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Abstract: In the present paper, a transmission problem of the Timoshenko beam in the presence of
distributed delay is considered. Under appropriate assumptions, we prove the well-posedness by
using the semi-group theory. Furthermore, we study the asymptotic behavior of solutions using the
multiplier method. We investigate the techniques and ideas used by the second author to extend the
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1. Introduction and Position of Problem

The need for fundamental research on the Timoshenko transmission problem became
apparent when many physical processes were found to lead to initial boundary values and
mixed problems involving partial derivatives of fractional order. Moreover, these systems
belong to the class of modern differential equations, which, as a rule, are not self-adjoint.
The main purpose of this work is to study the structural and qualitative properties of the
model (see [1-5]).

In this paper, we study the following transmission problem with distributed delay:

(ue — auyy — a(tiy +0), + prus +u+0)(x,t)
—HUp ftt_flz o1(t —s)u(x,s)ds = 0, in Q
(v — avex + iy +0) +u+0)(x,t) =0, in Qg 1)
(@1t = bprx — B(@x + ), + p3g1) (%, 1)
— Uy ftt:flz oo (t —s)pt(x,s)ds =0, in @y
(1t — bpxx + pspr + B(ox + ) (x, 1) =0, in Qy,

where Q; = ((j —1)Lj_1,Lj) xRy, j=12.with0 < Ly < Ly < Ly and a,b, pip; 1|i=123,
Ty, &, B are positive constants, ;12]-| j=12 € R, 77 is a nonnegative constant with 73 < 1, and
i : [71, 2] — R, j = 1;2is a bounded function.

L, is the length of the beam. Functions u and ¢ are the transverse displacements of
a beam with reference configuration (0, L) C R and functions v and ¢ are the rotation
angles of a filament of the beam.

u(x,t) and v(x, t) ¢(x,t) and ¢(x, t)

0 Ly Ly
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The well-posedness and asymptotic behavior of the solution of system (1) is studied V¢ > 0,
under the following boundary and transmission conditions:

Ll( ) ( ) (LZI ) (LZI t) =0,
u(Ly, t) = ¢(L1,t), aux(Ly, t) = box(Ly, ), o)
U(Lll ) (Llr )r avx(Lll )_ blPX(Ll/t)/
a(ux +0)(L1,t) = Blox + ) (L1, 1),
and the initial conditions
u(0) = u%v(0) = 0%, ut(0) = ul,v4(0) = 0!, x€(0,Ly)
9(0) = ¢°,(0) = y", qvt( ) = fpl,llﬂt(o) =y!, x€(Ly, L) 3)
ur(x, —t) = fo(x,t), x€(0,L1),t €0,
gi(x, —t) = ho(x,t), x € (L1, La),t € [0, 7).

Time delays are used in many applications, such as physical, chemical, biological, thermal,
and economic phenomena; these phenomena do not naturally depend on the current state,
but on some past events.

The presence of a delay in the system can turn the system into an unstable state or
a well-behaved system into a wild system. It has been shown that adding a slight delay
to a uniformly asymptotic system can destabilize that system unless additional control
conditions are used; for example, see [6-10].

By the beginning of this century, the study of transmission problems—such as the
vibration propagation over objects consisting of two different types of materials—gained
significant importance; as can be seen in [1,2,11].

Transmission problems frequently occur in scenarios where the field encompasses
multiple materials whose properties have different elasticities and are interconnected over
the entire surface. Mathematically, the transmission problem for wave propagation is
governed by a hyperbolic problem. Green and Naghdi in [12,13] discussed two models
of thermal elasticity: a type II class of thermoelasticity that does not conserve energy
dissipation, and a third class that is dissipative in nature.

In the absence of delay, there are many works around transmission problems. Inter-
ested readers are referred to [14-16]. We mention here some results on the relation between
the delay term and the source term [10,17-21].

Benaissa et al. [17] considered the following system in (0, L) x R, with delay terms
in the internal feedback:

p1¢1t — Gh(x + 1w + ), — Ehl(wx +1¢) + p1¢t + poi(x,t — 1) =0
02Prt — Elprx + Gh(@x + 1w + ¢) + ir s + ]72~l/1t(X,t: T) =0 4)
p1wi — Eh(wy +1¢), + IGh(@x + 1w + ¢) + fyw; + flywi(x,t — 1) =0,

with initial and Dirichlet boundary conditions. The authors demonstrated that the well-
posedness using the semi-group theory and the decay of the solution via the multiplier
method, under the assumption that

pal <, 1ol < i and [fi| < iy

In [8], the authors explored the wave equation with linear frictional damping and internal
distributed delay:

(%]

Uy — Dyt + pque + a(x)/ Ha(s)u(t —s)ds =0,

T

in 3 x Ry. The exponential decay of the solution is obtained under the following assump-
tion:

la)lle [ ma()ds < .
T
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The author of [22] investigated a uniform stability result for the thermoelasticity of type
III with boundary-distributed delay and found exponential stability under an appropriate
condition.

In [23], Lamine Bouzettouta et al. considered a Bresse system in (0, L) x R, with delay
terms in the internal feedback acting in the first and third equations, and the distributed
delay term in the second equation.

P2t — Elprx + Gh(x + lw + 9) + potpr + szl pu(s)pr(x,t —s)ds =0 ©)

{ 1@t — Gl’l((Px + lw +1IJ)X — Ehl(wx + l(p) + H1Pt + ]/lz([)t(x,t — T1) =0
P1Wt — Eh(wx + Z(P)x + lGh(([)x +lw + lp) + ﬁlwt + ﬁzwt(x,t — ’1'2) =0,

with initial and Dirichlet boundary conditions. The authors demonstrated the existence
of solutions by the semi-group theory and studied the stability of solutions using the
multiplier method, under the assumption that

T

2| <1, i < and po < /Tz p(s)ds.

Waves with frictional damping were studied in [24]. The transmission problem for the
Timoshenko beam with frictional damping was studied in [25]. The transmission problem
for the Timoshenko beam with unique memory was studied by Raposo [26]. In this case,
there is no uniform decay.

On the other hand, Margareth S. Alves et al. [3] studied and proved the uniform
stabilization for the following transmission problem of the Timoshenko system with
two memories:

plok — ki (¢} +¢!), = 0in (0,Lg) x (0, +00),

o — k2 (9% +97), = 0in (Lo, L) x (0, +09), ©)
039} — blwxx+k1 (4>x +yl) +g1 *wxx =0in (0,Lg) x (0, +00),

P3Y7 — b2 + ko (¢2 + ¢?) + g2 * 2, = 0in (Lo, L) x (0, +00),

subject to initial boundary and transmission conditions.

Now, we will consider and prove the existence and uniqueness of solutions and
uniform stabilization for the transmission problem for a partially viscoelastic beam of the
Timoshenko system with distributed delay. This beam comprises two components: elastic
and viscoelastic.

The rest of our paper is organized as follows. In Section 2, we present the main results
and some preliminaries necessary for proving these results. In Section 3, we prove the
well-posedness of our problem using semi-group methods. In Section 4, we prove the
exponential decay of the energy by the multiplier method.

2. Preliminaries and the Main Results

In this section, we present the main assumptions of the parameters in (1) and functions
0j, j = 1,2. We also provide some essential preliminaries and present the key findings of
this paper.

We present some lemmas, which will be needed later. Let us first recall Sobolev—
Poincaré’s inequality.

Lemma 1 ([3]). Let p be a number with 2 < p < +oco. We will use the same embedding constants
denoted by cp, and cp,, such that

lwllro,y) < cpllwxllizor,) for we Hy (0, Ly),

and
||wHLP(L1,L2) < CPZHWxHLZ(Ll,Lz) for we H(l)(LlrL2>-



Axioms 2023, 12, 833

40f17

Lemma 2 ([27,28]). Let E : Ry — Ry be a non-increasing function and assume that there are
two constants, ¢ > —1 and w > 0, such that

—+o00
/ EM0(f)dt < éE"(O)E(S). 0< S < +oo, @)
S
then we have E(0)
E(t)=0 Vt> (©) if -1<0<0, 8)
wlo]|
140 \*
g v .
—_— >
B < £0) (152 ) vizo, i o0 ©
and
E(t) < E(0)e!~“t Vt>0, if o=0. (10)

We list all necessary assumptions for our claimed results.
Regarding the weight of distributed delay, we assume

T
[A1]: Hoi—1 — |}121|/ U'Z'(S)ds >0, i=1;2.
T

and
2 | T
[A2]: ) @/ ’ e*|0;(s)|ds < 2min{1,2¢">}.
i=1 R

As [10], let us introduce the following new variables:

{ yi(x,p0,8,t) =u(x, t —sp) (x,0,5,t) € (0,L1) x (0,1) x (1, 2) x Ry 1)
ya(x,0,8,t) = @e(x,t —sp) (x,p,s,t) € (L1,Ly) x (0,1) x (11, 2) x Ry,

The variables y1 and y; satisfy

{ Sylt(x 0,s, t) +y1p(x 0,8, t) =0 (x/P/S/t) € Zl (12)
sy2,4(x,0,8,t) +y2,0(x,0,5t) =0 (x,0,51t) € Xy

where
Y=(({—-1)L;1, L) x(0,1) x (1, ) xRy, i=1;2.

Then, system (1) is equivalent to

up(x,t) — auyy(x, t) — a(uy + 0), (%, £) + pyug(x, t)
+(u+0)(x,t) + po T1 o1(s)y1(x,1,s,t)ds = 0in Qy
v (x, 1) — avxx(x, t) +zx(ux +o)(x, )+ (u+0)(x,t) =0in Q
q)ft(x/ t) — bqoxx( t (¢x+llJ) (x, t)—l—yggot(x, £) (13)
+]14f 7 (s) yz(x 1,8,t)ds =0in Q,
P (x, 1) — wax( t) + uspr 4+ B(@x + ¢)(x,t) = 0in Q,
sy1e(x,0,5,t) +y1,0(x,0,8t) =0in Xy
sy2,4(x,0,5,t) +y2,0(x,0,8,t) = 0in X,

where

. y; ay; .
Qi=((i—1)Li—1,Li) xRy, yip = az)’ and y;; == %, i=1;2.

From now on, we use the following notations

w:=w(xt) /we{uv e}, yilx,pst) =yi(ps), i=12.
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For any regular solution of (13), we define the energy as
1 rL
E(t) = 5/0 1 {u% —i—v%—ka(ui—t—vi) +a(uy +0)+ (u—HJ)Z}dx
1olar 5 o 2 2 2
by [ [0+ et w00+ 43) +Blpr + )] x
+i e /Li /1 /TZS|‘7'(S)|J/2(P s)dsdpdx (14)
=2 Ji-yLaJo Jy l e '

The main result of the present work is as follows:

Theorem 1. Let (u,v, ¢, ) be the solution of (1). Assume that [A1] and [A2] hold. Then there
exist two positive constants, ¢ and w, such that

E(t) < cE(0)e @,  t>0. (15)

3. Well-Posedness of the Problem

Owing to the semi-group theory, we prove the existence and uniqueness of a local
solution of system (1).
Here, we denote the following function space:

H! = {(w,@) € HY(0,L1) x H'(Ly,Ly) / w(0,t) = @(Ly, t) =0,
W(Ll,i’) = @(Lllt)/ lZZUx(Ll,t) = b%x(Lllt)/
zxwx(Ll,t) = ,B@x(Ll,t),}. (16)

and

H2 = {(w,@) € HY(0,Ly) x H'(Ly,Ly) / w(0,t) = @W(Ly, t) =0,
w(Lll t) = %(Llrt)/ awx(Ll/t) = wa(Lll t)/
aw(Ly, t) = pw(Ly, t)}. (17)

The phase space of our problem is the Hilbert space:

H = H! x H2 x (L2(0,L1) x L*(Ly, Lp))* x L2((0,L1) x (0,1) % (11, 12))
xL2((Ly, L2) % (0,1) x (11, 2)),

provided by the inner product, defined by:
for all vectors U = (wy, - - - ,wlO)T and U = (wq, - -+ ,@10)T inH,

<ur U>H =a [<w1,xr @1/X>L2(0,L1) + <w3,Xr 7’63/X>L2(0,L1)}
+b |:<w2,XI ZE2,x>[42(L1,L2) + <w4,x1 ZB4:,x>[42(Ll,Lz)i|
+a(wy x + w3, Wy + L~03>L2(0,L1)
+<ZU1 + ws, @1 + ilj3>L2(0,L1)
+B(w,x + Wa, Wox + Wa) pap, 1,y + <wér@5>L2(o,L1)
+(wg, ZE/6>L2(L1,L2) + (w3, W7) 1201, + (W5 @§>L2(L1,L2)
il fo S sl ()| (ws, @9) p2(q, ., sl
+[pal f01 fr? s|loa(s)[{wi0, W10) 12(1, 1,)A54p-

Letd = (u, 9,0, 9,1, ¢, v, ¥, 11, yz)T € H and with (3) can be rewritten (13) as an abstract
Cauchy problem.

{ AU =U', (18)

Z/{(O) = (uol q)of UO’ lpof ull 4’1/ vll lpllf()/ hO)T/
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where the operator A is defined by

9 0
& 0 2 0000000
0 0 0 0000000
0 g 0 0000000
Y 0 e 0000000
A(”“ax2 0 e 0000000
- -1 0 (”w)ooooooo
o1 g \T@FEDI) 9 0000 00
0 B2 0 0000000
0 0 0 0000000
0 0 0 0000000
0 0
0 00 0 0 0 00 O 0
000 0 0 o 00 O 0
000 0 0 0o 00 O 0
00 0 2 0 0 00 O 0
o000 0 —mI 0 0 0 —mwh 0
000 0 0 o 00 O 0
000 L 0 —usl 00 0 —wh
000 p&—pr 0 —psl 00 0 0
000 0 0 0 00 —f& 0
000 0 0 0 00 0 iy

where
15

Tiw) = [ ails)wi(1,s)ds, i =12

1

The domain of the operator A is defined by

D(A) {(u,go v,p,u, ¢, v, Yy, y) €H: (W,0) € (Hl(O,Ll))z,

(¢, /) (Hl(LlrLQ)) ,

(u, ) € ((H2 0,L1) x H2 (L1, Lp)) NHY),

(v,9) € ((H?(0,Ly) 2(Ly, L)) NH2),

y1(P, ), y1,0(0,8) € L2 ((0 L1) x (0,1)x]71, 2[),y1(0,8) = v/,
y2(0,8),y p( s) € L*((Ly, L2) x (0,1)x]1, 12[), y2(0,5) = ¢'}.

Clearly, D(.A) is dense in H.
The existence and uniqueness of a solution to the system (13) with (2) and (3) is stated
by the following theorem:

Theorem 2. Under the assumption [A1], for any Uy € H, there exists a unique weak solution
U € C([0, +oo[, H) of problem (18). Moreover, if Uy € D(.A), then

U € C([0,+0o[, D(A)) N CL([0, +oo, H).

Proof. To prove the result from Theorem 2, we use the theory of semi-groups, i.e., we
show that the operator A generates a Cyp-semi-group in . In this step, we prove that the
operator A is dissipative. Indeed, for U = (u, ¢, v, ¢,u’,¢', 0", %', y1,y2)T € D(A), where
u(Ly) = ¢(Ly) and v(Ly) = ¢(L1), we have
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< AM,L{ >'H - ﬂ[ ux/ ux Lz(OL ) + <vx’vx>L2(O Ll)] (19)
+ b{ P Px) L2(Ly,Ly) + (¥, ¢X>L2(L1,L2)}
+ zx(u + 9, u, + U>L2(O L) + <u’ +7,u+ U>L2(O,L1)
+ ,B<q’x + 9, ¢x + l/">L2(L1,L2) + <u’/ M/>L2 (0,Ly)
T o W),
1 T2
+ el |o—1<s>|<—y1,p<p,s>,y1<p,s>>L2(oL \dsd,
JO T 1

1 T
£ ll [ [ 1O v2p 0,5 12(0,5)) s, 5.
For the two last terms on the right-hand side of the above equality, we have
1 T .
‘V2i|/0 /";1 |Ui(5)|<_yyi,p(Pz 5)/yi(P15)>Lz((i,1)L. 1 L.)deP/ i=12
T [ ) o s, i = ;2 20
2 (iil i-1 7T d

o lpail , 200 o2 L
= 2 /(H)LH A o)1)~ 3 (0,5) ] dsdx, i = 1,2,

. L; 1)
- i—1 1

[#2i] / , /Lf 2 1,
2 /. |oi(s)|ds ot yi(0,s)dx, i =1;2.

i—1

Using (13)1, and applying integration by parts along with (2), we have

2
<u//; u/>L2(O,L1) - —ﬂ<1/lx, u;>L2(0,L1) o ‘ulHu/HLZ(O'Ll)
_a<ux + 0, “;>L2(0,L1) - <Ll +o, u,>L2(O,L1) (21)

©
—y2</ o1(s)y1(1,s)ds, u’> )
7 L2(0,L;)

For the last right-hand side term of the above equality, using Young’s inequality, we estimate

%) T
e [ en©m1,s)s ) Bl ™ orlas i
T L2(0,Ly) T

L T
i @/o 1/2|‘71(S)|y%(1,5)dsdx. (22)
T

IN

Similarly, using the second, third, and fourth equations of (13), integrating by parts
and (2), we obtain

<UII’UI>L2(O,L1) = —a(vy, U;>L2(O,L1) — a(ux +7, U,>L2(O,L1) —(u+to, vl>L2(O,L1)’ (23)
2
(9", (P/>L2(L1,L2) = —b(gx, (P;C>L2(L1,L2) - V3H§"/HL2(L1,L2) (24)
_IB<(PX + l:b/ (P;(>L2(L1,L2)

(%]
y4</ 02(s)y2(1,s)ds, go’> )
T Lz(Llle)
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For the last right-hand side term of (24), using Young's inequality, we have

y4</T2 02(s)y2(1, )ds, (p’>

T

|.”4| /Tz 1112
< = oo (s)|ds
L?(Ly,Ly) 2 Jy o2(5)] Hq) HLZ(LLLZ)

L T
+M/ ’ / 2|(72(s)|y%(l,s)dsdx,
2 Ll T
and
<1P"/ lPI>L2(o,L1) = _b<¢x' IP;C>L2(O,L1) - 5<‘Px +9, ¢,>L2(0,L1)
2
—ns||y ||L2(L1,L2)'
Now, substituting (20)—-(26) in (19), we have

%) 2
cAuU >y < = (m—ll [Tlen©ls) W[,
1

T 2
(M |V4|/ |‘72(5)|d5)H€9 (e
T

2
- V5H¢)/HL2(L1,L2)

Thanks to assumption [A1], we conclude that operator A is dissipative.

(25)

(26)

(27)

Now, we aim to show that operator .A is maximally monotone;; thus, it is sufficient to
show that the operator AI — A is surjective for a fixed 0 < A. That is, we prove that for all
F = (f1, -, fi0) in H, there exists at least one solution U = (u, ,v, ¥, u’, ¢', 0", ¥, y1,y2)T €

D(A) of the equation
(Al — AU = F.

The above equation is equivalent to

AV — vy + (o + 1o+ auy +u=f;
()\ + ‘u?)l/)/ - blpxx + :Bl/} + ﬁlpx = fS
Ay1+ cy1p(e,8) = fo

Ay + ty2,0(0,5) = fro-

"= Au —f1
¢ =rp—fa
v =Av—f3
Y =Ap—fy
(A p)u’ — (@ + @)ury + 1 +0 — avy + pp [Z01(s)y1(1,8)ds = f5
(A+nu3)9" — (b+ B)pxx — Btpx + pia fTTf 02(s)y2(1,8)ds = fe

(28)

(29)

As Nicaise and Pignotti [10] show, each of the last two equations of (29) has a unique

solution:
0
yi(x,0,5) = yi(x,0,5)e 5 + se*Aps/ e fis(x,0,8)do, i = 1;2.
0
According to the first two equations of (29), we have

o
yi(x,p) = Au(x)e s —fle_Aps + se‘APS/ e)“fsfg(x, o,s)do,
0

and
0
ya(x,p) = Ago(x)e_/\"s —fze_’\“’s + se~MPs / e)“fsflo(x, o,s)do.
Jo
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In particular,
y1(x,1) = Au(x)e ™ + 30 (x,5) (30)
y2(x,1) = Ag(x)e ™ + 15 (x,5),
where
[ e vl st a1
yW(x,s) € L2(((i—1)Li—y, L) X (1, 2)), i=1;2.

By (29) and (30), the functions u, ¢, v, P satisfy the following system:

glu_auxx_“(ux+v)x+u+v:g~1

Ky —bpxx — Blox + ), = &2 (32)
A0 — avyy +a(uy +0) +u+0=Afz+ f7

AMA+ps)p — bpex + B(ox + ) = (A + ps) fa+ fs,

where
§i = (A1) fi + fiva — pai [ 0i(s)yd (x,8)ds € L*((i = 1)L; -y, Ly), )
Ki = A(A + Hoi—1 + Ui f;z efASU'i(S)dS> >0, i=1;2.
For any (w1, wp, w3, wy) € HL x H2, we can reformulate (32) as
(Klu Allyy — &(Uy +0), + U+ v)widx = fOLl grwrdx
fLZ(KZ(P bopxx — B(@x + ), Jwadx = fLL Sowodx (34)
( U — AUy + a(tly +0) + U + 0)wzdx = fo (Afs + f7)wsdx
f (A + s — bipex + B(@x + ) wadx = [[2((A+ pis) fa + fi)wadx.
Integrating by parts in (34), we obtain the following variational formulation of (32):
O((u, ,0,9), (w1, wr, w3, ws)) = (w1, w2, w3, wy), (35)

where the bilinear form @ : (H}F X Hi)2 — R and the linear form / : H! x H2 — R are
defined by

CD((ur ¢,0, 1/’)r (wll Wy, W3, (,d4))

Ly ,_

= /0 ' (Klu +u+ v)w1 + (auy + a(uy +v))wq vdx
Ly

+ /L Kapws + (bex + B(@x + ) )wo dx
1
Ly

+ /0 ()\20 +u+ov+a(uy+ v))w;:, + avyws ydx
Ly

£ [N g+ Blos + 9)wa + by
1

- [a”xwl] [b‘Px“JZ] [aUxWS] [blpxwﬂ

— [a(ux +0)wn]gt — [Mw+¢Wﬂ

and
Ly N
lwy, wy, w3, wy) = /0 g1w1 + (Afs + f7)wsdx

Lo N
+ /L Qw2 + ((A 4 p5) fa + fs)wadx.
1
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By the properties of the space H1, H2 it is easy to see that ® and [ are continuous, and for
allV = (u,9,v,¢9) € H! x H?, the bilinear form & checks the condition of coercivity:

z 2 2 2

Q(V,V) = Killullf2,,) + 1+ 0ll7200.0,) + alluxllt2(0,0,)
2 2 2
Faljuy + 0120,y + /\ZHUHLZ(O,Ll) + alloxllz2(0,1,)
v 2 2 2
Kol 21y, 10) T bll@xlT2(1, 1) + Bll@x + $lT2(1y 1)
2 2
FAA A+ ps) [ 9l2(1,, 1) + 0UWxllT2(1, 1)

> | Vligtcu2

By applying the Lax-Milgram theorem, we deduce that the problem (35) has a unique
solution (u, ¢,v,%) € H! x H? for all (wq, wy, w3, wy) € HL x H2. From (32), this implies
that (1, ¢,v,9) € ((H*(0,Lq) x H*(L4, Lz)))2 N H! x H2. Therefore, the operator AT — A
is surjective. We use the Hille-Yosida theorem to guarantee the existence and uniqueness
of the solution of problem (28). O

4. Asymptotic Behavior

In this section, we study the asymptotic behavior of the system (1).
For the proof of Theorem 1, we use Lemma 2.

Lemma 3. Let (u,v, 9,9, y1,Y2) be the solution of (13), and assumption [A1] holds. Then the
functional E defined by (14), satisfies the following inequality:

d " Ly 5
GEO = (bl [Tno)ias) [ air i
J T JO

¥ Ly 2
(=l [Cieatolas) [ g e
T L

1

Ly
—Us -/Ll lptz(x,t)dx. (36)

Proof. By differentiating (14), using (13), and integrating by parts, we find

d

SE®) = alui + v0n§t + al(ur + 0)ulgt — g o, 7)

bloxps + Pxe]i2 + Bl(9x + W)l — pall ol 2r, 1)

2 | || [k T 1
— ,”21| / ! / 2 } )
izzl 2 Ji-1Li4 Iy |i(s)] [yz (PIS)}Odsdx

2 L,‘ T
_ ) : (1,s)d (0, 5)dx.
;VZI /(ifl)L,v,l (XF ai(s)yi(1,s) 5)%( s)dx

1

For the last right-hand side term of the above equality, applying Young's inequality, we have

cin [ ([T eomle s o9,

i—=1)L;q

il [ ([ 2
< B[ loi(o)1ds )10, 9)Eaginy,

1

T .
[P I I, 1] =132 8)
1

Inserting (38) into (37) and by (2) and the fact that y1(0,s) = u, y2(0,s) = ¢¢, we show
that (36) holds. O
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Proof of Theorem 1. Now, we use c to denote various positive constants, which may be
different at different occurrences. We multiply the first and second equations in (13) by u
and v, respectively; we then integrate over (0, L1), multiply the third and fourth equations
in (13) by ¢ and 1, respectively, and integrate over (L, L), we have

fOLl u(uy — auyy — a(ux +0), + s +u+v
2 [ 1 () (1,5)ds ) dx = 0
fOLl v(vg — avxx + a(tty +0) +u+0)dx =0 (39)
I (P((Ptt — b@ux + B(Px + ), + pagr + s [7 02(s)y2 (1, S)ds)d =0
22 w(Wn — biprex + g + ) + pstpr)dx = 0.

Next, multiplying the above equalities by E7, integrating over (S, T), and using integration
by parts, we have

T L o
/s Eq/o u(utt — fllxy — &(Ux +0), +#1Mt+u+U+Pi2/ 0’1(5)]/1(1/5)515>dxdt
T

g Ly T T ] ) T P L

{E/o uutdx]s—/s E H”fHLZ(o,Ll)dt_[S qE'E /0 uupdxdt (40)
T ’ T Ly

o [ Bl gyttt B [ i+ o
s

yl/ Eq/ uutdxdt—l—/ Eq/ u(u+ov dxdt—a[uux]é‘

afu (ux+v +yz/ Eq/ (/ (s)y (1, s)ds)dxdt—o

T L
/ E1 / 1 (v — avxx + a(uy +v) + u + v)dxdt 41)
S 0

. L T T . ) T P Ly
= [E/O vvtdx]s—/s E||Ut||L2(O,L1)dt_/S gE'E /0 vusdxdt

T » T Ly
a/ ETlvxll72(0,1, dt+1x/ E‘i/ o(uy + v)dxdt
5 S

+ / E”’/ v(u+v)dxdt — [vvx}o =0, (42)

+

+

+

T Ly ™
/S Eq/L (P<(Ptt_b(Pxx_ﬁ((Px'i'lP)x'i_.uS(Pt‘i‘ﬂél/ 02(5)y2(1rs)ds>dxdt
1 !

] L, T T . ) T -1 L,

= [E /L1 (p(ptde _/s E H(pt||L2(L1,L2)dt—/S gE'E /L1 p@edxdt (43)
T 5 T Ly
£ 0 [ B lgsla it +B [ B [ pxpx+ p)axat
1

‘Tq'Lz dxdt — blpgy] — _—"
+ wus | E prdxdt —bloex];t — Blo(px — )2

N ;44/ Eq/L </n (1, s)ds>dxdt—0
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and

T Ly
/S Eq/L ¢(¢tt—b¢xx+ﬁ(¢x+lp)+;Ll5l[Jt)dxdt (44)
Ly T T . .
= [E‘?/ lpwth:| f/ E‘7||1pt||%2 (LuLa) dt—/ qE'ET"! /Ll Piprdxdt

b [ Bl e+ [ B [ s+ )i

+

s /S Ef /L 1 Pipudxdt — D)2 =0

Taking the sum, we obtain

L L T
{Eq (/0 1 uuy + vopdx + /L Pt + 1/}1/Jtdx)} (45)
1 S
-T Ly L
- /5 gE'ET~1 (/ uiy + vordx + / Qo+ lplptdx) dt
0 Ly
2 [ (B + 1orla ) + 91 ey 1)+ e, 1))
s T2 (0,Ly) tlrzo,L) T I@HIT2(L,,0,) T 11 T2(1,,10)

T 2 2 2 2
[ B Il + NorlEao ) + oelFaqn,ne + 19602,
2 2
+ (o + loxlEzL, )
b 2 2 2 2
+ 1 llT2 (1, 10) + 1 @xlT2(y, 1) ) + @l + 0l 72 (0,0,) + Bllox + $ll12(1, 1)

2
+ ol

T Ly Ly Ly
+ /s E1 <y1/ uutdx+y3/ qoq)[dx—&—yg;/L wwtdx)dt
Ly 1
L] T
+ yz/ E"/ (/ (s)ya (1, s)ds)dxdt
y4/ Eq/ (p(/ Uz(s)yz(l,s)ds) dxdt = 0.
S L1 T

Similarly, we multiply the fifth (resp. sixth) equation in (13) by e=2¥|c1(s)|y1(p, s)
(resp. e 2P|y (s)|y2(p,s)); integrating over (0,L;) x (0,1) x (71, T) (resp. (Ly,Lo) X
(0,1) x (11, ™2)), we have

+

L; 1
/( " /0 e 2P|0;(5)|yi(0,5) (Vip (0, 5) + syir(p,s))dpdx =0, i=1;2.
1=1)Li1

Then we multiply this equation by E7; integrating over (S, T) and using integration by
parts, we have
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l*l)Li 1

B ) A [ S oo ors >dpdsdx]: u6)
- /sT"E,Eq 1/(1 L 1/ / ¢ 2 lai(s)|v7 (o, 5)dpdsdxdt

/sT £ / iLll)Li 1/ / o \d vi (0, 5)dpdsdxdt

E / A [ S oo ors >dpdsdx]z

- / TEET 1/1 / / S¢ 2 lai(s)|v7 (o, 5)dpdsdxdt

- 2/ / L ,1/ / dp 25p|01()\y1(p, ))dpdsdxdt

* E/s E /i,l ,1/T1 / 2se” %P |i(s)|y7 (o, s)dpdsdxdt

- = //zkwmw@wm{

- / TEET 1/ / / ¢ 2 loi(s)|v7 (o, 5)dpdsdxdt

+ EAlyﬁthﬂﬂﬂ@Kf%ﬂLﬂ—ﬁmﬁﬁﬁww
/sTEq /(fil)Li 1/ / se~2|0y(s)|y? (o, s)dpdsdxdt = 0, i = 1;2.

Then, we multiply the above equation by |uy;| and by the sum with (45); by using the
definition of E and the fact that Vp €]0,1[;e=2° < ¢~%*, we have

T L; Lo
LB L) ite5) (g 5) + syislo, ) dsdptva

_|_

_|_

T Ll L2
C/S ETtlgr < —[E‘?(/O uut+vvtdx+/L PPt + PPrdx
1
2 || L 1 T
ﬂ721| ' /2/ =250 . 2 dodsd
L L L s Ol e s)dpdsi) |
T Ly L

+ /; qE’Eq*1</O uut-i-vvtdx—i—/ ([)§0t+l/Jl/Jtdx
+ i’ﬂzﬁ/“ / / se 2| g;(s)|y? (o )dpdsdx)dt

i 2 Ji-DLig :

’ q 2 2 2 2
+ 2/5 E [HutHLZ(O,Ll) ol T200,0,) + 19l 221, 10) T ||1I«’t||L2(L1’L2)]dt
T Ll LZ L2

_ / E7 (Pll/ uutdx+;43/ qogotdx+y5/ 1p1ptdx)dt

s 0 Ly JLy

2 | T L; -
- Z@/ E7 /(i DL /T |Ui(S)|(efzsyiz(1,s) —y%(O,s))dsdxdt

i —bLi-1 /1

L] T
- .”2/ Eq/ (/ (s)y1(1, s)ds)dxdt
- ,u4/ Eq/L (/ (s)ya(1, s)ds)dxdt. (47)
T
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where C = 2min{1,2¢~%}.
Now, we estimate the two terms on the right-hand side of the above inequality. Using
Young’s inequality, we obtain

T Ll %)

— y2/s E”’/O u</ al(s)}h(l,s)ds)dxdt (48)

B J 17

T L
mal [ E7 [ / e\/1o1 () [ule™ /101 (5) Iy (1, ) |dsdxdt

T 'L T
< |V2—2|/S E‘7/0 1 / 2[ezs\al(s)\uz+e_zs|(71(s)|y%(1,s)}dsdxdt.
P J 7

Similarly, we have

Lz T
_ }44/ E'i/ (/ (s)ya(1, s)ds)dxdt (49)
Ll T
L
< M/ Eq/ 1/ [%[02(5) 19 + ¢ Z(oa(s) [13(1, ) | dsddx.
2 S 0 T

Combining the above estimates, we arrive at

IN

T L b2
C/ BTl < — [E‘? (/ uuy + vopdx + / PPt + Piprdx
5 0 b

2 | . L: T 1 T
2l /z /2 / e (102
+ i; ool O A A 03(5) v} (o, s)dpdsix ) |

T Ly L
+ /S qE’E‘i_l(/ uut+vvtdx+/ PPt + Pipydx (50)

2 .
+ Z@ / /se 21 0;(s)|y? (o, 5 )dpdsdx)dt

i=1 (i-1)L

T
2 2 2 2
+ 2/5 Ef [Hul‘HLZ(O,Ll) 1ot T200,,) + 19l 21y, 10) Hl/JtHLZ(Ll,LZ)}dt

T L1 L2 L2
_ / E1 (ﬂl / uupdx + p3 / Qerdx + ys / lplptdx) dt
S 0 Ll Ll

L o [l
+ |l/’24|/: > |oa(s) |ds /ST EqHQDHiZ(Ll'LZ)dt
S RO A T

+ |P£24|/11T2|(72(S)|d5 /ST EqHQDtH%Z(LLLZ)dt’

By the Cauchy-Schwarz, Young, and Sobolev-Poincaré inequalities, and using defini-
tion of E, for

we {u,v}, ifxel0,Li] =1L
w e {(Pﬂ’b}, ifx € [Ll,Lz] =1,

we have

T

—{Eq /1 wwtdx] = Eq(S)/ w(S)w;(S)dx — E1(T) /lw(T)wt(T)dx
< CcETTYS), i=1;2. (51)
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T T
‘/ qE’qu/wwtdxdt‘ < C/ (—E"E%dt, i=1;2.
S I S
T
_ _olpmn
elE],
= c[E“l(S)—Eq“(T)} (52)
< CET(S).
T ) T
/ E|wr|[ 22yt < c/ (—E/)E%dt, i=1;2. (53)
s i s
< CETT(S).
T
[E”Zm// /SE 0)ai(s)|y7 (o, s)dpdsdx
5
T
< q+1
< e
< CcEI1TL(S).
/ qE'ET~ 12' // /se 20| 0;(s)|y? (o, s )dodsdxdt
T
gc/ (—E')Eldt
s
< cETH(S),
T Ly T ) T )
yl/s Eq/o uugdxdt < s/s Eq\|u||L2(O’L1)dt+c(s)/5 E‘4|\ut||Lz(0,Ll)dt
T 2 T !
< ec/ Elux|lt2(0,1 )dt+c(s)/ E9(—E")dt
S o S
T
sc/ ETdt + c(e) E1TL(S). (54)
S
Similarly, we have
T Ly T
./sEq./ y3(p(pt+y5lplptdxdt§£1c/s ETdt + c(eq ) EITL(S). (55)
Ly
T T
V2L 7 ilas [ Bl i
T T
B[R oaolas [ Elgliag, iy
2 i T T
< Zw/zezsm(sﬂds/ ETH 14t
i— 2 T S
T
< o / E*+dt, (56)
S

where ¢y = Y2 Wz"frz e?|o;(s)|ds
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Inserting the above estimates (51)—(56) in (50) and [A2], we conclude that
T
(C—cp—c(e+ 81))/ ETMldr < cEITL(S). (57)
S
Choosing ¢ and &1, which are small enough, such that

C—cp—c(e+¢€) > 0.

So, for the positive constant ¢, we arrive at
T
/ E*+1dr < cEIHL(S). (58)
S

From (58) and Lemma 2, we deduce that
E(t) < cE(0)e " Vvt >0,

where c is a positive constant that is independent of E(0). This completes the proof of
Theorem 1. [

5. Conclusions

The transmission problem of the Timoshenko system with distributed delay is impor-
tant and has applications in various fields, such as physics, chemistry, biology, thermo-
dynamics, and economics. In this paper, we investigated a transmission problem of the
Timoshenko system in the presence of distributed delay. We established the well-posedness
via the theory of semigroups; moreover, axiomatic questions can be asked about the quali-
tative studies. We investigated the asymptotic behaviors of solutions via several axiomatic
methods; see [29,30].
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