Non-Zero Sum Nash Game for Discrete-Time Infinite Markov Jump Stochastic Systems with Applications
Abstract
:1. Introduction
2. Preliminaries
- (i)
- ;
- (ii)
- ;
- (iii)
- if and only if .
- (i)
- for any random variable y.
- (ii)
- There exists a symmetric matrix such that for any random variable y.
- (iii)
- and .
- (iv)
- and .
- (v)
- There exists a symmetric matrix such that .Moreover, if any of the above conditions hold, then (ii) is satisfied by . In addition, for any T satisfying (v). Finally, for any random variable y, the random variable is optimal and the optimal value is .
3. Nash Equilibrium Points
4. Application to Special Case
4.1. Finite Horizon Control
- (i)
- for the closed system of Equation (1) with ;
- (ii)
4.2. Some Remarks on Nash Equilibrium Points
- (i)
- There exists a linear memoryless Nash equilibrium points with
- (ii)
- The finite horizon control is solvable with
- (iii)
5. Numerical Example
- (i)
- When , the terminal condition and can obtain and ;
- (ii)
- (iii)
- (iv)
- Repeating the above procedures, for we can compute that , , and .
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shafieepoorfard, E.; Raginsky, M.; Meyn, S.P. Rationally inattentive control of Markov processes. SIAM J. Control Optim. 2016, 54, 987–1016. [Google Scholar] [CrossRef]
- Veretennikov, A.Y.; Veretennikova, M.A. On improved bounds and conditions for the convergence of Markov chains. Izv. Math. 2022, 86, 92–125. [Google Scholar] [CrossRef]
- Khasminskii, R.Z. Stability of regime-switching stochastic differential equations. Probl. Inform. Transm. 2012, 48, 259–270. [Google Scholar] [CrossRef]
- Li, F.; Xu, S.; Shen, H.; Zhang, Z. Extended dissipativity-based control for hidden Markov jump singularly perturbed systems subject to general probabilities. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 5752–5761. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Z.G.; Shen, Y. Asynchronous mean stabilization of positive jump systems with piecewise-homogeneous Markov chain. IEEE Trans. Circuits Syst. II Exp. Briefs 2021, 68, 3266–3270. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, Q. Stability analysis of discrete-time semi-Markov jump linear systems with partly unknown semi-Markov kernel. Syst. Control Lett. 2020, 140, 104688. [Google Scholar] [CrossRef]
- Zhao, X.; Deng, F.; Gao, W. Exponential stability of stochastic Markovian jump systems with time-varying and distributed delays. Sci. China Inf. Sci. 2021, 64, 209202:1–209202:3. [Google Scholar] [CrossRef]
- Han, X.; Wu, K.N.; Niu, Y. Asynchronous boundary control of Markov jump Neural networks with diffusion terms. IEEE Trans. Cybern. 2023, 53, 4962–4971. [Google Scholar] [CrossRef]
- Xue, M.; Yan, H.; Zhang, H.; Shen, H.; Peng, S. Dissipativity-based filter design for Markov jump systems with packet loss compensation. Automatica 2021, 133, 109843. [Google Scholar] [CrossRef]
- Hou, T.; Ma, H. Exponential stability for discrete-time infinite Markov jump systems. IEEE Trans. Autom. Control. 2016, 61, 4241–4246. [Google Scholar] [CrossRef]
- Ma, H.; Jia, Y. Stability analysis for stochastic differential equations with infinite Markovian switchings. J. Math. Anal. Appl. 2016, 435, 593–605. [Google Scholar] [CrossRef]
- Song, R.; Zhu, Q. Stability of linear stochastic delay differential equations with infinite Markovian switchings. Int. J. Robust Nonlinear Control 2018, 28, 825–837. [Google Scholar] [CrossRef]
- Hou, T.; Liu, Y.; Deng, F. Stability for discrete-time uncertain systems with infinite Markov jump and time-delay. Sci. China Inf. Sci. 2021, 64, 152202:1–152202:11. [Google Scholar] [CrossRef]
- Hou, T.; Liu, Y.; Deng, F. Finite horizon H2/H∞ control for SDEs with infinite Markovian jumps. Nonlinear Anal. Hybrid Syst. 2019, 34, 108–120. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, T. Robust H2/H∞ fuzzy filtering for nonlinear stochastic systems with infinite Markov jump. J. Syst. Sci. Complex. 2020, 33, 1023–1039. [Google Scholar] [CrossRef]
- Dockner, E.J.; Jorgensen, S.; Long, N.V. Differential Games in Economics and Management Science; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Chen, B.S.; Tseng, C.S.; Uang, H.J. Fuzzy differential games for nonlinear stochastic systems: Suboptimal approach. IEEE Trans. Fuzzy Syst. 2002, 10, 222–233. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, T.; Zhang, W. Infinite horizon linear quadratic Pareto game of the stochastic singular systems. J. Frankl. Inst. 2018, 355, 4436–4452. [Google Scholar] [CrossRef]
- Moon, J. Linear-quadratic stochastic leader-follower differential games for Markov jump-diffusion models. Automatica 2023, 147, 110713. [Google Scholar] [CrossRef]
- Gao, X.; Deng, F.; Zeng, P. Zero-sum game-based security control of unknown nonlinear Markov jump systems under false data injection attacks. Int. J. Robust Nonlinear Control 2022. Early Access. [Google Scholar] [CrossRef]
- Dufour, F.; Prieto-Rumeau, T. Stationary Markov Nash equilibria for nonzero-sum constrained ARAT Markov games. SIAM J. Control Optim. 2022, 60, 945–967. [Google Scholar] [CrossRef]
- Hou, T.; Zhang, W. A game-based control design for discrete-time Markov jump systems with multiplicative noise. IET Control Theory Appl. 2013, 7, 773–783. [Google Scholar] [CrossRef]
- Sheng, L.; Zhang, W.; Gao, M. Relationship between Nash equilibrium strategies and H2/H∞ control of stochastic Markov jump systems with multiplicative noise. IEEE Trans. Autom. Control. 2014, 59, 2592–2597. [Google Scholar] [CrossRef]
- Sheng, L.; Zhang, W.; Gao, M. Some remarks on infinite horizon stochastic H2/H∞ control with (x, u, v) dependent noise and Markov jumps. J. Frankl. Inst. 2015, 352, 3929–3946. [Google Scholar] [CrossRef]
- Dragan, V.; Morozan, T.; Stoica, A.M. Mathematical Methods in Robust Control of Linear Stochastic Systems, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Liu, Y.; Hou, T. Infinite horizon LQ Nash Games for SDEs with infinite jumps. Asian J. Control 2021, 23, 2431–2443. [Google Scholar] [CrossRef]
- Rami, M.A.; Chen, X.; Zhou, X. Discrete-time indefinite LQ control with state and control dependent noises. J. Glob. Optim. 2002, 23, 245–265. [Google Scholar] [CrossRef]
- Basar, T.; Olsder, G.J. Dynamic Noncooperative Game Theory; SIAM: Philadelphia, PA, USA, 1999. [Google Scholar]
- Hou, T.; Zhang, W.; Ma, H. Finite horizon H2/H∞ control for discrete-time stochastic systems with Markovian jumps and multiplicative noise. IEEE Trans. Autom. Control. 2010, 55, 1185–1191. [Google Scholar]
- Wang, J.; Hou, T. Finite horizon H2/H∞ control for discrete-time time-varying stochastic systems with infinite Markov jumps. In Proceedings of the 36th Chinese Control Conference, Dalian, China, 26–28 July 2017. [Google Scholar]
Coefficients | |||
---|---|---|---|
1 | |||
1 | 1 | ||
1 | |||
1 | |||
1 | |||
1 | 1 | ||
1 | 1 | ||
1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, Z.; Lin, X. Non-Zero Sum Nash Game for Discrete-Time Infinite Markov Jump Stochastic Systems with Applications. Axioms 2023, 12, 882. https://doi.org/10.3390/axioms12090882
Liu Y, Wang Z, Lin X. Non-Zero Sum Nash Game for Discrete-Time Infinite Markov Jump Stochastic Systems with Applications. Axioms. 2023; 12(9):882. https://doi.org/10.3390/axioms12090882
Chicago/Turabian StyleLiu, Yueying, Zhen Wang, and Xiangyun Lin. 2023. "Non-Zero Sum Nash Game for Discrete-Time Infinite Markov Jump Stochastic Systems with Applications" Axioms 12, no. 9: 882. https://doi.org/10.3390/axioms12090882
APA StyleLiu, Y., Wang, Z., & Lin, X. (2023). Non-Zero Sum Nash Game for Discrete-Time Infinite Markov Jump Stochastic Systems with Applications. Axioms, 12(9), 882. https://doi.org/10.3390/axioms12090882