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1. Introduction

Let N0 = N∪ {0}, where N = {1, 2, . . .}, R be the set or real numbers, R+ = [0,+∞),
and C be the set of all complex numbers. We use the expression k = r, s, where r, s ∈ N0,
instead of the following one: r ≤ k ≤ s, k ∈ N0. We also understand that ∑

q
k=p bk = 0,

when q < p, and ∏
p−1
k=p bk = 1, for every p, q ∈ N0, where bk are some complex numbers.

A nonzero function Ψ is called a growth function if it is continuous, nondecreasing and
Ψ(R+) = R+ (the functions appear in defining the Orlicz-type spaces; see, e.g., [1–3]). By
G(R+) we denote the set of all growth functions.

Let Bn = B := {z ∈ Cn : |z| < 1}, where z = (z1, z2, . . . , zn), |z| = 〈z, z〉1/2 and

〈z, w〉 =
n

∑
j=1

zjwj,

and let S = ∂B.
Let H(Ω) be the family of analytic function on a domain Ω ⊆ Cn [4,5], S(Ω) the class

of analytic self-maps of Ω, Pn the set of polynomials in Cn, Dj f = ∂ f
∂zj

, j = 1, n, and

< f (z) =
n

∑
j=1

zjDj f (z),

the so-called radial derivative.
By dv(z) we denote the Lebesgue measure on B, whereas dvα(z) = cα(1− |z|2)αdv(z),

α > −1, is the normalized weighted Lebesgue measure on B (i.e., vα(B) = 1). By dσ we
denote the normalized surface measure on S (i.e., σ(S) = 1). Positive and continuous
functions on B are called weights. The set of all such functions we denote by W(B).

Recall that each u ∈ H(Ω) induces the multiplication operator Mu f = u f on H(Ω),
whereas each ϕ ∈ S(Ω) induces the composition operator Cϕ f = f ◦ ϕ on H(Ω). If n = 1,
then D f = f ′ is the differentiation operator. These three operators are linear and have been
studied a lot, as well as many of their products.
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Let us briefly mention a part of the investigations preceding the one in the paper. Of
the product-type operators containing the differential one, first were studied the operators
DCϕ and CϕD (see, e.g., [6–11] and the related references therein). In [12] was studied the
product of the multiplication operator followed by the differentiation one on the Bloch-type
spaces. In [13,14] were studied some operators containing each of the three operators Cϕ,
Mu and D.

Soon after the first investigations of the operators DCϕ and CϕD, the following opera-
tor

Dm
ϕ,u := MuCϕDm

containing also the operators Cϕ, Mu and D, was introduced and considerably studied (see,
e.g., [15–28] and the related references therein).

The following operator
<m

ϕ,u := MuCϕ<m,

which was defined in [29] and investigated also in [30] (see also the related references
therein), can be regarded as an n-dimensional counterpart of the operator Dm

ϕ,u.
Investigation of the sum

Mu1 Cϕ + Mu2 CϕD (1)

where u1, u2 ∈ H(B1) and ϕ ∈ S(B1), was initiated by the author of the paper and
A. K. Sharma. The operator was first studied on the weighted Bergman spaces in [31], and
later on many other spaces. For example, in [32] it was studied from weighted Bergman
spaces to weighted-type spaces, in [33] from Hardy spaces to Stević weighted spaces,
whereas in [34] from the mixed-norm spaces to Zygmund-type spaces.

The generalization of the operator in (1)

Mu1 CϕDm + Mu2 CϕDm+1,

where m ∈ N0, u1, u2 ∈ H(B1) and ϕ ∈ S(B1), was considered for the first time in [35],
where the boundedness and compactness of the operator from a general space to the
Bloch-type spaces were characterized.

After the publication of [35], we proposed studying finite sums of the operators Dm
ϕ,u

and <m
ϕ,u, as well as the following sum operator

PD,m f :=
m

∑
j=0

ujCϕDlj
· · ·Dl1 f , (2)

where m ∈ N0, uj ∈ H(B), j = 0, m, and ϕ ∈ S(B), on normed subspaces of H(B), which
is a polynomial differentiation composition operator. The first results on operator (2)
between some spaces of analytic functions were presented in [36], where we gave some
necessary and sufficient conditions for the boundedness and compactness of the operator
from the logarithmic Bloch spaces to weighted-type spaces of holomorphic functions. The
investigation was continued in [37].

In [38–45] can be found several other product-type operators, some of which include
integral-type ones.

If there are q > 0 and C > 0 such that Ψ(st) ≤ CtqΨ(s), for s > 0 and t ≥ 1, we say
that Ψ is of positive upper type q. The family of growth functions Ψ of positive upper type
q ≥ 1 such that Ψ(t)/t is nondecreasing on (0,+∞) is denoted by Uq. If there are p > 0 and
C > 0 such that Ψ(st) ≤ CtpΨ(s), for each s > 0 and 0 < t ≤ 1, we say that Ψ is of positive
lower type. The family of growth functions Ψ of positive lower type p ∈ (0, 1) such that
Ψ(t)/t is nonincreasing on (0,+∞) is denoted by Lp. It is not difficult to prove that the
functions in Uq ∪ Lp are increasing.

If Ψ ∈ Uq ∪ Lp, we may assume that Ψ ∈ C1 and that there are positive numbers c1
and c2 such that
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c1
Ψ(t)

t
≤ Ψ′(t) ≤ c2

Ψ(t)
t

(3)

for t ∈ (0,+∞). If Ψ ∈ Uq we also assume that it is convex [44].
If Ψ ∈ Lp is a C1 function satisfying (3), then for sufficiently large r the function

Ψ(tr) is comparable to a convex C1 function G satisfying the inequalities in (3) with some
constants c1(G) and c2(G) [46].

If Ψ ∈ G(R+), then the set of all f ∈ H(B) such that

‖ f ‖AΨ
α (B) :=

∫
B

Ψ(| f (z)|)dvα(z) < +∞,

is called the weighted Bergman-Orlicz space and is denoted by AΨ
α (B). The space general-

izes the weighted Bergman space Ap
α(B). A quasi-norm on the space is given by

‖ f ‖lux
AΨ

α (B)
:= inf

{
λ > 0 :

∫
B

Ψ
(
| f (z)|

λ

)
dvα(z) ≤ 1

}
,

and if Ψ ∈ Uq ∪ Lp, it is finite for every f ∈ AΨ
α (B). This is the so-called Luxembourg

quasi-norm.
The set of all f ∈ H(B) such that

‖ f ‖HΨ(B) := sup
0<r<1

∫
S

Ψ(| f (rξ)|)dσ(ξ) < ∞,

is called the Hardy-Orlicz space and is denoted by HΨ(B). It generalizes the Hardy space
Hp(B). A quasi-norm on the space is given by

‖ f ‖lux
HΨ(B) := sup

0<r<1
‖ fr‖lux

LΨ(B),

where fr(ξ) = f (rξ), 0 ≤ r < 1, ξ ∈ S, and ‖ · ‖lux
LΨ(B) is the Luxembourg quasi-norm

‖g‖lux
LΨ(B) := inf

{
λ > 0 :

∫
S

Ψ
(
|g(ξ)|

λ

)
dσ(ξ) ≤ 1

}
.

The quasi-norm is finite for every f ∈ HΨ(B). The Hardy-Orlicz space is a kind of a
limit of the space AΨ

α (B) as α→ −1 + 0. Hence, we also denote the space by AΨ
−1(B).

Let ω ∈W(B). Then, the weighted-type space is defined by

H∞
ω (B) := { f ∈ H(B) : ‖ f ‖H∞

ω
:= sup

z∈B
ω(z)| f (z)| < +∞},

whereas the little weighted-type space H∞
ω,0(B) contains all f ∈ H∞

ω (B) such that

lim
|z|→1

ω(z)| f (z)| = 0.

The quantity ‖ · ‖H∞
ω

is a norm on the spaces, and with the norm they both are Banach spaces.
There is a huge literature on the spaces and operators on them (see, e.g., [13,17,20,22,27,30,42,47–53]).
If ω(z) ≡ 1, then the norm ‖ · ‖H∞

ω
we denote by ‖ · ‖∞.

Let X and Y be metric spaces with the translation invariant metrics dX and dY, re-
spectively. For a linear operator A : X → Y is said that it is metrically bounded if there is
C ∈ R+ such that

dY(A f , 0) ≤ CdX( f , 0),

for every f ∈ X. For the operator is said that it is metrically compact if it maps bounded
balls into relatively compact sets [54,55]. There is also a huge literature on the topics (see,
e.g., [6–45,53,56–58]).
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Here we characterize the metrical boundedness and compactness of the operator
PD,m : AΨ

α (B)→ H∞
ω (B) (or H∞

ω,0(B)), for α ≥ −1.
By C we denote some constants, which may be different from one appearance to

another. If we write a . b (resp. a & b), then a ≤ Cb (resp. a ≥ Cb) for some C > 0. We
write a � b, if a . b and b & a.

2. Some Lemmas

Our first lemma was proved in [44].

Lemma 1. Let α ≥ −1 and Ψ ∈ Uq ∪ Lp. Then for each t ∈ R+, C > 0 and w ∈ B, the function

fw,t(z) = Ψ−1
(

C
(1− |w|2)n+1+α

)(
1− |w|2

1− 〈z, w〉

)2(n+1+α)+t

, (4)

belongs to AΨ
α (B), and

sup
w∈B
‖ fw,t‖lux

AΨ
α (B)

. 1.

The following lemma is well known (see, for example, Proposition 1.4.10 in [5]).

Lemma 2. Let

Ic(z) =
∫
S

dσ(ζ)

|1− 〈z, ζ〉|n+c

and

Jc,t(z) =
∫
B

(1− |w|2)tdv(w)

|1− 〈z, w〉|n+1+t+c ,

where z ∈ B, t > −1 and c ∈ R. If c > 0, then the following asymptotic relations hold

Ic(z) �
1

(1− |z|2)c � Jc,t(z).

The following lemma was proved in [58].

Lemma 3. Assume that a > 0 and

Dn(a) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
a a + 1 · · · a + n− 1

a(a + 1) (a + 1)(a + 2) · · · (a + n− 1)(a + n)
. . .

∏n−2
j=0 (a + j) ∏n−2

j=0 (a + j + 1) · · · ∏n−2
j=0 (a + j + n− 1)

∣∣∣∣∣∣∣∣∣∣∣
.

Then

Dn(a) =
n−1

∏
j=1

j!.

The following lemma gives an important family of test functions, which is used in the
proofs of the main results in the paper.

Lemma 4. Let α ≥ −1 and Ψ ∈ Uq ∪ Lp, m ∈ N, w ∈ B and C > 0. Then for each

s ∈ {0, 1, . . . , m} there exist c(s)j , j = 0, m, such that the function g(s)w (z) = ∑m
k=0 c(s)k fw,k(z)

satisfies the conditions

Dls · · ·Dl1 g(s)w (w) =
wl1 wl2 · · ·wls
(1− |w|2)s Ψ−1

(
C

(1− |w|2)n+1+α

)
(5)
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and
Dlt · · ·Dl1 g(s)w (w) = 0, t ∈ {0, 1, . . . , m} \ {s}. (6)

Besides,

sup
w∈B
‖g(s)w ‖lux

AΨ
α (B)

. 1. (7)

Proof. Let

gw(z) =
m

∑
k=0

yk fw,k(z)

and ak = 2(n + 1 + α) + k, k ∈ N0. It is easy to see that for each t ∈ N0 we have

Dlt · · ·Dl1 gw(w) =
wl1 wl2 · · ·wlt
(1− |w|2)t Ψ−1

(
C

(1− |w|2)n+1+α

) m

∑
k=0

yk

t−1

∏
l=0

ak+l . (8)

Lemma 3 shows that the determinant of the system

1 1 · · · 1
a0 a1 · · · am
...

...
. . .

...
s−1

∏
k=0

ak

s−1

∏
k=0

ak+1 · · ·
s−1

∏
k=0

ak+m

...
...

. . .
...

m−1

∏
k=0

ak

m−1

∏
k=0

ak+1 · · ·
m−1

∏
k=0

ak+m





y0
y1
...

ys

...

ym


=



0
0
...

1

...

0


, (9)

is not equal to zero.
Therefore, for each s ∈ {0, 1, . . . , m}, there is a unique solution

yk := c(s)k , k = 0, m

to system (9).
Then, the function

g(s)w (z) :=
m

∑
k=0

c(s)k fw,k(z)

satisfies (5) and (6), whereas the relation in (7) follows from the relations

sup
w∈B
‖ fw,t‖lux

AΨ
α (B)

. 1, t = 0, m,

which are direct consequences of Lemma 1.

The folowing lemma is a Schwartz-type characterization for the compactness [57]. The
proof is standard, so we do not present it here.

Lemma 5. Let α ≥ −1, Ψ ∈ Uq ∪Lp, uj ∈ H(B), j = 0, m, ϕ ∈ S(B) and ω ∈W(B). Then the
metrically bounded operator PD,m : AΨ

α (B)→ H∞
ω (B) is metrically compact if and only if for any

bounded sequence ( fk)k∈N ⊂ AΨ
α (B) such that fk → 0 uniformly on compacts of B as k→ +∞,

lim
k→+∞

‖PD,m fk‖H∞
ω
= 0.

The following lemma is a known extension of Lemma 1 in [56] (see, for example, [29]).
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Lemma 6. A closed set K in H∞
ω,0 is compact if and only if it is bounded and

lim
|z|→1

sup
f∈K

ω(z)| f (z)| = 0.

Lemma 7. Let α ≥ −1, Ψ ∈ Uq ∪ Lp and N ∈ N0. Then for any~l = (l1, l2, . . . , lj) such that
|~l| = N, there are C~l > 0 and Ĉ~l > 0 such that∣∣∣∣∣∣∣

∂N f (z)

∂zl1
k1

∂zl2
k2
· · · ∂z

lj
kj

∣∣∣∣∣∣∣ ≤
Ĉ~l

(1− |z|2)N Ψ−1
( C~l
(1− |z|2)n+1+α

)
‖ f ‖lux

AΨ
α (B)

, (10)

for f ∈ AΨ
α (B) and z ∈ B.

Proof. The estimate (10) in the case α > −1 was proved in [30]. Hence, from now on we
consider only the case α = −1.

Suppose Ψ ∈ Uq. Then the space HΨ(B) embeds into H1(B) continuously (see
Lemma 2.1 in [44]). Hence

f (z) =
∫
S

f ∗(ζ)dσ(ζ)

(1− 〈z, ζ〉)n , (11)

for every f ∈ HΨ(B) and z ∈ B, where f ∗ is the K-limit [5] (limit in the Koranyi domain).
By differentiating both sides of the relation in (11) we get

∂N f (z)

∂zl1
k1

∂zl2
k2
· · · ∂z

lj
kj

=
Γ(n + N)

Γ(n)

∫
S

ζ
l1
k1

ζ
l2
k2
· · · ζ lj

kj
f ∗(ζ)

(1− 〈z, ζ〉)n+N dσ(ζ). (12)

Suppose

∫
S

Ψ
(
| f ∗(ζ)|

λ

)
dσ(ζ) ≤ 1, (13)

for a λ > 0.
From (12), it follows that

(1− |z|2)N

λ

∣∣∣∣ ∂N f (z)

∂zl1
k1

∂zl2
k2
· · · ∂z

lj
kj

∣∣∣∣ ≤ Γ(n + N)

Γ(n)

∫
S

| f ∗(ζ)|
λ

(1− |z|2)N

|1− 〈z, ζ〉|n+N dσ(ζ). (14)

Lemma 2 implies the finiteness of the measure

dσ1(ζ) :=
Γ(n + N)

Γ(n)
(1− |z|2)N

(1− 〈z, ζ〉)n+N dσ(ζ),

on S. Note that the measure

µ(ζ) :=
dσ1(ζ)

σ1(S)
is normalized (i.e., probability).

From (14), the condition Ψ(st) ≤ CtqΨ(s), for t ≥ 1 and s > 0, the monotonicity and
convexity of Ψ, Jensen’s inequality, and (13), we have

Ψ
(
(1− |z|2)N

λ

∣∣∣∣ ∂N f (z)

∂zl1
k1

∂zl2
k2
· · · ∂z

lj
kj

∣∣∣∣)
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≤C(max{1, σ1(S)})q Γ(n + N)

σ1(B)Γ(n)

∫
S

Ψ
(
| f ∗(ζ)|

λ

)
(1− |z|2)N

|1− 〈z, ζ〉|n+N dσ(ζ)

≤ Ĉ
(1− |z|2)n

∫
S

Ψ
(
| f ∗(ζ)|

λ

)
dσ(ζ)

≤ Ĉ
(1− |z|2)n ,

for z ∈ B, where

Ĉ = C2N+n(max{1, σ1(S)})q Γ(n + N)

σ1(S)Γ(n)
,

and consequently by letting λ→ ‖ f ‖lux
HΨ(B) we get

∣∣∣∣ ∂N f (z)

∂zl1
k1

∂zl2
k2
· · · ∂z

lj
kj

∣∣∣∣ ≤ 1
(1− |z|2)N Ψ−1

(
Ĉ

(1− |z|2)n

)
‖ f ‖lux

HΨ(B). (15)

Now suppose that Ψ ∈ Ls, for an s ∈ (0, 1]. If p ∈ (0, 1) is small enough, then

Ψ1/p(t) := Ψ(t
1
p ) is convex [46].

Let
fr(z) = f (rz), z ∈ B,

where r > 0. Then, fr ∈ H∞(B), which implies fr ∈ A1
β(B).

By a known theorem (see, for example, Theorem 2.2 in [59]), for each β > −1 we have

fr(z) =
∫
B

fr(w)

(1− 〈z, w〉)n+1+β
dvβ(w).

Differentiating both sides of the last equality it follows that

rN ∂N f (rz)

∂zl1
k1

∂zl2
k2
· · · ∂z

lj
kj

=
Γ(n + N + β + 1)

Γ(n + β + 1)

∫
B

wl1
k1

wl2
k2
· · ·wlj

kj
fr(w)

(1− 〈z, w〉)n+N+1+β
dvβ(w),

and consequently∣∣∣∣rN ∂N f (rz)

∂zl1
k1

∂zl2
k2
· · · ∂z

lj
kj

∣∣∣∣ ≤ Γ(n + N + β + 1)
Γ(n + β + 1)

∫
B

| fr(w)|
|1− 〈z, w〉|n+N+1+β

dvβ(w). (16)

Let β := n
p − n− 1. Since p ∈ (0, 1), we have β > −1. From (16) and by Corollary 4.49

in [59], we have∣∣∣∣rN ∂N f (rz)

∂zl1
k1

∂zl2
k2
· · · ∂z

lj
kj

∣∣∣∣p .
∫
S

∣∣∣∣ fr(ζ)

(1− 〈z, ζ〉)n+N+1+β

∣∣∣∣pdσ(ζ). (17)

Then from (17) and the fact (n + N + 1 + β)p = Np + n, we have(
(1− |z|2)N

λ

∣∣∣∣rN ∂N f (rz)

∂zl1
k1

∂zl2
k2
· · · ∂z

lj
kj

∣∣∣∣)p

.
∫
S

(
| fr(ζ)|

λ

)p
(1− |z|2)Npdσ(ζ)

|1− 〈z, ζ〉|Np+n . (18)

Lemma 2 shows that

dσ2(ζ) :=
(1− |z|2)Np

|1− 〈z, ζ〉|Np+n dσ(ζ)

is a finite measure, so that dσ2(ζ)/σ2(S) is a probability measure.
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The monotonicity and convexity of the function Ψ1/p, the fact Ψ1/p ∈ U1/ps, (18) and
Jensen’s inequality imply

Ψ1/p

((
(1− |z|2)N

λ

∣∣∣∣rN ∂N f (rz)

∂zl1
k1

∂zl2
k2
· · · ∂z

lj
kj

∣∣∣∣)p)

.
∫
S

Ψ1/p

((
| fr(ζ)|

λ

)p)
(1− |z|2)Np

|1− 〈z, ζ〉|Np+n dσ(ζ). (19)

From (19) we have

Ψ
(

rN (1− |z|2)N

λ

∣∣∣∣ ∂N f (rz)

∂zl1
k1

∂zl2
k2
· · · ∂z

lj
kj

∣∣∣∣) ≤ C̃
(1− |z|2)n

∫
S

Ψ
(
| f (rζ)|

λ

)
dσ(ζ), (20)

for some C̃ > 0.
Since Ψ1/p is convex and increasing, and | f |p is subharmonic [5], the function Ψ(c| f |)

is subharmonic for each c > 0. Hence

M( f , r) :=
∫
S

Ψ
(
| f (rζ)|

λ

)
dσ(ζ)

is nondecreasing in r (see, e.g., [60]). Thus, we have

∫
S

Ψ
(
| f (rζ)|

λ

)
dσ(ζ) ≤

∫
S

Ψ
(
| f ∗(ζ)|

λ

)
dσ(ζ),

for r ∈ (0, 1).
From this and letting r → 1− in (20) it follows that

Ψ
(
(1− |z|2)N

λ

∣∣∣∣ ∂N f (z)

∂zl1
k1

∂zl2
k2
· · · ∂z

lj
kj

∣∣∣∣) ≤ C̃
(1− |z|2)n

∫
S

Ψ
(
| f ∗(ζ)|

λ

)
dσ(ζ). (21)

Letting λ→ ‖ f ‖lux
HΨ(B) it easily follows that∣∣∣∣ ∂N f (z)

∂zl1
k1

∂zl2
k2
· · · ∂z

lj
kj

∣∣∣∣ ≤ 1
(1− |z|2)N Ψ−1

(
C̃

(1− |z|2)n

)
‖ f ‖lux

HΨ(B). (22)

From (15) and (22), estimate (10) follows for C~l := max{Ĉ, C̃}.

3. Main Results

Here we present our results on the metrical boundedness and compactness. Before we
state our first theorem say that if ϕ ∈ S(B), then we regard that ϕ = (ϕ1, . . . , ϕn).

Theorem 1. Let α ≥ −1, m ∈ N, uj ∈ H(B), j = 0, m, ϕ ∈ S(B),

min
j=1,n

inf
z∈B
|ϕj(z)| ≥ δ > 0, (23)

Ψ ∈ Uq ∪ Lp, and ω ∈W(B). Then the following statements hold.

(a) The operator PD,m : AΨ
α (B)→ H∞

ω (B) is metrically bounded if and only if

Kj := sup
z∈B

ω(z)
∣∣uj(z)

∣∣
(1− |ϕ(z)|2)j Ψ−1

(
C̃m

(1− |ϕ(z)|2)n+1+α

)
< +∞, j = 0, m, (24)

where
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C̃m := max{C~l :~l = (l1, l2, . . . , lj) such that |~l| ≤ m}, (25)

and C~l is a constant in Lemma 7.
(b) If the operator PD,m : AΨ

α (B)→ H∞
ω (B) is metrically bounded, then

‖PD,m‖AΨ
α (B)→H∞

ω (B) �
m

∑
j=0

Kj. (26)

Proof.

(a) If (24) holds, then Lemma 7 implies

ω(z)|PD,m f (z)| =ω(z)
∣∣∣∣ m

∑
j=0

uj(z)Dlj
· · ·Dl1 f (ϕ(z))

∣∣∣∣
≤C

m

∑
j=0

ω(z)|uj(z)|
(1− |ϕ(z)|2)j Ψ−1

(
C̃m

(1− |ϕ(z)|2)n+1+α

)
‖ f ‖lux

AΨ
α (B)

. (27)

From (24) and (27), the metrical boundedness of PD,m : AΨ
α (B)→ H∞

ω (B) follows, and we
have

‖PD,m‖AΨ
α (B)→H∞

ω (B) .
m

∑
j=0

Kj. (28)

If PD,m : AΨ
α (B) → H∞

ω (B) is metrically bounded, then ‖PD,m f ‖H∞
ω (B) ≤ C‖ f ‖lux

AΨ
α (B)

, for

some C ≥ 0 and every f ∈ AΨ
α (B).

For each s ∈ {0, 1, . . . , m}, ϕ(w) ∈ B, and C = C̃m, Lemma 4 guaranty the existence of
g(s)

ϕ(w)
∈ AΨ

α (B) such that

Dls · · ·Dl1 g(s)
ϕ(w)

(ϕ(w)) =
ϕl1(w)ϕl2(w) · · · ϕls(w)

(1− |ϕ(w)|2)s Ψ−1

(
C̃m

(1− |ϕ(w)|2)n+1+α

)
, (29)

Dlt · · ·Dl1 g(s)
ϕ(w)

(ϕ(w)) = 0, t ∈ {0, 1, . . . , m} \ {s}, (30)

and supw∈B ‖g
(s)
ϕ(w)
‖lux

AΨ
α (B)

. 1.
This fact, (23), (29) and (30), yield

‖PD,m‖AΨ
α (B)→H∞

ω (B) &‖PD,mgϕ(w)‖H∞
ω (B)

= sup
z∈B

ω(z)
∣∣∣∣ m

∑
j=0

uj(z)Dlj
· · ·Dl1 g(s)

ϕ(w)
(ϕ(z))

∣∣∣∣
≥ω(w)

∣∣∣∣ m

∑
j=0

uj(w)Dlj
· · ·Dl1 g(s)

ϕ(w)
(ϕ(w))

∣∣∣∣
=ω(w)|us(w)|

|ϕl1(w)| · · · |ϕls(w)|
(1− |ϕ(w)|2)s Ψ−1

(
C̃m

(1− |ϕ(w)|2)n+1+α

)

≥δs ω(w)|us(w)|
(1− |ϕ(w)|2)s Ψ−1

(
C̃m

(1− |ϕ(w)|2)n+1+α

)
, (31)

for every w ∈ B, from which it follows that Ks < +∞, for s ∈ {0, 1, . . . , m}, and

Ks . ‖PD,m‖AΨ
α (B)→H∞

ω (B), s = 0, m,

which yields
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m

∑
j=0

Kj . ‖PD,m‖AΨ
α (B)→H∞

ω (B). (32)

(b) If PD,m : AΨ
α (B) → H∞

ω (B) is metrically bounded, then relations (28) and (32)
imply (26).

Theorem 2. Let α ≥ −1, m ∈ N, uj ∈ H(B), j = 0, m, ϕ ∈ S(B), Ψ ∈ Uq ∪ Lp, ω ∈ W(B),
and Pn be dense in AΨ

α (B). Then PD,m : AΨ
α (B)→ H∞

ω,0(B) is metrically bounded if and only if
PD,m : AΨ

α (B)→ H∞
ω (B) is metrically bounded and

lim
|z|→1

ω(z)|uj(z)| = 0, j = 0, m. (33)

Proof. Suppose PD,m : AΨ
α (B) → H∞

ω (B) is metrically bounded and (33) holds. For each
polynomial p, we have

ω(z)
∣∣∣∣ m

∑
j=0

uj(z)Dlj
· · ·Dl1 p(ϕ(z))

∣∣∣∣ ≤ m

∑
j=0

ω(z)|uj(z)|‖Dlj
· · ·Dl1 p‖∞,

from which along with (33), we have PD,m p ∈ H∞
ω,0(B).

Since Pn = AΨ
α (B), we have that for any f ∈ AΨ

α (B) there is (pk)k∈N ⊂ Pn such that

lim
k→+∞

‖ f − pk‖AΨ
α (B) = 0.

So, from the metrical boundedness we have

‖PD,m f − PD,m pk‖H∞
ω (B) ≤ ‖PD,m‖AΨ

α (B)→H∞
ω (B)‖ f − pk‖AΨ

α (B) → 0

as k→ +∞, from which together with the fact that H∞
ω,0(B) is a closed subspace of H∞

ω (B), it
follows that PD,m f ∈ H∞

ω,0(B), that is, PD,m(AΨ
α (B)) ⊆ H∞

ω,0(B), which implies the metrical
boundedness of the operator PD,m : AΨ

α (B)→ H∞
ω,0(B).

If PD,m : AΨ
α (B) → H∞

ω,0(B) is metrically bounded, then PD,m : AΨ
α (B) → H∞

ω (B) is
also metrically bounded. Let f0(z) ≡ 1. Then f0 ∈ AΨ

α (B), implying PD,m( f0) ∈ H∞
ω,0(B),

that is, u0 ∈ H∞
ω,0.

Suppose that (33) holds for 0 ≤ j ≤ s, for some s, 2 ≤ s < m. Let

fs+1(z) = zl1 zl2 · · · zls+1 .

Then fs+1 ∈ AΨ
α (B), implying PD,m( fs+1) ∈ H∞

ω,0(B). It is easy to see that fs+1(z) =

zα1
1 · · · z

αn
n , for some αj ∈ N0, j = 1, n, such that ∑n

j=1 αj = s + 1. For each t ∈ N0, 0 ≤ t ≤
s + 1, we have

Djt · · ·Dj1 fs+1(z) = ctz
α1−k1(t)
1 · · · zαn−kn(t)

n ,

for some ct ∈ N, where ki(t) is the number of appearance the operators Di in the product
operator Djt · · ·Dj1 . We have ∑n

j=1 ki(t) = t and

Djs+1 · · ·Dj1 fs+1(z) ≡ cs+1 ∈ N. (34)

Thus

lim
|z|→1

ω(z)|PD,m fs+1(z)| = lim
|z|→1

ω(z)
∣∣∣∣ s+1

∑
j=0

uj(z)cj

n

∏
i=1

(ϕi(z))αi−ki(j)
∣∣∣∣ = 0,
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from which, the fact |ϕi(z)| < 1, i = 1, n, αi ≥ ki(j), for i = 1, n, j = 0, s + 1, the hypothesis
uj ∈ H∞

ω,0, j = 0, s, and (34), we have

lim
|z|→1

cs+1ω(z)|us+1(z)| = 0.

This along with cs+1 6= 0, imply us+1 ∈ H∞
ω,0. Thus, (33) holds for j = 0, m.

Theorem 3. Let α ≥ −1, m ∈ N, uj ∈ H(B), j = 0, m, ϕ ∈ S(B), Ψ ∈ Uq ∪ Lp, ω ∈ W(B),
and (23) holds. Then, PD,m : AΨ

α (B)→ H∞
ω (B) is metrically compact if and only if the operator is

metrically bounded and

lim
|ϕ(z)|→1

ω(z)
∣∣uj(z)

∣∣
(1− |ϕ(z)|2)j Ψ−1

(
C̃m

(1− |ϕ(z)|2)n+1+α

)
= 0, j = 0, m, (35)

where C̃m is defined in (25).

Proof. If PD,m : AΨ
α (B)→ H∞

ω (B) is metrically compact, then it is metrically bounded. If
‖ϕ‖∞ < 1, then (35) vacuously holds. If ‖ϕ‖∞ = 1, then there is (zk)k∈N ⊂ B such that
|ϕ(zk)| → 1 as k→ +∞.

Let
g(s)k := g(s)

ϕ(zk)
, s = 0, m,

(see Lemma 4). Then supk∈N ‖g
(s)
k ‖

lux
AΨ

α (B)
< +∞, s = 0, m. If Ψ ∈ Uq or Ψ ∈ Lp, then as

in [30] (Theorem 2), we get g(s)k → 0 uniformly on compacts of B as k → +∞, s = 0, m.
Lemma 5 implies

lim
k→+∞

‖PD,mg(s)k ‖H∞
ω (B) = 0, s = 0, m. (36)

From the proof of Theorem 1, we see that for s = 0, m and large enough k

ω(zk)|us(zk)|
(1− |ϕ(zk)|2)s Ψ−1

(
C̃m

(1− |ϕ(zk)|2)n+1+α

)
. ‖PD,mg(s)k ‖H∞

ω (B). (37)

From (36) and (37), relation (35) follows.
If PD,m : AΨ

α (B)→ H∞
ω (B) is metrically bounded and (35) holds, then for each ε > 0,

there exists δ ∈ (0, 1) such that

ω(z)
∣∣uj(z)

∣∣
(1− |ϕ(z)|2)j Ψ−1

(
C̃m

(1− |ϕ(z)|2)n+1+α

)
< ε, j = 0, m, (38)

on Sδ := {z ∈ B : |ϕ(z)| > δ}.
Suppose ( fk)k∈N is such that supk∈N ‖ fk‖lux

AΨ
α (B)

≤ M and fk → 0 uniformly on com-
pacts of B as k→ +∞. Then Lemma 7 and (38) imply

‖PD,m fk‖H∞
ω (B) = sup

z∈B
ω(z)

∣∣∣ m

∑
j=0

uj(z)Dlj
· · ·Dl1 fk(ϕ(z))

∣∣∣
= sup

z∈Sδ

ω(z)
∣∣∣ m

∑
j=0

uj(z)Dlj
· · ·Dl1 fk(ϕ(z))

∣∣∣
+ sup

z∈B\Sδ

ω(z)
∣∣∣ m

∑
j=0

uj(z)Dlj
· · ·Dl1 fk(ϕ(z))

∣∣∣
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.
m

∑
j=0

sup
z∈Sδ

ω(z)
∣∣uj(z)

∣∣
(1− |ϕ(z)|2)j Ψ−1

(
C̃m

(1− |ϕ(z)|2)n+1+α

)
‖ fk‖lux

AΨ
α (B)

+
m

∑
j=0

sup
z∈B\Sδ

ω(z)|uj(z)||Dlj
· · ·Dl1 fk(ϕ(z))|

. ε +
m

∑
j=0

sup
z∈B\Sδ

ω(z)|uj(z)| sup
|ϕ(z)|≤δ

∣∣Dlj
· · ·Dl1 fk(ϕ(z))

∣∣
. ε +

m

∑
j=0
‖uj‖H∞

ω
sup
|ϕ(z)|≤δ

∣∣Dlj
· · ·Dl1 fk(ϕ(z))

∣∣. (39)

The assumption fk → 0 and the Cauchy estimate, imply

Dlj
· · ·Dl1 fk → 0, j = 0, m, (40)

uniformly on compacts of B as k→ +∞.
Employing the functions fs(z) = ∏s

j=1 zlj
, s = 0, m, as in Theorem 2 we get uj ∈ H∞

ω ,

j = 0, m. From this, (39) and (40), the compactness of the ball δB, and the arbitrariness of
ε > 0, we obtain

lim
k→+∞

‖PD,m fk‖H∞
ω (B) = 0,

from which by Lemma 5, the metrical compactness of PD,m : AΨ
α (B)→ H∞

ω (B) follows.

Theorem 4. Let α ≥ −1, m ∈ N, uj ∈ H(B), j = 0, m, ϕ ∈ S(B), Ψ ∈ Uq ∪ Lp, ω ∈ W(B),
and (23) holds. Then, PD,m : AΨ

α (B)→ H∞
ω,0(B) is metrically compact if and only if the operator

is metrically bounded and

lim
|z|→1

ω(z)
∣∣uj(z)

∣∣
(1− |ϕ(z)|2)j Ψ−1

(
C̃m

(1− |ϕ(z)|2)n+1+α

)
= 0, j = 0, m, (41)

where C̃m is defined in (25).

Proof. If (41) holds, then the relations in (24) also hold, so by Theorem 1 the metrical
boundedness of the operator PD,m : AΨ

α (B)→ H∞
ω (B) follows. From (27) and (41), we have

lim
|z|→1

ω(z)|PD,m f (z)| = 0

for any f ∈ AΨ
α (B). Thus PD,m(AΨ

α (B)) ⊂ H∞
ω,0(B), implying the metrical boundedness of

PD,m : AΨ
α (B)→ H∞

ω,0(B).
Taking the supremum in (27) over B and BAΨ

α (B) and using (24), we have

sup
f∈BAΨ

α (B)

sup
z∈B

ω(z)|PD,m f (z)| ≤ C
m

∑
j=0

Kj < +∞. (42)

Thus K := {PD,m f : f ∈ BAΨ
α (B)} is a bounded set in H∞

ω,0. So, from (27) we have

lim
|z|→1

sup
f∈BAΨ

α (B)

ω(z)
∣∣PD,m f (z)

∣∣ = 0.

From this and by Lemma 6 the metrical compactness of PD,m : AΨ
α (B)→ H∞

ω,0(B) follows.
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If PD,m : AΨ
α (B) → H∞

ω,0(B) is metrically compact, then PD,m : AΨ
α (B) → H∞

ω (B) is
metrically compact, from which and Theorem 3 we have that (38) holds. We also have

lim
|z|→1

ω(z)|uj(z)| = 0, j = 0, m,

so that there exist σ ∈ (0, 1) such that

ω(z)|uj(z)| < ε
(1− δ2)j

Ψ−1
( C̃m
(1−δ2)n+1+α

) , j = 0, m, (43)

for σ < |z| < 1, where ε is from (38).
Relation (43) implies

ω(z)
∣∣uj(z)

∣∣
(1− |ϕ(z)|2)j Ψ−1

(
C̃m

(1− |ϕ(z)|2)n+1+α

)
≤

ω(z)
∣∣uj(z)

∣∣
(1− δ2)j Ψ−1

(
C̃m

(1− δ2)n+1+α

)
< ε, (44)

for j = 0, m, |ϕ(z)| ≤ δ and σ < |z| < 1.
Employing (38) and (44), we easily obtain (41).

4. Conclusions

Here we characterize the metrical boundedness and metrical compactness of a recently
introduced linear operator from the weighted Bergman-Orlicz spaces to the weighted-type
spaces and little weighted-type spaces of analytic functions on the open unit ball in Cn,
continuing some of our previous investigations in the topic. We managed to estimate the
point evaluation functional on the weighted Bergman-Orlicz spaces, which along with
several other results enabled obtaining the characterizations. The methods, ideas and tricks
in the paper should be useful for continuing the investigation of this, as well as related
operators on spaces of holomorphic functions.
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10. Stević, S. Composition followed by differentiation from H∞ and the Bloch space to nth weighted-type spaces on the unit disk.

Appl. Math. Comput. 2010, 216, 3450–3458. [CrossRef]
11. Zhu, X. Essential norm and compactness of the product of differentiation and composition operators on Bloch type spaces. Math.

Inequal. Appl. 2016, 19, 325–334. [CrossRef]

http://doi.org/10.4064/sm-26-1-11-24
http://dx.doi.org/10.4134/JKMS.j160199
http://dx.doi.org/10.1017/S0004972700038818
http://dx.doi.org/10.4134/BKMS.2009.46.6.1135
http://dx.doi.org/10.1016/j.amc.2010.03.117
http://dx.doi.org/10.7153/mia-19-24


Axioms 2023, 12, 851 14 of 15

12. Zhu, X. Multiplication followed by differentiation on Bloch-type spaces. Bull. Allahbad Math. Soc. 2008, 23, 25–39.
13. Jiang, Z.J. On a product-type operator from weighted Bergman-Orlicz space to some weighted type spaces. Appl. Math. Comput.

2015, 256, 37–51. [CrossRef]
14. Sharma, A.K. Products of multiplication, composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type

spaces. Turkish. J. Math. 2011, 35, 275–291. [CrossRef]
15. Hu, Q.; Zhu, X. Compact generalized weighted composition operators on the Bergman space. Opusc. Math. 2017, 37, 303–312.

[CrossRef]
16. Li, S. Differences of generalized composition operators on the Bloch space. J. Math. Anal. Appl. 2012, 394, 706–711. [CrossRef]
17. Liu, X.; Li, S. Differences of generalized weighted composition operators from the Bloch space into Bers-type spaces. Filomat 2017,

31, 1671–1680. [CrossRef]
18. Sharma, A.K. Generalized weighted composition operators on the Bergman space. Demonstr. Math. 2011, 44, 359–372. [CrossRef]
19. Sharma, A.K. Generalized composition operators between Hardy and weighted Bergman spaces. Acta Sci. Math. Szeged 2012, 78,

187–211. [CrossRef]
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