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Abstract

:

The metrical boundedness and metrical compactness of a new operator from the weighted Bergman-Orlicz spaces to the weighted-type spaces and little weighted-type spaces of analytic functions are characterized.
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1. Introduction


Let    N 0  = N ∪  { 0 }   , where   N = { 1 , 2 , … }  ,  R  be the set or real numbers,    R +  =  [ 0 , + ∞ )   , and  C  be the set of all complex numbers. We use the expression   k =   r , s  ¯   , where   r , s ∈  N 0   , instead of the following one:   r ≤ k ≤ s  ,   k ∈  N 0  .   We also understand that    ∑  k = p  q   b k  = 0  , when   q < p  , and    ∏  k = p   p − 1    b k  = 1  , for every   p , q ∈  N 0  ,   where   b k   are some complex numbers. A nonzero function  Ψ  is called a growth function if it is continuous, nondecreasing and   Ψ  (  R +  )  =  R +    (the functions appear in defining the Orlicz-type spaces; see, e.g., [1,2,3]). By   G (  R +  )   we denote the set of all growth functions.



Let    B n   = B : = { z ∈    C  n   : | z | < 1 }   , where   z = (  z 1  ,  z 2  , … ,  z n  )  ,    | z |  =   〈 z , z 〉   1 / 2     and


   〈 z , w 〉  =  ∑  j = 1  n   z j    w ¯  j  ,  








and let   S = ∂ B  .



Let   H ( Ω )   be the family of analytic function on a domain   Ω ⊆   C  n   [4,5],   S ( Ω )   the class of analytic self-maps of  Ω ,   P n   the set of polynomials in    C  n  ,    D j  f =   ∂ f   ∂  z j    ,    j =   1 , n  ¯  ,   and


  ℜ f  ( z )  =  ∑  j = 1  n   z j   D j  f  ( z )  ,  








the so-called radial derivative.



By   d v ( z )   we denote the Lebesgue measure on  B , whereas   d  v α   ( z )  =  c α    ( 1 − | z |  2    )  α  d v  ( z )   ,   α > − 1  , is the normalized weighted Lebesgue measure on  B  (i.e.,    v α   ( B )  = 1  ). By   d σ   we denote the normalized surface measure on  S  (i.e.,   σ ( S ) = 1  ). Positive and continuous functions on  B  are called weights. The set of all such functions we denote by   W ( B ) .  



Recall that each   u ∈ H ( Ω )   induces the multiplication operator    M u  f = u f   on   H ( Ω ) ,   whereas each   φ ∈ S ( Ω )   induces the composition operator    C φ  f = f ∘ φ   on   H ( Ω ) .   If   n = 1  , then   D f =  f ′    is the differentiation operator. These three operators are linear and have been studied a lot, as well as many of their products.



Let us briefly mention a part of the investigations preceding the one in the paper. Of the product-type operators containing the differential one, first were studied the operators   D  C φ    and    C φ  D   (see, e.g., [6,7,8,9,10,11] and the related references therein). In [12] was studied the product of the multiplication operator followed by the differentiation one on the Bloch-type spaces. In [13,14] were studied some operators containing each of the three operators   C φ  ,   M u   and D.



Soon after the first investigations of the operators   D  C φ    and    C φ  D  , the following operator


   D  φ , u  m  : =  M u   C φ   D m   








containing also the operators   C φ  ,   M u   and D, was introduced and considerably studied (see, e.g., [15,16,17,18,19,20,21,22,23,24,25,26,27,28] and the related references therein).



The following operator


   ℜ  φ , u  m  : =  M u   C φ   ℜ m  ,  








which was defined in [29] and investigated also in [30] (see also the related references therein), can be regarded as an n-dimensional counterpart of the operator    D  φ , u  m  .  



Investigation of the sum


      M  u 1    C φ  +  M  u 2    C φ  D     



(1)




where    u 1  ,  u 2  ∈ H  (  B 1  )    and   φ ∈ S (  B 1  )  , was initiated by the author of the paper and A. K. Sharma. The operator was first studied on the weighted Bergman spaces in [31], and later on many other spaces. For example, in [32] it was studied from weighted Bergman spaces to weighted-type spaces, in [33] from Hardy spaces to Stević weighted spaces, whereas in [34] from the mixed-norm spaces to Zygmund-type spaces.



The generalization of the operator in (1)


   M  u 1    C φ   D m  +  M  u 2    C φ   D  m + 1   ,  








where   m ∈  N 0  ,     u 1  ,  u 2  ∈ H  (  B 1  )    and   φ ∈ S (  B 1  )  , was considered for the first time in [35], where the boundedness and compactness of the operator from a general space to the Bloch-type spaces were characterized.



After the publication of [35], we proposed studying finite sums of the operators   D  φ , u  m   and   ℜ  φ , u  m  , as well as the following sum operator


      P  D , m   f : =  ∑  j = 0  m   u j   C φ   D  l j   ⋯  D  l 1   f ,     



(2)




where   m ∈  N 0   ,    u j  ∈ H  ( B )   ,   j =   0 , m  ¯   , and   φ ∈ S ( B )  , on normed subspaces of   H ( B )  , which is a polynomial differentiation composition operator. The first results on operator (2) between some spaces of analytic functions were presented in [36], where we gave some necessary and sufficient conditions for the boundedness and compactness of the operator from the logarithmic Bloch spaces to weighted-type spaces of holomorphic functions. The investigation was continued in [37].



In [38,39,40,41,42,43,44,45] can be found several other product-type operators, some of which include integral-type ones.



If there are   q > 0   and   C > 0   such that   Ψ  ( s t )  ≤ C  t q  Ψ  ( s )   , for   s > 0   and   t ≥ 1  , we say that  Ψ  is of positive upper type q. The family of growth functions  Ψ  of positive upper type   q ≥ 1   such that   Ψ ( t ) / t   is nondecreasing on   ( 0 , + ∞ )   is denoted by   U q  . If there are   p > 0   and   C > 0   such that   Ψ  ( s t )  ≤ C  t p  Ψ  ( s )   , for each   s > 0   and   0 < t ≤ 1  , we say that  Ψ  is of positive lower type. The family of growth functions  Ψ  of positive lower type   p ∈ ( 0 , 1 )   such that   Ψ ( t ) / t   is nonincreasing on   ( 0 , + ∞ )   is denoted by   L p  . It is not difficult to prove that the functions in    U q  ∪  L p    are increasing.



If   Ψ ∈  U q  ∪  L p   , we may assume that   Ψ ∈  C 1    and that there are positive numbers   c 1   and   c 2   such that


      c 1    Ψ ( t )  t  ≤  Ψ ′   ( t )  ≤  c 2    Ψ ( t )  t      



(3)




for   t ∈ ( 0 , + ∞ ) .   If   Ψ ∈  U q    we also assume that it is convex [44].



If   Ψ ∈  L p    is a   C 1   function satisfying (3), then for sufficiently large r the function   Ψ (  t r  )   is comparable to a convex   C 1   function G satisfying the inequalities in (3) with some constants    c 1   ( G )    and    c 2   ( G )    [46].



If   Ψ ∈ G (  R +  )  , then the set of all   f ∈ H ( B )   such that


       ∥ f ∥    A  α  Ψ   ( B )    : =  ∫ B  Ψ  ( | f  ( z )  | )  d  v α   ( z )  < + ∞ ,     








is called the weighted Bergman-Orlicz space and is denoted by    A  α  Ψ   ( B )   . The space generalizes the weighted Bergman space    A α p   ( B )  .   A quasi-norm on the space is given by


       ∥ f ∥    A  α  Ψ   ( B )    l u x   : = inf  λ > 0 :  ∫ B  Ψ    | f ( z ) |  λ   d  v α   ( z )  ≤ 1  ,     








and if   Ψ ∈  U q  ∪  L p   , it is finite for every   f ∈  A  α  Ψ   ( B )   . This is the so-called Luxembourg quasi-norm.



The set of all   f ∈ H ( B )   such that


    ∥ f ∥    H Ψ   ( B )    : =  sup  0 < r < 1    ∫ S  Ψ  ( | f  ( r ξ )  | )  d σ  ( ξ )  < ∞ ,  








is called the Hardy-Orlicz space and is denoted by    H Ψ   ( B )   . It generalizes the Hardy space    H p   ( B )  .   A quasi-norm on the space is given by


    ∥ f ∥    H Ψ   ( B )    l u x   : =  sup  0 < r < 1     ∥  f r  ∥    L Ψ   ( B )    l u x   ,  








where    f r   ( ξ )  = f  ( r ξ )   ,   0 ≤ r < 1  ,   ξ ∈ S  , and    ∥ · ∥    L Ψ   ( B )    l u x    is the Luxembourg quasi-norm


    ∥ g ∥    L Ψ   ( B )    l u x   : = inf  λ > 0 :  ∫ S  Ψ    | g ( ξ ) |  λ   d σ  ( ξ )  ≤ 1  .  











The quasi-norm is finite for every   f ∈  H Ψ   ( B )   . The Hardy-Orlicz space is a kind of a limit of the space    A  α  Ψ   ( B )    as   α → − 1 + 0 .   Hence, we also denote the space by    A  − 1  Ψ   ( B )   .



Let   ω ∈ W ( B )  . Then, the weighted-type space is defined by


   H ω ∞   ( B )  : =   { f ∈ H  ( B )  : ∥ f ∥   H ω ∞   : =  sup  z ∈ B    ω  ( z )  | f  ( z )  | < + ∞ } ,   








whereas the little weighted-type space    H  ω , 0  ∞   ( B )    contains all   f ∈  H ω ∞   ( B )    such that


   lim  | z | → 1   ω  ( z )   | f  ( z )  |  = 0 .  








The quantity    ∥ · ∥   H ω ∞    is a norm on the spaces, and with the norm they both are Banach spaces. There is a huge literature on the spaces and operators on them (see, e.g., [13,17,20,22,27,30,42,47,48,49,50,51,52,53]). If   ω ( z ) ≡ 1  , then the norm    ∥ · ∥   H ω ∞    we denote by     ∥ · ∥  ∞  .  



Let X and Y be metric spaces with the translation invariant metrics   d X   and   d Y  , respectively. For a linear operator   A : X → Y   is said that it is metrically bounded if there is   C ∈  R +    such that


   d Y   ( A f , 0 )  ≤ C  d X   ( f , 0 )  ,  








for every   f ∈ X  . For the operator is said that it is metrically compact if it maps bounded balls into relatively compact sets [54,55]. There is also a huge literature on the topics (see, e.g., [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,53,56,57,58]).



Here we characterize the metrical boundedness and compactness of the operator    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    (  o r    H  ω , 0  ∞   ( B )  )   , for   α ≥ − 1 .  



By C we denote some constants, which may be different from one appearance to another. If we write   a ≲ b   (resp.   a ≳ b  ), then   a ≤ C b   (resp.   a ≥ C b  ) for some   C > 0  . We write   a ≍ b  , if   a ≲ b   and   b ≳ a  .




2. Some Lemmas


Our first lemma was proved in [44].



Lemma 1.

Let   α ≥ − 1   and   Ψ ∈  U q  ∪  L p   . Then for each   t ∈  R +   ,   C > 0   and   w ∈ B  , the function


       f  w , t    ( z )  =  Ψ  − 1     C    ( 1 − | w |  2    )   n + 1 + α          1 −   | w |  2    1 − 〈 z , w 〉     2 ( n + 1 + α ) + t   ,      



(4)




belongs to    A  α  Ψ   ( B )   , and


    sup  w ∈ B     ∥  f  w , t   ∥    A  α  Ψ   ( B )    l u x   ≲ 1 .   













The following lemma is well known (see, for example, Proposition 1.4.10 in [5]).



Lemma 2.

Let


    I c   ( z )  =  ∫ S    d σ ( ζ )    | 1 −  〈 z , ζ 〉  |   n + c      








and


    J  c , t    ( z )  =  ∫ B      ( 1 − | w |  2    )  t  d v  ( w )     | 1 −  〈 z , w 〉  |   n + 1 + t + c    ,   








where   z ∈ B  ,   t > − 1   and   c ∈ R .   If   c > 0  , then the following asymptotic relations hold


    I c   ( z )  ≍  1    ( 1 − | z |  2    )  c    ≍  J  c , t    ( z )  .   













The following lemma was proved in [58].



Lemma 3.

Assume that   a > 0   and


    D n   ( a )  =     1   1   ⋯   1     a    a + 1    ⋯    a + n − 1       a ( a + 1 )     ( a + 1 ) ( a + 2 )    ⋯    ( a + n − 1 ) ( a + n )        …         ∏  j = 0   n − 2    ( a + j )       ∏  j = 0   n − 2    ( a + j + 1 )     ⋯     ∏  j = 0   n − 2    ( a + j + n − 1 )       .   








Then


    D n   ( a )  =  ∏  j = 1   n − 1   j ! .   













The following lemma gives an important family of test functions, which is used in the proofs of the main results in the paper.



Lemma 4.

Let   α ≥ − 1   and   Ψ ∈  U q  ∪  L p   ,   m ∈ N  ,   w ∈ B   and   C > 0  . Then for each   s ∈ { 0 , 1 , … , m }   there exist   c j  ( s )   ,   j =   0 , m  ¯   , such that the function    g  w   ( s )    ( z )  =  ∑  k = 0  m   c  k   ( s )    f  w , k    ( z )    satisfies the conditions


    D  l s   ⋯  D  l 1    g  w   ( s )    ( w )  =     w ¯   l 1     w ¯   l 2   ⋯   w ¯   l s       ( 1 − | w |  2    )  s     Ψ  − 1     C    ( 1 − | w |  2    )   n + 1 + α        



(5)




and


    D  l t   ⋯  D  l 1    g  w   ( s )    ( w )  = 0 ,  t ∈  { 0 , 1 , … , m }  ∖  { s }  .   



(6)




Besides,


       sup  w ∈ B     ∥  g  w   ( s )   ∥    A  α  Ψ   ( B )    l u x   ≲ 1 .      



(7)









Proof. 

Let


   g w   ( z )  =  ∑  k = 0  m   y k   f  w , k    ( z )   








and    a k  = 2  ( n + 1 + α )  + k  ,   k ∈  N 0   . It is easy to see that for each   t ∈  N 0    we have


      D  l t   ⋯  D  l 1    g w   ( w )  =     w ¯   l 1     w ¯   l 2   ⋯   w ¯   l t       ( 1 − | w |  2    )  t     Ψ  − 1     C    ( 1 − | w |  2    )   n + 1 + α       ∑  k = 0  m   y k   ∏  l = 0   t − 1    a  k + l   .     



(8)







Lemma 3 shows that the determinant of the system


       1     1    ⋯    1        a 0       a 1     ⋯     a m        ⋮    ⋮   ⋱   ⋮        ∏  k = 0   s − 1    a k         ∏  k = 0   s − 1    a  k + 1       ⋯      ∏  k = 0   s − 1    a  k + m          ⋮    ⋮   ⋱   ⋮        ∏  k = 0   m − 1    a k         ∏  k = 0   m − 1    a  k + 1       ⋯      ∏  k = 0   m − 1    a  k + m              y 0       y 1      ⋮           y s           ⋮           y m      =     0     0     ⋮          1          ⋮          0     ,  



(9)




is not equal to zero.



Therefore, for each   s ∈ { 0 , 1 , … , m }  , there is a unique solution


   y k  : =  c k  ( s )   ,  k =   0 , m  ¯   








to system (9).



Then, the function


   g w  ( s )    ( z )  : =  ∑  k = 0  m   c  k   ( s )    f  w , k    ( z )   








satisfies (5) and (6), whereas the relation in (7) follows from the relations


   sup  w ∈ B     ∥  f  w , t   ∥    A  α  Ψ   ( B )    l u x   ≲ 1 ,  t =   0 , m  ¯  ,  








which are direct consequences of Lemma 1. □





The folowing lemma is a Schwartz-type characterization for the compactness [57]. The proof is standard, so we do not present it here.



Lemma 5.

Let   α ≥ − 1  ,   Ψ ∈  U q  ∪  L p   ,    u j  ∈ H  ( B )   ,   j =   0 , m  ¯   ,   φ ∈ S ( B )   and   ω ∈ W ( B )  . Then the metrically bounded operator    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    is metrically compact if and only if for any bounded sequence     (  f k  )   k ∈ N   ⊂  A  α  Ψ   ( B )    such that    f k  → 0   uniformly on compacts of  B  as   k → + ∞  ,


    lim  k → + ∞     ∥  P  D , m    f k  ∥   H  ω  ∞   = 0 .   













The following lemma is a known extension of Lemma 1 in [56] (see, for example, [29]).



Lemma 6.

A closed set K in   H  ω , 0  ∞   is compact if and only if it is bounded and


    lim  | z | → 1    sup  f ∈ K   ω  ( z )   | f  ( z )  |  = 0 .   













Lemma 7.

Let   α ≥ − 1  ,   Ψ ∈  U q  ∪  L p    and   N ∈  N 0   . Then for any    l →  =  (  l 1  ,  l 2  , … ,  l j  )    such that    |   l →   | = N   , there are    C  l →   > 0   and     C ^   l →   > 0   such that


          ∂ N  f  ( z )    ∂  z   k 1    l 1   ∂  z   k 2    l 2   ⋯ ∂  z   k j    l j      ≤    C ^   l →      ( 1 − | z |  2    )  N     Ψ  − 1      C  l →      ( 1 − | z |  2    )   n + 1 + α        ∥ f ∥    A  α  Ψ   ( B )    l u x   ,      



(10)




for   f ∈  A  α  Ψ   ( B )    and   z ∈ B  .





Proof. 

The estimate (10) in the case   α > − 1   was proved in [30]. Hence, from now on we consider only the case   α = − 1 .  



Suppose   Ψ ∈  U q   . Then the space    H Ψ   ( B )    embeds into    H 1   ( B )    continuously (see Lemma 2.1 in [44]). Hence


     f  ( z )  =  ∫ S     f *   ( ζ )  d σ  ( ζ )     ( 1 −  〈 z , ζ 〉  )  n   ,     



(11)




for every   f ∈  H Ψ   ( B )    and   z ∈ B  , where   f *   is the K-limit [5] (limit in the Koranyi domain).



By differentiating both sides of the relation in (11) we get


        ∂ N  f  ( z )    ∂  z  k 1   l 1   ∂  z  k 2   l 2   ⋯ ∂  z  k j   l j     =   Γ ( n + N )   Γ ( n )    ∫ S      ζ ¯   k 1   l 1     ζ ¯   k 2   l 2   ⋯   ζ ¯   k j   l j    f *   ( ζ )     ( 1 −  〈 z , ζ 〉  )   n + N    d σ  ( ζ )  .     



(12)







Suppose


      ∫ S  Ψ     |   f *    ( ζ )  |   λ   d σ  ( ζ )  ≤ 1 ,     



(13)




for a   λ > 0 .  



From (12), it follows that


         ( 1 − | z |  2    )  N   λ  |    ∂ N  f  ( z )    ∂  z  k 1   l 1   ∂  z  k 2   l 2   ⋯ ∂  z  k j   l j     | ≤   Γ ( n + N )   Γ ( n )    ∫ S     |   f *    ( ζ )  |   λ      ( 1 − | z |  2    )  N     | 1 −  〈 z , ζ 〉  |   n + N    d σ  ( ζ )  .     



(14)




Lemma 2 implies the finiteness of the measure


  d  σ 1   ( ζ )  : =   Γ ( n + N )   Γ ( n )       ( 1 − | z |  2    )  N     ( 1 −  〈 z , ζ 〉  )   n + N    d σ  ( ζ )  ,  








on   S .   Note that the measure


  μ  ( ζ )  : =   d  σ 1   ( ζ )     σ 1   ( S )     








is normalized (i.e., probability).



From (14), the condition   Ψ  ( s t )  ≤ C  t q  Ψ  ( s )   , for   t ≥ 1   and   s > 0  , the monotonicity and convexity of  Ψ , Jensen’s inequality, and (13), we have


        Ψ      ( 1 − | z |  2    )  N   λ  |    ∂ N  f  ( z )    ∂  z  k 1   l 1   ∂  z  k 2   l 2   ⋯ ∂  z  k j   l j     |           ≤ C   ( max  { 1 ,  σ 1   ( S )  }  )  q    Γ ( n + N )    σ 1   ( B )  Γ  ( n )     ∫ S  Ψ     |   f *    ( ζ )  |   λ       ( 1 − | z |  2    )  N     | 1 −  〈 z , ζ 〉  |   n + N    d σ  ( ζ )           ≤   C ^     ( 1 − | z |  2    )  n     ∫ S  Ψ     |   f *    ( ζ )  |   λ   d σ  ( ζ )           ≤   C ^     ( 1 − | z |  2    )  n    ,     








for   z ∈ B  , where


   C ^  = C  2  N + n     ( max  { 1 ,  σ 1   ( S )  }  )  q    Γ ( n + N )    σ 1   ( S )  Γ  ( n )    ,  








and consequently by letting   λ →   ∥ f ∥    H Ψ   ( B )    l u x     we get


     |    ∂ N  f  ( z )    ∂  z  k 1   l 1   ∂  z  k 2   l 2   ⋯ ∂  z  k j   l j     | ≤  1    ( 1 − | z |  2    )  N     Ψ  − 1      C ^     ( 1 − | z |  2    )  n       ∥ f ∥    H Ψ   ( B )    l u x   .     



(15)







Now suppose that   Ψ ∈  L s   , for an   s ∈ ( 0 , 1 ] .   If   p ∈ ( 0 , 1 )   is small enough, then    Ψ  1 / p    ( t )  : = Ψ  (  t  1 p   )    is convex [46].



Let


   f r   ( z )  = f  ( r z )  ,  z ∈ B ,  








where   r > 0 .   Then,    f r  ∈  H ∞   ( B )   , which implies    f r  ∈  A β 1   ( B )   .



By a known theorem (see, for example, Theorem 2.2 in [59]), for each   β > − 1   we have


   f r   ( z )  =  ∫ B     f r   ( w )     ( 1 −  〈 z , w 〉  )   n + 1 + β    d  v β   ( w )  .  








Differentiating both sides of the last equality it follows that


   r N     ∂ N  f  ( r z )    ∂  z  k 1   l 1   ∂  z  k 2   l 2   ⋯ ∂  z  k j   l j     =   Γ ( n + N + β + 1 )   Γ ( n + β + 1 )    ∫ B      w ¯   k 1   l 1     w ¯   k 2   l 2   ⋯   w ¯   k j   l j    f r   ( w )     ( 1 −  〈 z , w 〉  )   n + N + 1 + β    d  v β   ( w )  ,  








and consequently


     |  r N     ∂ N  f  ( r z )    ∂  z  k 1   l 1   ∂  z  k 2   l 2   ⋯ ∂  z  k j   l j     | ≤   Γ ( n + N + β + 1 )   Γ ( n + β + 1 )    ∫ B     |   f r    ( w )  |     | 1 −  〈 z , w 〉  |   n + N + 1 + β    d  v β   ( w )  .     



(16)




Let   β : =  n p  − n − 1  . Since   p ∈ ( 0 , 1 )  , we have   β > − 1  . From (16) and by Corollary 4.49 in [59], we have


     |  r N     ∂ N  f  ( r z )    ∂  z  k 1   l 1   ∂  z  k 2   l 2   ⋯ ∂  z  k j   l j      | p  ≲  ∫ S  |    f r   ( ζ )     ( 1 −  〈 z , ζ 〉  )   n + N + 1 + β     | p  d σ  ( ζ )  .     



(17)







Then from (17) and the fact   ( n + N + 1 + β ) p = N p + n  , we have


           ( 1 − | z |  2    )  N   λ  |  r N     ∂ N  f  ( r z )    ∂  z  k 1   l 1   ∂  z  k 2   l 2   ⋯ ∂  z  k j   l j     |  p  ≲  ∫ S       |   f r    ( ζ )  |   λ   p      ( 1 − | z |  2    )   N p   d σ  ( ζ )     | 1 −  〈 z , ζ 〉  |   N p + n    .     



(18)




Lemma 2 shows that


  d  σ 2   ( ζ )  : =     ( 1 − | z |  2    )   N p      | 1 −  〈 z , ζ 〉  |   N p + n    d σ  ( ζ )   








is a finite measure, so that   d  σ 2   ( ζ )  /  σ 2   ( S )    is a probability measure.



The monotonicity and convexity of the function   Ψ  1 / p   , the fact    Ψ  1 / p   ∈   U   1 / p s    , (18) and Jensen’s inequality imply


         Ψ  1 / p          ( 1 − | z |  2    )  N   λ  |  r N     ∂ N  f  ( r z )    ∂  z  k 1   l 1   ∂  z  k 2   l 2   ⋯ ∂  z  k j   l j     |  p        ≲     ∫ S   Ψ  1 / p         |   f r    ( ζ )  |   λ   p       ( 1 − | z |  2    )   N p      | 1 −  〈 z , ζ 〉  |   N p + n    d σ  ( ζ )  .     



(19)




From (19) we have


     Ψ   r N      ( 1 − | z |  2    )  N   λ  |    ∂ N  f  ( r z )    ∂  z  k 1   l 1   ∂  z  k 2   l 2   ⋯ ∂  z  k j   l j     |  ≤   C ˜     ( 1 − | z |  2    )  n     ∫ S  Ψ    | f ( r ζ ) |  λ   d σ  ( ζ )  ,     



(20)




for some    C ˜  > 0 .  



Since   Ψ  1 / p    is convex and increasing, and    | f |  p   is subharmonic [5], the function   Ψ ( c | f | )   is subharmonic for each   c > 0  . Hence


  M  ( f , r )  : =  ∫ S  Ψ    | f ( r ζ ) |  λ   d σ  ( ζ )   








is nondecreasing in r (see, e.g., [60]). Thus, we have


   ∫ S  Ψ    | f ( r ζ ) |  λ   d σ  ( ζ )  ≤  ∫ S  Ψ     |   f *    ( ζ )  |   λ   d σ  ( ζ )  ,  








for   r ∈ ( 0 , 1 ) .  



From this and letting   r →  1 −    in (20) it follows that


     Ψ      ( 1 − | z |  2    )  N   λ  |    ∂ N  f  ( z )    ∂  z  k 1   l 1   ∂  z  k 2   l 2   ⋯ ∂  z  k j   l j     |  ≤   C ˜     ( 1 − | z |  2    )  n     ∫ S  Ψ     |   f *    ( ζ )  |   λ   d σ  ( ζ )  .     



(21)




Letting   λ →   ∥ f ∥    H Ψ   ( B )    l u x     it easily follows that


     |    ∂ N  f  ( z )    ∂  z  k 1   l 1   ∂  z  k 2   l 2   ⋯ ∂  z  k j   l j     | ≤  1    ( 1 − | z |  2    )  N     Ψ  − 1      C ˜     ( 1 − | z |  2    )  n       ∥ f ∥    H Ψ   ( B )    l u x   .     



(22)




From (15) and (22), estimate (10) follows for    C  l →   : = max  {  C ^  ,  C ˜  }  .   □






3. Main Results


Here we present our results on the metrical boundedness and compactness. Before we state our first theorem say that if   φ ∈ S ( B )  , then we regard that   φ = (  φ 1  , … ,  φ n  )  .



Theorem 1.

Let   α ≥ − 1  ,   m ∈ N  ,    u j  ∈ H  ( B )   ,   j =   0 , m  ¯  ,     φ ∈ S ( B )  ,


       min  j =   1 , n  ¯     inf  z ∈ B    |  φ j   ( z )  |  ≥ δ > 0 ,      



(23)




  Ψ ∈  U q  ∪  L p   , and   ω ∈ W ( B )  . Then the following statements hold.








	(a)

	
The operator    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    is metrically bounded if and only if


       K j  : =  sup  z ∈ B     ω  ( z )  |  u j   ( z )  |     ( 1 − | φ  ( z )  |  2    )  j     Ψ  − 1       C ˜  m     ( 1 − | φ  ( z )  |  2    )   n + 1 + α      < + ∞ ,  j =   0 , m  ¯  ,      



(24)







where


        C ˜  m   : = max {   C  l →   :  l →  =  (  l 1  ,  l 2  , … ,  l j  )    s u c h t h a t  |   l →   | ≤ m }  ,      



(25)







and   C  l →    is a constant in Lemma 7.




	(b)

	
If the operator    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    is metrically bounded, then


       ∥   P  D , m     ∥    A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    ≍  ∑  j = 0  m   K j  .      



(26)















Proof. 






	(a)

	
If (24) holds, then Lemma 7 implies


      ω  ( z )  |   P  D , m    f  ( z )  | =      ω  ( z )  |  ∑  j = 0  m   u j   ( z )   D  l j   ⋯  D  l 1   f  ( φ  ( z )  )  |      ≤    C  ∑  j = 0  m     ω  ( z )  |   u j    ( z )  |      ( 1 − | φ  ( z )  |  2    )  j     Ψ  − 1       C ˜  m     ( 1 − | φ  ( z )  |  2    )   n + 1 + α        ∥ f ∥    A  α  Ψ   ( B )    l u x   .     



(27)













From (24) and (27), the metrical boundedness of    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    follows, and we have


      ∥   P  D , m     ∥    A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    ≲  ∑  j = 0  m   K j  .     



(28)




If    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    is metrically bounded, then    ∥   P  D , m     f ∥    H  ω  ∞   ( B )    ≤ C   ∥ f ∥    A  α  Ψ   ( B )    l u x    , for some   C ≥ 0   and every   f ∈  A  α  Ψ   ( B )   .



For each   s ∈ { 0 , 1 , … , m }  ,   φ ( w ) ∈ B  , and   C =   C ˜  m   , Lemma 4 guaranty the existence of    g  φ ( w )   ( s )   ∈  A  α  Ψ   ( B )    such that


   D  l s   ⋯  D  l 1    g  φ ( w )   ( s )    ( φ  ( w )  )  =      φ  l 1    ( w )   ¯     φ  l 2    ( w )   ¯  ⋯    φ  l s    ( w )   ¯      ( 1 − | φ  ( w )  |  2    )  s     Ψ  − 1       C ˜  m     ( 1 − | φ  ( w )  |  2    )   n + 1 + α      ,  



(29)






   D  l t   ⋯  D  l 1    g  φ ( w )   ( s )    ( φ  ( w )  )  = 0 ,  t ∈  { 0 , 1 , … , m }  ∖  { s }  ,  



(30)




and    sup  w ∈ B     ∥  g  φ ( w )   ( s )   ∥    A  α  Ψ   ( B )    l u x   ≲ 1  .



This fact, (23), (29) and (30), yield


          ∥   P  D , m     ∥    A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    ≳      ∥   P  D , m    g  φ ( w )     ∥    H  ω  ∞   ( B )         =     sup  z ∈ B   ω  ( z )  |  ∑  j = 0  m   u j   ( z )   D  l j   ⋯  D  l 1    g  φ ( w )   ( s )    ( φ  ( z )  )  |      ≥    ω  ( w )  |  ∑  j = 0  m   u j   ( w )   D  l j   ⋯  D  l 1    g  φ ( w )   ( s )    ( φ  ( w )  )  |      =     ω  ( w )  |   u s    ( w )  |       |   φ  l 1    ( w )   ¯   | ⋯ |     φ  l s    ( w )   ¯   |      ( 1 − | φ  ( w )  |  2    )  s     Ψ  − 1       C ˜  m     ( 1 − | φ  ( w )  |  2    )   n + 1 + α           ≥     δ s     ω  ( w )  |   u s    ( w )  |      ( 1 − | φ  ( w )  |  2    )  s     Ψ  − 1       C ˜  m     ( 1 − | φ  ( w )  |  2    )   n + 1 + α      ,     



(31)




for every   w ∈ B  , from which it follows that    K s  < + ∞  , for   s ∈ { 0 , 1 , … , m }  , and


   K s  ≲   ∥  P  D , m   ∥    A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    ,  s =   0 , m  ¯  ,  








which yields


      ∑  j = 0  m   K j  ≲   ∥  P  D , m   ∥    A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    .     



(32)












	(b)

	
If    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    is metrically bounded, then relations (28) and (32) imply (26).









□





Theorem 2.

Let   α ≥ − 1  ,   m ∈ N  ,    u j  ∈ H  ( B )   ,   j =   0 , m  ¯  ,      φ ∈ S ( B )  ,   Ψ ∈  U q  ∪  L p   ,   ω ∈ W ( B )  , and   P n   be dense in    A  α  Ψ   ( B )  .   Then    P  D , m   :  A  α  Ψ   ( B )  →  H  ω , 0  ∞   ( B )    is metrically bounded if and only if    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    is metrically bounded and


       lim  | z | → 1   ω  ( z )   |  u j   ( z )  |  = 0 ,  j =   0 , m  ¯  .      



(33)









Proof. 

Suppose    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    is metrically bounded and (33) holds. For each polynomial p, we have


  ω  ( z )  |  ∑  j = 0  m   u j   ( z )   D  l j   ⋯  D  l 1   p  ( φ  ( z )  )  | ≤  ∑  j = 0  m   ω  ( z )  |   u j    ( z )  | ∥   D  l j   ⋯  D  l 1     p ∥  ∞  ,  








from which along with (33), we have    P  D , m   p ∈  H  ω , 0  ∞   ( B )   .



Since     P n  ¯  =  A  α  Ψ   ( B )   , we have that for any   f ∈  A  α  Ψ   ( B )    there is     (  p k  )   k ∈ N   ⊂  P n    such that


   lim  k → + ∞     ∥ f −  p k  ∥    A  α  Ψ   ( B )    = 0 .  








So, from the metrical boundedness we have


      ∥   P  D , m   f −  P  D , m    p k    ∥    H  ω  ∞   ( B )     ≤   ∥   P  D , m     ∥    A  α  Ψ   ( B )  →  H  ω  ∞   ( B )      ∥ f −  p k  ∥    A  α  Ψ   ( B )    → 0     








as   k → + ∞  , from which together with the fact that    H  ω , 0  ∞   ( B )    is a closed subspace of    H  ω  ∞   ( B )   , it follows that    P  D , m   f ∈  H  ω , 0  ∞   ( B )   , that is,    P  D , m    (  A  α  Ψ   ( B )  )  ⊆  H  ω , 0  ∞   ( B )  ,   which implies the metrical boundedness of the operator    P  D , m   :  A  α  Ψ   ( B )  →  H  ω , 0  ∞   ( B )   .



If    P  D , m   :  A  α  Ψ   ( B )  →  H  ω , 0  ∞   ( B )    is metrically bounded, then    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    is also metrically bounded. Let    f 0   ( z )  ≡ 1 .   Then    f 0  ∈  A  α  Ψ   ( B )  ,   implying    P  D , m    (  f 0  )  ∈  H  ω , 0  ∞   ( B )  ,   that is,    u 0  ∈  H  ω , 0  ∞   .



Suppose that (33) holds for   0 ≤ j ≤ s  , for some s,   2 ≤ s < m .   Let


   f  s + 1    ( z )  =  z  l 1    z  l 2   ⋯  z  l  s + 1    .  








Then    f  s + 1   ∈  A  α  Ψ   ( B )  ,   implying    P  D , m    (  f  s + 1   )  ∈  H  ω , 0  ∞   ( B )  .   It is easy to see that    f  s + 1    ( z )  =  z 1  α 1   ⋯  z n  α n   ,   for some    α j  ∈  N 0   ,   j =   1 , n  ¯  ,   such that    ∑  j = 1  n   α j  = s + 1  . For each   t ∈  N 0   ,   0 ≤ t ≤ s + 1  , we have


   D  j t   ⋯  D  j 1    f  s + 1    ( z )  =  c t   z 1   α 1  −  k 1   ( t )    ⋯  z n   α n  −  k n   ( t )    ,  








for some    c t  ∈ N  , where    k i   ( t )    is the number of appearance the operators   D i   in the product operator    D  j t   ⋯  D  j 1    . We have    ∑  j = 1  n   k i   ( t )  = t   and


      D  j  s + 1    ⋯  D  j 1    f  s + 1    ( z )  ≡  c  s + 1   ∈ N .     



(34)







Thus


   lim  | z | → 1   ω  ( z )   |  P  D , m    f  s + 1    ( z )  |  =  lim  | z | → 1   ω  ( z )  |  ∑  j = 0   s + 1    u j   ( z )   c j   ∏  i = 1  n    (  φ i   ( z )  )    α i  −  k i   ( j )    | = 0 ,  








from which, the fact    |   φ i    ( z )  | < 1   ,   i =   1 , n  ¯  ,     α i  ≥  k i   ( j )   , for   i =   1 , n  ¯   ,   j =   0 , s + 1  ¯   , the hypothesis    u j  ∈  H  ω , 0  ∞   ,   j =   0 , s  ¯   , and (34), we have


   lim  | z | → 1    c  s + 1   ω  ( z )   |  u  s + 1    ( z )  |  = 0 .  








This along with    c  s + 1   ≠ 0  , imply    u  s + 1   ∈  H  ω , 0  ∞   . Thus, (33) holds for   j =   0 , m  ¯   . □





Theorem 3.

Let   α ≥ − 1  ,   m ∈ N  ,    u j  ∈ H  ( B )   ,   j =   0 , m  ¯  ,     φ ∈ S ( B )  ,   Ψ ∈  U q  ∪  L p   ,   ω ∈ W ( B )  , and (23) holds. Then,    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    is metrically compact if and only if the operator is metrically bounded and


       lim  | φ ( z ) | → 1     ω  ( z )  |  u j   ( z )  |     ( 1 − | φ  ( z )  |  2    )  j     Ψ  − 1       C ˜  m     ( 1 − | φ  ( z )  |  2    )   n + 1 + α      = 0 ,  j =   0 , m  ¯  ,      



(35)




where    C ˜  m   is defined in (25).





Proof. 

If    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    is metrically compact, then it is metrically bounded. If     ∥ φ ∥  ∞  < 1  , then (35) vacuously holds. If     ∥ φ ∥  ∞  = 1  , then there is     (  z k  )   k ∈ N   ⊂ B   such that   | φ (  z k  ) | → 1   as   k → + ∞  .



Let


   g k  ( s )   : =  g  φ (  z k  )   ( s )   ,  s =   0 , m  ¯  ,  








(see Lemma 4). Then    sup  k ∈ N     ∥  g k  ( s )   ∥    A  α  Ψ   ( B )    l u x   < + ∞  ,   s =   0 , m  ¯   . If   Ψ ∈  U q    or   Ψ ∈  L p   , then as in [30] (Theorem 2), we get    g k  ( s )   → 0   uniformly on compacts of  B  as   k → + ∞  ,   s =   0 , m  ¯   . Lemma 5 implies


      lim  k → + ∞     ∥  P  D , m    g k  ( s )   ∥    H  ω  ∞   ( B )    = 0 ,  s =   0 , m  ¯  .     



(36)




From the proof of Theorem 1, we see that for   s =   0 , m  ¯    and large enough k


          ω  (  z k  )   |  u s   (  z k  )  |     ( 1 − | φ   (  z k  )     | 2  )  s     Ψ  − 1       C ˜  m    ( 1 − | φ   (  z k  )     | 2  )   n + 1 + α      ≲   ∥  P  D , m    g k  ( s )   ∥    H  ω  ∞   ( B )    .     



(37)




From (36) and (37), relation (35) follows.



If    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    is metrically bounded and (35) holds, then for each   ε > 0  , there exists   δ ∈ ( 0 , 1 )   such that


       ω  ( z )  |  u j   ( z )  |     ( 1 − | φ  ( z )  |  2    )  j     Ψ  − 1       C ˜  m     ( 1 − | φ  ( z )  |  2    )   n + 1 + α      < ε ,  j =   0 , m  ¯  ,     



(38)




on    S δ  : =  { z ∈ B : | φ  ( z )  | > δ }   .



Suppose    (  f k  )   k ∈ N    is such that    sup  k ∈ N     ∥  f k  ∥    A  α  Ψ   ( B )    l u x   ≤ M   and    f k  → 0   uniformly on compacts of  B  as   k → + ∞  . Then Lemma 7 and (38) imply


      ∥   P  D , m    f k    ∥    H  ω  ∞   ( B )    =      sup  z ∈ B   ω  ( z )  |  ∑  j = 0  m   u j   ( z )   D  l j   ⋯  D  l 1    f k   ( φ  ( z )  )  |      =     sup  z ∈  S δ    ω  ( z )  |  ∑  j = 0  m   u j   ( z )   D  l j   ⋯  D  l 1    f k   ( φ  ( z )  )  |          +  sup  z ∈ B ∖  S δ    ω  ( z )  |  ∑  j = 0  m   u j   ( z )   D  l j   ⋯  D  l 1    f k   ( φ  ( z )  )  |      ≲     ∑  j = 0  m   sup  z ∈  S δ      ω  ( z )  |  u j   ( z )  |     ( 1 − | φ  ( z )  |  2    )  j     Ψ  − 1       C ˜  m     ( 1 − | φ  ( z )  |  2    )   n + 1 + α        ∥  f k  ∥    A  α  Ψ   ( B )    l u x            +  ∑  j = 0  m   sup  z ∈ B ∖  S δ     ω  ( z )  |   u j    ( z )  | |   D  l j   ⋯  D  l 1    f k    ( φ  ( z )  )  |       ≲     ε +  ∑  j = 0  m   sup  z ∈ B ∖  S δ    ω  ( z )   |  u j   ( z )  |   sup  | φ ( z ) | ≤ δ   |  D  l j   ⋯  D  l 1    f k   ( φ  ( z )  )  |      ≲     ε +  ∑  j = 0  m    ∥  u j  ∥   H ω ∞    sup  | φ ( z ) | ≤ δ   |  D  l j   ⋯  D  l 1    f k   ( φ  ( z )  )  | .     



(39)




The assumption    f k  → 0   and the Cauchy estimate, imply


      D  l j   ⋯  D  l 1    f k  → 0 ,  j =   0 , m  ¯  ,     



(40)




uniformly on compacts of  B  as   k → + ∞  .



Employing the functions    f s   ( z )  =  ∏  j = 1  s   z  l j   ,    s =   0 , m  ¯  ,   as in Theorem 2 we get    u j  ∈  H ω ∞   ,   j =   0 , m  ¯  .   From this, (39) and (40), the compactness of the ball   δ  B ¯   , and the arbitrariness of   ε > 0  , we obtain


   lim  k → + ∞     ∥  P  D , m    f k  ∥    H  ω  ∞   ( B )    = 0 ,  








from which by Lemma 5, the metrical compactness of    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    follows. □





Theorem 4.

Let   α ≥ − 1  ,   m ∈ N  ,    u j  ∈ H  ( B )   ,   j =   0 , m  ¯  ,     φ ∈ S ( B )  ,   Ψ ∈  U q  ∪  L p   ,   ω ∈ W ( B )  , and (23) holds. Then,    P  D , m   :  A  α  Ψ   ( B )  →  H  ω , 0  ∞   ( B )    is metrically compact if and only if the operator is metrically bounded and


       lim  | z | → 1     ω  ( z )  |  u j   ( z )  |     ( 1 − | φ  ( z )  |  2    )  j     Ψ  − 1       C ˜  m     ( 1 − | φ  ( z )  |  2    )   n + 1 + α      = 0 ,  j =   0 , m  ¯  ,      



(41)




where    C ˜  m   is defined in (25).





Proof. 

If (41) holds, then the relations in (24) also hold, so by Theorem 1 the metrical boundedness of the operator    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    follows. From (27) and (41), we have


   lim  | z | → 1   ω  ( z )   |  P  D , m   f  ( z )  |  = 0  








for any   f ∈  A  α  Ψ   ( B )   . Thus    P  D , m    (  A  α  Ψ   ( B )  )  ⊂  H  ω , 0  ∞   ( B )   , implying the metrical boundedness of    P  D , m   :  A  α  Ψ   ( B )  →  H  ω , 0  ∞   ( B )   .



Taking the supremum in (27) over  B  and   B   A  α  Ψ   ( B )     and using (24), we have


      sup  f ∈  B   A  α  Ψ   ( B )       sup  z ∈ B   ω  ( z )   |  P  D , m   f  ( z )  |  ≤ C  ∑  j = 0  m   K j  < + ∞ .     



(42)




Thus   K : = {  P  D , m   f : f ∈  B   A  α  Ψ   ( B )    }   is a bounded set in   H  ω , 0  ∞  . So, from (27) we have


   lim  | z | → 1    sup  f ∈  B   A  α  Ψ   ( B )      ω  ( z )  |  P  D , m   f  ( z )  | = 0 .  








From this and by Lemma 6 the metrical compactness of    P  D , m   :  A  α  Ψ   ( B )  →  H  ω , 0  ∞   ( B )    follows.



If    P  D , m   :  A  α  Ψ   ( B )  →  H  ω , 0  ∞   ( B )    is metrically compact, then    P  D , m   :  A  α  Ψ   ( B )  →  H  ω  ∞   ( B )    is metrically compact, from which and Theorem 3 we have that (38) holds. We also have


   lim  | z | → 1   ω  ( z )   |  u j   ( z )  |  = 0 ,  j =   0 , m  ¯  ,  








so that there exist   σ ∈ ( 0 , 1 )   such that


      ω  ( z )  |   u j    ( z )  | < ε     ( 1 −  δ 2  )  j    Ψ  − 1       C ˜  m    ( 1 −  δ 2  )   n + 1 + α       ,  j =   0 , m  ¯  ,     



(43)




for   σ < | z | < 1  , where  ε  is from (38).



Relation (43) implies


          ω  ( z )  |  u j   ( z )  |     ( 1 − | φ  ( z )  |  2    )  j     Ψ  − 1       C ˜  m     ( 1 − | φ  ( z )  |  2    )   n + 1 + α           ≤      ω  ( z )  |  u j   ( z )  |    ( 1 −  δ 2  )  j    Ψ  − 1       C ˜  m    ( 1 −  δ 2  )   n + 1 + α     < ε ,     



(44)




for   j =   0 , m  ¯  ,    | φ ( z ) | ≤ δ   and   σ < | z | < 1  .



Employing (38) and (44), we easily obtain (41). □






4. Conclusions


Here we characterize the metrical boundedness and metrical compactness of a recently introduced linear operator from the weighted Bergman-Orlicz spaces to the weighted-type spaces and little weighted-type spaces of analytic functions on the open unit ball in    C  n  , continuing some of our previous investigations in the topic. We managed to estimate the point evaluation functional on the weighted Bergman-Orlicz spaces, which along with several other results enabled obtaining the characterizations. The methods, ideas and tricks in the paper should be useful for continuing the investigation of this, as well as related operators on spaces of holomorphic functions.
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