,k

+E
`−1

∑
ι=1

sym
{

e[ι]Tv,k

[
e−D◦hQDMε

]
⊗

∆2
h̄e[ι−1]

u,k

}
︸ ︷︷ ︸

U2,k

+E
`−1

∑
ι=1

sym
{

e[ι]Tv,k

[
e−D◦hQDCε

]
⊗

e[ι]u,k

}
︸ ︷︷ ︸

U3,k

+E
`−1

∑
ι=1

sym
{

e[ι]Tv,k

[
e−D◦hQDAε

]
⊗

F(e[ι]u,k)

}
︸ ︷︷ ︸

U4,k

+ αE
`−1

∑
ι=1

sym
{

e[ι]Tv,k

[
e−D◦hQDΓ

]
⊗B

e[ι]v,k

}
︸ ︷︷ ︸

U5,k

+E
`−1

∑
ι=1

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDMε

]
⊗

∆2
h̄e[ι−1]

u,k︸ ︷︷ ︸
U6,k

+E
`−1

∑
ι=1

sym
{

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDCε

]
⊗

e[ι]u,k

}
︸ ︷︷ ︸

U7,k

+E
`−1

∑
ι=1

sym
{

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDAε

]
⊗

F(e[ι]u,k)

}
︸ ︷︷ ︸

U8,k

+ αE
`−1

∑
ι=1

sym
{

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDΓ
]
⊗B

e[ι]v,k

}
︸ ︷︷ ︸

U9,k

+E
`−1

∑
ι=1

e[ι]Tu,k

[
CεDQDCε

]
⊗

e[ι]u,k︸ ︷︷ ︸
U10,k

+E
`−1

∑
ι=1

sym
{

e[ι]Tu,k

[
CεDQDAε

]
⊗

F(e[ι]u,k)

}
︸ ︷︷ ︸

U11,k

+ αE
`−1

∑
ι=1

sym
{

e[ι]Tu,k

[
CεDQDΓ

]
⊗B

e[ι]v,k

}
︸ ︷︷ ︸

U12,k

+E
`−1

∑
ι=1

FT(e[ι]u,k)
[

AT
ε DQDAε

]
⊗

F(e[ι]u,k)︸ ︷︷ ︸
U13,k
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+ αE
`−1

∑
ι=1

sym
{

FT(e[ι]u,k)
[

AT
ε DQDΓ

]
⊗B

e[ι]v,k

}
︸ ︷︷ ︸

U14,k

+ α2E
`−1

∑
ι=1

e[ι]Tv,k

[
ΓTDQDΓ

]
⊗BT B

e[ι]v,k︸ ︷︷ ︸
U15,k

+E
`−1

∑
ι=1

GT(e[ι]u,k)
[
ΞT

ε DQDΞε

]
⊗w2

k

G(e[ι]u,k)︸ ︷︷ ︸
U16,k

, (17)

where k ∈ Z0.
According to Lemmas 1–3 and boundary conditions in Equation (11), we calculate

U2,k ≤ E
`−1

∑
ι=1

e[ι]Tv,k

[
e−D◦hQe−D◦h

]
⊗

e[ι]v,k +E
`−1

∑
ι=1

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDMε

]
⊗

∆2
h̄e[ι−1]

u,k

≤ E
`−1

∑
ι=1

e[ι]Tv,k

[
e−D◦hQe−D◦h

]
⊗

e[ι]v,k +
µ`−1

h̄2 E
`−1

∑
ι=1

∆h̄e[ι]Tu,k

[
MT

ε DQDMε

]
⊗

∆h̄e[ι]u,k, (18)

U6,k = E
`−2

∑
ι=0

∆2
h̄eT

z (xl , tk)
[

MT
ε DQDMε

]
⊗

∆2
h̄e[ι]u,k

≤ µ`−1

h̄2 E
`−1

∑
ι=1

∆h̄e[ι]Tu,k

[
MT

ε DQDMε

]
⊗

∆h̄e[ι]u,k, (19)

U7,k =
1
h̄
Esym

{
e[ι]Tu,k

[
CεDQDMε

]
⊗

∆h̄e[ι−1]
u,k

}∣∣∣∣`
1
−E

`−1

∑
ι=1

sym
{

∆h̄e[ι]Tu,k

[
CεDQDMε

]
⊗

∆h̄e[ι]u,k

}

=
1
h̄
Esym

{
e[`]Tu,k

[
CεDQDMε

]
⊗

ρk

}
−E

`−1

∑
ι=1

∆h̄e[ι]Tu,k sym
[
CεDQDMε

]
⊗

∆h̄e[ι]u,k, (20)

U8,k ≤ E
`−1

∑
ι=1

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDMε

]
⊗

∆2
h̄e[ι−1]

u,k +E
`−1

∑
ι=1

FT(e[ι]u,k)
[

AT
ε DQDAε

]
⊗

F(e[ι]u,k)

≤ µ`−1

h̄2 E
`−1

∑
ι=1

∆h̄e[ι]Tu,k

[
MT

ε DQDMε

]
⊗

∆h̄e[ι]u,k +E
`−1

∑
ι=1

FT(e[ι]u,k)
[

AT
ε DQDAε

]
⊗

F(e[ι]u,k), (21)

U9,k ≤ α2E
`−1

∑
ι=1

e[ι]Tv,k

[
ΓTDQDΓ

]
⊗BT B

e[ι]v,k +E
`−1

∑
ι=1

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDMε

]
⊗

∆2
h̄e[ι−1]

u,k

≤ α2E
`−1

∑
ι=1

e[ι]Tv,k

[
ΓTDQDΓ

]
⊗BT B

e[ι]v,k +
µ`−1

h̄2 E
`−1

∑
ι=1

∆h̄e[ι]Tu,k

[
MT

ε DQDMε

]
⊗

∆h̄e[ι]u,k, (22)

U16,k = E
`−1

∑
ι=1

GT(e[ι]u,k)
[
ΞT

ε DQDΞε

]
⊗

G(e[ι]u,k), ∀k ∈ Z0. (23)
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With the help of (F), we have

`−1

∑
ι=1

FT(e[ι]u,k)F(e
[ι]
u,k) ≤

`−1

∑
ι=1

e[ι]Tu,k (L f )⊗e[ι]u,k,
`−1

∑
ι=1

GT(e[ι]u,k)G(e[ι]u,k) ≤
`−1

∑
ι=1

e[ι]Tu,k (Lg)⊗e[ι]u,k, (24)

and by using ê[·]u,· := e[`]u,· − e[·]u,· and Lemma 4, it gets

`

∑
ι=1

ê[ι]Tu,k H⊗ê[ι]u,k ≤
h̄2

κ`

`−1

∑
ι=1

∆h̄ê[ι]Tu,k H⊗∆h̄ê[ι]u,k +
1
κ`

[
e[`]u,k − e[1]u,k

]T
H⊗
[
e[`]u,k − e[1]u,k

]
=

h̄2

κ`

`−1

∑
ι=1

∆h̄ê[ι]Tu,k H⊗∆h̄ê[ι]u,k +
h̄2

κ`

[ `−1

∑
ι=1

∆h̄ê[ι]u,k

]T

H⊗

[ `−1

∑
ι=1

∆h̄ê[ι]u,k

]

≤ h̄2`

κ`

`−1

∑
ι=1

∆h̄ê[ι]Tu,k H⊗∆h̄ê[ι]u,k, ∀k ∈ Z0. (25)

Considering Equation (20), we have

$k :=
1
h̄

sym
{

e[`]Tu,k

[
CεDQDMε

]
⊗

ρk

}
≤ −1

h̄

`−1

∑
ι=1

sym
{

e[`]Tu,k

[
CεDQDMεΘ

]
⊗

e[ι]u,k

}

= −1
h̄

`−1

∑
ι=1

sym
{

ê[ι]Tu,k

[
CεDQDMεΘ

]
⊗

e[ι]u,k

}

−1
h̄

`−1

∑
ι=1

sym
{

e[ι]Tu,k

[
CεDQDMεΘ

]
⊗

e[ι]u,k

}
, (26)

for all k ∈ Z0.
Taking into account Equations (16)–(26), we obtain

E[∆Vk] = E[∆V1,k] +E[∆V2,k] ≤ E
`−1

∑
ι=1

ξ
[ι]T
k Oξ

[ι]
k , ∀k ∈ Z0, (27)

where ξ
[ι]
k :=

(
e[ι]u,k, e[ι]v,k, ê[ι]u,k, ∆h̄e[ι]u,k, F(e[ι]u,k), G(e[ι]u,k)

)T
for k ∈ Z0, ι = 1, 2, . . . , `.

Based on Equation (27), we get

E[∆Vk] ≤ λmax(O)
`−1

∑
ι=1

[
E
∥∥∥e[ι]u,k

∥∥∥2
+E

∥∥∥e[ι]v,k

∥∥∥2
]

, ∀k ∈ Z0. (28)

With the help of Equation (13), we get

EV0 ≤ max
{

λmax(P⊗), λmax(Q⊗)
}
E

`−1

∑
ι=1

[∥∥∥e〈ι〉u,0

∥∥∥2
+
∥∥∥e〈ι〉v,0

∥∥∥2]
< ∞. (29)

Noting that λmax(O) < 0 owing to the assumption O < 0 in Theorem 1, we can use
Equations (28) and (29) to arrive at

λmax(O)
k′−1

∑
k=1

`−1

∑
ι=1

[
E
∥∥∥e[ι]u,k

∥∥∥2
+E

∥∥∥e[ι]v,k

∥∥∥2
]
≥ EVk′ −EV0 ≥ −EV0,
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which is equal to

k′−1

∑
k=1

`−1

∑
ι=1

[
E
∥∥∥e[ι]u,k

∥∥∥2
+E

∥∥∥e[ι]v,k

∥∥∥2
]
≤ − EV0

λmax(O)
< ∞

k′→∞
===⇒

∞

∑
k=1

`−1

∑
ι=1

[
E
∥∥∥e[ι]u,k

∥∥∥2
+E

∥∥∥e[ι]v,k

∥∥∥2
]
< ∞. (30)

Then,

lim
k→∞

`−1

∑
ι=1

E
∥∥∥e[ι]u,k

∥∥∥2
= 0 = lim

k→∞

`−1

∑
ι=1

E
∥∥∥e[ι]v,k

∥∥∥2
,

which implies that model Equation (11) achieves global mean-squared asymptotic stability.
This completes the proof.

From Lemma 4, the following inequality is valid:

µ`−1

h̄2 E
`−1

∑
ι=1

∆h̄e[ι]Tu,k

[
MT

ε DQDMε

]
⊗

∆h̄e[ι]u,k ≤
4− κ`

h̄2
µ`−1

h̄2 E
`−1

∑
ι=1

ê[ι]Tu,k

[
MT

ε DQDMε

]
⊗

ê[ι]u,k,

where k ∈ Z0. Further,

E[∆Vk] ≤ E
`−1

∑
ι=1

ξ
[ι]T
k Õξ

[ι]
k , ∀k ∈ Z0, (31)

here Õ = (Õij)1≤i,j≤6 is defined as O defined in Theorem 1, except that

Õ33 = −H⊗ +
4(1− β)(4− κ`)µ`−1

h̄4

[
MT

ε DQDMε

]
⊗

,

Õ44 = −sym
[
CεDQDMε

]
⊗
+

4µ`−1β

h̄2

[
MT

ε DQDMε

]
⊗
+

h̄2`

κ`
H⊗.

So, we have the following:

Corollary 1. Assuming that (F) is valid, we pre-give values of ε > 0 and β ∈ [0, 1]. Additionally,
we assume that D and Mε are nonsingular, and we define Θ as indicated in Theorem 1. Under
these conditions, the slave INNs Equation (1) stochastically synchronize with the master INNs
Equation (5), meaning that the model Equation (11) achieves global mean-squared asymptotic
stability. This holds true if the model has positive constants λ f , λg, and positive definite n-order
matrices P, Q, H, and K such that the Õ matrix defined in Equation (31) is negative definite.

Remark 1. Reports [22,24] addressed the issues of synchronization for inertial neural networks
with reaction-diffusion terms. However, the networks in reports [22,24] were involved in the
Dirichlet boundary condition and the controller is embedded in the model of the networks. In this
article, the controller does not exist in the model of the networks, but it is designed in the boundary.

3.2. Passivity-Based Control

The error vector networks described by Equation (11) with respect to a supply rate
can be represented as

v(Y , γ) :=
`−1

∑
ι=1
Y [ι]T
· γ

[ι]
· for some Y ∈ RNn. (32)
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This system is stochastically passive if there exists a nonnegative mapping θ that satisfies

E
s2−1

∑
k=s1

`−1

∑
ι=1
Y [ι]T

k γ
[ι]
k ≥ θ(s2)− θ(s1), ∀s1 < s2, s1, s2 ∈ Z0.

Theorem 2. Let Hypothesis (F) be satisfied, ε > 0 be given, and D, Mε be nonsingular. Addition-
ally, let the controller gain Θ be as provided in Theorem 1. The error networks Equation (11) are
stochastically passive if there exist positive constants λ f , λg and n-order positive definite matrices
P, Q, H, K, <1, <2, <3 such that

O :=



O11 O12 O13 O14 O15 O16 O17

∗ O22 O23 O24 O25 O26 O27

∗ ∗ O33 O34 O35 O36 O37

∗ ∗ ∗ O44 O45 O46 O47

∗ ∗ ∗ ∗ O55 O56 O57

∗ ∗ ∗ ∗ ∗ O66 O67

∗ ∗ ∗ ∗ ∗ ∗ O77


< 0,

where

O44 = O44 +
µ`−1

h̄2

[
MT

ε DQDMε

]
⊗

, O17 = −(<1)⊗ +
[
CεDQDΛε

]
⊗

,

O27 = −(<2)⊗ +
[
e−D◦hQDΛε

]
⊗
+ α
[
ΓTDQDΛε

]
⊗BT

, O57 =
[

AT
ε DQDΛε

]
⊗

,

O77 = −2(<3)⊗ + 2
[
ΛT

ε DQDΛε

]
⊗

, O37 = O47 = O67 = 0,

and the other unmentioned block matrices Oij in O are equal to Oij in O for i, j = 1, 2, . . . , 6.

Proof. Define the Lyapunov-Krasovskii function V for the error vector networks Equa-
tion (11), following the approach described in Section 3.1. Additionally, introduce an output
vector Y ∈ RNn to the error vector networks Equation (11) using the expression

Y = (IN ⊗<1)eu + (IN ⊗<2)ev + (IN ⊗<3)γ.

Similar to the argument in Equation (17), we get

E[V2,k+1] =
16

∑
i=1
Ui,k +E

`−1

∑
ι=1

sym
{

e[ι]Tv,k

[
e−D◦hQDΛε

]
⊗

γ
[ι]
k

}
︸ ︷︷ ︸

U17,k

+E
`−1

∑
ι=1

sym
{

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDΛε

]
⊗

γ
[ι]
k

}
︸ ︷︷ ︸

U18,k

+E
`−1

∑
ι=1

sym
{

e[ι]Tu,k

[
CεDQDΛε

]
⊗

γ
[ι]
k

}
︸ ︷︷ ︸

U19,k
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+E
`−1

∑
ι=1

sym
{

FT(e[ι]u,k)
[

AT
ε DQDΛε

]
⊗

γ
[ι]
k

}
︸ ︷︷ ︸

U20,k

+ αE
`−1

∑
ι=1

sym
{

e[ι]Tv,k

[
ΓTDQDΛε

]
⊗BT

γ
[ι]
k

}
︸ ︷︷ ︸

U21,k

+E
`−1

∑
ι=1

γ
[ι]T
k

[
ΛT

ε DQDΛε

]
⊗

γ
[ι]
k︸ ︷︷ ︸

U22,k

, ∀k ∈ Z0. (33)

Meanwhile, similar to the estimates in inequalities Equations (18)–(23), we obtain from
Equation (33) the following:

U18,k ≤ E
`−1

∑
ι=1

∆2
h̄e[ι−1]T

u,k

[
MT

ε DQDMε

]
⊗

∆2
h̄e[ι−1]

u,k +E
`−1

∑
ι=1

γ
[ι]T
k

[
ΛT

ε DQDΛε

]
⊗

γ
[ι]
k

≤ µ`−1

h̄2 E
`−1

∑
ι=1

∆h̄e[ι]Tu,k

[
MT

ε DQDMε

]
⊗

∆h̄e[ι]u,k +E
`−1

∑
ι=1

γ
[ι]T
k

[
ΛT

ε DQDΛε

]
⊗

γ
[ι]
k , (34)

∀k ∈ Z0.
By employing Equations (16)–(26) and (33) and (34), we can compute

E[∆Vk]− 2E
`−1

∑
ι=1
Y [ι]T

k γ
[ι]
k ≤ E

`−1

∑
ι=1

η
[ι]T
k Oη

[ι]
k , ∀k ∈ Z0, (35)

where η
[ι]
k :=

[
e[ι]u,k, e[ι]v,k, ê[ι]u,k, ∆h̄e[ι]u,k, F(e[ι]u,k), G(e[ι]u,k), γ

[ι]
k

]T
for k ∈ Z0, ι = 1, 2, . . . , `.

In accordance with Equation (35), we get

2E
`−1

∑
ι=1
Y [ι]T

k γ
[ι]
k ≥ E[∆Vk],

which is equal to

2E
s2−1

∑
k=s1

`−1

∑
ι=1
Y [ι]T

k γ
[ι]
k ≥ EVs2 −EVs1 , ∀s1 < s2, s1, s2 ∈ Z0.

Accordingly, INNs Equation (11) is stochastic passive. This completes the proof.

So, we have the following:

Corollary 2. Assuming that (F) is satisfied, ε > 0 and β ∈ [0, 1] are pre-given, D and Mε are
nonsingular, and the controller gain Θ is provided in Theorem 1, the error network Equation (11) is
stochastically passive if there exist positive constants λ f , λg, and n-order positive definite matrices
P, Q, H, K, <1, <2, and <3 such that Õ < 0. Here, Õ = (Õij)1 ≤ i, j ≤ 7 is defined as O in
Theorem 2 except for the following modifications:

Õ33 = −H⊗ +
5(1− β)(4− κ`)µ`−1

h̄4

[
MT

ε DQDMε

]
⊗

,

Õ44 = −sym
[
CεDQDMε

]
⊗
+

5µ`−1β

h̄2

[
MT

ε DQDMε

]
⊗
+

h̄2`

κ`
H⊗.
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According to Theorems 1 and 2, a realizable algorithm for stochastic synchronization
or passivity of INNs Equations (1) and (5) is designed as Algorithm 1, and its O-chart is
described in Figure 1.

Algorithm 1 Stochastic synchronization or passivity of INNs Equations (1) and (5)

(1) Initialize the values of the coefficient matrices in INNs Equations (1) and (5)
(2) Compute LMIs in Theorems 1 or 2. When they are unviable, modify the values of

coefficient matrices in INNs Equation (1); otherwise, switch to next step.
(3) Receive the values of matrices P, Q, K, etc. Calculate the controller gain

Θ =

[
DQDMε

]−1

K.

(4) Write iterative program based on INNs Equations (1) and (5) and plot the response
trajectories.

Initialize the values of 
the coefficient 

matrices in INNs (1)

Compute LMIs in 
Theorem 1 or 2

unviable

viable

Calculate the 
controller gain Θ

Write iterative 
program based on 

INNs (1) and (5)

Figure 1. O-chart of Algorithm 1.

Remark 2. Papers [44,45] investigated the passivity of inertial neural networks without reaction-
diffusion terms. This paper considers the effects of the reaction diffusions, which complements the
works in the literature [44,45].

4. Numerical Example

In view of INNs Equation (1), we take α = 0.1, J = (10, 12)T ,

D = 50
[

2 0
0 1

]
, C = 45

[
2 0
0 1

]
, M = 0.1

[
1 1
0 2

]
, A = 0.1

[
2 −1
0 2

]
,

B = 0.1
[
−2 2
1 −1

]
, Γ = 0.01

[
2 0
0 3

]
, Ξ = 0.01

[
2 0
0 1

]
.
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Taking ε = 0.1, h = 0.01, h̄ = 0.2, ` = 25, f (x) = ( f1(x), f2(x))T = 0.1(sin x1, |x2|)T =

(g1(x), g2(x))T = g(x) for any x = (x1, x2)
T ∈ R2. From Theorem 1, we can determine that

λ f = 32693, λg = 32686,

P =

[
1.2059 −0.0142
−0.0142 1.6238

]
× 105, Q =

[
2.5836 −0.0082
−0.0082 1.5422

]
× 104,

H =

[
6.9393 3.4242
3.4242 5.5926

]
, K =

[
0.0197 0.0049
0.0049 0.0042

]
.

In addition,

Θ =

[
0.0164 0.0026
0.0026 0.0022

]
.

By Theorem 1, INNs Equations (1) and (5) realize stochastic synchronization, see Figures 2–5.

Figure 2. Stochastic synchronization to INNs Equations (1) and (5).

Figure 3. Stochastic synchronization to INNs Equations (1) and (5).
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Figure 4. Stochastic synchronization to INNs Equations (1) and (5).

Figure 5. Stochastic synchronization to INNs Equations (1) and (5).

Furthermore, taking Λ = 0.1
[

1 0
0 3

]
, γ

[ι]
1,k = (10 + sin(ι + k), 8 + cos(ι + k))T ,

γ
[ι]
2,k = (10 + sin(2ι + k), 8 + cos(2ι + k))T , ∀k ∈ Z0, ι = 1, 2, . . . , `. The output vector
Y ∈ R4 for the network is defined as in Equation (32) with the following matrices:

<1 =

[
183.9618 −0.2256
−0.2256 173.1908

]
, <2 =

[
376.9862 0.1127

0.1127 167.3857

]
, <3 =

[
1617.7 −0.1
−0.1 1721

]
.

By Theorem 2, we have λ f = 1825.8, λg = 1825.7,

P =

[
8041.2 71.1

71.1 8871.3

]
, Q =

[
1374.2 8.6

8.6 635.3

]
,

H =

[
0.4183 0.1974
0.1974 0.2709

]
, K =

[
0.0011 0.0005
0.0005 0.0011

]
.

Now, the controller gain of the boundary controller is given by

Θ =

[
0.0147 −0.0058
0.0059 0.0142

]
.
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According to Theorem 2, INNs Equations (1) and (5) achieve stochastic passivity, as in
Figures 6–11.

Figure 6. Trajectory of state variable w1 to INNs Equation (5).

Figure 7. Trajectory of state variable w2 to INNs Equation (5).

Figure 8. Trajectory of state variable z11 to INNs Equation (1).
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Figure 9. Trajectory of state variable z12 to INNs Equation (1).

Figure 10. Trajectory of state variable z21 to INNs Equation (1).

Figure 11. Trajectory of state variable z22 to INNs Equation (1).
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Remark 3. In the previous work in article [38], the authors discussed passivity of non-autonomous
discrete-time inertial neural networks, overlooking discrete spatial diffusions. By contrast, the
present literature addresses it, as can be seen in Figures 6–11.

5. Conclusions and Future Works

For the first time, this discussion focuses on investigating discrete SINNs with the
influence of spatial diffusions.

Firstly, we present the time and space difference model of SINNs with reaction diffu-
sions using the time and space difference approaches, respectively.

Secondly, with the aid of a controller designed at the boundary, we address the issues
of both stochastic synchronization and passivity-based control, employing the Lyapunov-
Krasovskii function method.

As anticipated, we provide decision theorems for the aforementioned research topics
concerning discrete SINNs. It is important to note that the method employed in this article
predominantly considers homogeneous networks described by INNs Equations (1) and (5),
making the study of heterogeneous networks challenging (see ref. [46]).

Moving forward, several aspects merit consideration in future work:

• Fractional dynamics has become a research hotspot in recent years, which could be
discussed in the SINNs of this article.

• This paper only considers 1-dimensional space variables, which could be extended to
higher dimensions.

• Exploration of alternative control techniques, such as impulsive controls and adaptive
controls, holds promise for further investigation.
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