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Abstract: As a commonly used model in reliability analysis, the inverse Weibull distribution (IWD)
is widely applied in various scientific fields. This paper considers the reliability estimation of the
IWD based on intuitionistic fuzzy lifetime data. Firstly, the related concepts of the fuzzy set theory
are reviewed, and the concepts of the intuitionistic fuzzy conditional density, intuitionistic fuzzy
likelihood function, and intuitionistic fuzzy conditional expectation are obtained by extension. In
classical estimations, the maximum likelihood estimators of parameters and reliability are derived.
Due to the nonlinearity, the EM algorithm is used to obtain the maximum likelihood estimates. In
the Bayesian estimation, the gamma prior is selected, and the Bayesian estimation of the parameters
and reliability is conducted under the symmetric entropy and the scale square error loss function,
respectively. Since the integrals are complicated, the Lindley approximation is used to approximate
the Bayesian estimates. Then, the performance of these estimators is evaluated by the Monte Carlo
simulation. The simulation results show that the Bayesian estimation is more suitable than the
maximum likelihood estimation for the reliability estimation. Finally, a set of real data is used
to prove the effectiveness of these proposed methods. Through these methods, the reliability of
the intuitive fuzzy life data is accurately estimated, which provides an important reference for the
reliability analysis in the scientific field.

Keywords: Bayesian estimation; EM algorithm; intuitionistic fuzzy lifetime data; inverse Weibull
distribution

MSC: 62F10; 62F15

1. Introduction

Reliability refers to the ability of a product to complete the specified tasks under
the specified time and conditions. This is a theory based on product failure. Due to the
existence of two parameters, the IWD is a very flexible life distribution that can be used to
represent various failure characteristics. It has become one of the commonly used models
in reliability analysis. Depending on the shape parameter, the risk function can be flexibly
varied. Therefore, it is appropriate to use IWD for data fitting in many cases. Yilmaz and
Kara [1] investigated the classical and Bayesian estimation methods for estimating the
reliability of IWD. The classical approach involved obtaining the maximum likelihood
estimation and the modified maximum likelihood estimation. Meanwhile, the Bayesian
estimation method under symmetric and asymmetric loss functions was considered. The
Bayes estimators were computed numerically using the Lindley approximation and MCMC
algorithm. Chakrabarty and Chowdhury [2] analyzed two probability distributions formed
by compounding the IWD with zero-truncated Poisson and geometric distributions, respec-
tively. They derived some important statistical and reliability attributes for each distribution
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and estimated the parameters of the distributions using the expectation–maximization al-
gorithm and minimum distance estimation method. Cai et al. [3] investigated the statistical
inference of the IWD with masked data in a series system under type-II censoring. They
obtained Bayes estimators of parameters based on gamma priors, as well as multilevel
Bayes estimators. Finally, they conducted a Monte Carlo simulation with different masking
probabilities and effective sample sizes to compare the performances of various estimates.
Bi and Gui [4] considered the stress-strength reliability estimation of an inverse Weibull
lifetime model with identical shape parameters but different scale parameters. In terms of
the classical estimation, maximum likelihood estimators and asymptotic distributions were
obtained. As the estimators were in implicit forms, an approximate maximum likelihood
estimator was proposed, and asymptotic confidence intervals were obtained. In terms
of the Bayesian estimation, Bayes estimators were obtained by Gibbs sampling and the
MH algorithm. The performance of each estimator was compared through Monte Carlo
simulations. For an additional reliability analysis of the IWD, please refer to [5–9].

The key to reliability estimation lies in collecting lifetime data or transforming other
reliability data collected into lifetime data. However, in the process of obtaining the data,
there may be some degree of measurement errors, resulting in imprecise data collection. In
1965, Zadeh [10] introduced the fuzzy set theory, which offered a proper tool for handling
inaccurate data. The importance of fuzzy sets lies in their ability to handle uncertain-
ties and vagueness, making them valuable mathematical tools in fields, such as artificial
intelligence, control theory, and decision analysis [11–17]. By using fuzzy sets, we can
translate vague information from the real world into mathematical language, allowing
for precise calculations and reasoning. In recent years, some scholars have extended the
fuzzy set theory to reliability analysis. Hashim [18] considered the problem of the fuzzy
reliability estimation for the Lomax distribution. The first step was to use the composite
trapezoidal rule to estimate the fuzzy reliability based on its definition. The second step
was the Bayesian estimation method, where a gamma prior was selected to estimate the
fuzzy reliability under symmetric and asymmetric loss functions. Neamah and Ali [19]
considered the parameter estimation for the Frechet distribution of fuzzy lifetime data.
Maximum likelihood and Bayes estimators were obtained for both parameters and reliabil-
ity. Through a comparison of the mean squared error and mean absolute percentage error,
it was found that the performance of the Bayesian estimation was better than that of the
maximum likelihood estimation. Abbas et al. [20] studied the Bayesian estimation of the
parameters of the Rayleigh distribution for fuzzy lifetime data. As an explicit form of the
Bayes estimator could not be obtained, Lindley and Tierney–Kadane approximations were
used for the numerical computation. Monte Carlo simulations were conducted to evaluate
their performance, and a set of examples were provided to illustrate the analysis.

However, fuzzy sets only use one attribute parameter (membership degree) to rep-
resent both support and opposition, and cannot represent a neutral state, i.e., neither
supporting nor opposing. To address this, Atanassov [21] introduced the notion of the
intuitionistic fuzzy set, which was an extension of Zadeh’s fuzzy set. Compared with
traditional fuzzy sets, intuitionistic fuzzy sets add a new non-membership parameter,
which can more delicately characterize the ambiguity inherent in the objectively defined
world. When dealing with decision-making problems, intuitionistic fuzzy sets can provide
more information, making the decision results more accurate and reliable, and have a wider
range of application prospects [22–26]. Zahra et al. [27] considered the parameter and
reliability estimation of the Pareto distribution by setting the parameter as a generalized
intuitionistic fuzzy number. First, an L-R-type intuitionistic fuzzy number was proposed,
and its cut set was provided. Secondly, a series of generalized intuitionistic fuzzy reliability
characteristics were defined and used to evaluate the reliability of series and parallel sys-
tems. Finally, generalized intuitionistic fuzzy reliability characteristics were provided for
certain special parameters and cut-set cases. Ebrahimnejad and Jamkhaneh [28] considered
the reliability estimation problem of the Rayleigh distribution by assuming the parameter
as a generalized intuitionistic fuzzy number. Extending the fuzzy reliability concept, a
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series of generalized intuitionistic fuzzy reliability characteristics and their cut sets were
provided, and a numerical example was provided to demonstrate the analysis.

There are many uncertainties in real-life phenomena, which are usually classified into
three categories: randomness, fuzziness, and roughness. However, in many cases, multiple
types of uncertainties are at play, making it impossible to solve these problems using only
one uncertainty theory. Fuzzy stochastic phenomena, which are common in real life, are
the result of the simultaneous interaction of randomness and fuzziness, and their study is
of great significance. To better handle this phenomenon, the fuzzy stochastic theory has
emerged, which is a theory combining the fuzzy set and probability theories. One of its
important concepts is the fuzzy random variable proposed by Huibert [29]. Zahra et al. [30]
extended the definitions of probability, conditional probability, and likelihood function to
intuitionistic fuzzy observations, and considered the parameter and reliability function
estimation problem of the two-parameter Weibull distribution based on intuitionistic fuzzy
lifetime data. ML estimators were obtained using the Newton–Raphson and EM algorithms,
and Bayes estimators were obtained using Lindley and Tierney–Kadane approximations.
To demonstrate the applicability of the proposed estimation methods, a simulation dataset
was analyzed.

In terms of the reliability estimation for the IWD, many scholars have conducted
research; however, most of them are based on complete or censored samples, and these
studies assume that the available data are precise. However, in real life, the available
lifetime data may not be precise, which indicates the necessity of extending classical
estimation methods to fuzzy numbers.

The main contribution of this paper is to provide a suitable estimation method for
the parameters and reliability of IWD based on intuitionistic fuzzy lifetime data. For
the classical estimation, we obtain MLEs for the parameters and reliability. Due to the
nonlinearity of the likelihood equation, we provide the EM algorithm with specific iteration
steps. For the Bayesian estimation, we obtain BEs of parameters and reliability under
the SE loss and SSE loss functions. The approximate Bayesian estimates are obtained by
the Lindley approximation. Based on several sets of different parameter values and a
large number of simulation experiments, the simulation results show that the Bayesian
estimation performs much better than the maximum likelihood estimation.

This paper considers the reliability estimation problem of the IWD based on intuition-
istic fuzzy lifetime data. In Section 1, the article mainly introduces the research status of the
reliability estimation of the IWD lifetime model, as well as the research background and
significance of fuzzy sets and intuitionistic fuzzy sets. Section 2 reviews the concepts of
fuzzy sets and intuitionistic fuzzy sets, and extends some important concepts of the proba-
bility theory to the fuzzy set theory. Section 3 performs the maximum likelihood estimators
(MLEs) of IWD, and iteratively calculates them using the expectation–maximization (EM)
algorithm. Section 4 performs the Bayes estimators (BEs) under the symmetric entropy
(SE) loss function and scale squared error (SSE) loss function, and numerically calculates
the results using the Lindley approximation. Section 5 evaluates the performance of each
estimation method using the Monte Carlo simulation and illustrates it using the mean
squared error (MSE). The feasibility of the proposed methods is verified by a real dataset in
Section 6. Section 7 presents the conclusions, limitations, and future research.

2. Preliminary Knowledge

The probability density function (pdf), cumulative distribution function (cdf), and
reliability function of IWD are defined, respectively, as:

y(t; λ, η) = ληt−η−1 exp(−λt−η), t > 0, (1)

Y(t; λ, η) = exp(−λt−η), t > 0, (2)

R(t) = 1− exp(−λt−η), t > 0, (3)
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where λ > 0 is the scale parameter and η > 0 is the shape parameter. For convenience,
denote IWD owing pdf (1) by IW(λ, η). Figures 1 and 2 show the pdf and risk function
under different values of the shape and scale parameters.
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A fuzzy set is a set used to express the concept of fuzziness. Similar to the definition
of the characteristic function of the classical set, the definition of fuzzy set can be obtained
by extending its domain.

Definition 1 (Zadeh [10]). Let T be a non-empty universal set. Fuzzy set Ã is defined as the form
Ã =

{
< t, µÃ(t) > |t ∈ T

}
, where µÃ : T→ [0, 1] is the degree of membership of t in Ã.

The intuitionistic fuzzy set (IFS) first proposed by Atanassov in 1986 contains two
parameters, membership and non-membership degrees, which can more comprehensively
describe the characteristics of things.

Definition 2 (Atanassov [21]). Let T be a non-empty universal set. IFS Ã is defined as the
form Ã =

{
< t, µÃ(t), νÃ(t) > |t ∈ T

}
, where µÃ : T→ [0, 1] is the degree of membership

of t in Ã and νÃ : T→ [0, 1] is the degree of non-membership of t in Ã. They satisfy 0 ≤
µÃ(t) + νÃ(t) ≤ 1 for each t. When T has only one element, Ã =< µÃ, νÃ > is commonly
referred to as a intuitionistic fuzzy number.
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Two special classes of intuitionistic fuzzy numbers are triangular intuitionistic fuzzy
numbers (TriIFNs) and trapezoidal intuitionistic fuzzy numbers (TraIFNs), which serve as
extensions of intuitionistic fuzzy numbers. In 2006, Shu et al. [31] proposed the definition of
TriIFN and its application to fault tree analysis. Building on this work, Wang and Zhang [32]
defined TraIFN in 2008. The membership and non-membership functions are:

µÃ(t) =


α t−a

b−a t ∈ [a, b]
α t ∈ (b, c)

α d−t
d−c t ∈ [c, d]
0 else ,

(4)

νÃ(t) =


b−t
b−a + β t−a

b−a t ∈ [a, b]
β t ∈ (b, c)

t−c
d−c + β d−t

d−c t ∈ [c, d]
1 else ,

(5)

where α is the maximum membership degree and β is the minimum membership degree.
In this paper, we assume T be a set of real numbers, which is T = R. Additionally, we

assumed that the IFSs discussed in this paper were TraIFNs.
To better investigate the estimation problem on the basis of intuitionistic fuzzy data,

some concepts in the probability theory were extended to intuitionistic fuzzy random
variables.

Definition 3. Consider a probability space (Rn,A,P), the probability of an intuitionistic fuzzy
observation x̃ in Rn is defined by

P(x̃) =
∫
Rn

1− νx̃(t) + µx̃(t)
2

dP (6)

Let the continuous random variable T = (T1, T2, . . . , Tn) obey the IW(λ, η), and its
intuitionistic fuzzy observations are denoted by x̃ = (x̃1, x̃2, . . . , x̃n). The conditional
density of random variables in probability theory is introduced, and the intuitionistic fuzzy
conditional density is given as below,

y(t|x̃) = s(t)y(t; λ, η)∫
R s(t)y(t; λ, η)dt

(7)

where s(t) = 1−νx̃(t)+µx̃(t)
2 . In such a situation, the intuitionistic fuzzy likelihood function

of IW(λ, η) is:

h(λ, η|x̃) =
n

∏
i=1

P(x̃i|λ, η) =
n

∏
i=1

∫
R

si(t)y(t; λ, η)dt, (8)

where si(t) =
1−νx̃i

(t)+µx̃i
(t)

2 .
Finally, intuitionistic fuzzy conditional expectation is introduced. Based on the intu-

itionistic fuzzy conditional density and intuitionistic fuzzy observation x̃ = (x̃1, x̃2, . . . , x̃n),
the intuitionistic fuzzy conditional expectation of a random variable T = (T1, T2, . . . , Tn) is:

E(T|x̃) =
∫
R ty(t|x̃)dt

=
∫
R t s(t)y(t;λ,η)∫

R s(t)y(t;λ,η)dt dt

=
∫
R t s(t)y(t;λ,η)

h(λ,η|x̃) dt.
(9)
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3. Maximum Likelihood Estimation

The intuitionistic fuzzy likelihood function of IW(λ, η) is shown in Equation (8). Thus,
the intuitionistic fuzzy log-likelihood function is provided as:

H(λ, η|x̃) = ln h(λ, η|x̃) =
n

∑
i=1

ln[
∫
R

si(t)y(t; λ, η)dt]. (10)

The MLEs λ̂ML and η̂ML are obtained by the below equations:{
∂H(λ,η|x̃)

∂λ = 0
∂H(λ,η|x̃)

∂η = 0
,

where ∂H(λ,η|x̃)
∂λ and ∂H(λ,η|x̃)

∂η are shown in Equations (11) and (12):

∂H(λ, η|x̃)
∂λ

=
n

∑
i=1

1
h(λ, η|x̃i)

∫
R

si(t)
∂y(t; λ, η)

∂λ
dt, (11)

∂H(λ, η|x̃)
∂η

=
n

∑
i=1

1
h(λ, η|x̃i)

∫
R

si(t)
∂y(t; λ, η)

∂η
dt. (12)

Here, h(λ, η|x̃i) =
∫ +∞

0 si(t)y(t; λ, η)dt, ∂y(t;λ,η)
∂λ and ∂y(t;λ,η)

∂η are shown in Equations
(13) and (14):

∂y(t; λ, η)

∂λ
=

1
λ

y(t; λ, η)− t−ηy(t; λ, η), (13)

∂y(t; λ, η)

∂η
=

1
η

y(t; λ, η)− y(t; λ, η) ln t + λt−ηy(t; λ, η) ln t. (14)

It is obvious that the abovementioned equations are nonlinear and difficult to solve.
Then, we considered the EM algorithm.

The EM algorithm was first introduced by Dempster [33] in 1977, which is an algorithm
used for ML estimations when there are missing observations. The algorithm involves
two steps: E- and M-steps. The E-step is used to impute the missing part of the observed
data, forming a pseudo-complete dataset. The M-step is used to maximize the likelihood
function of the pseudo-complete dataset. Singh and Tripathi [34] considered the parameter
estimation problem of the IWD based on a progressively type-I interval censored sample,
using the EM algorithm to derive the MLEs. Kurniawan et al. [35] considered the MLEs of
the shape parameter for the Weibull distribution based on type-II censored data, using the
EM algorithm. Finally, an aircraft component lifetime data study was used as an example
to illustrate the methods. For more references on the EM algorithm, please see [36–40].

The EM algorithm is also applicable to intuitionistic fuzzy data because the observed
intuitionistic fuzzy data can also be considered as incomplete characterizations of the
completed data. In order to better illustrate the iterative process of the EM algorithm, we
first performed some processing on Equations (11) and (12).

Substitute Equation (13) into (11):

∂H(λ,η|x̃)
∂λ =

n
∑

i=1

1
h(λ,η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂λ dt

=
n
∑

i=1

1
h(λ,η|x̃i)

∫ +∞
0 si(t)[ 1

λ y(t; λ, η)− t−ηy(t; λ, η)]dt

=
n
∑

i=1

∫ +∞
0

1
λ

si(t)y(t;λ,η)
h(λ,η|x̃i)

dt−
n
∑

i=1

∫ +∞
0 t−η si(t)y(t;λ,η)

h(λ,η|x̃i)
dt

= n 1
λ −

n
∑

i=1
E1i.
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Let ∂H(λ,η|x̃)
∂λ = 0,

λ = n(
n

∑
i=1

E1i)
−1

, (15)

where

E1i = E(T−η |x̃i) =
∫ +∞

0
t−η si(t)y(t; λ, η)

h(λ, η|x̃i)
dt.

Substitute Equation (14) into (12):

∂H(λ,η|x̃)
∂η =

n
∑

i=1

1
h(λ,η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂η dt

=
n
∑

i=1

1
h(λ,η|x̃i)

∫ +∞
0 si(t)[ 1

η y(t; λ, η)− y(t; λ, η) ln t + λt−ηy(t; λ, η) ln t]dt

= n 1
η −

n
∑

i=1
E2i + λ

n
∑

i=1
E3i

. (16)

Let ∂H(λ,η|x̃)
∂η = 0,

η = n(
n

∑
i=1

E2i − λ
n

∑
i=1

E3i)
−1

, (17)

where

E2i = E(ln T|x̃i) =
∫ +∞

0

si(t)y(t; λ, η)

h(λ, η|x̃i)
(ln t)dt,

and

E3i = E(T−η ln T|x̃i) =
∫ +∞

0

si(t)y(t; λ, η)

h(λ, η|x̃i)
(t−η ln t)dt.

The iterative steps of using the EM algorithm to obtain MLEs are as follows:

Step 1. Let the initial value be θ(0) = (λ(0), η(0)), and set j = 0. Give the accuracy ε > 0.
Step 2. At the (j + 1)th iteration, compute the intuitionistic fuzzy conditional expectations
below:

E1i =
∫ +∞

0
t−η si(t)y(t; λ, η)

h(λ, η|x̃i)
|θ(j+1)=θ(j)dt, (18)

E2i =
∫ +∞

0

si(t)y(t; λ, η)

h(λ, η|x̃i)
(ln t)|θ(j+1)=θ(j)dt, (19)

E3i =
∫ +∞

0

si(t)y(t; λ, η)

h(λ, η|x̃i)
(t−η ln t)|θ(j+1)=θ(j)dt. (20)

Step 3. Substitute Equation (18) into (15):

λ(j+1) = n(
n

∑
i=1

E1i)
−1

. (21)

Substitute Equations (19) and (20) into (17):

η(j+1) = n(
n

∑
i=1

E2i − λ(j)
n

∑
i=1

E3i)
−1

. (22)

Step 4. If |θ(j+1) − θ(j)| < ε, the MLEs are obtained by λ̂ML = λ(j) and η̂ML = η(j). If not,
then set j = j + 1 and return to step 2.

According to the invariance of maximum likelihood estimation, the MLE R̂ML(t) is
derived by:

R̂ML(t) = 1− exp(−λ̂MLt−η̂ML). (23)
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4. Bayesian Estimation

In the Bayesian statistical inference, the prior distribution plays a crucial role. It
represents our prior knowledge or belief about the parameters and can help us estimate the
posterior distribution more accurately [41]. Choosing an appropriate prior distribution is
essential because it can affect the final inference results [42].

The gamma distribution is a flexible continuous probability distribution with many
desirable properties, making it a common choice as the prior distribution for parameters
in Bayesian statistics [43]. The parameters of the gamma distribution can be adjusted to
accommodate different prior beliefs. Additionally, the gamma distribution has conjugacy,
meaning that when used as a prior distribution, its product with the likelihood function
remains a gamma distribution, making posterior distribution calculations simpler [44]. The
pdf of the gamma distribution is ([44]):

π(ω) =
ba

Γ(a)
ωa−1e−bω, ω > 0, a, b > 0.

In this section, we assume that λ and η are random variables and independent of each
other, where λ follows Gamma(c1, d1) and η follows Gamma(c2, d2). That is:

π1(λ) ∝ λd1−1e−c1λ λ > 0, c1 > 0, d1 > 0, (24)

π2(η) ∝ ηd2−1e−c2η η > 0, c2 > 0, d2 > 0. (25)

Thus, the joint prior distribution of λ and η is:

π(λ, η) = π1(λ)× π2(η) ∝ λd1−1ηd2−1e−c1λ−c2η . (26)

With reference to the Bayesian formulation, the posterior distribution of λ and η is

π(λ, η|x̃) ∝ h(λ, η|x̃)× π(λ, η)

∝ λn(d1−1)ηn(d2−1)e−c1nλ−c2nη
n
∏
i=1

∫ +∞
0 si(t)y(t; λ, η)dt . (27)

According to the Equation (9), the posterior expectation of the function g(λ, η) of λ
and η is:

E[g(λ, η)|x̃] =
∫ +∞

0

∫ +∞
0 g(λ, η) π(λ,η|x̃)∫ +∞

0
∫ +∞

0 π(λ,η|x̃)dλdη
dλdη

=
∫ +∞

0

∫ +∞
0

g(λ,η)λn(d1−1)ηn(d2−1)e−c1nλ−c2nη
n
∏

i=1

∫ +∞
0 si(t)y(t;λ,η)dt∫ +∞

0
∫ +∞

0 [λn(d1−1)ηn(d2−1)e−c1nλ−c2nη
n
∏

i=1

∫ +∞
0 si(t)y(t;λ,η)dt]dλdη

dλdη.
(28)

The form of the posterior expectation is complex and not easily solved analytically.
Therefore, the Lindley approximation is used to obtain the BEs.

With reference to the Lindley approximation, the posterior expectation can be writ-
ten as:

E[g(λ, η)|x̃] =
∫

g(λ, η)eH(λ,η|x̃)+G(λ,η)d(λ, η)∫
eH(λ,η|x̃)+G(λ,η)d(λ, η)

, (29)

where G(λ, η) = ln π(λ, η). If the sample is large, Equation (29) can be formulated as:

E[g(λ, η)|x̃] = g(λ̂ML, η̂ML) +
1
2
(A + B + C + D), (30)

A = (ĝλλ + 2ĝλĜλ)φ̂λλ + (ĝηλ + 2ĝηĜλ)φ̂ηλ, (31)

B = (ĝλη + 2ĝλĜη)φ̂λη + (ĝηη + 2ĝηĜη)φ̂ηη , (32)

C = (ĝλφ̂λλ + ĝη φ̂λη)(Ĥλλλφ̂λλ + Ĥηλλφ̂ηλ + Ĥληλφ̂λη + Ĥηηλφ̂ηη), (33)
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D = (ĝλφ̂ηλ + ĝη φ̂ηη)(Ĥλλη φ̂λλ + Ĥηλη φ̂ηλ + Ĥληη φ̂λη + Ĥηηη φ̂ηη), (34)

where φij(i, j = λ, η) is the element of the inverse matrix of −Hij. The ĝλλ represents taking
the second derivative of g(λ, η) with respect to λ and placing λ̂ML into it. In the same way,
the rest can be shown as:

Hλλλ =
n
∑

i=1
[2h−3(λ, η|x̃i)(

∫ +∞
0 si(t)

∂y(t;λ,η)
∂λ dt)

3
− h−1(λ, η|x̃i)

∫ +∞
0 si(t)

∂3y(t;λ,η)
∂λ3 dt]

−
n
∑

i=1
[3h−2(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂λ dt

∫ +∞
0 si(t)

∂2y(t;λ,η)
∂λ2 dt]

, (35)

Hλλη = Hληλ = Hηλλ

=
n
∑

i=1
[2h−3(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂η dt(

∫ +∞
0 si(t)

∂y(t;λ,η)
∂λ dt)

2
]

−
n
∑

i=1
[2h−2(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂λ dt

∫ +∞
0 si(t)

∂2y(t;λ,η)
∂λ∂η dt]

−
n
∑

i=1
[h−2(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂η dt

∫ +∞
0 si(t)

∂2y(t;λ,η)
∂λ2 dt]

+
n
∑

i=1
h−1(λ, η|x̃i)

∫ +∞
0 si(t)

∂3y(t;λ,η)
∂λ2∂η

dt

, (36)

Hηηλ = Hηλη = Hληη

=
n
∑

i=1
[2h−3(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂λ dt(

∫ +∞
0 si(t)

∂y(t;λ,η)
∂η dt)

2
]

−
n
∑

i=1
[2h−2(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂η dt

∫ +∞
0 si(t)

∂2y(t;λ,η)
∂η∂λ dt]

−
n
∑

i=1
[h−2(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂λ dt

∫ +∞
0 si(t)

∂2y(t;λ,η)
∂η2 dt]

+
n
∑

i=1
[h−1(λ, η|x̃i)

∫ +∞
0 si(t)

∂3y(t;λ,η)
∂η2∂λ

dt]

, (37)

Hηηη =
n
∑

i=1
[2h−3(λ, η|x̃i)(

∫ +∞
0 si(t)

∂y(t;λ,η)
∂η dt)

3
+ h−1(λ, η|x̃i)

∫ +∞
0 si(t)

∂3y(t;λ,η)
∂η3 dt]

−
n
∑

i=1
[3h−1(λ, η|x̃i)

∫ +∞
0 si(t)

∂y(t;λ,η)
∂η dt

∫ +∞
0 si(t)

∂2y(t;λ,η)
∂η2 dt]

, (38)

Gλ =
d1 − 1

λ
− c1, (39)

Gη =
d2 − 1

η
− c2. (40)

The role of the loss function in the Bayesian statistical inference is crucial as it measures
the discrepancy between model predictions and the true outcomes. In the Bayesian frame-
work, we used the posterior distribution to represent uncertainty and used the loss function
to choose the optimal decision or prediction. Different loss functions lead to different
decisions or predictions; therefore, selecting an appropriate loss function is essential for the
accuracy and reliability of the Bayesian inference.

Then, we studies the Bayesian estimation of the unknown parameters under the SE
and SSE loss functions.

4.1. Bayesian Estimation under the SE Loss Function

The SE loss function is defined in Equation (41) [45]:

L1(θ, θ̂) =
θ̂

θ
+

θ

θ̂
− 2, (41)

where θ̂ is the estimator of unknow parameter θ.
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Lemma 1. Suppose that T = (T1, T2, . . . , Tn) is a continuous random variable. For any prior
distribution π(θ), the BE θ̂SE under SE loss function is:

θ̂SE = [
E(θ|T)

E(θ−1|T) ]
1
2
, (42)

where E(θ|T) and E(θ−1|T) are the posterior expectation.

Proof. The Bayesian risk of θ̂SE under SE loss function is:

R = Eθ [E(L1(θ, θ̂SE)|T)].

Denote r1(θ̂SE) = E(L1(θ, θ̂SE)|T), and

r1(θ̂SE) = θ̂−1
SE E(θ|T) + θ̂SEE(θ−1|T)− 2.

The derivative of r1(θ̂SE) is:

r′1(θ̂SE) = −θ̂−2
SE E(θ|T) + E(θ−1|T).

Therefore, the BE θ̂SE under SE loss function is obtained by solving the equation
r′1(θ̂SE) = 0. �

Referring to Lemma 1, the BEs λ̂SE, η̂SE and R̂SE(t) under SE loss function of IW(λ, η)
based on intuitionistic fuzzy lifetime data are obtained by:

λ̂SE = [
E(λ|T)

E(λ−1|T) ]
1
2
, (43)

η̂SE = [
E(η|T)

E(η−1|T) ]
1
2
, (44)

R̂SE(t) = [
E(R(t)|T)

E(R−1(t)|T) ]
1
2
. (45)

Next, the steps to obtain the Lindley approximation for λ̂SE are presented. The BEs
η̂SE and R̂SE(t) are obtained by replacing g(λ, η) in the following steps.

When g(λ, η) = λ, there are:

gλ = 1, gη = gλλ = gλη = gηλ = gηη = 0. (46)

The posterior expectation E(λ|T) can be written as:

E(λ|T) = λ̂ML + Ĝλφ̂λλ + Ĝη φ̂ηλ + 1
2 [φ̂λλ(Ĥλλλφ̂λλ + Ĥληλφ̂λη + Ĥηλλφ̂ηλ + Ĥηηλφ̂ηη)

+φ̂ηλ(Ĥλλη φ̂λλ + Ĥληη φ̂λη + Ĥηλη φ̂ηλ + Ĥηηη φ̂ηη)]
. (47)

When g(λ, η) = λ−1, there are:

gλ = − 1
λ2 , gλλ =

2
λ3 , gη = gλη = gηλ = gηη = 0. (48)

The posterior expectation E(λ−1|T) can be written as:

E(λ|T) = − 1
2 λ̂−2

ML[φ̂λλ(Ĥλλλφ̂λλ + Ĥληλφ̂λη + Ĥηλλφ̂ηλ + Ĥηηλφ̂ηη) + φ̂ηλ(Ĥλλη φ̂λλ + Ĥληη φ̂λη

+Ĥηλη φ̂ηλ + Ĥηηη φ̂ηη)] + λ̂−1
ML + (λ̂−3

ML − λ̂−2
MLĜλ)φ̂λλ − λ̂−2

MLĜη φ̂λη
. (49)

BE λ̂SE is obtained by substituting Equations (47) and (49) into (43).
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4.2. Bayesian Estimation under the SSE Loss Function

The SSE loss function is defined in Equation (50) [46]:

L2(θ, θ̂) =
(θ − θ̂)

2

θd , (50)

where d is a non-negative integer.

Lemma 2. Suppose that T = (T1, T2, . . . , Tn) is a continuous random variable. For any prior
distribution π(θ), the BE θ̂SSE under SSE loss function is:

θ̂SSE =
E(θ1−d|T)
E(θ−d|T)

, (51)

where E(θ1−d|T) and E(θ−d|T) are the posterior expectations.

Proof. The Bayesian risk of θ̂SSE under the SSE loss function is:

R = Eθ [E(L2(θ, θ̂SSE)|T)].

Denote r2(θ̂SSE) = E(L2(θ, θ̂SSE)|T), and

r2(θ̂SSE) = E(θ2−d|T)− 2θ̂SSEE(θ1−d|T) + θ̂2
SSEE(θ−d|T).

The derivative of r2(θ̂SSE) is:

r′2(θ̂SSE) = 2θ̂SSEE(θ−d|T)− 2E(θ1−d|T).

Therefore, BE θ̂SSE under the SSE loss function is obtained by solving the equation
r′2(θ̂SSE) = 0. �

According to Lemma 2, the BEs λ̂SSE, η̂SSE and R̂SSE(t) under the SSE loss function
are presented in Equations (52)–(54):

λ̂SSE =
E(λ1−d|T)
E(λ−d|T)

, (52)

η̂SSE =
E(η1−d|T)
E(η−d|T)

, (53)

R̂SSE(t) =
E(R1−d(t)|T)
E(R−d(t)|T)

. (54)

As in Section 4.1, the steps of the Lindley approximation of λ̂SSE are provided.
When g(λ, η) = λ1−d, then:

gλ = (1− d)λ−d, gλλ = d(d− 1)λ−d−1, gη = gλη = gηλ = gηη = 0. (55)

The posterior expectation E(λ1−d|T) can be written as:

E(λ1−d|T) = λ̂1−d
ML + (1− d)λ̂−d

MLĜλφ̂λλ + (1− d)λ̂−d
MLĜη φ̂λη +

1
2 [−d(d− 1)λ̂−d−1

ML φ̂λλ

+(1− d)λ̂−d
MLφ̂λλ(Ĥλλλφ̂λλ + Ĥληλφ̂λη + Ĥηλλφ̂ηλ + Ĥηηλφ̂ηη)

+(1− d)λ̂−d
MLφ̂ηλ(Ĥλλη φ̂λλ + Ĥληη φ̂λη + Ĥηλη φ̂ηλ + Ĥηηη φ̂ηη)]

. (56)

When g(λ, η) = λ−d, then:

gλ = −dλ−d−1, gλλ = d(d + 1)λ−d−2, gη = gλη = gηλ = gηη = 0. (57)
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The posterior expectation E(λ−d|T) can be written as:

E(λ1−d|T) = λ̂−d
ML − dλ̂−d−1

ML Ĝλφ̂λλ − dλ̂−d−1
ML Ĝη φ̂λη +

1
2 [d(d + 1)λ̂−d−1

ML φ̂λλ

−dλ̂−d−1
ML φ̂λλ(Ĥλλλφ̂λλ + Ĥληλφ̂λη + Ĥηλλφ̂ηλ + Ĥηηλφ̂ηη)

−dλ̂−d−1
ML φ̂ηλ(Ĥλλη φ̂λλ + Ĥληη φ̂λη + Ĥηλη φ̂ηλ + Ĥηηη φ̂ηη)]

. (58)

BE λ̂SSE under the SSE loss function is derived by submitting Equations (56) and (58)
into (52).

5. Monte Carlo Simulation

In this section, the mean square error (MSE) was employed to compare the performance
of these estimators, where m was the number of trials. We took different true values
(λreal , ηreal) and n, and the number of trials was 1000. The hyper-parameters of the prior
distribution were (c1, d1) = (3, 2) and (c2, d2) = (3, 2.5), and the parameter of the SSE loss
function was d = 4. The simulation was conducted by MATLAB on a laptop, and the
simulation results of each group took about 30 min. We used the average of reliability as
the estimates. The MSEs of λ and η are shown in Table 1, and the MSEs and estimates of
R(t) with t = 2 are shown in Table 2.

Table 1. The MSEs of λ and η.

n λreal ηreal
MSE

λ̂ML λ̂SE λ̂SSE η̂ML η̂SE η̂SSE

20
5 1 0.6252 0.5126 0.2208 0.1247 0.0171 0.0056
8 4 0.8302 0.7005 0.4867 0.6479 0.2369 0.1875
2 3 0.8011 0.6801 0.1644 0.8141 0.4975 0.1810

50
5 1 0.4900 0.0584 0.0543 0.0458 0.0009 9.94 × 10−4

8 4 0.6842 0.5550 0.4786 0.3718 0.0762 0.0530
2 3 0.6195 0.0048 0.0053 0.5094 0.1396 0.0638

100
5 1 0.1330 0.0143 0.0165 0.0358 0.0002 0.0003
8 4 0.2717 0.1148 0.1819 0.1138 0.0150 0.0154
2 3 0.3339 0.0003 0.0013 0.1838 0.0218 0.0213

200
5 1 0.0525 0.0034 0.0044 0.0217 4.64 × 10−5 6.51 × 10−5

8 4 0.0914 0.0562 0.0602 0.0454 0.0033 0.0040
2 3 0.1020 0.0001 0.0004 0.0840 0.0039 0.0052

300
5 1 0.0240 0.0016 0.0021 0.0214 2.12 × 10−5 2.96 × 10−5

8 4 0.0840 0.0253 0.0295 0.0096 0.0015 0.0019
2 3 0.0863 5.31 × 10−5 0.0002 0.0472 0.0017 0.0024

400
5 1 0.0093 0.0009 0.0012 0.0184 1.24 × 10−5 1.72 × 10−5

8 4 0.0692 0.0142 0.0174 0.0016 8.25 × 10−4 0.0011
2 3 0.0691 2.21 × 10−5 9.63 × 10−5 0.0112 9.55 × 10−4 0.0014

500
5 1 0.0087 0.0006 0.0008 0.0168 7.89 × 10−6 1.11 × 10−5

8 4 0.0590 0.0092 0.0115 0.0008 5.50 × 10−4 7.24 × 10−4

2 3 0.0489 1.27 × 10−5 5.98 × 10−5 0.0093 6.39 × 10−4 9.28 × 10−4

MSE of a parameter θ is defined as follows ([47]):

MSE(θ) =
1
m

m

∑
i=1

(θ̂i − θreal)
2
. (59)

In order to perform simulations based on intuition fuzzy observations, we needed
to transform the generated precise data into intuitive fuzzy data. According to the fuzzy
representation proposed in the work of González et al. [48], each precise data xi can be
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transformed into 0.6252 intuitive fuzzy data x̃i, and its membership and non-membership
functions are shown below:

µx̃i
(t) =


αi(

t−ai
xi−ai

)
hL(xi) t ∈ [ai, xi]

αi(
bi−t
bi−xi

)
hR(xi) t ∈ [xi, bi]

0 else

, (60)

νx̃i
(t) =


( xi−t

xi−ai
)

hL(xi) + βi(
t−ai
xi−ai

)
hL(xi) t ∈ [ai, xi]

( t−xi
bi−xi

)
hR(xi) + βi(

bi−t
bi−xi

)
hR(xi) t ∈ [xi, bi]

1 else

. (61)

such that:

(C1) x1, x2, . . . , xn are random samples of observations that are exact and independently
and identically distributed and obey IW(λ, η).
(C2) For any i = 1, 2, . . . , n, ai and bi are chosen randomly with satisfying ai ≤ xi ≤ bi
(C3) For any i = 1, 2, . . . , n, the αi and βi are chosen randomly with satisfying αi ∈ [0, 1],
βi ∈ [0, 1], and 0 ≤ αi + βi ≤ 1.
(C4) hL(·) : R→ [0, 1] , hR(·) : R→ [0, 1] .

Table 2. MSEs and estimates of R(t).

n λreal ηreal R(t)
Estimates MSE

R̂ML(t) R̂SE(t) R̂SSE(t) R̂ML(t) R̂SE(t) R̂SSE(t)

20
5 1 0.9179 0.9500 0.8984 0.9286 0.0024 8.98 × 10−4 3.21 × 10−3

8 4 0.3935 0.4089 0.3973 0.3465 0.0185 8.60 × 10−3 2.80 × 10−3

2 3 0.2212 0.2826 0.3003 0.2798 0.0083 8.23 × 10−3 1.82 × 10−2

50
5 1 0.9179 0.9483 0.9122 0.9621 0.0011 6.48 × 10−5 8.72 × 10−5

8 4 0.3935 0.3872 0.4086 0.3825 0.0048 8.11 × 10−4 5.79 × 10−4

2 3 0.2212 0.1744 0.2604 0.2373 0.0044 5.80 × 10−3 7.91 × 10−2

100
5 1 0.9179 0.9262 0.9146 0.9143 0.0006 1.32 × 10−5 2.04 × 10−5

8 4 0.3935 0.3891 0.4035 0.3885 0.0029 5.51 × 10−5 2.55 × 10−5

2 3 0.2212 0.2819 0.2455 0.2312 0.0020 4.32 × 10−4 3.43 × 10−4

200
5 1 0.9179 0.9213 0.9164 0.9163 0.0002 2.69 × 10−6 4.52 × 10−6

8 4 0.3935 0.3351 0.3933 0.3878 0.0012 8.66 × 10−6 5.45 × 10−6

2 3 0.2212 0.1783 0.2331 0.2251 0.0013 5.95 × 10−5 8.19 × 10−6

300
5 1 0.9179 0.9399 0.9169 0.9168 0.0002 1.46 × 10−6 2.23 × 10−6

8 4 0.3935 0.4096 0.3931 0.3901 0.0008 3.82 × 10−6 2.18 × 10−6

2 3 0.2212 0.2580 0.2260 0.2235 0.0009 2.54 × 10−5 3.78 × 10−6

400
5 1 0.9179 0.9230 0.9172 0.9171 0.0001 1.25 × 10−6 1.63 × 10−6

8 4 0.3935 0.3826 0. 3945 0.3917 0.0008 2.05 × 10−6 1.05 × 10−6

2 3 0.2212 0.1664 0.2252 0.2228 0.0007 1.38 × 10−5 1.95 × 10−6

500
5 1 0.9179 0.9393 0.9172 0.9171 0.0001 5.02 × 10−7 7.84 × 10−7

8 4 0.3935 0.3737 0.3947 0.3921 0.0006 1.40 × 10−6 6.87 × 10−7

2 3 0.2212 0.2048 0.2236 0.2217 0.0007 9.22 × 10−6 1.38 × 10−6

The simulation steps are shown below:

(i) Generate a set of data x1, x2, . . . , xn from IW(λreal , ηreal) with λreal = (2, 3, 1.5, 5) and
ηreal = (5, 4, 2, 1). Calculate the real reliability Rreal(t) with t = 2.

(ii) For convenience, let hL(·) = hR(·) = 1. The data x1, x2, . . . , xn are transformed into
TraIFNs according to Equations (60) and (61).

(iii) Calculate the MLEs by the EM algorithm and calculate the BEs by the Lindley approx-
imation.

(iv) Repeat steps (i) to (iii) 1000 times and obtain 1000 estimates, respectively, and the MSE
is calculated according to Equation (59).
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From Tables 1 and 2, the following conclusions can be drawn.
(1) Whether parameters or reliability, the MSEs of MLEs and BEs decrease when the

sample size increases. Thus, enlarging the sample size can appropriately enhance the
accuracy of the estimation.

(2) In terms of the MSE, the performance of BEs under the SE and SSE loss functions is
better than MLE. As for the reliability, the MSEs of BEs are much smaller than the MSEs of
MLEs.

(3) From the simulation results of the different real values, the BEs of the parameters
and corresponding reliability values both under the SE and SSE loss functions have different
effects.

6. Real Dataset Analysis

In this section, we considered a real dataset proposed by Efron [49], as shown in
Table 3. The dataset presents the survival times of 103 head and neck cancer patients
treated with radiotherapy.

Table 3. Real dataset.

6.53 7 10.42 12.2 14.48 16.1 22.7 23.56 23.74 25.87
31.98 34 37 41.35 41.55 42 43 45.28 47.38 49.4
53.62 55.46 58.36 63 63.47 64 68.46 74.47 78.26 81

83 84 84 91 92 94 108 110 112 112
119 127 129 130 133 133 133 139 140 140
140 146 146 146 149 149 154 154 155 157
157 159 160 160 160 160 165 165 173 173
176 179 194 195 209 218 225 241 248 249
273 277 281 297 319 339 405 417 420 432
440 469 519 523 583 594 633 725 817 1101
1146 1417 1776

According to the simulation results presented in Section 5, we took the Bayesian
estimates of the parameters and reliability under the SE loss function to draw the cumulative
distribution function plot. It can be seen in Figure 3 that the cdf of the IWD has a high
degree of overlap with the empirical cdf. We can conclude that the IWD has a good fitting
effect on this real dataset.
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The real dataset was transformed into intuitional fuzzy data by Equations (60) and
(61). All the estimates were calculated by MATLAB and are tabulated in Table 4.

Table 4. Real dataset estimates with t = 49.4.

λ̂ η̂ R̂(t)

MLE SE SSE MLE SE SSE MLE SE SSE

64.6171 67.7140 67.7630 0.8000 1.0886 1.0885 0.9423 0.6205 0.6170

7. Conclusions, Limitations, and Future Research

In a real-life scenario, the observed data may be less accurate due to uncontrollable
factors, necessitating the use of fuzzy lifetime data for the reliability estimation of the IWD.
While fuzzy sets are commonly used for this purpose, they only have one membership
degree parameter, resulting in a less precise description of the objective world. In contrast,
intuitionistic fuzzy sets can more accurately express uncertainty and fuzziness when
dealing with fuzzy information, thereby improving the accuracy and efficiency of fuzzy
reasoning. Therefore, this paper extended the probability to intuitionistic fuzzy sets and
considered the parameters and reliability estimations for IWD based on intuitionistic fuzzy
lifetime data. First, the MLEs were obtained through the EM algorithm. Then, BEs were
obtained under the SE and SSE loss functions using the Lindley approximation. Finally,
multiple sets of parameters were selected for the Monte Carlo simulation. Based on the
simulation results, it was observed that by altering the true values of multiple sets of
parameters, the mean square error under the Bayesian estimation was significantly smaller
than that under the maximum likelihood estimation. This finding leads to the conclusion
that the Bayesian estimation is a more effective approach for estimating parameters and
reliability in an intuitionistic fuzzy environment.

Limited by the performance of the computer, we could not compare the performances
of more methods during a limited time frame. In addition, there were many types of
intuitionistic fuzzy numbers in addition to TraIFNs. We hope to discuss the statistical
inference of lifetime distribution based on other types of intuitionistic fuzzy numbers in
the future.
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