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Abstract: Bland–Altman limits of agreement are very popular in method comparison studies on
quantitative outcomes. However, a straightforward application of Bland–Altman analysis requires
roughly normally distributed differences, a constant bias, and variance homogeneity across the
measurement range. If one or more assumptions are violated, a variance-stabilizing transformation
(e.g., natural logarithm, square root) may be sufficient before Bland–Altman analysis can be performed.
Sometimes, fractional polynomial regression has been used when the choice of variance-stabilizing
transformation was unclear and increasing variability in the differences was observed with increasing
mean values. In this case, regressing the absolute differences on a function of the average and
applying fractional polynomial regression to this end were previously proposed. This review revisits
a previous inter-rater agreement analysis on the Agatston score for coronary calcification. We
show the inappropriateness of a straightforward Bland–Altman analysis and briefly describe the
nonparametric limits of agreement of the original investigation. We demonstrate the application of
fractional polynomials, use the Stata packages fp and fp_select, and discuss the use of degree-2 (the
default setting) and degree-3 fractional polynomials. Finally, we discuss conditions for evaluating the
appropriateness of nonstandard limits of agreement.

Keywords: fractional polynomial regression; logarithm; method comparison; observer; rater;
reliability; repeatability; reproducibility; square root; transformation

MSC: 92B15

1. Introduction

Bland–Altman limits of agreement, or simply the Bland–Altman plot, is a widely
used technique in method comparison studies on continuous measurements. It consists
of a simple scatterplot of paired differences against their respective averages, with an
estimate for the bias (the estimated mean difference) and the so-called limits of agreement,
which are equal to the estimated bias plus/minus 1.96 times the standard deviation of
the paired differences [1]. The rationale behind this is the 68–95–99.7 rule of normally
distributed variables: the limits of agreement are estimates for the range within which 95%
of the population differences are expected to lie if the bias is constant and the differences
are independent and identically normally distributed across the measurement range [2].
Whether the observed differences actually follow roughly a normal distribution can be
checked visually by plotting a histogram of the differences and supplementing it with an
approximate normal distribution using the empirical mean, m, and standard deviation,
s. Moreover, one may assess the proportion of differences that fall within m ± s, m ± 2 s,
and m ± 3 s and compare these with the expected proportions of 0.68, 0.95, and 0.997,
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respectively, in light of the 68–95–99.7 rule for a normal distribution. Bland–Altman analysis
is a simple technique to assess whether two methods measure sufficiently in agreement
by comparing the limits of agreement with predefined clinically acceptable values. The
seminal paper [3] has been cited about 40,129 times to date and is currently the most cited
Lancet paper according to Scopus.

Bland and Altman [4] emphasized the precision of the estimated limits of agreement
by providing approximate 95% confidence intervals. They also gave a more comprehensive
and pedagogical account of using log transformation as a variance-stabilizing transfor-
mation before analysis, introducing a regression approach for non-uniform differences,
measuring agreement using repeated measurements, and comparing methods with a
nonparametric approach. Ludbrook [5] offered step-by-step guidance for Bland–Altman
analysis and illustrated it visually with examples. Bland and Altman [6] examined method
comparison with multiple observations per individual further, which Olofsen et al. [7] built
on and implemented a freely accessible online assessment sheet [8]. Carkeet [9] proposed
exact confidence intervals for Bland–Altman limits of agreement. Jan and Shieh [10] and
Shieh [11,12] compared approximate 95% confidence intervals for the limits of agreement
with exact ones and motivated, for example, sample size rationales on exact 95% confidence
intervals that cover the central 95% proportion of the differences. Taffé [13–16] advised
against Bland–Altman analysis if the precision of the two measurement methods differs
or in the case of nonconstant bias. As an alternative graphical approach, he proposed a
set of graphs that support the assessment of bias, precision, and agreement between two
measurement methods. His method requires repeated measurements of at least one of
the two methods to be compared with another. Gerke et al. [17] gave a brief overview
of recent developments and recommendations on sample size considerations in method
comparison studies.

Figure 1 shows a collection of four Bland–Altman analyses that were derived using
different methods. The top left corner shows an example of a straightforward Bland–
Altman inter-rater analysis with exact 95% confidence intervals for the limits of agreement,
as proposed by Carkeet [9]. The top right corner is an example of a regression approach
for non-uniform differences [4], the bottom left corner of deriving Bland–Altman limits of
agreement on log-transformed measurements and transforming the limits of agreement
back to the original scale [4]. Finally, the example in the bottom right corner shows
limits of agreement that resulted from Bland–Altman analysis on square root-transformed
measurements [18]. The latter limits of agreement were the outcome of a modeling process
that started with fractional polynomial regression.

This review revisits a previous inter-rater agreement analysis of the Agatston score for
coronary calcification [19] and explores an alternative assessment of the limits of agreement
following the approach of Sevrukov et al. [18]. We conclude that obtaining nonstandard
Bland–Altman limits of agreement may require a modeling process when straightforward
Bland–Altman analysis is, given the scatter of differences against averages, inappropriate
and an appropriate choice for a variance-stabilizing transformation is unclear. Finally, we
discuss conditions for the appropriateness of nonstandard limits of agreement.
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Figure 1. Top left: Bland–Altman plot for inter-rater agreement analysis of left atrium area (cm2) 
measurements in non-contrast computed tomography, n = 140 (reproduced with permission from 
[20]). Top right: Bland–Altman plot of glomerular filtration rate measured with 51Cr-ethylenedia-
mine tetraacetic acid (EDTA) and 99mTc-diethylenetriamine pentaacetic acid (DTPA), n = 51 (repro-
duced with permission from [21]). Bottom left: Intra-rater agreement assessment for 2D measure-
ments (cm2) for raters 1, 2, 3, and 4, respectively; n = 48 (reproduced with permission from [22]). 
Bottom right: Distribution of differences between repeated measurements of coronary artery cal-
cium (CAC) as function of average CAC score expressed in Agatston CAC score units; the curve 
shows 95% repeatability limits which include 98% of differences, n = 2217 (reprinted from ‘Serial 
electron beam CT measurements of coronary artery calcium: Has your patient’s calcium score actu-
ally changed?’, A.B. Sevrukov, J.M. Bland, and G.T. Kondos, the American Journal of Roentgenology 
185, Copyright© 2023, copyright owner as specified in the American Journal of Roentgenology [18]). 

2. Data 
An intra-rater variation analysis of the CAC score was part of a previous study that 

aimed to calculate population-based CAC score percentiles in Danish women and men, 
50–75 years of age [19]. These analyses were based on two Danish trials, namely, the Dan-
ish Cardiovascular Screening Trial (DANCAVAS) [23] and its precursor called the Danish 
Risk Score study (DanRisk) [24]. The CAC score has been shown to improve the discrim-
ination and reclassification of coronary artery disease on top of the traditional risk factors, 
which are age, sex, smoking status, diabetes mellitus, blood pressure, hyperlipidemia, and 
race [25–29]. A low-dose computed tomography scan without contrast visualizes calcifi-
cations of any artery for which CAC scores are derived [23]. Since its original proposal 
back in 1990 [30], the CAC score has repeatedly been subject to agreement assessments in 
order to investigate the score’s reliability. A recent review [31] found sample sizes to be 
highly variable in studies of agreement on the CAC score (10–9761), and research groups 
focused on intra- and inter-rater as well as intra- and inter-scanner variability assessments. 

Figure 1. Top left: Bland–Altman plot for inter-rater agreement analysis of left atrium area (cm2)
measurements in non-contrast computed tomography, n = 140 (reproduced with permission from [20]).
Top right: Bland–Altman plot of glomerular filtration rate measured with 51Cr-ethylenediamine
tetraacetic acid (EDTA) and 99mTc-diethylenetriamine pentaacetic acid (DTPA), n = 51 (reproduced
with permission from [21]). Bottom left: Intra-rater agreement assessment for 2D measurements
(cm2) for raters 1, 2, 3, and 4, respectively; n = 48 (reproduced with permission from [22]). Bottom
right: Distribution of differences between repeated measurements of coronary artery calcium (CAC)
as function of average CAC score expressed in Agatston CAC score units; the curve shows 95%
repeatability limits which include 98% of differences, n = 2217 (reprinted from ‘Serial electron beam
CT measurements of coronary artery calcium: Has your patient’s calcium score actually changed?’,
A.B. Sevrukov, J.M. Bland, and G.T. Kondos, the American Journal of Roentgenology 185, Copyright©
2023, copyright owner as specified in the American Journal of Roentgenology [18]).

2. Data

An intra-rater variation analysis of the CAC score was part of a previous study that
aimed to calculate population-based CAC score percentiles in Danish women and men,
50–75 years of age [19]. These analyses were based on two Danish trials, namely, the Danish
Cardiovascular Screening Trial (DANCAVAS) [23] and its precursor called the Danish Risk
Score study (DanRisk) [24]. The CAC score has been shown to improve the discrimina-
tion and reclassification of coronary artery disease on top of the traditional risk factors,
which are age, sex, smoking status, diabetes mellitus, blood pressure, hyperlipidemia, and
race [25–29]. A low-dose computed tomography scan without contrast visualizes calcifi-
cations of any artery for which CAC scores are derived [23]. Since its original proposal
back in 1990 [30], the CAC score has repeatedly been subject to agreement assessments in
order to investigate the score’s reliability. A recent review [31] found sample sizes to be
highly variable in studies of agreement on the CAC score (10–9761), and research groups
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focused on intra- and inter-rater as well as intra- and inter-scanner variability assessments.
Andersen and Gerke [31] concluded that only very few research articles were capable
of deriving limits of agreement that fit the observed data visually in a convincing way.
This is why alternative methods like fractional polynomial modeling may prove useful in
assessing the agreement of the CAC score.

Our dataset consists of 129 randomly selected participants of DanRisk and 101 ran-
domly selected participants of DANCAVAS. The scatterplot of these 230 inter-rater differ-
ences against their respective means is shown in Figure 2. The distribution of differences is
markedly over-represented with zeros (n = 101, 43.9%) and 12 out of 230 observations (5%)
were associated with absolute differences exceeding 50 HU. Table 1 shows the descriptive
statistics for the paired differences. The distribution was highly centered around 0, with
flat tails and far from normal. The mean and the standard deviation of the 230 differences
were −0.93 and 80.25, respectively.
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Applying Bland–Altman analysis naively despite non-normally distributed differ-
ences results in Bland–Altman limits of agreement of −158.22 and 156.36 (Figure 3, left). 
Obviously, four paired differences that exceeded 500 HU in absolute terms widen the 
band that the Bland–Altman limits of agreement span. These four pairs of differences have 
a significant influence on the limits themselves. 

As no obvious transformation to another scale of the measurements came to mind 
[32,33], nonparametric limits of agreement were derived for the inter-rater comparison in 
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Figure 2. Mean difference plot for inter-rater variation analysis reported in [19].

Table 1. Descriptive statistics for the paired differences (n = 230).

Minimum P5 1 P25 Median P75 P95 Maximum

−538 −42 −0.3 0 0.4 15 740
1 5th quantile.

3. Bland–Altman Limits of Agreement and Previously Reported Nonparametric Limits
of Agreement

Applying Bland–Altman analysis naively despite non-normally distributed differ-
ences results in Bland–Altman limits of agreement of −158.22 and 156.36 (Figure 3, left).
Obviously, four paired differences that exceeded 500 HU in absolute terms widen the band
that the Bland–Altman limits of agreement span. These four pairs of differences have a
significant influence on the limits themselves.

As no obvious transformation to another scale of the measurements came to mind [32,33],
nonparametric limits of agreement were derived for the inter-rater comparison in [19], which
were −83 and 38 HU (Figure 3, right). These limits were estimated using a simple sample
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quantile estimator for the 2.5% and 97.5% percentiles [34] and are—unlike Bland–Altman limits
of agreement—by definition usually asymmetrical around the y-axis. This nonparametric
estimator is a weighted average of the two paired differences that are closest to the target
percentile. In other words: only four paired differences were used to estimate the 2.5% (lower
limit of agreement) and the 97.5% percentile (upper limit of agreement). The estimated bias in
terms of the median difference was 0 HU.
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Figure 3. Bland–Altman limits of agreement (left) and nonparametric limits of agreement (right)
reported in [19].

Bland–Altman limits of agreement (Figure 3, left) cover all paired differences except
the four pairs mentioned above, that is, 226 out of 230 (98.26%). The asymmetrical nonpara-
metric limits of agreement (Figure 3, right) cover 95.65% of the 230 paired differences.

4. Regression of Non-Uniform Differences on the Averages

Sevrukov et al. [18] observed that the size of the difference in their dataset increased
with increasing average (see Figure 1, bottom right) and defined the repeatability of the
measurement method as a function of the measurement size. They employed a regres-
sion approach for non-uniform differences [4,35], and the variation in the differences (D)
between repeated measurements was modeled as a function of the measurement size,
which in turn was estimated from the average (A) of the paired measurements. Sevrukov
et al. [18] considered the absolute values of D, namely, |D|, and regressed |D| on A. The
repeatability of the method only depends on the distribution of random measurement
errors; therefore, D is normally distributed with mean zero for all A, and |D| is half-
normally distributed with a mean that equals the standard deviation of |D| multiplied by√

π/2 [35,36]. As a consequence, multiplying the mean value of |D| with
√

π/2 results
in the standard deviation of the differences. Multiplying this standard deviation with the
97.5% percentile of the standard normal distribution, i.e., 1.96, leads to the 95% repeatability
coefficient for any given value of A.
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5. Fractional Polynomials

Royston and Altman [37] described a family of model functions for a single, positive
covariate X and defined a fractional polynomial of degree m as

fm(x, β, p) = β0 + β1x(p1) + β2x(p2) + . . . + βmx(pm) (1)

with a real-valued vector of powers p = (p1, . . . , pm), and a real-valued vector of coef-
ficients β = (β0, β1, β2, . . . , βm). The round bracket notation indicates the Box–Tidwell
transformation

x(pj) =

{
x(pj) i f pj 6= 0
ln(x) i f pj = 0

(2)

.
The powers pj are chosen from a restricted set; S. Royston and Altman [37] suggested

for pragmatic reasons S = {−2,−1,−0.5, 0, 0.5, 1, 2, 3}. Powers pj are allowed to repeat in
fractional polynomials. Whenever a power repeats, it is multiplied by another ln(x). For
instance, a fractional polynomial with p = (0, 0, 2) becomes

f3(x, β, p) = β0 + β1 ln(x) + β2{ln(x)}2 + β3x2. (3)

Figure 4 shows some examples of degree-1, degree-2, and degree-3 fractional polyno-
mials for illustration purposes.
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Figure 4. Examples of some functional forms available with degree-1, degree-2, and degree-3
fractional polynomials with various powers (p1), (p1,p2), and (p1,p2,p3), respectively.

Fractional polynomials increase the flexibility known from the family of conventional
polynomials. Despite their popularity in data analysis, linear and quadratic functions
are limited in their range of curve shapes. Cubic and higher-order curves may produce
undesirable artifacts. Fractional polynomials are different from regular polynomials as they
allow logarithms, non-integer powers, and powers to be repeated [38].

Sauerbrei et al. [39] revisited the approach in terms of software implementation in
SAS, Stata, and R. In Stata, the package fp (fractional polynomial regression) fits degree-2
fractional polynomial models (that is m = 2) by default and chooses the fractional powers
from the set S = {−2,−1,−0.5, 0, 0.5, 1, 2, 3}.

A search through all possible fractional polynomials up to degree-2 and with the
powers set S is performed. Later, fp was supplemented by the post-estimation command
fp_select [40]. Taking the results from the most recent run of fp, fp_select tries to simplify the
most complex reported fractional polynomial model by applying an ordered sequence of
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significance tests to reduce possible overfitting. We have used fp and fp_select on our data,
as follows in Section 7.

6. Analysis Strategy of Sevrukov, Bland, and Kondos

Sevrukov et al. [18] started predicting the absolute difference |D| of the repeated
measurements of CAC using fractional polynomials and S = {0.5, 1} :

|D| = −0.04632 + 1.488
√

A + 0.02393 A. (4)

Inspection of Equation (4) led Sevrukov et al. [18] to omit the final term because the
main predicting variable was a square root transform of A. Regressing |D| on A resulted in

|D| = −0.9733 + 2.067
√

A. (5)

The residual mean square of model (5) was 186.96 and, hence, only slightly increased
compared to the residual mean square of the polynomial regression of model (4) of 183.44.
As the residual variance was almost identical, Sevrukov et al. [18] retained the simpler
model (5). Beyond that, they forced the constant term in the regression model (5) to be zero
in order to avoid negative standard deviations at small values of A. Model (5) simplified,
then, to

|D| = 2.007
√

A (6)

with a residual variance of 187.53. This slight increase in residual variance was deemed a
marginal price to pay for model simplicity when moving from models (4)–(6). Therefore,
they regressed the absolute differences on square root-transformed averages (S = {0.5})
and forced the intercept to be zero in their final model.

As described in the previous section, the standard deviation of the differences resulted
then from multiplying the mean value of |D| by

√
π/2:

SD|D| =
{

2.007
√

A
}√

π/2 = 2.515
√

A, (7)

and the repeatability coefficient, r, from multiplying SD|D| by 1.96:

r = 1.96
{

2.007
√

A
}√

π/2 = 4.930
√

A. (8)

Figure 1 (bottom right) shows the resulting parabola-shaped repeatability limits based
on model (6) and reported by Sevrukov et al. [18].

7. Reanalysis of Inter-Rater Agreement Reported in [19]

Revisiting the former inter-rater agreement analysis by Gerke et al. [19], we followed
the analysis thread along the lines of Sevrukov et al. [18], but applied the readily available
Stata packages fp and fp_select as a starting point. We have attached our Stata codes, the
dataset, and our output as File S1, File S2, and File S3, respectively.

7.1. Degree-2 Fractional Polynomial Models

Figure 5 shows the Stata output for the default setting m = 2 that implies the use
of degree-2 fractional polynomial models. The fp package investigated 44 models and
proposed the set S = {0.5, 2} for m = 2. The post-estimation package fp_select indicated
that a simpler model, just including a linear term (S = {1} for m = 1), may be equally
sufficient while reducing the complexity of the model.

For m = 2 (S = {0.5, 2}), Equation (1) becomes here

|D| = 0.6248949 + 1.029373
√

A + 0.0000143 A2. (9)
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Consequently, the standard deviation of the differences resulted from multiplying the
mean value of |D| by

√
π/2:

SD|D| =
{

0.6248949 + 1.029373
√

A + 0.0000143 A2
}√

π/2, (10)

and the repeatability coefficient, r, from multiplying SD|D| by 1.96:

r = 1.96
{

0.6248949 + 1.029373
√

A + 0.0000143 A2
}√

π/2. (11)

Figure 6 (top right) shows the resulting repeatability limits based on model (9). The
coverage of these limits of agreement was 91.30%, i.e., considerably below 95%.
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For the simpler model m = 1 with S = {1}, Equation (1) turns into
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The resulting limits of agreement cover only 84.78% of the observed differences
(Figure 6, top left), which falls unacceptably short of 95%.
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7.2. Degree-3 Fractional Polynomial Models

Increasing the allowed complexity by moving from degree-2 fractional polynomial
models (m = 2; default setting) to degree-3 fractional polynomial models (m = 3) makes Stata
evaluate 164 possible models (Figure S1). The proposed degree-3 fractional polynomial
model was S = {0.5, 3, 3}, the coverage was 91.74%, and the resulting limits of agreement
are shown in Figure 6, bottom left. Again, the post-estimation package fp_select indicated
that a simpler model, just including a linear term (S = {1} for m = 1), may be equally
sufficient while reducing the complexity of the model.

7.3. Sevrukov, Bland, and Kondos Model

For the sake of comparison with the final model of Sevrukov et al. [18], we evalu-
ated the analogous model regressing the absolute differences on square root-transformed
averages and forced the intercept to be zero:

|D| = 2.193837
√

A (13)

The respective parabola-like limits of agreement are shown in Figure 6, bottom right.
These limits cover 95.22% of the paired differences.

8. Discussion
8.1. Main Findings

Sevrukov et al. [18] quantified the coverage of paired differences by their limits
of agreement very conservatively as 98% (Figure 1, bottom right). In straightforward
Bland–Altman analysis, where the assumptions of normality, constant bias, and variance
homogeneity hold, the coverage is by definition roughly 95% (see, for instance, top left of
Figure 1 with a coverage of 93.6%).

For the limits of agreement that were based on fractional polynomial regression models
on our data, the coverage varied hugely: 84.78% for S = {1}, 91.30% for S = {0.5, 2}, 91.74%
for S = {0.5, 3, 3}, and 95.22% for S = {0.5} (Figure 6). The former three models employ
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a constant term as per the definition of fractional polynomial models, whereas the latter
model by Sevrukov, Bland, and Kondos [18] forces the constant to be zero. We increased the
flexibility and the complexity by moving from the default setting of fp in Stata of degree-2
to degree-3 fractional polynomial models and identified S = {0.5, 3, 3} (Figure 6, bottom
left) as the final model. However, its coverage of 91.74% was actually considerably lower
than both the nominal target level of 95% and the coverage of the Sevrukov-like model
based on a square root transformation (95.22%, Figure 6, bottom right).

8.2. How Good Is Good Enough?

Appropriate classical Bland–Altman limits of agreement fit the observed point cloud,
the bias is constant, the variance in the differences is homogeneous across the measurement
range, and the sampled data cover the measurement range of interest sufficiently [20].
The limits of agreement cover (roughly) 95% of paired differences by definition due to the
68–95–99.7 rule [2]. For nonstandard limits of agreement, we propose the following two
conditions to be useful for practical purposes:

1. The coverage of the observed differences should be roughly around 95%, in line with
classical Bland–Altman limits of agreement.

2. The limits of agreement fit the data nicely and harmonize with the point cloud of
paired differences.

For our data, the simple model with S = {0.5} (see Figure 6, bottom right) based on a
square root transformation (as in Sevrukov et al. [18]) fulfills the first and to some extent
the second condition. The much more complex degree-3 fractional polynomial model
with S = {0.5, 3, 3} falls short of the first condition but fulfills the second condition and
covers even the extreme observations (3331, 538) and (3870, −538); however, you may
likewise argue that this is simply the result of an overfitting model. Bland–Altman limits
of agreement (Figure 3, left) fulfill the first, but not the second condition. The originally
proposed nonparametric limits of agreement (Figure 3, right) fulfill both conditions.

8.3. Strengths and Limitations

In Sevrukov et al. [18], the relationship between the difference and the average was
nonlinear, and the size of the differences increased with increasing average of the paired
measurements across the measurement range. This was not the case for our data, for
which the distribution of differences was centered heavily around 0 and had a very flat
tail. Still, deriving nonstandard limits of agreement with fractional polynomial regression
offered visually appealing solutions with S = {0.5, 2} and S = {0.5, 3, 3} which, therefore,
provides at least partly satisfying solutions with respect to conditions 1 and 2 above. For
nonstandard limits of agreement, fractional polynomial modeling offers an alternative
route of derivation, but the risk of overfitting simply irregularly scattered outliers (Figure 6,
bottom left) exists and warrants caution in practice.

8.4. Future Perspectives

Previous pedagogical papers [4,5,7] have advised on Bland–Altman limits of agree-
ment that come in various shapes and forms. A tutorial on how to tackle nonstandard
situations in which the assumptions for classical Bland–Altman analysis fail and cannot
be fulfilled by appropriate transformation of the data is lacking. Such a guidance paper
will provide examples with unusually distributed paired differences like our worked ex-
ample on the Agatston score for coronary calcification. Despite the challenge of covering
sufficiently many different distributions of paired differences, such a tutorial will provide
an overview of what methods have been applied across different research fields in the
literature.

9. Concluding Remarks

Straightforward Bland–Altman analysis requires roughly normally distributed dif-
ferences, a constant bias, and variance homogeneity across the measurement range. In
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cases that violate these assumptions, the application of the simple and readily interpretable
classical Bland–Altman limits of agreement would be misleading and would misrepresent
the data at hand. This was visualized for our data in Figure 3 (left), with heavily inflated
limits that were affected by four outliers.

Variance-stabilizing transformations (natural logarithm, square root [4,5,32,33]) may
enable Bland–Altman analysis on another scale, implying back-transformation to the
original scale after analysis (e.g., Figure 1, bottom left). The half-normal method [4,35] is a
powerful and simple method for estimating nonstandard limits of agreement in light of
nonconstant bias and/or variance heterogeneity [18]. Sevrukov et al. [18] exemplified a
modeling process for deriving nonstandard limits of agreement for repeated CAC data. We
have reanalyzed a formerly reported inter-rater agreement evaluation [19] on CAC data
that followed a quite different distribution than those of Sevrukov et al. [18].

Fractional polynomials offer considerable flexibility whenever variance-stabilizing
transformations are difficult to find. As holds true for any automated solution, the proposed
choice of powers by fp and fp_select requires thoughtful judgement by the user. For our data,
the empirical coverage satisfied the nominal aim of 95% for square root-transformed data.
We have proposed two intuitively appealing conditions for judging the appropriateness of
nonstandard limits of agreement that will hopefully prove useful to this end.
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