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Abstract: An equitable k-coloring of a graph G is a proper vertex coloring such that the size of any
two color classes differ at most 1. If there is an equitable k-coloring of G, then the graph G is said to be
equitably k-colorable. A 1-planar graph is a graph that can be embedded in the Euclidean plane such
that each edge can be crossed by other edges at most once. An IC-planar graph is a 1-planar graph
with distinct end vertices of any two crossings. In this paper, we will prove that every IC-planar
graph with girth g ≥ 7 is equitably ∆(G)-colorable, where ∆(G) is the maximum degree of G.
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1. Introduction

Chromatic graph theory originates from the Four Color Conjecture [1], is a focal
problem in graph theory. As a special case of chromatic graph theory, equitable coloring
has been widely used in industrial production, enterprise management and biology [2].
Especially, it plays a crucial role in the study of schedule [3], partition [4–7] and load
balancing [8]. In this paper, we mainly discuss the equitable coloring of IC-planar graphs
with girth g ≥ 7. Some relevant definitions are as follows.

Only undirected, finite and simple graphs are considered in this paper. In a graph
G, V(G), E(G), |G|, δ(G) and ∆(G) (or ∆ in short) are used to denote the vertex set, edge
set, order, minimum degree and maximum degree of G, respectively. The girth of a graph
G is the length of shortest cycles of G, denoted by g(G). For v ∈ V(G), we use dG(v) to
denote the degree of a vertex v in G. The set of all neighbors of v is denoted by NG(v).
Trivially, |NG(v)| = dG(v) .

A graph that can be drawn in the Euclidean plane such that any two edges intersect
only at their ends is called the planar graph. A planar graph with such a particular drawing
is called a plane graph. The face set of a plane graph G is denoted by F(G). For f ∈ F(G),
we use dG( f ) to denote the degree of a face f in G. That is, the number of edges on the
boundary of f . We denote f = [v1v2 · · · vk] when v1, v2, · · · , vk are the vertices on the
boundary of f and arranged in clockwise order. In a graph G, a vertex is called as a k-vertex,
a k−-vertex or a k+-vertex if its degree is equal to k, at most k or at least k, respectively.
Similarly, we can define a k-face, a k−-face or a k+-face. For a k-face f ∈ F(G), we denote
f as (d1, d2, · · · , dk)-face if the vertices on the boundary of f are u1, u2, · · · , uk such that
d(ui) = di, 1 ≤ i ≤ k.

A 1-planar graph is a graph that can be embedded in the Euclidean plane such that each
edge can be crossed by other edges at most once. An IC-planar graph is a 1-planar graph
with distinct end vertices of any two crossings, which is introduced by Alberson [9] in 2008.

A proper k-coloring of a graph G is a mapping φ: V(G) → {1, 2, · · · , k} such that
φ(u) 6= φ(v) for any two adjacent vertices u and v. The minimum positive integer k such
that G has a proper k-coloring is called the chromatic number of G, denoted by χ(G). And
we use Vi (1 ≤ i ≤ k) to denote the set of vertices colored with i. Notice that Vi (1 ≤ i ≤ k)
is an independent set.
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Definition 1. For a proper k-coloring φ of G, if
∣∣∣|Vi| − |Vj|

∣∣∣ ≤ 1 for any i, j ∈ {1, 2, · · · , k}, then
φ is an equitable k-coloring of G, or G is equitably k-colorable. The minimum positive integer k
such that G has an equitable k-coloring is called the equitable chromatic number of G, denoted
by χe(G).

Obviously, χe(G) ≥ χ(G), and the inequality can be strictly held.
The rest of this article is organized as follows: In Section 2, we will introduce the

history and recent progress on equitable coloring, and we also present our motivation and
contribution of this paper. In Section 3, we provide some lemmas which are helpful to prove
our main theorem. In Section 4, we discuss the structures of IC-planar graphs with girth
g ≥ 7 and get an important property, which is presented in Lemma 5. In Section 5, we use
discharging method to prove Lemma 5, which is used to prove Lemma 6 and Theorem 1.
In Section 6, to show Theorem 1, we first give proof of Lemma 6 and then get a corollary.
Finally, we summarize our result and get the main theorem.

2. Related Work

In 1973, Meyer [10] introduced the concept of equitable coloring. At the same time, he
proposed the following conjecture.

Conjecture 1 ([10]). If G is a connected graph except C2m+1 or Km, then χe(G) ≤ ∆.

In 1964, Erdős [11] conjectured that every graph is equitably k-colorable for any
k ≥ ∆ + 1, which was confirmed by Hajnal and Szemerédi [12] in 1970. In 2010, by
applying algorithm analysis, Kierstead et al. [13] gave a new and short proof of Erdős’s
conjecture. So we are interested in the sufficient conditions for graphs to be equitably
∆-colorable. In 1994, Chen, Lih and Wu [14] put forth the following conjecture.

Conjecture 2 ([14]). If G is a connected graph except C2m+1, Km or K2m+1,2m+1 for all m ≥ 1,
then G is equitably ∆-colorable.

The authors [14] also confirmed Conjecture 2 for all connected graphs with ∆ ≤
3, which was strengthened to graphs with ∆ ≤ 4 by Kierstead and Kostochka [15].
Chen and Lih [16], Lih and Wu [17] showed Conjecture 2 holds for trees and bipartite
graphs, respectively. Kostochka [18] proved that Conjecture 2 holds for outerplanar graphs.
Kostochka and Nakprasit [19] proved further that Conjecture 2 holds for d-degenerate
graphs with ∆ ≥ 14d + 1. Wang and Zhang [20] showed Conjecture 2 holds for line graphs.
In 1998, Zhang and Yap [21] confirmed Conjecture 2 for planar graphs with ∆ ≥ 13. In 2012,
Nakprasit [22] improved the above result by showing that Conjecture 2 holds for planar
graphs with ∆ ≥ 9. Recently, this result has been extended to planar graphs with ∆ ≥ 8 by
Kostochka, Lin and Xiang [23]. Therefore, for planar graphs, only the case of 5 ≤ ∆ ≤ 7
remains unsolved. In 2008, Zhu and Bu [24] proved that every planar graph without
4-cycles and 5-cycles is equitably k-colorable for k ≥ max{∆, 7}. Later, the above result was
extended to all planar graphs without 4-cycles and 5-cycles by Wang and Gui [25]. Thus,
we have every planar graph with girth g ≥ 6 is equitably ∆-colorable. In 2016, Zhang [26]
first considered the equitable coloring of 1-planar graphs and obtained that Conjecture 2
holds when ∆ ≥ 17, which was improved to ∆ ≥ 15 by Zhang, Wang and Xu [27] in 2018.
At the same time, Zhang, Wang and Xu [27] also confirmed that Conjecture 2 holds for
IC-planar graphs with ∆ ≥ 12.

Similar with planar graphs, we also want to see whether Conjecture 2 holds for IC-
planar graphs with girth limitation. In this paper, we will concern on the equitable coloring
of IC-planar graphs with large girth g and will prove the result in the following:

Theorem 1. Every IC-planar graph with girth g ≥ 7 is equitably ∆-colorable.
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3. Preliminaries

In this section, we present some helpful lemmas that will be used to prove our main result.

Lemma 1 ([24]). Let S = {v1, v2, · · · , vk} be a subset of V(G), where v1, v2, · · · , vk are distinct
vertices. If G − S is equitably k-colorable, and |NG(vi)− S| ≤ k − i for 1 ≤ i ≤ k, then G is
equitably k-colorable.

Lemma 2 ([12,13]). For k ≥ ∆ + 1, every graph is equitably k-colorable.

Lemma 3 ([28]). If G is a planar graph of order n and with no cycles of length 3 and 4, then
e(G) ≤ 5

3 n− 10
3 .

Lemma 4. Let G be an IC-planar graph of order n and with no cycles of length 3 and 4, then
e(G) ≤ 23

12 n− 10
3 and G is 3-degenerate.

Proof. We denote the graph obtained by deleting one of the edges from each crossing as G′.
By the definition of IC-planar graph, we delete at most n

4 edges. Obviously, G′ is a planar
graph of order n and with no cycles of length 3 and 4. So e(G′) ≤ 5

3 n− 10
3 by Lemma 3.

Thus, e(G) ≤ 5
3 n− 10

3 + n
4 = 23

12 n− 10
3 .

By Handshaking Theorem, δ(G) · n ≤ ∑
v∈V(G)

d(v) = 2e(G) ≤ 23
6 n− 20

3 , which implies

that δ(G) ≤ 3. Thus, G is 3-degenerate.

4. Properties of IC-Planar Graphs with Girth g ≥ 7

Every IC-planar graph with girth g ≥ 7 in the following is assumed to be embedded in
the Euclidean plane with the number of crossings as small as possible. The set of all crossing
vertices and the edges with no crossings are denoted by C(G) and E0(G), respectively. Let
E1(G) = {xz, zy| xy ∈ E(G) \ E0(G), and z is the crossing vertex on edge xy}. The associated
plane graph of G, denoted by G×, is a plane graph such that V(G×) = V(G) ∪ C(G), and
E(G×) = E0(G) ∪ E1(G). In G×, a vertex v is called true if v ∈ V(G), and false if v ∈ C(G).
Obviously, a false vertex v satisfies dG×(v) = 4. A face f in G× is false if f is incident with
at least one false vertex; otherwise, f is true. Let f be a false i-face and v be a true vertex,
where i ∈ {3, 4}, f is called the pendant false i-face of v if v is not incident with f but
is adjacent to the false vertex incident with f . Finally, we use fi(v), ni(G) and nG

i (v) to
denote the number of i-faces incident with the vertex v in the associated plane graph G×,
the number of i-vertices in the graph G and the number of i-vertices adjacent to the vertex
v in the graph G, respectively.

It is easy to check that the following two properties hold by the fact that G is the
IC-planar graph with girth g ≥ 7.

Fact 1 (1) Any two false vertices are not adjacent.
(2) A true vertex is adjacent to at most one false vertex.
Fact 2 A true vertex is incident with at most one false 3-face.
Next, let’s introduce some facts, which is also involved in the proofs of the next lemma.

Since the IC-planar graph has been embedded with minimal number of crossings, the
following fact holds.

Fact 3 A false 3-face is not incident with any 2-vertex.
Suppose that v is a false vertex. Let vi (1 ≤ i ≤ 4) be the vertices adjacent to v in G×

and arranged in clockwise order. Let fi = [vi+1vvi · · · ] be the false face with vvi and vvi+1
as boundary edges, where 1 ≤ i ≤ 4 and v5 = v1. Not that v1v3 ∈ E(G) and v2v4 ∈ E(G).

Fact 4 Let v be a false vertex. If f3(v) = 1, say dG×( f1) = 3, then dG×( fi) ≥ 6, where
i ∈ {2, 3, 4}. Hence, v is incident with at most one false 3-face.

Proof. Let f1 = [v2vv1]. By Fact 2, we have dG×(v1) ≥ 3 and dG×(v2) ≥ 3. Since
v1v3 ∈ E(G), v2v4 ∈ E(G) and v1v2 ∈ E(G), we have v2v3 /∈ E(G), v3v4 /∈ E(G) and
v1v4 /∈ E(G) by the fact that g ≥ 7. That is, dG×( fi) ≥ 4 for i ∈ {2, 3, 4}.
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Now we are going to show that dG×( f2) ≥ 6. Assume to the contrary that dG×( f2) ≤ 5.
If dG×( f2) = 4, say f2 = [v3vv2x], then x is a true vertex, x /∈ {v1, v4}, and G contains a
4-cycle v1v2xv3v1, a contradiction. If dG×( f2) = 5, say f2 = [v3vv2xy], then x and y are
true vertices, x, y /∈ {v1, v4}, and G contains a 5-cycle v1v2xyv3v1, a contradiction. Hence,
dG×( f2) ≥ 6. By symmetry, we have dG×( f4) ≥ 6.

Next we will show that dG×( f3) ≥ 6. Assume to the contrary that dG×( f3) ≤ 5. If
dG×( f3) = 4, say f3 = [v4vv3x], then x is a true vertex, x /∈ {v1, v2}, and G contains a
5-cycle v1v2v4xv3v1, a contradiction. If dG×( f3) = 5, say f3 = [v4vv3xy], then x and y are
true vertices, x, y /∈ {v1, v2}, and G contains a 6-cycle v1v2v4yxv3v1, a contradiction. Hence,
dG×( f3) ≥ 6.

Fact 5 Let v be a false vertex. If f4(v) = 1, say dG×( f1) = 4, then dG×( f3) ≥ 5,
dG×( f2) ≥ 6, and dG×( f4) ≥ 6. Hence, v is incident with at most one false 4-face.

Proof. Let f1 = [v2vv1x1], then x1 is a true vertex, x1 /∈ {v3, v4}. By Fact 4, we have
dG×( fi) ≥ 4 for i ∈ {2, 3, 4}. By g ≥ 7, we have v3x1 /∈ E(G), v3v2 /∈ E(G), v4x1 /∈ E(G),
v4v1 /∈ E(G), v4v3 /∈ E(G) and v2v1 /∈ E(G).

Now we are going to show that dG×( f2) ≥ 6. Assume to the contrary that dG×( f2) ≤ 5.
If dG×( f2) = 4, say f2 = [v3vv2x2], then x2 is a true vertex, x2 /∈ {v1, x1, v4} and G contains
a 5-cycle v1x1v2x2v3v1, a contradiction. If dG×( f2) = 5, say f2 = [v3vv2x2y1], then x2
and y1 are true vertices, x2, y1 /∈ {v1, v4} and y1 6= x1. If x2 = x1, then G contains a
4-cycle v1x1y1v3v1, a contradiction. If x2 6= x1, then G contains a 6-cycle v1x1v2x2y1v3v1, a
contradiction. Hence, dG×( f2) ≥ 6. By symmetry, we have dG×( f4) ≥ 6.

Next we will show that dG×( f3) ≥ 5. Assume to the contrary that dG×( f3) = 4,
say f3 = [v4vv3x3], then x3 is a true vertex, x3 /∈ {v1, x1, v2}, and G contains a 6-cycle
v1x1v2v4x3v3v1, a contradiction. Hence, dG×( f3) ≥ 5.

Lemma 5. Let G be a connected IC-planar graph with g ≥ 7 and |G| ≥ 6, then G contains one of
the following configurations H1∼H9.

kx 1kx −

3kx −

1x 2kx −

4 2 3:  2 ( ),  ( ) 3.k kH d x d x− − 

2kx − kx1kx −

3kx −

5 2:  2 ( ) 3,kH d x − 

32 ( ) 4.kd x − 

2kx − 1kx −1x

kx
2x

6H

2kx −

kx

1x

1kx −

2kx −

1x

kx
1kx −

3kx −

1 1:  2 ( ),  ( ) 3,k kH d x d x − 

2 32 ( ) 3,  2 ( ) 4.k kd x d x− −    2H

kx

2kx −

1kx −

1x

2x

3H

1x

2kx −

kx
3kx −

32 ( ) 4.kd x − 

1kx −

1x

7 2:  2 ( ) 3,kH d x − 

2kx − kx1kx −

1x
3kx −

8 3:  2 ( ) 4.kH d x − 

kx

1kx −

2kx −

1x

9 2:  1 ( ) 2.kH d x − 

Remark 1. Each configuration depicted above is such that: (1) the vertices which are labelled
as xk, xk−1, xk−2 in every configuration are different while the other vertices may be not distinct;
(2) the degree of solid vertices are exactly shown; (3) the degree of hollow vertices may be larger
than or equal to the degree shown in the figure, except for specially pointed.
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5. Proof of Lemma 5

On the contrary, assume that Lemma 5 is not true. Let G be a counterexample. Then G
is a connected IC-planar graph with g ≥ 7 and |G| ≥ 6, but without configurations H1∼H9.
Now we consider G×, the associated plane graph of G.

In the following, we use Euler’s formula and discharging analysis on G× to derive
a contradiction. We define the initial weight function w such that w(v) = 2dG×(v) − 6
for each v ∈ V(G×), and w( f ) = dG×( f ) − 6 for each f ∈ F(G×). By Euler’s formula
|V(G×)| − |E(G×)|+ |F(G×)| = 2 and Handshaking Theorem, we can deduce that

∑
x∈V(G×)∪F(G×)

w(x) = ∑
v∈V(G×)

(2dG×(v)− 6) + ∑
f∈F(G×)

(dG×( f )− 6) = −12.

Next, we will design the appropriate discharging rules to redistribute the weights on
V(G×) ∪ F(G×) depending on the value of δ(G×). Once the discharging process is finished,
a new weight function w′(x) is produced while the total sum of weights is kept fixed.
Then we will show that ∑

x∈V(G×)∪F(G×)
w′(x) > −12 = ∑

x∈V(G×)∪F(G×)
w(x) to derive the

contradiction. For x, y ∈ V(G×) ∪ F(G×), let τ(x → y) be the weight transferred from x to y.
By Lemma 4, we have δ(G) ≤ 3. So δ(G×) ≤ 3. Thus, the proof will be divided into

the following cases depending on the value of δ(G×).

Case 1. δ(G×) = 3.

Our discharging rules are defined as follows.
R1. Suppose that v is a false 4-vertex and f is the face incident with v. If dG×( f ) = 3,

then τ(v→ f ) = 2; if dG×( f ) = 4, then τ(v→ f ) = 3
2 ; if dG×( f ) = 5, then τ(v→ f ) = 1

2 .
R2. Suppose that v is a true 4-vertex.
R2.1 Let f be a false face incident with v. If dG×( f ) = 3, then τ(v → f ) = 1;

if dG×( f ) = 4, then τ(v→ f ) = 1
2 ; if dG×( f ) = 5, then τ(v→ f ) = 1

2 .
R2.2 Let f be a pendant false 3-face of v. Then τ(v→ f ) = 1

2 .
R3. Suppose that v is a true 5+-vertex.
R3.1 Let f be a false face incident with v. If dG×( f ) = 3, then τ(v → f ) = 1;

if dG×( f ) = 4, then τ(v→ f ) = 1
2 ; if dG×( f ) = 5, then τ(v→ f ) = 1

2 .
R3.2 Let f be a pendant false face of v. If dG×( f ) = 3, then τ(v→ f ) = 1; if dG×( f ) = 4,

then τ(v→ f ) = 1
2 .

Next, we are going to show that for each element x ∈ V(G×) ∪ F(G×), w′(x) ≥ 0.
Suppose that v ∈ V(G×) with dG×(v) = k. Let v1, · · · , vk be the vertices adjacent to v

in G× and arranged in clockwise order. Let fi be the face with vvi and vvi+1 as boundary
edges, where 1 ≤ i ≤ k and vk+1 = v1.

Claim 1.1 w′(v) ≥ 3
2 k− 6 for each true k-vertex v with k ≥ 4.

Proof. Let v be a true k-vertex with k ≥ 4. Then w(v) = 2k − 6. By Fact 2 and g ≥ 7,
f3(v) ≤ 1.

If f3(v) = 1, say f1, then by Fact 4, v does not have pendant false i-faces, i ∈ {3, 4}
and max{dG×( f2), dG×( fk)} ≥ 6. Thus, f4(v) + f5(v) ≤ k− 2. Hence, w′(v) ≥ 2k− 6−
1− 1

2 (k− 2) = 3
2 k− 6 by R2–R3.

If f3(v) = 0, then by Fact 1, Fact 4 and Fact 5, v has at most one pendant false
i-face, i ∈ {3, 4}. If v has one pendant false 3-face f , say v1 is the false vertex incident
with f , then min{dG×( f1), dG×( fk)} ≥ 6 by Fact 4. Thus, f4(v) + f5(v) ≤ k − 2. Hence,
w′(v) ≥ 2k− 6− 1− 1

2 (k− 2) = 3
2 k− 6 by R2–R3. If v has a pendant false 4-face f , say

v1 is the false vertex incident with f , then max{dG×( f1), dG×( fk)} ≥ 6 by Fact 5. Thus,
f4(v) + f5(v) ≤ k − 1. Hence, w′(v) ≥ 2k − 6− 1

2 −
1
2 (k − 1) = 3

2 k − 6 by R2–R3. If v
does not have any pendant false i-face, i ∈ {3, 4}, then w′(v) ≥ 2k− 6− 1

2 k = 3
2 k− 6 by

R2–R3.

Claim 1.2 w′(v) ≥ 0 for each v ∈ V(G×).



Axioms 2023, 12, 822 6 of 11

Proof. Suppose that v is a true 3-vertex. Then w′(v) = w(v) = 0. Suppose that v is a false
4-vertex. Then w(v) = 2. By Fact 4, f3(v) ≤ 1. If f3(v) = 1, then f4(v) = f5(v) = 0 by Fact
4. Thus, w′(v) = 2− 2 = 0 by R1. So suppose that f3(v) = 0. Then f4(v) ≤ 1 by Fact 5.
If f4(v) = 1, then f5(v) ≤ 1 by Fact 5. Thus, w′(v) ≥ 2− 3

2 −
1
2 = 0 by R1. If f4(v) = 0,

w′(v) ≥ 2− 4× 1
2 = 0 by R1. Suppose that v is a true k-vertex with k ≥ 4. By Claim 1.1, we

have w′(v) ≥ 3
2 k− 6 ≥ 3

2 × 4− 6 = 0.

Claim 1.3 w′( f ) ≥ 0 for each f ∈ F(G×).

Proof. Suppose that dG×( f ) ≥ 6. Then w′( f ) = w( f ) ≥ 0. Suppose that dG×( f ) = k (3 ≤
k ≤ 5). Since G is an IC-planar graph with g ≥ 7, then f is a false face. Let f = [u1u2 · · · uk].
By Fact 1, f is incident with one false vertex, say u1. Let v1, v2 be the neighbors of u1 in G×

such that v1u2 ∈ E(G) and v2uk ∈ E(G).
Suppose that k = 3. Then w( f ) = −3, and τ(u1 → f ) = 2 by R1. If f is a (3, 3, 4)-face,

then max{dG(v1), dG(v2)} ≥ 5 or dG(v1) = dG(v2) = 4 by G contains no configuration
H1. Note that f is the pendant false 3-face of v1 and v2. If max{dG(v1), dG(v2)} ≥ 5, say
dG(v1) ≥ 5, then τ(v1 → f ) = 1 by R3. Hence, w′( f ) ≥ −3 + 2 + 1 = 0. If dG(vi) = 4,
where i = 1, 2, then τ(vi → f ) = 1

2 by R2. Hence, w′( f ) = −3 + 2 + 2× 1
2 = 0. If f is a

(3+, 4+, 4)-face, say dG(ui) ≥ 4 for some i ∈ {2, 3}, then τ(ui → f ) = 1 by R2–R3. Hence,
w′( f ) ≥ −3 + 2 + 1 = 0.

Suppose that k = 4. Then w( f ) = −2, and τ(u1 → f ) = 3
2 by R1. If f is a (3, 3, 3, 4)-

face, then min{dG(v1), dG(v2)} ≥ 5 by G contains no configuration H1. Note that f is
the pendant false 4-face of v1 and v2. So τ(vi → f ) = 1

2 by R3, where i = 1, 2. Hence,
w′( f ) = −2 + 3

2 + 2 × 1
2 = 1

2 . If f is a (3+, 3+, 4+, 4)-face, say dG(ui) ≥ 4 for some
i ∈ {2, 3, 4}, then τ(ui → f ) = 1

2 by R2–R3. Hence, w′( f ) ≥ −2 + 3
2 + 1

2 = 0.
Suppose that k = 5. Then w( f ) = −1, and τ(u1 → f ) = 1

2 by R1. Since G contains no
configuration H1, f must be a (3+, 3+, 3+, 4+, 4)-face. So dG(ui) ≥ 4 for some i ∈ {2, 3, 4, 5}
and τ(ui → f ) = 1

2 by R2–R3. Hence, w′( f ) ≥ −1 + 1
2 + 1

2 = 0.

Thus, −12 = ∑
x∈V(G×)∪F(G×)

w(x) = ∑
x∈V(G×)∪F(G×)

w′(x) ≥ 0, which is a contradiction.

Hence, the counterexample graph G does not exist and Lemma 5 holds.

Case 2. δ(G×) = 2 and n2(G×) ≤ 2.

In Case 2, the discharging rules are the same as those in Case 1. With the same arguments
as Case 1, we can prove that w′(x) ≥ 0 if x ∈ V(G×) with dG×(x) ≥ 3 or x ∈ F(G×) with
dG×(x) ≥ 6, or x ∈ F(G×) with dG×(x) ≤ 5 and x is not incident with any 2-vertex.

Claim 2.1 w′( f ) ≥ 0, where f ∈ F(G×) is a k-face incident with 2-vertices and k ≤ 5.

Proof. By g ≥ 7, we have f is a false face. By Fact 3, we have 4 ≤ k ≤ 5. Let
f = [u1u2 · · · uk]. By Fact 1, f is incident with one false vertex, say u1. Let v1, v2 be
the neighbors of u1 in G× such that v1u2 ∈ E(G) and v2uk ∈ E(G).

Suppose that k = 4. Then w( f ) = −2, and τ(u1 → f ) = 3
2 by R1. If f is a

(2, 3−, 3, 4)-face, then min{dG(v1), dG(v2)} ≥ 5 by G contains no configuration H1. Note
that f is the pendant false 4-face of v1 and v2. So τ(vi → f ) = 1

2 by R3, where i = 1, 2.
Hence, w′( f ) = −2 + 3

2 + 2× 1
2 = 1

2 . If f is a (2, 2+, 4+, 4)-face, say dG(ui) ≥ 4 for some
i ∈ {2, 3, 4}, then τ(ui → f ) = 1

2 by R2–R3. Hence, w′( f ) ≥ −2 + 3
2 + 1

2 = 0.
Suppose that k = 5. Then w( f ) = −1, and τ(u1 → f ) = 1

2 by R1. Since G contains no
configuration H1, f is a (2, 2+, 3+, 4+, 4)-face. So dG(ui) ≥ 4 for some i ∈ {2, 3, 4, 5} and
τ(ui → f ) = 1

2 by R2–R3. Hence, w′( f ) ≥ −1 + 1
2 + 1

2 = 0.

Note that w′(v) = w(v) = −2 for each 2-vertex v. Thus, −12 = ∑
x∈V(G×)∪F(G×)

w(x) =

∑
x∈V(G×)∪F(G×)

w′(x) ≥ 2× (−2) = −4, which is a contradiction. Hence, the counterexam-

ple graph G does not exist and Lemma 5 holds.
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Case 3. δ(G×) = 2 and n2(G×) ≥ 3.

Since G does not contain H2 and H3 as subgraphs, G satisfies the following properties.
Claim 3.1 2-vertex is not adjacent to any 2-vertex.
Claim 3.2 Any 3+-vertex is adjacent to at most one 2-vertex.
A 2-vertex u ∈ V(G×) is called a special 2-vertex if uv ∈ E(G) with dG(v) = 3. Since G

does not contain H4 as a subgraph, the following claim holds.
Claim 3.3 G× has at most one special 2-vertex.
A 4-vertex v ∈ V(G) is called a special 4-vertex if v is adjacent to a 2-vertex in G; a

bad 4-vertex if v is special and adjacent to a 3-vertex in G; a poor 4-vertex if v is special and
not adjacent to any 3-vertex. Since G does not contain H3, H5 and H6 as subgraphs, the
following three claims hold.

Claim 3.4 Suppose that v is a poor 4-vertex. Then nG
2 (v) = 1 and nG

4+(v) = 3.
Claim 3.5 Suppose that v is a bad 4-vertex. Then nG

2 (v) = 1, nG
3 (v) = 1 and nG

5+(v) = 2.
Claim 3.6 A special 4-vertex is not adjacent to any special 4-vertex in G.
Claim 3.7 In G×, if v is a special 4-vertex incident with a 4-face, then f6+(v) ≥ 1.

Proof. Suppose that v is a special 4-vertex and vi (1 ≤ i ≤ 4) are the neighbors of v in G×

and arranged in clockwise order. Let fi be the face with vvi and vvi+1 as boundary edges,
where 1 ≤ i ≤ 4 and v5 = v1.

Without loss of generality, assume that f1 = [vv1x1v2] is a 4-face. By g ≥ 7, f1 is
a false face. If v1 or v2 is a false vertex, then dG×( f4) ≥ 6 or dG×( f2) ≥ 6 by Fact 5. So
f6+(v) ≥ 1. If x1 is a false vertex, then the vertices in

(
NG×(v1) ∪ NG×(v2)

)
− {x1} are true.

If dG×(v1) = 2 or dG×(v2) = 2, then dG×( f4) ≥ 6 or dG×( f2) ≥ 6 by Fact 5. So f6+(v) ≥ 1.
So suppose that dG×(v1) ≥ 3 and dG×(v2) ≥ 3. Without loss of generality, assume that
dG×(v3) = 2 since v is a special 4-vertex. If dG×( f2) ≥ 6 or dG×( f4) ≥ 6, then Claim 3.7
holds. So suppose that dG×( fi) ≤ 5, where i = 2, 4. That is, f2 and f4 are false faces. Since
the vertices in

(
NG×(v1) ∪ NG×(v2)

)
− {x1} are true and g ≥ 7, we have dG×( fi) = 5,

where i = 2, 4. Let f2 = [vv2y1y2v3]. Then y2 is a false vertex. Let f3 = [vv3y2z1 · · · ztv4],
where t ≥ 0. If t = 0, then y2v4 ∈ E(G×). Since y2 is a false vertex, we have y1v4 ∈ E(G).
Thus, G contains a 4-cycle vv2y1v4v, a contradiction. If t = 1, then y2z1 ∈ E(G×), and z1 is
a true vertex. Since y2 is a false vertex, we have y1z1 ∈ E(G). Thus, G contains a 5-cycle
vv2y1z1v4v, a contradiction. So t ≥ 2. That is, dG×( f3) ≥ 6. So f6+(v) ≥ 1.

Claim 3.8 If G contains a path P3 = xyz and x is a special 4-vertex, then dG(y) ≥ 4 or
dG(z) ≥ 4.

Proof. Suppose that x is a poor 4-vertex. By Claim 3.4, nG
2 (x) = 1 and nG

4+(x) = 3. That is,
dG(y) ≥ 4 or dG(y) = 2. If dG(y) = 2, then dG(z) ≥ 4 since G contains no configuration H7.

Suppose that x is a bad 4-vertex. By Claim 3.5, nG
2 (x) = 1, nG

3 (x) = 1 and nG
5+(x) = 2.

That is, dG(y) ≥ 5, or dG(y) = 2, or dG(y) = 3. If dG(y) = 2, then dG(z) ≥ 4 since
G contains no configuration H7. If dG(y) = 3, then dG(z) ≥ 5 since G contains no
configuration H8.

Corollary 1. If f is a false 4-face incident with a poor 4-vertex, then f is incident with at least two
true 4+-vertices.

Proof. Suppose that f = [v1v2v3v4] is a false 4-face, where v1 is a false vertex. Then v2, v3
and v4 are true vertices by Fact 1. If v2 or v4 is a poor 4-vertex, say v2 is a poor 4-vertex,
then max{dG(v3), dG(v4)} ≥ 4 by Claim 3.8. Therefore, f is incident with at least two true
4+-vertices. If v3 is a poor 4-vertex, then max{dG(v2), dG(v4)} ≥ 4 by Claim 3.4. Therefore,
f is incident with at least two true 4+-vertices.

Corollary 2. If f is a false 5-face incident with a special 4-vertex, then f is incident with at least
two true 4+-vertices.
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Proof. Suppose that f = [v1v2v3v4v5] is a false 5-face, where v1 is a false vertex. Then
v2, v3, v4 and v5 are true vertices by Fact 1. If v2 or v5 is a special 4-vertex, say v2 is a
special 4-vertex, then max{dG(v3), dG(v4)} ≥ 4 by Claim 3.8. Therefore, f is incident with
at least two true 4+-vertices. If v3 or v4 is a special 4-vertex, say v3 is a special 4-vertex,
then max{dG(v4), dG(v5)} ≥ 4 by Claim 3.8. Therefore, f is incident with at least two true
4+-vertices.

In this Case, we define the following discharging rules R1–R6, where R1–R3 are the
same as those in Case 1.

R4. Suppose that v is a true 4+-vertex. Then v gives 1 to each adjacent 2-vertex in G.
R5. Suppose that v is a true 5+-vertex. Then v gives 3

10 to each adjacent bad 4-vertex in G.
R6. Suppose that f is a false face, and v is a special 4-vertex incident with f .
R6.1 Let f be a false 3-face. If v is a special 4-vertex, then τ( f → v) = 1

2 .
R6.2 Let f be a false 4-face. If v is a poor 4-vertex, then τ( f → v) = 1

4 ; if v is a bad
4-vertex, then τ( f → v) = 0.

R6.3 Let f be a false 5-face. If v is a poor 4-vertex, then τ( f → v) = 1
4 ; if v is a bad

4-vertex, then τ( f → v) = 1
10 .

Claim 3.9 Suppose that v ∈ V(G×). If dG×(v) ≥ 3, or dG×(v) = 2 and v is not a special
2-vertex, then w′(v) ≥ 0.

Proof. Suppose that dG×(v) = k. Let v1, · · · , vk be the vertices adjacent to v in G× and
arranged in clockwise order. Let fi be the face with vvi and vvi+1 as boundary edges, where
1 ≤ i ≤ k and vk+1 = v1.

Suppose that k = 2. Then w(v) = −2. If v is a special 2-vertex, then w′(v) ≥ w(v) = −2.
If v is not a special 2-vertex, then nG

4+(v) = 2 by Claim 3.1. Hence, w′(v) = −2 + 2× 1 = 0
by R4.

Suppose that k = 3. Then w′(v) = w(v) = 0.
Suppose that k = 4. If v is a false 4-vertex, then with the similar arguments as Case

1, we have w′(v) ≥ 0. Assume that v is a true 4-vertex. Then nG
2 (v) ≤ 1 by Claim 3.2. If

nG
2 (v) = 0, then with the similar arguments as Case 1, we have w′(v) ≥ 0. So suppose that

nG
2 (v) = 1. That is, v is a special 4-vertex. By Fact 2 and g ≥ 7, f3(v) ≤ 1.

If f3(v) = 1, say f1 = [vv1v2] and v1 is a false vertex, then by Fact 4, v does not
have pendant false i-faces, i ∈ {3, 4}, and dG×( f4) ≥ 6. Thus, f4(v) + f5(v) ≤ 2. By R6.1,
τ( f1 → v) = 1

2 . If f4(v) + f5(v) ≤ 1, then w′(v) ≥ 2− 1− 1− 1
2 + 1

2 = 0 by R2, R4 and R6.
So suppose that f4(v) + f5(v) = 2. If v is a poor 4-vertex, then τ( fi → v) = 1

4 by R6, where
i = 2, 3. Thus, w′(v) = 2− 1− 1− 2× 1

2 + 1
2 + 2× 1

4 = 0 by R2, R4 and R6. If v is a bad
4-vertex, then by Claim 3.5, nG

5+(v) = 2. Thus, w′(v) ≥ 2− 1− 1− 2× 1
2 +

1
2 + 2× 3

10 = 1
10

by R2, R4 and R5.
If f3(v) = 0, then by Fact 1, Fact 4 and Fact 5, v has at most one pendant false i-face,

i ∈ {3, 4}.
• Suppose that v has a pendant false 3-face f . Then v is adjacent to a false vertex,

say v1. So dG×( f1) ≥ 6 and dG×( f4) ≥ 6 by Fact 4. Thus, f4(v) + f5(v) ≤ 2. Note
that τ(v → f ) = 1

2 by R2. If f4(v) + f5(v) ≤ 1, then w′(v) ≥ 2− 1− 1
2 −

1
2 = 0

by R2 and R4. So suppose that f4(v) + f5(v) = 2. If v is a poor 4-vertex, then
τ( fi → v) = 1

4 by R6, where i = 2, 3. Thus, w′(v) = 2− 1− 1
2 − 2× 1

2 + 2× 1
4 = 0

by R2, R4 and R6. If v is a bad 4-vertex, then by Claim 3.5, nG
5+(v) = 2. Thus,

w′(v) ≥ 2− 1− 1
2 − 2× 1

2 + 2× 3
10 = 1

10 by R2, R4 and R5.
• Suppose that v has a pendant false 4-face f . Then v is adjacent to a false vertex, say

v1. So max{dG×( f1), dG×( f4)} ≥ 6 by Fact 5. Thus, f4(v) + f5(v) ≤ 3. Note that
τ(v→ f ) = 0 by R2. If f4(v) + f5(v) ≤ 2, then w′(v) ≥ 2− 1− 2× 1

2 = 0 by R2 and
R4. So suppose that f4(v) + f5(v) = 3 and dG×( f1) ≥ 6. If v is a poor 4-vertex, then
τ( fi → v) = 1

4 by R6, where i = 2, 3, 4. Thus, w′(v) = 2− 1− 3× 1
2 + 3× 1

4 = 1
4

by R2, R4 and R6. If v is a bad 4-vertex, then by Claim 3.5, nG
5+(v) = 2. Thus,

w′(v) ≥ 2− 1− 3× 1
2 + 2× 3

10 = 1
10 by R2, R4 and R5.
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• Suppose that v does not have any pendant false i-face, i ∈ {3, 4}. Then f4(v) + f5(v) ≤ 4.
If f4(v) + f5(v) ≤ 2, then w′(v) ≥ 2 − 1 − 2 × 1

2 = 0 by R2 and R4. Assume that
f4(v) + f5(v) = 3 and dG×( f1) ≥ 6. If v is a poor 4-vertex, then τ( fi → v) = 1

4 by R6,
where i = 2, 3, 4. Thus, w′(v) = 2− 1− 3× 1

2 + 3× 1
4 = 1

4 by R2, R4 and R6. If v is a
bad 4-vertex, then by Claim 3.5, nG

5+(v) = 2. Thus, w′(v) ≥ 2− 1− 3× 1
2 + 2× 3

10 = 1
10

by R2, R4 and R5. Assume that f4(v) + f5(v) = 4. By Claim 3.7, we have f4(v) = 0 and
f5(v) = 4. If v is a poor 4-vertex, then τ( fi → v) = 1

4 by R6, where i = 1, 2, 3, 4. Thus,
w′(v) = 2− 1− 4× 1

2 + 4× 1
4 = 0 by R2, R4 and R6. If v is a bad 4-vertex, then by Claim

3.5, nG
5+(v) = 2. Thus, w′(v) = 2− 1− 4× 1

2 + 2× 3
10 + 4× 1

10 = 0 by R2, R4–R6.

Suppose that k ≥ 5. By Claim 1.1, the remaining charge of 5+-vertex is at least
3
2 k− 6 after the discharging process R1–R3. By Claim 3.2, nG

2 (v) ≤ 1. If nG
2 (v) = 0, then

w′(v) ≥ 3
2 k− 6− 3

10 k = 6
5 k− 6 ≥ 6

5 × 5− 6 = 0 by Claim 1.1 and R5. Now we consider that
nG

2 (v) = 1. Since G contains no configuration H6, then v will not adjacent to any special
4-vertex in G. Thus, w′(v) ≥ 3

2 k− 6− 1 = 3
2 k− 7 ≥ 3

2 × 5− 7 = 1
2 by Claim 1.1 and R4.

Claim 3.10 w′( f ) ≥ 0 for each f ∈ F(G×).

Proof. Suppose that dG×( f ) ≥ 6. Then w′( f ) = w( f ) ≥ 0.
Suppose that dG×( f ) = k (3 ≤ k ≤ 5). Since G is an IC-planar graph with g ≥ 7, then

f is a false face. Let f = [u1u2 · · · uk]. By Fact 1, f is incident with one false vertex, say u1.
Let v1, v2 be the neighbors of u1 in G× such that v1u2 ∈ E(G) and v2uk ∈ E(G).

Suppose that k = 3. Then w( f ) = −3, and τ(u1 → f ) = 2 by R1. By Fact 3, f is not
incident with any 2-vertex. By Claim 3.6, f is incident with at most one special 4-vertex. If
f is not incident with any special 4-vertex, then with the similar discussion as Case 1, we
can deduce that w′( f ) ≥ 0. Now suppose that f is incident with a special 4-vertex, say u2,
then τ(u2 → f ) = 1 by R2 and τ( f → u2) =

1
2 by R6. If f is a (3, 4, 4)-face, then dG(v2) ≥ 5

by G contains no configuration H8. Note that f is the pendant false 3-face of v2. Thus,
τ(v2 → f ) = 1 by R3. Hence, w′( f ) ≥ −3 + 2 + 1 + 1− 1

2 = 1
2 . If f is a (4, 4+, 4)-face, then

dG(u3) ≥ 4. Thus, τ(u3 → f ) = 1 by R2–R3. Hence, w′( f ) = −3 + 2 + 1 + 1− 1
2 = 1

2 .
Suppose that k = 4. Then w( f ) = −2, and τ(u1 → f ) = 3

2 by R1. Assume that
f incident with x poor 4-vertices, thus w′( f ) ≥ −2 + 3

2 + 1
2 x− 1

4 x = 1
4 x− 1

2 by R1, R2 and
R6. If x ≥ 2, then w′( f ) ≥ 0. If x = 1, then f is incident with at least two true 4+-vertices
by Corollary 1. Thus, w′( f ) ≥ −2 + 3

2 + 1
2 + 1

2 −
1
4 = 1

4 by R1–R3 and R6. If x = 0, then
with the similar discussion as Case 2, we can deduce that w′( f ) ≥ 0.

Suppose that k = 5. Then w( f ) = −1, and τ(u1 → f ) = 1
2 by R1. Assume that

f incident with x poor 4-vertices and y bad 4-vertices, thus w′( f ) ≥ −1 + 1
2 + 1

2 (x + y)−
1
4 x− 1

10 y = − 1
2 + 1

4 x + 2
5 y by R1, R2 and R6. If x ≥ 2, or x = 1 and y ≥ 1, or x = 0 and

y ≥ 2, then we have w′( f ) ≥ 0. So suppose that x = 1 and y = 0, or x = 0 and y ≤ 1. If
x = 1 and y = 0, then f is incident with at least two true 4+-vertices by Corollary 2. Thus,
w′( f ) ≥ −1 + 1

2 + 2× 1
2 −

1
4 = 1

4 by R1–R3 and R6. If x = 0 and y = 1, then f is incident
with at least two true 4+-vertices by Corollary 2. Thus, w′( f ) ≥ −1 + 1

2 + 2× 1
2 −

1
10 = 2

5
by R1–R3 and R6. If x = y = 0, then with the similar discussion as Case 2, we can deduce
that w′( f ) ≥ 0.

By Claim 3.3, there is at most one special 2-vertex in G×. Thus,
−12 = ∑

x∈V(G×)∪F(G×)
w(x) = ∑

x∈V(G×)∪F(G×)
w′(x) ≥ −2, which is a contradiction. Hence,

the counterexample graph G does not exist and Lemma 5 holds.

Case 4. δ(G×) = 1.

Subcase 4.1 n1(G×) = 1 and n2(G×) ≤ 2.
In Subcase 4.1, the discharging rules are the same as those in Case 2. With the same

arguments as Case 2, we can prove that w′(x) ≥ 0 for any x ∈
(
V(G×) ∪ F(G×)

)
− V′,

where V′ is the set of 1-vertex and 2-vertices. Note that w′(u) = w(u) = −4 for the
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1-vertex u and w′(v) = w(v) = −2 for each 2-vertex v. Thus, −12 = ∑
x∈V(G×)∪F(G×)

w(x) =

∑
x∈V(G×)∪F(G×)

w′(x) ≥ −4 + 2× (−2) = −8, which is a contradiction. Hence, the coun-

terexample graph G does not exist and Lemma 5 holds.
Subcase 4.2 n1(G×) = 1 and n2(G×) ≥ 3.

In Subcase 4.2, the discharging rules are the same as those in Case 3. By Claim 3.3,
there is at most one special 2-vertex in G×. With the same arguments as Case 3, we can
prove that w′(x) ≥ 0 for any x ∈

(
V(G×) ∪ F(G×)

)
−V′′, where V′′ is the set of 1-vertex

and special 2-vertex. Note that w′(u) = w(u) = −4 for the 1-vertex u and w′(v) ≥ −2
for the special 2-vertex v. Thus, −12 = ∑

x∈V(G×)∪F(G×)
w(x) = ∑

x∈V(G×)∪F(G×)
w′(x) ≥

−4 + (−2) = −6, which is a contradiction. Hence, the counterexample graph G does not
exist and Lemma 5 holds.
Subcase 4.3 n1(G×) ≥ 2.

Since G does not contain H9 as a subgraph, G contains exactly two 1-vertices and no
2-vertex. In Subcase 4.3, the discharging rules are the same as those in Case 1. With the same
arguments as Case 1, we can prove that w′(x) ≥ 0 for any x ∈

(
V(G×) ∪ F(G×)

)
− V′′′,

where V′′′ is the set of 1-vertices. Note that w′(u) = w(u) = −4 for each 1-vertex u.
Thus, −12 = ∑

x∈V(G×)∪F(G×)
w(x) = ∑

x∈V(G×)∪F(G×)
w′(x) ≥ 2× (−4) = −8, which is a

contradiction. Hence, the counterexample graph G does not exist and Lemma 5 holds. �

6. Proof of Theorem 1

Before we prove Theorem 1, it is necessary to present the following result.

Lemma 6. Let G be an IC-planar graph with g ≥ 7. If k ≥ max{∆, 5}, then G is equitably
k-colorable.

Proof. Assume to the contrary that G is a counterexample with fewest vertices of Lemma
6. If the order of each component of G is at most five, then ∆ ≤ 4. Thus, k ≥ max{∆, 5} ≥
∆ + 1, and G is equitably k-colorable by Lemma 2. Otherwise, there is a component of
G with order at least six. By Lemma 5, G contains one of the configurations H1∼H9 in
Lemma 6. By Lemma 1, we need to choose the subset S, and define the subset S′ as follows.

If G contains configurations Hi, i ∈ {1, 4, 5, 7, 8}, then S′ = {xk, xk−1, xk−2, xk−3, x1}.
If G contains configurations Hi, i ∈ {3, 6}, then S′ = {xk, xk−1, xk−2, x2, x1}. If G contains
configurations Hi, i ∈ {2, 9}, then S′ = {xk, xk−1, xk−2, x1}. By Lemma 4, G is 3-degenerate,
thus the remaining unspecified vertices in S can be remarked by choosing the minimum
degree vertex in a graph obtained from G by deleting the remarked vertices at each step
from highest to lowest indices. It is easy to confirm that for every 1 ≤ i ≤ k, the subset S
defined above satisfies that | NG(xi)− S | ≤ k− i.

Let H = G− S ⊆ G. Then ∆(H) ≤ ∆. If ∆(H) < ∆, then H is equitably k-colorable by
Lemma 2. Otherwise, H is equitably k-colorable since G is a counterexample with fewest
vertices. Therefore, G is equitably k-colorable by Lemma 1.

By Lemma 2, we have the following corollary:

Corollary 3. Let G be an IC-planar graph with g ≥ 7. If ∆ ≥ 5, then G is equitably ∆-colorable.

Combining Corollary 3, and the conclusions in [14,15], we complete the proof of
Theorem 1.

With this conclusion, we can solve the problem of equitable coloring of IC-planar
graphs with large girth g (g ≥ 7) limitation.
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