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Abstract: The triple Sumudu transform decomposition method (TSTDM) is a combination of the
Adomian decomposition method (ADM) and the triple Sumudu transform. It is a computational
method that can be appropriate for solving linear and nonlinear partial differential equations. The
existence analysis of the method and partial derivatives theorems are proven. Finally, we solve the
1 + 1 and 2 + 1-dimensional Boussinesq equations by applying the (TSTDM)technique, which gives
the approximate solution with quick convergence. It is more precise than using ADM alone. In
addition, three examples are offered to examine the performance and precision of our method.

Keywords: triple Sumud transform; inverse triple Sumud transform; singular Boussinesq equation;
double Sumudu transform; decomposition methods and partial derivative
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1. Introduction

The study of wave propagation in fluid mechanics became very significant many years
ago, with much research in this field. The many remaining mathematicians studying this
subject using Whitham’s shallow water equations immediately use a coupled form of the
Boussinesq equation. The Boussinesq equations are named after the French scientist J,
who originated an interpretation of the equations to find solutions for solitary waves on a
water surface. Since then, different versions of Boussinesq equations have been introduced.
The authors in [1] modified the residual power series and applied it to obtain the fractal
solution of the Newell–Whitehead–Segel (NWS) model with fractal derivatives. In [2],
Nadeem et.al. presented a new plan, which is known as the Aboodh homotopy integral
transform method (AHITM), in order to find the approximate solution of wave problems
in multidimensional orders. Several strong methods have been modified and advanced
to obtain numerical and analytical solutions of linear and nonlinear partial differential
equations. Instances include the double natural and Laplace decomposition method [3,4],
the modified double Laplace decomposition method, a singular generalized modified
linear Boussinesq equation, and a singular nonlinear Boussinesq equation [5]. The coupled
Boussinesq–Burgers equations appear in the diffusion of shallow water waves [6]. The
unidirectional expansion of long waves in diffusive media [7] and the fractional variational
principles aside from the semi-inverse method are applied to deduce the space–time frac-
tional Boussinesq equation [8]. The space–time fractional Boussinesq equations in Caputo
sense derivatives are discussed by applying the homotopy perturbation technique [9].
The authors in [10] discussed the partial differential equations using the double Laplace–
Sumudu transform method. Numerical solutions of partial differential equations with
variable coefficients have been examined by the Sumudu transform method (STM) [11].
The authors have developed a method with the approximate solutions of the nonlinear sys-
tems of partial differential equations with the help of the Sumudu decomposition method
(SDM) [12]. In this paper, a new approach is suggested that uses the Sumudu transform
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decomposition method to obtain the exact solution of several types of Boussinesq equa-
tions. This technique is a combination of the decomposition method and the Sumudu
transform method. The new double and triple Sumudu transform decomposition method
is used to develop the solutions of 1 + 1 and 2 + 1-dimensional Boussinesq equations.
The rest of the work is arranged as follows: Section 2 covers important definitions, the
existing condition of the triple Sumudu transform (TST), and theorems of partial derivates
with (TST). In Section 3, the 1 + 1-dimensional Boussinesq equation is studied by using
the double Sumudu transform, and one example is given to support our method. In
Section 4, the triple Sumudu transform decomposition method is applied to solve the
singular 2+ 1-dimensional Boussinesq equation, and one example is given. In Section 5, we
study the solution of the singular 2 + 1-dimensional coupled system Boussinesq equation
by utilizing the triple Sumudu transform decomposition method. Finally, Section 6 outlines
the concluding observations.

2. Properties of the Triple Sumudu Transform

In this section, the definitions and existence condition of the triple Sumudu transform
are presented. Here, we work with the double and triple Sumudu transform, which is
defined by

SxSt( f (x, t)) = F(u1, v) =
1

u1v

∫ ∞

0

∫ ∞

0
e−

x
u1
− t

v f (x, t)dtdx, (1)

where SxSt indicates the double Sumudu transform and u1, v ∈ C.

SxSySt( f (x, y, t)) = F(u1, u2, v) =
1

u1u2v

∫ ∞

0

∫ ∞

0

∫ ∞

0
e−

x
u1
− y

u2
− t

v f (x, y, t)dtdydx (2)

where SxSySt indicates the triple Sumudu transform and u1, u2, v ∈ C.

Next, the conditions for the existence of the triple Sumudu transform are given.
If f (x, y, t) is an exponential order a, c, and b as x → ∞, y → ∞, and t → ∞, and if

∃K > 0 such that for all x > X , y > Y and t > T

| f (x, y, t)| ≤ Keax+by+ct, (3)

for some X, Y, and T, then we write

f (x, y, t) = O
(

eax+by+ct
)

as y→ ∞, y→ ∞, t→ ∞;

equivalently,

lim
x→∞
y→∞
t→∞

e−
1
µ x− 1

η y− 1
ε t| f (x, y, t)| = K lim

x→∞
y→∞
t→∞

e−
(

1
µ−a

)
x−( 1

ε−b)y−( 1
δ−c)t

= 0, (4)

whenever 1
µ > a, 1

ε > c, and 1
δ > b. The function f (x, y, t) does not grow faster than

K(x, y, t) as x → ∞, y→ ∞, and t→ ∞.

Theorem 1. The function f (x, y, t) is defined on (0, X), (0, Y), and (0, T) and on the exponen-
tial order (x, y, t). Then, the triple Sumudu transform of f (x, y, t) exists for all Re 1

u1
> 1

µ ,

Re 1
u2

> 1
ε , and Re 1

v > 1
δ .
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Proof. By using Equations (2) and (3), we obtain

|F(u1, u2, v)| =

∣∣∣∣ 1
u1u2v

∫ ∞

0

∫ ∞

0

∫ ∞

0
e−(

1
u1

x+ 1
u2

y+ 1
v t) f (x, y, t)dxdydt

∣∣∣∣
≤ K

∣∣∣∣ 1u
∫ ∞

0

∫ ∞

0

∫ ∞

0
e
(

1
u1
−a
)

x−
(

1
u2
−b
)

y−( 1
v−c)tdxdy dt

∣∣∣∣ (5)

=
K

(1− au1)(1− cu2)(1− bv)
.

From the condition Re 1
u1

> 1
µ , Re 1

u2
> 1

ε , Re 1
v > 1

δ , and Equation (4), we have

lim
u1→∞
u2→∞
v→∞

|F(u1, u2, v)| = 0 or lim
u1→∞
u2→∞
v→∞

F(u1, u2, v) = 0.

This result can be considered the limiting property of the triple Sumudu transform.

The next theorem discusses the convergence of the triple Sumudu transform.

Theorem 2. Let ϕ(x, y, t) be a function of three variables continuous in the x, y, and t-plane. If the
integral

1
pqv

∞∫
0

∞∫
0

∞∫
0

e−
(

x
up +

y
q +

t
v

)
ϕ(x, y, t)dxdydt

converges at p = p0, q = q0, and v = v0, then the integral converges for p < p0, q < q0, and
v < v0.

The proof of this theorem is similar to the proof given by Theorem (2.3) in [13].

Theorem 3. If the triple Sumudu transform of the function f (x, y, t) is presented by F(u1, u2, v) =
SxSySt[ f (x, y, t)], then the triple Sumudu transforms of the functions

xy f (x, y, t)

are given by

SxSySt[xy f (x, y, t)] = u1u2
∂2

∂u1∂u2
(u1u2F(u1, u2, v)). (6)

Proof. By applying the partial derivative with respect to u1 for Equation (2), we obtain

∂F(u1,u2,v)
∂u1

= ∂
∂u1

∫ ∞
0

∫ ∞
0

∫ ∞
0

1
u1u2v e−

(
1

u1
x+ 1

u2
y+ 1

v t
)

f (x, y, t)dxdydt,

=
∫ ∞

0

∫ ∞
0

1
vu2

e−
(

1
u2

y+ 1
v t
)(∫ ∞

0
∂

∂u1
1

u1
e−

1
u1

x f (x, y, t)dx
)

dydt.
(7)

By computing the partial derivative into brackets, we obtain

∫ ∞

0

∂

∂u1

1
u1

e−
1

u1
x f (x, y, t)dx =

∫ ∞

0

(
1
u3

1
x− 1

u2
1

)
e−

1
u1

x f (x, y, t)dx

=
∫ ∞

0

1
u3

1
xe−

1
u1

x f (x, y, t)dx (8)

−
∫ ∞

0

1
u2

1
e−

1
u1

(x,y,t) f (x, y, t)dx.
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By substituting Equation (8) into Equation (7), we obtain

∂F(u1,u2,v)
∂u1

=
∫ ∞

0

∫ ∞
0

1
vu2

e−
(

1
u2

y+ 1
v t
)(∫ ∞

0
1

u3
1
xe−

1
u1

x f (x, y, t)dx
)

dydt

−
∫ ∞

0

∫ ∞
0

1
vu2

e−
(

1
u2

y+ 1
v t
)(∫ ∞

0
1

u2
1
e−

1
u1

x f (x, y, t)dx
)

dydt.
(9)

By taking the derivative with respect to u2 for Equation (9), we have achieved

∂2F(u1,u2,v)
∂u1∂u2

= 1
u3

1v

∫ ∞
0

∫ ∞
0 xe−

(
1

u1
x+ 1

v t
)(∫ ∞

0 e−
1

u2
y
(

1
u3

2
y− 1

u2
2

)
f (x, y, t)

)
dxdydt

− 1
u2

1v

∫ ∞
0

∫ ∞
0 e−

(
1

u1
x+ 1

v t
)(∫ ∞

0 e−
1

u2
y
(

1
u3

2
y− 1

u2
2

)
f (x, y, t)

)
dxdydt.

(10)

Equation (10) becomes

∂2F(u1,u2,v)
∂u1∂u2

= 1
u2

1u2
2
SxSySt[xy f (x, y, t)]− 1

u2
1u2

SxSySt[x f (x, y, t)]

− 1
u1u2

2
SxSySt[y f (x, y, t)] + 1

u1u2
SxSySt[ f (x, y, t)].

(11)

By arranging the above equation, we obtain

SxSySt[xy(x, y, t)] = u2
1u2

2
∂2F(u1, u2, v)

∂u1∂u2
+ u2

1u2
∂F(u1, u2, v)

∂u1

+u1u2
2

∂F(u1, u2, v)
∂u2

+ u1u2F(u1, u2, v);

hence,
SxSySt[xy f (x, y, t)] = u1u2

∂2

∂u1∂u2
(u1u2F(u1, u2, v)).

The proof is complete.

The next theorem provides the triple Sumudu transform of the partial derivatives

xy ∂ψ
∂t and xy ∂2ψ

∂t2 .

Theorem 4. The triple Sumudu transform of the fractional partial derivatives xy ∂ψ
∂t and xy ∂2ψ

∂t2 are
achieved by

SxSySt

[
xy ∂ψ

∂t

]
= u1u2

v
∂2

∂u1∂u2
(u1u2Ψ(u1, u2, v))

− u1u2
v

∂2

∂u1∂u2
(u1u2Ψ(u1, u2, 0)),

(12)

and

SxSySt

[
xy

∂2ψ

∂t2

]
=

u1u2

v
∂2

∂u1∂u2
(u1u2Ψ(u1, u2, v))

−u1u2

v
∂2

∂u1∂u2
(u1u2Ψ(u1, u2, 0)) (13)

−u1u2

v
∂2

∂u1∂u2
u1u2

[
SxSy

(
∂ψ(x, y, 0)

∂t

)]
,

respectively.

Proof. By taking a partial derivative with respect to u1 for Equation (26), we have

∂
∂u1

(
SxSySt

[
∂ψ
∂t

])
= ∂

∂u1

∫ ∞
0

∫ ∞
0

∫ ∞
0

1
u1u2v e−

(
1

u1
x+ 1

u2
y+ 1

v t
)

∂ψ
∂t dxdydt,

=
∫ ∞

0

∫ ∞
0

1
vu2

e−
(

1
u2

y+ 1
v t
)(∫ ∞

0
∂

∂u1
1

u1
e−

1
u1

x ∂ψ
∂t dx

)
dydt.

(14)
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We calculate the partial derivative inside brackets as follows:

∫ ∞

0

∂

∂u1

1
u1

e−
1

u1
x ∂ψ

∂t
dx =

∫ ∞

0

(
1
u3

1
x− 1

u2
1

)
e−

1
u1

x ∂ψ

∂t
dx

=
∫ ∞

0

1
u3

1
xe−

1
u1

x ∂ψ

∂t
dx (15)

−
∫ ∞

0

1
u2

1
e−

1
u1

x ∂ψ

∂t
dx.

Substituting Equation (15) into Equation (14), we obtain

∂
∂u1

(
SxSySt

[
∂ψ
∂t

])
=

∫ ∞
0

∫ ∞
0

1
vu2

e−
(

1
u2

x+ 1
v t
)(∫ ∞

0
1

u3
1
xe−

1
u1

x ∂ψ
∂t dx

)
dydt

−
∫ ∞

0

∫ ∞
0

1
vu2

e−
(

1
u2

y+ 1
v t
)(∫ ∞

0
1

u2
1
e−

1
u1

x ∂ψ
∂t dx

)
dydt.

(16)

By taking the partial derivative of expression Equation (16) with respect to u2, we obtain
the formula

∂2

∂u1∂u2

(
SxSySt

[
∂ψ
∂t

])
= ∂

∂u2

(∫ ∞
0

∫ ∞
0

1
vu2

e−
(

1
u2

y+ 1
v t
)(∫ ∞

0
1

u3
1
xe−

1
u1

x ∂ψ
∂t dx

)
dydt

)
− ∂

∂u2

(∫ ∞
0

∫ ∞
0

1
vu2

e−
(

1
u2

y+ 1
v t
)(∫ ∞

0
1

u2
1
e−

1
u1

x ∂ψ
∂t dx

)
dydt

)
.

(17)

Therefore, Equation (17) becomes

∂2

∂u1∂u2

(
SxSySt

[
∂ψ
∂t

])
= 1

u2
1u2

2

(
1

u1u2v
∫ ∞

0

∫ ∞
0

∫ ∞
0 e−

(
1

u2
y+ 1

v t+ 1
u1

x
)

xy ∂ψ
∂t dxdydt

)
+ 1

u1u2

(
1

u1u2v
∫ ∞

0

∫ ∞
0

∫ ∞
0 e−

(
1

u2
y+ 1

v t+ 1
u1

x
)

∂ψ
∂t dxdydt

)
− 1

u1u2
2

(
1

u1u2v
∫ ∞

0

∫ ∞
0

∫ ∞
0 e−

(
1

u2
y+ 1

v t+ 1
u1

x
)

y ∂ψ
∂t dxdydt

)
− 1

u2
1u2

(
1

u1u2v
∫ ∞

0

∫ ∞
0

∫ ∞
0 e−

(
1

u2
y+ 1

v t+ 1
u1

x
)

x ∂ψ
∂t dxdydt

)
;

(18)

hence,
∂2

∂u1∂u2

(
SxSySt

[
∂ψ
∂t

])
= 1

u2
1u2

2
SxSySt

[
xy ∂ψ

∂t

]
+ 1

u1u2
SxSySt

[
∂ψ
∂t

]
− 1

u1u2
2
SxSySt

[
y ∂ψ

∂t

]
1

u2
1u2

SxSySt

[
x ∂ψ

∂t

]
,

(19)

By rearranging Equation (19), we proved Equation (12)

SxSySt

[
xy

∂ψ

∂t

]
=

u1u2

v
∂2

∂u1∂u2
(u1u2Ψ(u1, u2, v))− u1u2

v
∂2

∂u1∂u2
(u1u2Ψ(u1, u2, 0)).

In a similar way, one can prove Equation (13).

The double Sumudu transform of the function ψ(x, t) is given by SxSt[ψ(x, t)] =

ψ(u1, v). Then, the triple Sumudu transform of ∂ψ
∂x , ∂2ψ

∂x2 and ∂ψ(x,t)
∂t are given by

SxSt

[
∂ψ

∂x

]
=

ψ(u1, v)− ψ(0, v)
u1

,

SxSt

(
∂2ψ

∂x2

)
=

ψ(u1, v)
u2

1
− ψ(0, v)

u2
1
− ψt(0, v)

u1

and
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SxSt

[
∂ψ

∂t

]
=

ψ(u1, v)− ψ(u1, 0)
v

,

SxSt

(
∂2ψ

∂t2

)
=

ψ(u1, v)
v2 − ψ(u1, 0)

v2 − ψt(u1, 0)
v

.

The Triple Sumudu transform of the function ψ(x, y, t) is given by SxSySt[ψ(x, y, t)] =

ψ(u1, u2, v). Then, the triple Sumudu transform of ∂ψ
∂x , ∂2ψ

∂x2 , ∂ψ(x,y,t)
∂t , and ∂2ψ(x,y,t)

∂t2 is
given by

SxSySt

[
∂ψ

∂x

]
=

ψ(u1, u2, v)− ψ(0, u2, v)
u1

, (20)

SxSySt

(
∂2ψ

∂x2

)
=

ψ(u1, u2, v)
u2

1
− ψ(0, u2, v)

u2
1

− ψt(0, u2, v)
u1

, (21)

SxSySt

[
∂ψ

∂y

]
=

ψ(u1, u2, v)− ψ(u1, 0, v)
u2

,

SxSySt

(
∂2ψ

∂y2

)
=

ψ(u1, u2, v)
u2

2
− ψ(u1, 0, v)

u2
2

− ψt(u1, 0, v)
u2

, (22)

and

SxSySt

[
∂ψ

∂t

]
=

ψ(u1, u2, v)− ψ(u1, u2, 0)
v

, (23)

SxSySt

(
∂2ψ

∂t2

)
=

ψ(u1, u2, v)
v2 − ψ(u1, u2, 0)

v2 − ψt(u1, u2, 0)
v

. (24)

Next, we generalized the triple Sumudu transform of partial derivatives.

Theorem 5. The triple transforms of the functions ψ(x, y, t), ∂mψ
∂xm and ∂nψ

∂tn are

SxSySt

(
∂m

∂xm ψ(x, y, t)
)

=
ψ(u1, u2, v)

um
1

− ψ(0, u2, v)
um

1
−

m−1

∑
i=0

1
um−i

1

SxSySt

(
∂i

∂xi ψ(0, y, t)
)

,

SxSySt

(
∂m

∂ym ψ(x, y, t)
)

=
ψ(u1, u2, v)

um
2

− ψ(u1, 0, v)
um

2
−

m−1

∑
i=0

1
um−i

2

SxSySt

(
∂i

∂yi ψ(x, 0, t)
)

,

SxSySt

(
∂n

∂tn ψ(x, y, t)
)

=
ψ(u1, u2, v)

vn − ψ(u1, u2, 0)
vn −

n−1

∑
i=1

1
vn−i SxSySt

(
∂i

∂ti ψ(x, y, 0)
)

.

3. Double Sumudu Transform Decomposition Method and 1 + 1-Dimensional
Boussinesq Equation

The solution of the 1+1-dimensional Boussinesq equation is reviewed by using the
double Sumudu transform decomposition method (DSTDM). In this paper, we indicated
the double Sumudu transform of the function ψ(x, t) by Ψ(u1, v).

We consider the general form of the linear Boussinesq equation in one dimension with
the initial conditions given below.

∂2ψ

∂t2 = a
∂2ψ

∂x2 + b
∂2 ln ψ

∂x2 + c
∂4ψ

∂x4 , (25)

subject to

ψ(x, 0) = f1(x),
∂ψ(x, 0)

∂t
= f2(x), (26)



Axioms 2023, 12, 829 7 of 15

where the functions f1(x), and f2(x) are given, and a, b and c are constants. First, applying
the double Sumudu transform on both sides of Equation (25) and the single Sumudu
transform for Equation (26), we obtain

Ψ(u1, v)
v2 =

Ψ(u1, 0)
v2 +

Ψt(u1, 0)
v

+SxSt

[
a

∂2ψ

∂x2 + b
∂2 ln ψ

∂x2 + c
∂4ψ

∂x4

]
, (27)

which by arranging Equation (27) becomes

Ψ(u1, v) = F1(u1, 0) + vF1(u1, 0)

+v2SxSt

[
a

∂2ψ

∂x2 + b
∂2 ln ψ

∂x2 + c
∂4ψ

∂x4

]
. (28)

The solution is received by using the inverse double Sumudu to transform for Equation (28),

ψ(x, t) = f1(x) + t f2(x) + S−1
u1

S−1
v

[
v2SxSt

[
a

∂2ψ

∂x2 + b
∂2 ln ψ

∂x2 + c
∂4ψ

∂x4

]]
, (29)

where S−1
u1

S−1
v indicates the double inverse Sumudu transform. The double Sumudu trans-

form decomposition method (DSDM) defines the solutions ψ(x, t) with the support of
infinite series as:

ψ(x, t) =
∞

∑
n=0

ψn(x, t). (30)

By substituting Equation (30) into Equation (29), we receive

∞
∑

n=0
ψn(x, t) = f1(x) + t f2(x)

+S−1
u1

S−1
v

[
v2SxSt

[
a ∂2

∂x2

(
∞
∑

n=0
ψn(x, t)

)
+ b ∂2

∂x2

∞
∑

n=0
ln ψn(x, t)

]]
+S−1

u1
S−1

v

[
v2SxSt

[
c ∂4

∂x4

(
∞
∑

n=0
ψn(x, t)

)]]
.

(31)

By matching both sides of the Equation (31), we obtain

ψ0(x, t) = f1(x) + t f2(x). (32)

In general, the rest terms are given by

ψn+1(x, t) = S−1
u1

S−1
v

[
v2SxSt

[
a ∂2

∂x2 (ψn(x, t)) + b ∂2

∂x2 (ln ψn(x, t))
]]

+S−1
u1

S−1
v

[
v2SxSt

[
c ∂4

∂x4 (ψn(x, t))
]]

,
(33)

where the inverse double Sumudu transform is given by S−1
u1

S−1
v . Here, we offered that

the inverse exists for Equations (32) and (33). In order to explain the advantages and the
precision of the DSTDM for solving Boussinesq equations, we used the method described
in Example 1.

Example 1. Consider a Boussinesq equation in one dimension

∂2ψ

∂t2 = a
∂2ψ

∂x2 + b
∂2 ln ψ

∂x2 + c
∂4ψ

∂x4 (34)

subject to the initial condition

ψ(x, 0) = ex,
∂ψ(x, 0)

∂t
= 2ex. (35)
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By applying the above method, Equation (25) becomes

ψ(x, t) = ex + 2tex + S−1
u1

S−1
v

[
v2SxSt

[
∂2

∂x2 (ψn(x, t)) + ∂2

∂x2 (ln ψn(x, t))
]]

+S−1
u1

S−1
v

[
v2SxSt

[
∂4

∂x4 (ψn(x, t))
]]

.
(36)

Our wanted recursive relation is given by

ψ0 = ex + 2tex,

and

ψn+1(x, t) = S−1
u1

S−1
v

[
v2SxSt

[
∂2

∂x2 (ψn(x, t)) +
∂2

∂x2 (ln ψn(x, t))
]]

+S−1
u1

S−1
v

[
v2SxSt

[
∂4

∂x4 (ψn(x, t))
]]

,

for n = 0, 1, 2, . . . . Hence, at n = 0,

ψ1(x, t) = S−1
u1

S−1
v

[
v2SxSt

[
∂2

∂x2 (ψ0(x, t)) +
∂2

∂x2 (ln ψ0(x, t)) +
∂4

∂x4 (ψ0(x, t))
]]

= S−1
u1

S−1
v

[
v2SxSt[4ex + 8tex]

]
= 2t2ex +

8
3!

t3ex;

at n = 1,

ψ2(x, t) = S−1
u1

S−1
v

[
v2SxSt

[
∂2

∂x2 (ψ1(x, t)) +
∂2

∂x2 (ln ψ1(x, t)) +
∂4

∂x4 (ψ1(x, t))
]]

= S−1
u1

S−1
v

[
v2SxSt

[
8t2ex +

24
3!

t3ex
]]

=
16
4!

t4ex +
32
5!

t5ex;

and at n = 2,

ψ3(x, t) =
64
6!

t6ex +
128
7!

t7ex.

By applying Equation (30), we obtain

∞

∑
n=0

ψn(x, t) = ψ0 + ψ1 + ψ2 + . . . .

= ex + 2tex +
(2t)2

2!
ex +

(2t)3

3!
ex +

(2t)4

4!
ex +

(2t)5

5!
ex

(2t)6

6!
ex +

(2t)7

7!
ex.

Therefore, the solution to Equation (34) is given by

ψ(x, t) = ex+2t.

The surface in Figure 1 shows the approximate solution of function ψ(x, t) = ex+2t.
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Figure 1. ψ(x, t) = ex+2t.

4. Triple Sumudu Transform Decomposition Method and Singular 2 + 1-Dimensional
Boussinesq Equation

Now, we explain the triple Sumudu transform decomposition method to solve the
singular 2 + 1-dimensional Boussinesq equation:

Consider the following general form of the singular 2 + 1-dimensional Boussinesq
equation of the form:

ψtt − 1
x

∂
∂x (xψx)− 1

y
∂

∂y
(
yψy

)
+ a(x, y)ψxxxx + b(x, y)ψyyyy

+c(x, y)ψxxtt + d(x, y)ψyytt = f (x, y, t),
(37)

with the initial condition

ψ(x, y, 0) = g1(x, y),
∂ψ(x, y, 0)

∂t
= g2(x, y), (38)

where the functions a(x, y), b(x, y), c(x, y), and d(x, y) are arbitrary. In order to obtain the
solution of Equation (37), we first take the product of both sides of Equation (37) by xy, and
applying the triple Sumudu transform, we obtain Equation (39)

SxSySt[xyψtt] = SxSySt

[
y ∂

∂x (xψx) + x ∂
∂y
(
yψy

)
− axyψxxxx − b(x)xyψyyyy

]
+ SxSySt

[
−cxyψxxtt − dxyψyytt + xy f (x, y, t)

]
.

(39)

Second, applying Equation (13), one obtains Equation (40) by arranging

u1u2
∂2

∂u1∂u2
SxSySt[ψtt] = SxSySt

[
y ∂

∂x (xψx) + x ∂
∂y
(
yψy

)
− axyψxxxx − b(x)xyψyyyy

]
+SxSySt

[
−cxyψxxtt − dxyψyytt + xy f (x, y, t)

]
,

(40)

and by arranging Equation (40)

∂2

∂u1∂u2
SxSySt[ψtt] = 1

u1u2
SxSySt

[
y ∂

∂x (xψx) + x ∂
∂y
(
yψy

)
− axyψxxxx − b(x)xyψyyyy

]
+ 1

u1u2
SxSySt

[
−cxyψxxtt − dxyψyytt + xy f (x, y, t)

]
.

(41)

By taking the integral for Equation (41) from 0 to u1 and 0 to u2 with respect to u1 and
u2, we have

SxSySt[ψtt] =
∫ u1

0

∫ u1
0

1
u1u2

SxSySt

[
y ∂

∂x (xψx) + x ∂
∂y
(
yψy

)
− axyψxxxx − bxyψyyyy

]
du1du2

+
∫ u1

0

∫ u1
0

1
u1u2

SxSySt
[
−cxyψxxtt − dxyψyytt + xy f (x, y, t)

]
du1du2.

(42)

For the double Sumudu transform for the initial condition given in Equation (38), we obtain
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ψ(u1, u2, v)
v2 − ψ(u1, u2, 0)

v2 − ψt(u1, u2, 0)
v

=
∫ u1

0

∫ u1

0

1
u1u2

SxSySt

[
y

∂

∂x
(xψx) + x

∂

∂y
(
yψy

)
− axyψxxxx − bxyψyyyy

]
du1du2 (43)

+
∫ u1

0

∫ u1

0

1
u1u2

SxSySt
[
−cxyψxxtt − dxyψyytt + xy f (x, y, t)

]
du1du2.

For the third step, using the triple inverse Sumudu transform for both sides of Equation (43),
the solution to Equation (37) can be written as

ψ(x, y, t) = g1(x.y) + tg2(x, y)
+S−1

u1
S−1

u2
S−1

v

[∫ u1
0

∫ u1
0

1
u1u2

SxSySt

[
y ∂

∂x (xψx) + x ∂
∂y
(
yψy

)]
du1du2

]
−S−1

u1
S−1

u2
S−1

v

[∫ u1
0

∫ u1
0

1
u1u2

SxSySt
[
axyψxxxx + bxyψyyyy

]
du1du2

]
−S−1

u1
S−1

u2
S−1

v

[∫ u1
0

∫ u1
0

1
u1u2

SxSySt
[
cxyψxxtt + dxyψyytt − xy f (x, y, t)

]
du1du2

]
.

(44)

By substituting Equation (30) into Equation (44), we obtain
∞
∑

n=0
ψn(x, y, t) = g1(x) + tg2(x) + S−1

u1
S−1

u2
S−1

v

[∫ u1
0

∫ u1
0

1
u1u2

SxSySt[xy f (x, y, t)]
]

+S−1
u1

S−1
u2

S−1
v

[∫ u1
0

∫ u1
0

1
u1u2

SxSySt

[
y ∂

∂x

(
x
(

∞
∑

n=0
ψnx

))]
du1du2

]
+S−1

u1
S−1

u2
S−1

v

[∫ u1
0

∫ u1
0

1
u1u2

SxSySt

[
x ∂

∂y

(
y
(

∞
∑

n=0
ψny

))]
du1du2

]
−S−1

u1
S−1

u2
S−1

v

[∫ u1
0

∫ u1
0

1
u1u2

[
xy
(

∞
∑

n=0
aψnxxxx + bψnyyyy

)]
du1du2

]
−S−1

u1
S−1

u2
S−1

v

[∫ u1
0

∫ u1
0

1
u1u2

[
xy
(

∞
∑

n=0
cxyψnxxtt + dxyψnyytt

)]
du1du2

]
,

(45)

where n = 0, 1, 2, . . .. Hence, from Equation (45) above, we have

ψ0(x, y, t) = g1(x, y) + tg2(x, y) + S−1
u1

S−1
u2

S−1
v

[∫ u1

0

∫ u1

0

1
u1u2

SxSySt[xy f (x, y, t)]
]

,

and

ψn+1(x, y, t) = S−1
u1

S−1
u2

S−1
v

[∫ u1

0

∫ u1

0

1
u1u2

SxSySt

[
y

∂

∂x
(x(ψnx)) + x

∂

∂y
(
y
(
ψny
))]

du1du2

]
−S−1

u1
S−1

u2
S−1

v

[∫ u1

0

∫ u1

0

1
u1u2

[
xy
((

a(x)ψnxxxx + bψnyyyy
))]

du1du2

]
(46)

−S−1
u1

S−1
u2

S−1
v

[∫ u1

0

∫ u1

0

1
u1u2

[
xy
((

cxyψnxxtt + dxyψnyytt
))]

du1du2

]
.

To clarify this method for the linear singular Boussinesq equation, we give Example 2. We
let a = b = c = d = 1 and f (x, t) = −

(
x2 − y2) sin t.

Example 2. The linear singular Boussinesq equation in one dimension is given by

ψtt −
1
x

∂

∂x
(xψx)−

1
y

∂

∂y
(
yψy

)
+ ψxxxx + ψyyyy

+ψxxtt + ψyytt = −
(

x2 − y2
)

sin t, (47)

with the initial conditions

ψ(x, y, 0) = 0,
∂ψ(x, y, 0)

∂t
=
(

x2 − y2
)

. (48)
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In order to proceed with our method for Equation (47), we obtain

ψ0(x, y, t) =
(

x2 − y2
)

sin t,

and

ψn+1(x, y, t) = S−1
u1

S−1
u2

S−1
v

[∫ u1

0

∫ u1

0

1
u1u2

SxSySt

[
y

∂

∂x
(x(ψnx)) + x

∂

∂y
(y(ψ))

]
du1du2

]
−S−1

u1
S−1

u2
S−1

v

[∫ u1

0

∫ u1

0

1
u1u2

[
xy
((

ψ + ψnyyyy
))]

du1du2

]
−S−1

u1
S−1

u2
S−1

v

[∫ u1

0

∫ u1

0

1
u1u2

[
xy
((

xyψnxxtt + xyψnyytt
))]

du1du2

]
.

The first repetition at n = 0 is denoted by

ψ1(x, y, t) = S−1
u1

S−1
u2

S−1
v

[∫ u1

0

∫ u1

0

1
u1u2

SxSySt

[
y

∂

∂x
(x(ψ0x)) + x

∂

∂y
(
y
(
ψ0y
))]

du1du2

]
−S−1

u1
S−1

u2
S−1

v

[∫ u1

0

∫ u1

0

1
u1u2

[
xy
((

ψ0xxxx + ψ0yyyy
))]

du1du2

]
−S−1

u1
S−1

u2
S−1

v

[∫ u1

0

∫ u1

0

1
u1u2

[
xy
((

xyψ0xxtt + xyψ0yytt
))]

du1du2

]
,

= 0,

at n = 1. We have
ψ2(x, y, t) = 0.

Likewise, let n = 2. We obtain
ψ3(x, y, t) = 0.

Hence, by using Equation (30), the series solutions are denoted by

∞

∑
n=0

ψn(x, y, t) = ψ0 + ψ1 + ψ2 + . . . .

=
(

x2 − y2
)

sin t.

Figure 2A,B show the approximate solutions of Example 2 for the function ψ(x, y, t) =(
x2 − y2) sin t at y = 0 and x = 0, respectively.

(A) (B)

Figure 2. (A) ψ(x, y, t) at y = 0 ; (B) ψ(x, y, t) at x = 0.
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5. The Triple Sumudu Transform Decomposition Method and the Singular
2 + 1-Dimensional Coupled System Boussinesq Equation

In this part, the triple Sumudu transform decomposition is addressed for the solution
of the singular 2 + 1-dimensional coupled system Boussinesq equation. The general form
of the singular 2 + 1-dimensional coupled system Boussinesq equation is denoted by

wt = a(x, y)(wψ)x + b(x, y)ψxxx + c(x, y)ψyyy
ψt = d(x, y)wx + e(x, y)wy − ψψx,

(49)

with the initial condition

w(x, y, 0) = f1(x, y), ψ(x, y, 0) = f2(x, y), (50)

where the functions a(x, y), b(x, y), c(x, y), d(x, y), and e(x, y) are arbitrary. For the purpose
of obtaining the solution to Equation (49), we use the triple Sumudu transform Equation (49)
and the double Sumudu transform for Equation (50). We have

W(u1,u2,v)
v = F1(u1,u2)

v + SxSySt
[
a(wψ) + bψxxx + cψyyy

]
Ψ(u1,u2,v)

v = F2(u1,u2)
v + SxSySt

[
dwx + ewy − ψψx

]
.

(51)

By organizing Equation (51), we obtain

W(u1, u2, v) = F1(u1, u2) + vSxSySt
[
a(wψ) + bψxxx + cψyyy

]
Ψ(u1, u2, v) = F2(u1, u2) + vSxSySt

[
dwx + ewy − ψψx

]
.

(52)

Applying the inverse transformation, we obtain

w(x, y, t) = f1(x, y) + S−1
u1

S−1
u2

S−1
v
[
vSxSySt

[
a(wψ) + bψxxx + cψyyy

]]
ψ(x, y, t) = f2(x, y) + S−1

u1
S−1

u2
S−1

v
[
vSxSySt

[
dwx + ewy − ψψx

]]
.

(53)

By substituting Equation (30) into Equation (29), we obtain

∞
∑

n=0
wn(x, y, t) = f1(x, y) + S−1

u1
S−1

u2
S−1

v

[
vSxSySt

[
a
(

∞
∑

n=0
wnψn

)
+ b

∞
∑

n=0
ψnxxx + c

∞
∑

n=0
ψnyyy

]]
∞
∑

n=0
ψn(x, y, t) = f2(x, y) + S−1

u1
S−1

u2
S−1

v

[
vSxSySt

[
d

∞
∑

n=0
wnx + e

∞
∑

n=0
wny −

∞
∑

n=0
ψnψnx

]]
.

(54)

The w0(x, y, t), ψ0(x, y, t), wn+1(x, y, t), and ψn+1(x, y, t) are given by

w0(x, y, t) = f1(x, y), ψ0(x, y, t) = f2(x, y), (55)

and
wn+1(x, y, t) = S−1

u1
S−1

u2
S−1

v
[
vSxSySt

[
a(wnψn) + bψnxxx + cψnyyy

]]
ψn+1(x, y, t) = S−1

u1
S−1

u2
S−1

v
[
vSxSySt

[
dwnx + ewny − ψnψnx

]]
.

(56)

Now, we stipulate the triple inverse Sumudu transform with respect to u1, u2, and v, which
exist for Equation (56).

To confirm the applicability of the method offered above, for a 2 + 1-dimensional
coupled system Boussinesq equation, we offer the following example, at a = b = c = d =
e = −1.

Example 3. The 2 + 1-dimensional coupled system Boussinesq equation is given by

wt = −1
2
(wψ)x − ψxxx − ψyyy

ψt = −wx − wy − ψψx, (57)
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with the initial condition

w(x, y, 0) = 2x− 2y, ψ(x, y, 0) = 2x− 2y. (58)

As indicated by the above method, the zeroth components w0 and ψ0 are proposed by the Ado-
mian method,

w0 = 2x− 2y, ψ0 = 2x− 2y. (59)

The remaining components wn+1, ψn+1, n ≥ 0 are given by using the relation

wn+1 = −S−1
u1

S−1
u2

S−1
v
[
vSxSySt

[
(wnψn)x + ψnxxx + ψnyyy

]]
ψn+1 = −S−1

u1
S−1

u2
S−1

v
[
vSxSySt

[
wnx + wny + ψnψnx

]]
.

(60)

By putting n = 0 into Equation (60), we have

w1 = −S−1
u1

S−1
u2

S−1
v

[
vSxSySt

[
1
2
(w0ψ0)x + ψ0xxx + ψ0yyy

]]
= −S−1

u1
S−1

u2
S−1

v
[
vSxSySt[4x− 4y]

]
= −SxSySt[4u1v− 4u2v]

= −(4xt− 4yt),

ψ1 = −S−1
u1

S−1
u2

S−1
v
[
vSxSySt

[
w0x + w0y + ψ0ψ0x

]]
= −S−1

u1
S−1

u2
S−1

v
[
vSxSySt[4x− 4y]

]
= −SxSySt[4u1v− 4u2v]

= −(4xt− 4yt),

at n = 1,

w2 = −S−1
u1

S−1
u2

S−1
v

[
vSxSySt

[
1
2
(w0xψ1 + w1xψ0 + w1ψ0x + w0ψ1x) + ψ1xxx + ψ1yyy

]]
,

w2 = 4t2(2x− 2y),

ψ2 = −S−1
u1

S−1
u2

S−1
v
[
vSxSySt

[
w1x + w1y + ψ0ψ1x + ψ1ψ0x

]]
= 4t2(2x− 2y).

In a similar manner, we have

w3 = −8t3(2x− 2y),

ψ3 = −8t3(2x− 2y).

Hence, by using Equation (30), the series solutions are denoted by
∞

∑
n=0

wn(x, y, t) = w0 + w1 + w2 + . . . .

= (2x− 2y)
(

1− 2t + (2t)2 − (2t)3 + (2t)4 − . . .
)

,
∞

∑
n=0

ψn(x, y, t) = ψ0 + ψ1 + ψ2 + . . . .

= (2x− 2y)
(

1− 2t + (2t)2 − (2t)3 + (2t)4 − . . .
)

;

therefore, the solution to equation Equation (57) is given by

w(x, y, t) =
2x− 2y
1 + 2t

and ψ(x, y, t) =
2x− 2y
1 + 2t

.

The approximate solutions for the functions ψ(x, y, t) = 2x−2y
1+2t and w(x, y, t) = 2x−2y

1+2t
at y = 0 were shown in Figure 3A,B, respectively. Moreover, in the Figure 4A,B, we
show the approximate solutions of function ψ(x, y, t) = 2x−2y

1+2t and w(x, y, t) = 2x−2y
1+2t at

x = 0, respectively.
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(A) (B)

Figure 3. (A) ψ(x, y, t) at y = 0; (B) w(x, y, t) at y = 0.

(A) (B)

Figure 4. (A) ψ(x, y, t) at x = 0; (B) w(x, y, t) at x = 0.

6. Conclusions

In this work, we presented the triple Sumudu transform decomposition method
(TSTDM) to find the approximate and series solutions of the Boussinesq equations. We
examined three different types of examples connected to the one and two dimensional
Boussinesq equations for systems of linear Boussinesq equations. By investigating the ex-
amples, we conclude that the TSTDM is a powerful tool for the solution of linear, nonlinear,
and coupled systems of Boussinesq equations, compared with the Adomian decomposition
method, homotopy analysis method (HAM), and variational iteration method (VAM).
Nonetheless, there is still the open problem of investigating the rate of convergence to
the exact solution for these types of problems. It is also possible to study the TSTDM
by using an analytical solution to the other singular partial differential equations, which
arise in applied science as well as engineering that may offer a better understanding of the
real-world problems that represent singular partial differential equations. In later works,
we plan to apply the TSTDM to several models related to engineering and physics.
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