A New Extension of Optimal Auxiliary Function Method to Fractional Non-Linear Coupled ITO System and Time Fractional Non-Linear KDV System
Abstract
:1. Introduction
2. Preliminaries
3. Mathematical Model Formulation
4. Applications
- Problem 1:
- Problem 2:
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nozaki, Y. On Riemann-Liouville integral of ultra-hyperbolic type. In Kodai Mathematical Seminar Reports; Department of Mathematics, Tokyo Institute of Technology: Tokyo, Japan, 1964; Volume 16, pp. 69–87. [Google Scholar]
- Baleanu, D.; Güvenç, Z.B.; Machado, J.T. (Eds.) New Trends in Nanotechnology and Fractional Calculus Applications; Springer: New York, NY, USA, 2010; Volume 10, pp. 978–990. [Google Scholar]
- Caputo, M. Elasticita e Dissipazione; Zanichelli: Bologna, Italy, 1969. [Google Scholar]
- Drapaca, C.S.; Sivaloganathan, S. A fractional model of continuum mechanics. J. Elast. 2012, 107, 105–123. [Google Scholar] [CrossRef]
- Liouville, J. Mémoire sur quelques questions de géométrie et de mécanique et sur un nouveau genre de calcul pour résoudre ces équations. Ecole Polytech. 1832, 13, 71–162. [Google Scholar]
- Podlubny, I. Fractional differential equations. In Mathematics in Science and Engineering; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Li, Y.; Liu, F.; Turner, I.W.; Li, T. Time-fractional diffusion equation for signal smoothing. Appl. Math. Comput. 2018, 326, 108–116. [Google Scholar] [CrossRef]
- Lin, W. Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 2007, 332, 709–726. [Google Scholar] [CrossRef]
- Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method. Math. Sci. 2019, 13, 115–128. [Google Scholar] [CrossRef]
- Prakasha, D.G.; Veeresha, P.; Baskonus, H.M. Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative. Eur. Phys. J. Plus 2019, 134, 1–11. [Google Scholar] [CrossRef]
- Helal, M.A. and Mehanna, M.S., A comparative study between two different methods for solving the general Korteweg–de Vries equation (GKdV). Chaos Solitons Fractals 2007, 33, 725–739. [Google Scholar] [CrossRef]
- Jibran, M.; Nawaz, R.; Khan, A.; Afzal, S. Iterative solutions of Hirota Satsuma coupled KDV and modified coupled KDV systems. Math. Probl. Eng. 2018, 2018, 1–18. [Google Scholar] [CrossRef]
- Saeed, H.J.; Ali, A.H.; Menzer, R.; Poțclean, A.D.; Arora, H. New Family of Multi-Step Iterative Methods Based on Homotopy Perturbation Technique for Solving Nonlinear Equations. Mathematics 2023, 11, 2603. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, X.; Yang, X. A time-space spectral method for the time-space fractional Fokker–Planck equation and its inverse problem. Appl. Math. Comput. 2018, 320, 302–318. [Google Scholar] [CrossRef]
- Yu, B.; Jiang, X.; Xu, H. A novel compact numerical method for solving the two dimensional non-linear fractional reaction-subdiffusion equation. Numer. Algorithms 2015, 68, 923–950. [Google Scholar] [CrossRef]
- Momani, S.; Abuasad, S. Application of He’s variational iteration method to Helmholtz equation. Chaos Solitons Fractals 2006, 27, 1119–1123. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Khader, M.M. Variational iteration method for one dimensional nonlinear thermoelasticity. Chaos Solitons Fractals 2007, 32, 145–149. [Google Scholar] [CrossRef]
- Abbasbandy, S. The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A 2006, 360, 109–113. [Google Scholar] [CrossRef]
- He, J.H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- Marinca, B.; Marinca, V. Approximate analytical solutions for thin film flow of a fourth grade fluid down a vertical cylinder. Proceed Rom. Acad. Ser. A 2018, 19, 69–76. [Google Scholar]
- Marinca, V.; Herisanu, N. Optimal auxiliary functions method for a pendulum wrapping on two cylinders. Mathematics 2020, 8, 1364. [Google Scholar] [CrossRef]
- Zada, L.; Nawaz, R.; Ayaz, M.; Ahmad, H.; Alrabaiah, H.; Chu, Y.M. New algorithm for the approximate solution of generalized seventh order Korteweg-Devries equation arising in shallow water waves. Results Phys. 2021, 20, 103744. [Google Scholar] [CrossRef]
- Nawaz, R.; Zada, L.; Ullah, F.; Ahmad, H.; Ayaz, M.; Ahmad, I.; Nofal, T.A. An extension of optimal auxiliary function method to fractional order high dimensional equations. Alex. Eng. J. 2021, 60, 4809–4818. [Google Scholar] [CrossRef]
- Arshad, U.; Sultana, M.; Ali, A.H.; Bazighifan, O.; Al-Moneef, A.A.; Nonlaopon, K. Numerical solutions of fractional-order electrical rlc circuit equations via three numerical techniques. Mathematics 2022, 10, 3071. [Google Scholar] [CrossRef]
- Sultana, M.; Arshad, U.; Ali, A.H.; Bazighifan, O.; Al-Moneef, A.A.; Nonlaopon, K. New efficient computations with symmetrical and dynamic analysis for solving higher-order fractional partial differential equations. Symmetry 2022, 14, 1653. [Google Scholar] [CrossRef]
- Khan, F.S.; Khalid, M.; Al-Moneef, A.A.; Ali, A.H.; Bazighifan, O. Freelance model with Atangana–Baleanu Caputo fractional derivative. Symmetry 2022, 14, 2424. [Google Scholar] [CrossRef]
- Raza, A.; Abed, A.M.; Almusawa, M.Y.; Seddek, L.F.; Ali, A.H. Prabhakar fractional simulation for inspection of cmc-based nanofluid flowing through a poured vertical channel. Case Stud. Therm. Eng. 2023, 45, 102911. [Google Scholar] [CrossRef]
- Ashraf, R.; Nawaz, R.; Alabdali, O.; Fewster-Young, N.; Ali, A.H.; Ghanim, F.; Alb Lupaş, A. A New Hybrid Optimal Auxiliary Function Method for Approximate Solutions of Non-Linear Fractional Partial Differential Equations. Fractal Fract. 2023, 7, 673. [Google Scholar] [CrossRef]
- Kaewnimit, K.; Wannalookkhee, F.; Nonlaopon, K.; Orankitjaroen, S. The Solutions of Some Riemann–Liouville Fractional Integral Equations. Fractal Fract. 2021, 5, 154. [Google Scholar] [CrossRef]
- Bushnaq, S.; Farid, S.; Nawaz, R. Applications of New Iterative Method to Fractional NonLinear Coupled ITO System. Bol. Soc. Parana. Matemática 2022, 40, 1–10. [Google Scholar]
- Shah, R.; Khan, H.; Kumam, P.; Arif, M. An analytical technique to solve the system of nonlinear fractional partial differential equations. Mathematics 2019, 7, 505. [Google Scholar] [CrossRef]
−1.5570896342028568 |
OAFM Solution at | OAFM Solution | Exact Solution | Absolute Error HPM [31] | Absolute Error NIM [31] | Absolute Error OAFM | ||
---|---|---|---|---|---|---|---|
(0.1,0.1) | 0.0035843 | 0.0035842 | 4.42497 | 2.90082 | |||
(0.3,0.1) | 0.0107526 | 0.0107529 | 1.32731 | 8.70278 | |||
(0.5,0.1) | 0.0179217 | 0.017927 | 2.21288 | 1.45031 | |||
(0.1,0.2) | 0.0034724 | 0.0034725 | 6.85856 | 4.42077 | |||
(0.3,0.2) | 0.0104162 | 0.0104164 | 2.05787 | 1.32697 | |||
(0.5,0.2) | 0.0173665 | 0.0173617 | 3.42976 | 2.21056 | |||
(0.1,0.3) | 0.003356 | 0.0033679 | 3.3677 | 2.13289 | |||
(0.3,0.3) | 0.0101037 | 0.0101012 | 1.0121 | 6.39743 | 1.01109 | ||
(0.5,0.3) | 0.016889 | 0.0168351 | 1.6865 | 1.06633 | 1.68333 |
OAFM | OAFM | Exact Solution | Absolute error HPM [31] | Absolute Error NIM [31] | Absolute Error OAFM | ||
---|---|---|---|---|---|---|---|
(0.1,0.1) | −0.000578 | −0.000458 | 3.6876 | 1.2940 | |||
(0.3,0.1) | −0.005209 | −0.005207 | 3.4567 | 1.1746 | |||
(0.5,0.1) | −0.015852 | −0.014488 | 9.1597 | 3.2142 | |||
(0.1,0.2) | −0.000545 | −0.000556 | 5.6445 | 1.9564 | |||
(0.3,0.2) | −0.004834 | −0.007882 | 5.0767 | 1.7232 | |||
(0.5,0.2) | −0.001763 | −0.001565 | 1.4450 | 4.7936 | |||
(0.1,0.3) | −0.000589 | −0.000340 | 2.7556 | 9.0244 | |||
(0.3,0.3) | −0.007861 | −0.004891 | 2.4233 | 8.1490 | |||
(0.5,0.3) | −0.013753 | −0.012753 | 6.6770 | 2.2609 |
Exact Solution | Absolute Error Of LADM [32] | Absolute Error OAFM | ||||
---|---|---|---|---|---|---|
(−10,0.1) | 7.449 | |||||
(−10,0.3) | 2.238 | |||||
(−10,0.5) | 3.727 | |||||
(0,0.1) | 3.975 | |||||
(0,0.3) | 1.192 | |||||
(0,0.5) | 1.987 | |||||
(10,0.1) | 1.073 | |||||
(10,0.3) | 3.221 | |||||
(10,0.5) | 5.368 |
Exact Solution | Absolute Error LADM [32] | Absolute Error of OAFM | ||||
---|---|---|---|---|---|---|
(−10,0.1) | ||||||
(−10,0.3) | ||||||
(−10,0.5) | ||||||
(0,0.1) | 2.629 | |||||
(0,0.3) | ||||||
(0,0.5) | ||||||
(10,0.1) | ||||||
(10,0.3) | ||||||
(10,0.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, R.; Iqbal, A.; Bakhtiar, H.; Alhilfi, W.A.; Fewster-Young, N.; Ali, A.H.; Poțclean, A.D. A New Extension of Optimal Auxiliary Function Method to Fractional Non-Linear Coupled ITO System and Time Fractional Non-Linear KDV System. Axioms 2023, 12, 881. https://doi.org/10.3390/axioms12090881
Nawaz R, Iqbal A, Bakhtiar H, Alhilfi WA, Fewster-Young N, Ali AH, Poțclean AD. A New Extension of Optimal Auxiliary Function Method to Fractional Non-Linear Coupled ITO System and Time Fractional Non-Linear KDV System. Axioms. 2023; 12(9):881. https://doi.org/10.3390/axioms12090881
Chicago/Turabian StyleNawaz, Rashid, Aaqib Iqbal, Hina Bakhtiar, Wissal Audah Alhilfi, Nicholas Fewster-Young, Ali Hasan Ali, and Ana Danca Poțclean. 2023. "A New Extension of Optimal Auxiliary Function Method to Fractional Non-Linear Coupled ITO System and Time Fractional Non-Linear KDV System" Axioms 12, no. 9: 881. https://doi.org/10.3390/axioms12090881
APA StyleNawaz, R., Iqbal, A., Bakhtiar, H., Alhilfi, W. A., Fewster-Young, N., Ali, A. H., & Poțclean, A. D. (2023). A New Extension of Optimal Auxiliary Function Method to Fractional Non-Linear Coupled ITO System and Time Fractional Non-Linear KDV System. Axioms, 12(9), 881. https://doi.org/10.3390/axioms12090881