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Abstract: A computational approach with the aid of the Linear Multistep Method (LMM) for the
numerical solution of differential equations with initial value problems or boundary conditions
has appeared several times in the literature due to its good accuracy and stability properties. The
major objective of this article is to extend a multistep approach for the numerical solution of the
Partial Differential Equation (PDE) originating from fluid mechanics in a two-dimensional space with
initial and boundary conditions, as a result of the importance and utility of the models of partial
differential equations in applications, particularly in physical phenomena, such as in convection-
diffusion models, and fluid flow problems. Thus, a multistep collocation formula, which is based on
orthogonal polynomials is proposed. Ninth-order Multistep Collocation Formulas (NMCFs) were
formulated through the principle of interpolation and collocation processes. The theoretical analysis
of the NMCFs reveals that they have algebraic order nine, are zero-stable, consistent, and, thus,
convergent. The implementation strategies of the NMCFs are comprehensively discussed. Some
numerical test problems were presented to evaluate the efficacy and applicability of the proposed
formulas. Comparisons with other methods were also presented to demonstrate the new formulas’
productivity. Finally, figures were presented to illustrate the behavior of the numerical examples.

Keywords: multistep collocation formulas; convergence analysis of the formulas; orthogonal
approximating function; convection diffusion reaction equations; fluid dynamics problems; partial
differential equations

MSC: 65L05; 65M12; 65M20

1. Introduction

This paper focuses on the numerical solution of a second-order partial differential
equation arising from the fluid dynamics. It describes how convection effects interact with
diffusion transports. Thus, we are interested in the convection diffusion reaction equation,
which is given below:
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subject to the given initial conditions:

s1(x) = u(x,0), x€ab],
ou 2)

so(x) = @(x,o), x € [c,d]

and the following boundary conditions:

h(x) = u(a,y), y>0
tr(x) =u(bt), t>0 3)
B(x) =u(by), y=0
ta(x) = u(b,t), t>0

or any of the conditions below:
v1(x) =u(a,t), t>0
02(x) = u(by), y=0 "
v3(x) =u(a,t), t>0
o(x) =u(by), y>0

Symbolically, in (1), u(x, y) symbolizes the dependent variable. On the other hand,
x,y, and t stand for the diffusion function; likewise, v is the non-homogeneous function,
also known as the prescribed source, and a1, b1, p1, 41, and r; are the constants. Model
Equation (1) has numerous applications in physics, mathematics, and engineering (Liu
etal. [1]. According to Kamran et al. [2], it can be used to describe many real-life physical
systems, among which are the Langmuir wave packet estimation in plasma, electrostatics,
the non-relativistic limit of the Klein-Gordon equation, fluid flow, and bimolecular dynam-
ics (Kilic and Celik [3], Akbarov et al. [4], Chen et al. [5], Singh et al. [6], Mirzaee et al. [7],
Khan et al. [8], and Aliev et al. [9]). These classes of partial differential equations lack
analytic solutions and are very difficult to approximate due to the nonlinear parameters.
Accordingly, the numerical method is an alternative approach for approximating the PDEs’
solution, which is being proposed (Adeyefa et al. [10]). Because of the aforementioned
applications, various numerical techniques for solving various application problems, such
as time—frequency analysis, signal delay, convection—diffusion equations, nonlinear ap-
proximation, and Monte Carlo simulation, arising in fluid dynamics problems have been
developed. For instance, predictor—corrector techniques (Su et al. [11], Awoyemi and Id-
owu [12], Iskandarov and Komartsova [13], Ashry et al. [14], Asif [15]); Galerkin methods
(Guo et al. [16]); Haar wavelets methods (Aziz and Khan [17], Shiralashetti et al. [18],
Saparova et al. [19]); Runge-Kutta methods (Takei and Iwata [20], Yakubu et al. [21], Zhao
and Huang [22]); Newtral network model (Mall and Chakraverty [23]); multigrid technique
(Ghaffar et al. [24], Ge [25], Gupta et al. [26]); finite difference methods (Mulla et al. [27]);
and finite element methods (Harari and Hughes [28]).

In spite of the success recorded by the above-mentioned techniques, there is still a
need for improvement in convergence and accuracy due to the fact that the majority of
the methods discussed above are not self-starting and do not use second-derivative values
in their derivations. A number of authors have proposed numerical self-starting block
algorithms for solving differential equations with either boundary or initial conditions.
Sunday et al. [29] constructed a class of hybrid algorithm block methods with variable
steps and applied the developed method to solve application problems, namely the Kepler
problem. Ramos and Vigo-Aguiar in reference [30] presented a BDF-type approach that is
L-stable in nature for the numerical approximation of stiff problems through the method of
line. Meanwhile, Ngwane and Jator [31] considered a numerical solution of an oscillatory
second-order initial and Hamiltonian system of equations using a trigonometrically fitted
block method. In reference [32], Modebei et al. proposed a class of numerical solvers for
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approximating a fourth-order partial differential equation via a block approach with a
uniform order. In the same vein, Jator in [33] developed a block-like unification scheme for
the numerical solution of a class of elliptic, telegraph, and sine-Gordon partial differential
equations with an emphasis on accuracy. Likewise, Olaiya et al. in [34] presented a
numerical approach for simulating the Black—Scholes partial differential equation via a
two-step off-grip block of algorithms of algebraic order seven. Lastly, the work of Familua
etal. in [35] considered a higher-order block technique for the numerical simulation of third-
order boundary value problems with applications. The theoretical analysis of the methods
was investigated and discussed comprehensively. It has been established in the literature
that the block approach was first initiated by Milne [36]. Runge-Kutta's self-starting nature,
high-convergence rates, and unique property of yielding approximations of the solution at
various points are all still present in the block approach. The convection—diffusion equation
and the Helmholtz equation, to name a couple, are examples of nonlinear partial differential
equations that arise in the sciences and engineering. In light of this, ninth-order multi-step
collocation formulas (NMCFs) are proposed with the potential to be a useful tool for solving
these equations. This study aims to develop a method that solves nonlinear second-order
PDEs more precisely and with higher convergence than other methods already described
in the literature.

2. Design of NMCFS

To develop a numerical method for the solution of (1), the orthogonal polynomial of

the form:
p+q-1

Y GO (x), ©)
r=0

is adopted as the basis function. {, are the coefficients to be determined and (), is defined
on the interval (—oo, 00), with the help of the recurrence formula:

Qi (x) = 30 (x) — QY ().

The polynomials are orthonormal with respect to the weight function e

The first five sets of orthogonal polynomials (Hermite polynomials), as contained in
Adeyefa et al. [10], are as follows:

X

(x)

(x)
M (x) =
O3(x)
Oy(x) =

X —6x*+3
On the other hand, we differentiate (5) twice to obtain:
p+f4 1

u// 2 grQ// (6)

Set p =2, q = 8, with k as the step number. It follows that p is the number of distinct
interpolation points, which must coincide with the order of the d.e in (1), meanwhile q
denotes the number of collocation points chosen. Thus, (5) and (6) reduces to

10
xX) = Z QO (x), (7)
r=0

U// Z érQ” (x). 8)
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Um+2,n

Um+3.n

Um+4,n

Now, interpolate the approximate solution to (7) at x,,, w = 0(1) and also collocate
(8) at x4, w = 0(1)8, which produces seven non-singular equations, which can be written
as a system in matrix form as

D=L )
where
Qo (xn) Q1 (xn) O (xn) O3 (xn) o Oggo(xn)
Qo(xns1) D(xns1) Mo(xns1) Qo(xns1) - Qao(xp41)
Qp (x4) OF (xn) QF (xn) Qf (xy) - Q;(’Jrz(xn)
Qg(an) Qfll(xi’ki’l) Qg(xwrl) Qg(xn+1) T Q;</+2(xn+1)
D = . . . . .
L 06/ (xn+k) Qlll(anrk) Q:/)_/ (xn+k) Qg(anrk) e Q;g/+2(xn+k)

]: [ CO/§1/€2/€3/' : '/€7 ]T/ L - [ um,n/um+1,n/gm,n/gm+l,n/' . '/gm+8,n ]T

Using computer software, like Maple, where ] = D~'L, one can solve the matrix
Equation (9) for the unknown values of {;, i = 0(1)10. The values obtained are subsequently
plugged into the Formula (7) with the setting x = ¢h + x,, + 7 to obtain the continuous
function of the form

8
Um+jn (‘P) = Youmn+ Tlum-&-l,n + h? Z Aj(4))gm+j,n/ ] = 0(1)8/ (10)
=0

where the coefficients of the continuous function (10) are given in (Appendix A).
The main formulas are produced by evaluating (10) at ¢ = —5, —4, -3, -2, —1, 0, and
1, which gives the following discrete formulas.

g 33953, 424759 81629 , .
mn T Mmdn T 51ea00 1 8M T 453600 T ST T 453600 | Smtm
11143 27583 L 110563 5 23017 , .
28350 ' mt3n T o5z T Smtdn T yeagnn 't 8mtsn T 5oeg00 T Smten
5627 9829
326800 " $m+7n T 3g28800 " Smtens (1)
155171 9421 144847
2+ tmin + Poa0e00 1 8mn + g5 I 8mtin + 35400 1 8mran
252101 , 5701, | 135901, _ 56473 .
302400 ' 8m 31 T goea | SmrAn T 300400 " Smt5n T 300400 " Smten
4601 6029
2O 2 _ 7 4o 12
100800 ' $™+7m T 1209600 '+ S8 (12)
12869 225469 94001
~Sttnn i1+ 00 W8+ gy Wmin + 75e05 1 gman +
3271 , 11279 L 49313, 3449 .
1575 gm+3,n 12096 gm+4,n 75600 gm+5,n 12600 gm+6,n
2537 439
£207 _ AT 1
37800 " 7 ~ goagop |t Smem (13)
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18481 , 363173 181289
Upsn = —Hpp + Sy, + 77576 h*gmn + 90720 h°gmy1n + 90720 h*gmyon +
311363 , 13261 L1751, 33583, .
90720 | 8mt+3n ~ 3ggg [ Smtan T g1y M 8misn — gomag W 8mten
1163 3547 )
00 14
12960 " 8m+7.n ~ 36880 1" Smt8ns (14)
76859 16883 83207
Umptopn = —DUmp +6Uyi1,+ 541920 Smn + 3360 Sm+in T 30240 Sm+2n +
9043 2449 | 63047 5 5461 .
1890 " Sm+3m T gagq M 8mran T 3on4g W 8misn — J5150 1 8mon
533, 407
, 15
5040 gm+7n 34560 h 8m+8,n (15)
7319 261023 152107
7 =ttt g5 1 8ma “pzng 1 8nrin + g Wiz +
87827 L3541, | 140401 L 7009, .
14200 " §m+3n + 3350 W mtan + azo I8masa + 4555 1 Sn+on
9143 2849
2220 _ oY 16
13200 " fre7m = T7ag00 1 Sms (16)
57281 114769 67861
s = —Tttmn + 8ts1n + Togene W8man + Jeran W 8mrin + o300 1 g2 +
15506 L3541, L 77893 L9853 5 .
2025 8m+3,n 2592 m+4.n 16200 8m+5,n 8100 8m+6,n
10157 5741
O 17
5100 " fort 71+ Taggp ' Gm+s (17)
The first derivative of (10) is given below:
u;nﬂ'ln(t) = "Youmn +1Flum+l n+ h Z A fm+],nr ] - 0( )8 (18)

]_

The coefficients of the continuous function (18) and the first derivative of (10) are
given in (Appendix B).

The additional discrete formulas are generated by evaluating (18) at the points
¢=-7,-6, -5 —4, =3, =2, —1, 0, and 1, which gives the following first derivative
discrete formulas:

~ 1 650502 mn + 4124232 H2 ¢, 1 4 — 5225624 W2 @yuio n +
gm, Sm+1, Sm+2,

Wmn 7257600h
6488192 gy 431 — 5888310 gy 44 nh1? + 3698920 gy 1 5,,h? — 1522672 h* gy 6,0 +
369744 W2 g7 1 — 40187 K2 gy 81 + 7257600 thyn — 7257600 111 ,1), (19)
1
T —s7e00r (15529 B2 g + 4809956 h2 g,y 1 — 3983564 h> gy 42 1 +

4702524 12 gy 3.0 — 4177930 g4 uh? + 2593756 gy 5,4 h> — 1059756 h2 g 6n +
256004 W28 170 — 27719 W2y 8.1 — 7257600 thy 1 + 7257600 thy 11 1), (20)
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1
Wy = amrao0; (447623 12 G n + 7561144 12g, 11 + 2506008 2G40, +

1197440 h?g 11 3.1 — 1543370 gy 4 4 nh? + 1083672 gy 5,,h* — 471184 h2 60 +
118192 281 7.0 — 13125 W28, 8.0 — 7257600 thyy y + 7257600 thyy 11 1), (21)

u' 1 (
mESn T 7257600k
6461116 12y 431 — 3209610 g,y 4 4,2 + 1879388 gy 5,1 — 755372 h* g6, +

181380 1?7, — 19591 h? 8,0 — 7257600 thyy y + 7257600 thy 11,1, (22)

462217 W2 gy + 7361892 h2 g,y 1 1 + 5782580 h2 g2 +

u L (
mEAn T 757600k
10280832 h2 g1+ 3,1 + 1239350 g 4 4 nh? + 1027864 gy 1 5,,h> — 502800 h? gy 6,1 +

129968 12 g7, — 14597 h? 8,0 — 7257600 thyy -+ 7257600 thy 11 1), (23)

455751 W2 g + 7434680 h2 g,y 11 5 + 5350552 2 42 1 +

1
Wpisn = s7ea0y (460745 WG n + 7383268 h2 g1 n + 5603124 h2g 10 1 +

9429308 h2g 3,1 + 5688310 gy 4,nh* + 4847580 gy 5,0h* — 934828 h2gys6p +
202756 h? gy 7.0 — 21063 h2 gy 481 — 7257600 1y + 7257600 141111, (24)

u - (
mEen T 7257600h
10225024 h2 g+ 31 + 4022070 gy 4 4 o1 + 10111256 gy 5 11> + 2341744 H2 g 16,0 +

3504 h2g 17,0 — 6469 h2 g 18,n — 7257600 thyy y + 7257600 thyy 41 1), (25)

454279 12 gy + 7446456 h2 gy 11 + 5318936 2 gy 20 +

(468873 h2gyy  + 7308644 h2g 1111 + 5907508 h2g 0.0 +

! _
Wz = 57600k
8714940 h2g 3 1 + 6656630 gy 44 nh? + 6606172 gy 5,0h* + 8831316 2y 461 +
2754692 W2y 171 — 7A375 W2 gy s 8.0 — 7257600 iy + 7257600 11 1,11), (26)
Wi = 72571% (400967 h* g n + 7934392 12 gy 11 + 3325080 h2 g1 0.0 +
15007616 h2g 3, — 3409610 gy 4 4 nh? + 17796888 g1 5,11 — 377872 W2 gy 6.0 +
11688880 h2g,y,+ 7.1 + 2065659 12 gy 1 8.1 — 7257600 iy + 7257600 thyy 41 1)- 27)

Implementation Strategies of the NMCFs
Here, we combined the discrete Formulas (11)—(17) and its derivatives (19) in matrix
form below:
PUy, = Qo + Ripy + 2[Sna + T3], (28)

where
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—3628800
—2419200
—1814400
—1451520
—1209600
—1036800

L —7257600

[ —7257600 3628800

o o o o o o

0 0
1209600 0
0 604800
0 0
0 0
0 0
0 0
0 0
0
0
0
0
Q=
0
0
0
L 0
0
0
0
0
R =
0
0
0
L O
S =

o O O O o o o o

0
0
0

362880

o ©O O o o o o o o O O o o o o o

o O o o o o o o

0

o o o

o O O O o o o o O O O o o o o o

o O O o o o o o

o O O O O o o o o O O O o o o o

o O O O o o o o

0
0
0

0

241920

o O O o o o o o o O O o o o o o

o O o o o o o o

0
0
0

o O O o o o o o O O O o o o o o

o O o o o o o o

o O O O o o o o

o O O O o o o o

0
0
0
0
0
0
0
0

172800
0 129600
0 0

o o o O

3628800 T
2419200
1814400
1451520
1209600
1036800
907200
7257600

o O o o o O

0
7257600 |

237671

155171

115821
92405
76859
65871
57281

0
0
0
0
0
0

Mo =

=

M2 =

—1624505 |

= = = = = = =
SN 5~ 8~ 8- s~ 8- 8-
-
£

=
ER
2

gmflm
Im—2n
8m—3,n
Em—4n
8m—5,n
Sm—6n
Sm—7n

8m,n

Um41,n
Um+2,n
Um+3n
Um+4,n
Um+5,n
Um+6n
Um+7,n

Um+8,n
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[ 3398072
2374092
1803752
1452692
1215576
1044092
918152

—653032
579388
752008
725156
665656
608428
542888

| —4124232 5225624

1426304
1008404
1256064
1245452
1157504
1053924
992384

—6488192

—1376650
—855150
—563950
—132610

73470
177050
177050

5888310

884504
543604
394504
351020
504376
561604
623144

—368272
—225892
—165552
—134332
—87376
84108
149648

—3698920 1522672

=

ngrl,n
Sm+2,n
8m+3,n
m+4,n
8m+5n
8m+6n

Sm+7n

Sm+8n J

90032
55212
40592
32564
25584
36572
162512

—369744

—9829 1T

—6029
—4439
—3547
—2849
—2849
5741
40187

The NMCFs are obtained by multiplying the matrix Equation (28) by the inverse of P:

Un

o O O O O O o =

o © o o o o =~ O

Uy = Qno + Ry + K2 [Sna + Tip)

o o o o o ~», o O
o O O O = O O o
o O O =Bk O O o o

o O =, O O o o o

oS =R, O O O o o o
_ O O O O o o o

O
|
o o © ©o o o o o

o ©O O o o o o o

o O O O o o o o
o © O o o o o o

o ©O o O o o o o

o O O o o o o o
o O O O o o o o

e S S o G =y

(29)
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0000000 17 (000000 0 0 £FR]
58193
000 0O0O0O0 2 00 0 0 0 0O 113400
71661
0 0 0 00O 0 0 3 00 0 0 0 0O 59600
15406
R 000 00 OO0 4 5 00 0 0 0 0 O 1173
e 56975
00000005 000000O0O0 ¥23
00000O0O0TUO0GE6 000000O0 2
2019731
0 0 0 0 0 0 0 7 00 0 0 O0O0OTUDO 1036800
31648
L0 0 0 0 0 0 0 8] 0000000 958 |
- 8183 653203 50689 196277 92473 95167 7703 5741
14400 907200 56700 241920 181440 153600 151200 1036800
29384 81 30916 22703 5968 14773 179 521
14175 50 4175 11340 4725 28350 14175 37800
1467 4707 225 28143 11079 _ 9141 2223 387
400 2800 64 8960 5600 11200 11200 17920
24832 928 80128 188 38144 15776 256 418
| ¥ 567 14175 15 4175 14175 945 4175
T | 248375 19375 143375 641875 225 12875 3125 3625
36288 12096 18144 145152 o4 9072 9072 96768
1476 549 1776 639 36 81 72 9
175 350 175 ~ 140 7 —50 75 200
216433 98441 1601467 _ 160867 55223 127253 8183 57281
21600 64800 129600 34560 8100 129600 14400 1036800
23552 7424 41984 14528 41984 7424 23552 0
L 2025 1725 2835 2835 4725 14175 14175 i
The matrix equation in (29) could be written explicitly as follows:
. o 324901, 8183, 653203 ,
medn = M Wl ey ea0 1 8mn T 1ag00 " SmHln T goz0p 1t Emt2n
50689 _ , 196277 92473 95167
Smi3n — o W 8mtdan ¥ o s gm+5n_7 gm+6n
56700 241920 181440 453600
7703 5741
151200 " 8m+7n ~ To3e800 " Sm+sm (30)
58193 29384 81
Umizn = v+ 200w+ 72 W gmn + T W gmtn = 5 W gz
30916 _, 22703 , , 598 4773, N
14175 " 8o — Tyage ! Sm+an + g7 W Gntsn — 3ges W gmen
1796 521
14175 gm+7n 37800 h gi’l’H’S nrs (31)
71661 1467 4707
Upidn = Umn T 3hu' mn + goAn 89600 h mn + m h28m+1,n - m hzngan
225 , 28143 11079 , 9141
+a h Im+3n — 8960 fm+4n + W h Sm+5n — 11200 gm+6n +
2223 387
11200 2 m+7n — 17920 zngrSnr (32)
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15406 24832 928
Uptdn = Umn T+ 4hu’ mn t ——z 14175 h? Smn + W h28m+1,n - 5‘7 hzngan
80128 , 188 ) 38144 , 15776
+ 14175 h gm+3,n h fm+4 n + 14175 gWH—S,Tl 14175 gm+6 n +
256 l
945 h28m+7,n - 14175 h? 8m+8,n/ (33)
) s 6975 24835 19375 ,
metSn = mn T gya7n P 8mn T 3epgg 1t 8mtln T o096 1 Smtan
143375 _ 641875 L 25 12875, .
18144 gm+3 n 145152 gm+4,n 64 gm+5,n 9072 gm+6,n
3125 12 3625
4
9072 fm+7n 96768 gm+8 ns (3 )
93 1476 549
Upien = UmnT+ 6hu’ mn + — 56 thm nt =5 175 ng+1,n 350 h Sm+2,n
1776 639
+ﬁ h28m+3,n - 140 hzgm+4,n + 7 hzgm+5,n - % hzfm+6,n +
72 9
175 h Sm+7n — 200 hzngrS,nr (35)
2019731 216433 98441
Upi7n = Umn + 7h“/m,n + m hzgm,n + m hzgm+1,n - M h Sm+2,n
1601467 160867 | 55223 127253 .
129600 ' &mt3n T 3g5en T 8mtan T gyag ! 8mt5n T Jage00 1t Emt6n
8183 , 57281
o100 _ 2y,
14400 © &m+7n T 1036800 T SmtEm (36)
31648 23552 7424
Um+8n = Umn + 8hu /m nt T og 14175 Zg + m 2gm+1,n - ﬁ hzgm+2,n +
41984 5 14528 41984 5
2835 | Sm+3n = g5 M Smtan + e Wgmasn
7424 23552
14175 W gmien + —n 14175 W gm+7,n- (37)

In order to obtain the first derivatives of the NMCFs, substitute (30)—(37) into (20)—(27),
which gives

y _ o, 1070017 | 2233547 2302297, | 2797679,
m+Ln T 3628800 ™ T 1814400 S LM T 1814400 ST T 1814400 SN
31457 | 1573169, | 645607
22680 SmH4n T 1814400 M5 T 1814400 oMo
156437 33953
1814400 "8"+7 T 308800 |88 (38)
y o, 37 283, 247, JREUT
m+2,n it 113400 8™ T 14175 Smn T 5gza0 8mt2n T 4q75 M8m+an
2903 9341 15577
72835 gm+4,n+m gm+5,n_56700 hfmsen
953
"‘m Sm+7n — mhgmw,m (39)
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, , 12881 35451 1719 39967
UWmidn = UWmn+ Trgnn 24800 hgm n 22400 hgm—H nt s 22400 hgm+2n + s 22400 hgm+3n

s, o 117, 031,
280 "Smrbn T o400 "EMESM T o400 NSO

243

3200 8MH7n T 14800 hgm+8,n, (40)

4063 22576 244 32752

/ - ——— kil # oLos
Wimtdn "+ 13175 M8mn + Tag7s M8+t Tap7s Mem+an + Tgi7m Mgman
1816 9232 3956

~ 2835 "8man t Tpq75 8misn ~ T8
976 107

4175 "8m+7n ~ Tqy7s H8mt8ns

hgm+6 n +

(41)

A 41705 115075 3775 159175

' - A" 20 2220y -
Hm-+5n mn  Taeq5p 18mn T Zoege Mmin + Zoege Wman + Zoeme N8m+3n
125 85465 24575

1536 "Sman T osng M8misn = poene Mfmton +

5725 175
ﬁ hgm+7,n - 20736 hfm+8 nrs (42)

, . 401 279 9 403
Umten = Wmn T 7155 hgmn + 175 hgm+1,n + 700 hfmton+ 175 hgm+3.n

9 333 79
- 35 hgm+4 n T 175 hfm+5 T 700 hgm+6,n +

9 9
175 hgmy7.n — 1200 hgm+8u, (43)

y BRNR .- | 408317, L u33 | 542969,
mi7n = Womn T srea60 MMt T 550200 ML T 559200 M2 T 550500 MmN
| 343 368039 261023

3240 "8mran T 359500 M8mesn T 555500 Mmten

111587 8183
259200 "8m+7n ~ S1gq00 Smtsn (44)

y B | 3956 L 23552, 712 | 408t
wisn = Wt s mn  Trs M — s Mmean + s hSnes

3632 41984 3712

o835 "8man + {pq7s Mmisn = s Mnren +
23552 3956

L0002 4
12175 "Sm+7n T 1q175 Hmesn: (45)

Remark 1. The matrix D in Equation (9) must be a square matrix. Otherwise, the computation
will be indeterminable.

Remark 2. The matrix D in Equation (9) must be a nonsingular matrix. Otherwise, the determi-
nant will be equal to zero, which implies that the solution will not exist.

Remark 3. The Equations (30)—(37) and (38)—(44) formed the NMCFs required to simultane-
ously solve the second-order PDEs.

Remark 4. The Equations (30)—(37) and (38)—(44) possessed a uniform order of accuracy as
shown below.
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3. Theoretical Analysis of the NMCFs
3.1. Introduction of the Analysis of the NMCFs

The order, error constants, zero-stability, and consistency of the NMCFs, will be
examined in this section in accordance with (Familua et al. [35], Jain et al. [36]).

The Formula (18) together with their associated derivatives (29) can be expressed by
the linear operator below:

L{u(x);h) = U — Qno — Ry — 12[Syz + Trp), (46)

where u(m) is continuously differentiable, and Uy, Qno, Ri1, Sz, and T#3 have their usual
meaning as stated above. Expanding U, 172, and 773 in (46), respectively, in Taylor series
about x,,, and collecting their like terms in powers of i and u yields

L{u(x);h] = Cou(x) + Crhu' (x) + Col?u” (x) + - - - + CohTu'® (), (47)
where Cg,q=1,2,...

Definition 1 (Yakubu et al. [21]). The NMCFs (18) and their linear operators are said to have
order pif Co=Cy =---=Cp=0,Cpy2 #0.

Definition 2 (Sunday et al. [29]). The term C,2 in Definition 1 is referred to as the error
constants, which indicate the local truncation error (18) given as

LTE = Cpoh?2uP+2) (x,,) + ORP+3). (48)

Definition 3 (Modebei et al. [32]). Any LMM class with an order greater than or equal to one is
said to be consistent.

Definition 4 (Olaiya et al. [34]). If the roots of any class of LMM do not exceed the order of the
differential equations considered, the class is said to be zero-stable.

Definition 5 (Lambert [37]). If an LMM class is zero-stable and consistent, it is said to be conver-
gent.

Definition 6 (Lambert [37]). A matrix whose determinant is zero is called a singular matrix.

Definition 7 (Jain et al. [38]). If the Linear Multistep Method has order 2k, where k is even, and
order 2k — 1, where k is odd, it is said to be of maximal order.

Definition 8 (Jain et al. [38]). A matrix whose determinant is not equal to zero is called a
nonsingular matrix.

Definition 9 (Awoyemi and Idowu [12]). An LMM is said to be P-stable if its periodicity
interval is (0,00).

Definition 10 (Jain et al. [38]). A matrix that has one in the leading diagonal and zero elsewhere.
Definition 11 (Henricin [39]). An LMM is said to be A-stable if its periodicity interval is (—o0,0).

3.1.1. Order and Error Constant of the NMCFs

The order and error constant of the NMCFs are analysed following the approach and
procedure discussed in Definition 1. Each of (30)—(37), which make up the NMCFs, is
analysed.
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Hence, the NMCFs is of order p = [9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9]T, with error
constants Cp, 1o =

T
Ciy = (4.718068 x 1073,1.179146 x 1072,1.851157 x 1072,2.531131 x 10—2,)

T
(3.211106 x 1072,3.883117 x 1072, 4.590456 x 1072, 5.062263 x 10—2) ,

together with its derivatives (38)-(44):

T
(7.892554 x 1073,6.428571 x 1072,6.975446 x 1072, 6.631393 x 10*3,)

T
(6.975446 x 1073,6.428571 x 1073,7.892554 x 1073, o) )

3.1.2. Consistency of the NMCFs (Omole et al. [40,41])

Applying the definition 3 of consistency to the NMCFs (30)-(37), it is said to be
consistent if it has an order of more than or equal to one. Therefore, the NMCFs are
consistent according to Lambert [37].

3.1.3. Zero-Stability of the NMCFs (Fatunla [42])

Similarly, the zero-stability of the NMCFs can be obtained using the first characteristics
polynomial of the NMCFs given by

I1(z) = det(zU,, — Q) = 0. (49)

Thus,

[N eNeloNoNe N}
OO rRr O OO oo
_—_0 000 oo oo
S O O O OO oo
S OO O O o oo
S OO OO o oo
SO OO OO oo
S OO O OO oo
S OO OO o oo

OO OO O OO
[ eleleoBeoBeoll -]
OO DD OO, OO
OO OO RO OO
OO DD OO OO
|
O OO OO O oo
o e

I(z) =27 (z—1) =0, (50)

Solving (50) for the values of z,z = 0,0,0,0,0,0,0, 1.
Hence, the NMCFs are zero-stable.

3.1.4. Convergence of the NMCFs (Henrici [39], Rufai et al. [43])

According to Definition 5, consistency and zero-stability are all that are required for the
Linear Multistep Method to be convergent, so the NMCFs’ consistency and zero-stability
imply that they are convergent at all points, concluding the prove.

3.1.5. Region of Absolute Stability of the NMCFs (Yakubu et al. [21], Lambert [37])

Finally, the stability of the NMCFs is examined and discussed using the procedure
described in Yakubu et al. [21] and Lambert [37].

M(z) =V +zB(I —zA)"tU, (51)

In addition to the stability function,

p(n,z) = det(nl — M(z)), (52)
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For the stability properties, the Formulas (30)-(37) were formulated as
Y A u W2 f(u)
——— =] - == —== ——— |, (53)
Yig1 B 14 Yiq

where
| Umtin | Um+tin _ | 01 (10
Yl—1_|: U :|/Yl+1_|: U481 :|/V_|: 0 1:|/I_|: 0o 11l
The stability polynomial (54) and its first derivative (55) are then obtained by changing
the values of A, B, U, V, M, and I (see Appendix C) in Equations (51) and (52). This is

then coded in the MATLAB (R2012a) environment. Figure 1 in the text below depicts the
NMCFs’ stability nature.

963008 , 390304 ;
= -1 4
1) (’7+ 2525 © T 14175 ¢ ) ©4)
fl(z) = 32 (60188 z + 36591) 7’ (55)
= 12525 T
0.04 , ! , ,
0.03p
i Pl R
001
e 7
001
Y1)
-0.03F
004 i I i i i i
0 0.0 0.0z 0.03 0.04 0.0z 0.06 0.07

Re (z)
Figure 1. Region of absolute stability of the NMCFs

The NMCFs’ absolute stability region is P-stable because it consists of the complex
plane outside the enclosed figure and its periodicity interval lies between (0.069,0), which
falls within the periodicity interval for P-stability (oo, 0).

4. Implementation Strategy

In this section, the implementation strategy is discussed in detail. It follows that
variable y is discretized as follows:
b . d— .
h= 7” Xi=a+ih, i=01,---,M, h= TC ti=c4ih, i=0,1,---,N. (56)
For a fixed x in the interval [4,0],i =0, -- , M, and for a fixed ¢t in the interval [c, d],
i=0,---,N.
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d2uy, 4,
dx?

[u(me,t) - u(xm_l,t)} [u(xfymﬂ) — u(%,Ym—1)
Gmmn — Tmn

N is the number of subintervals or iterations. The spatial derivative is approximated
by the difference operator and replaced accordingly:

ou ~ (X1, t) — u(xpy_1,t)

o (¥ ymir) — 1 Y1)
aZu ~ M(X,ym+1) — 2u(xrym> + ”(xrymﬂ,]/) (59)

a2 ()? ’
u(x, Y1) is termed the numerical approximation to u(x, y,,+1) and, consequently,

(1) has been converted to a system of ordinary differential equations and (1) has the
semi-discretized form given below:

b u(X, Ymr1) — 2006, ym) +u(XYm-1,y)|  dumn
mn (h)Z Pmn dx

:| - km,num,n + gm,n]/ (60)

2h 2h

where it follows that g are the non-homogeneous terms, # is the step size, and W is the
tridiagonal matrix generated from (60) (shown in Appendix D).

The proposed formulas, namely the NMCFs, are then applied to solve the resulting
equations of the ODEs with initial or boundary conditions (60), with the aid of Mathematica
11.0, with the features Nsolve for linear and Findroot for nonlinear, with an HP Laptop
G250, 8GB RAM, ITERABYTE.

5. Numerical Examples

The accuracy and convergence of the NMCFs are presented in this section. Five nu-
merical examples including nonlinear partial differentials originating from fluid dynamics
were resolved from the literature. A comparison of the numerical solution produced by the
NMCFs, and the exact results were made and also compared with the errors produced by
other existing methods in the literature. To highlight the accuracy of the NMCFs and their
benefits over existing techniques, the results are presented in tabular form.

For instance, the absolute error of the approximate solutions is computed alongside the
exact solution and compared with the results from the other existing methods, particularly
those proposed by Yagider and Karabacak [44], Lima et al. [45], Biala and Jator [46], Xu and
Wang [47], and Volkov et al. [48]. The results from the methods are also discussed here.

The absolute errors (AEs) are given by = Max | u(xXp, Ym) — um(yn) |- u(Xm, Ym)
symbolises the exact solution, and u,,(y,) denotes the approximate solution at the mesh
point (X, Ym)-

5.1. Test Problem One
Consider the following Helmholtz equation:
0%u 02

u
ﬁ(x,y)—i-@(x,y)%—&t(x,y) =0, 0<xy<l, (61)

subjected to the following conditions:

u(0,y) =sin(2y), for0<x <1,

(62)
g—Z(O,y) =0, for0<y<I1,
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the theoretical solution of (61) is given as
u(x,y) = cos(2x) sin(2y). (63)

Source: Yagider and Karabacak [44].

The prominent Helmholtz equation, which is an example of the elliptic PDEs consid-
ered in test problem one, was solved using the newly formulated formulas named NMCFs.
The numerical solution is demonstrated in Table 1. The problem had been solved earlier by
Yagider and Karabacak [44]. The numerical results were generated at x-values ranging be-
tween 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, and 1.0. The NMCFs results obtained show some
level of improvement over the method constructed by Yagider and Karabacak [44], who
proposed a multivariate Padé approximation as displayed in Table 2. Seemingly, the results
generated by the NMCFs compared favorably with Yagider and Karabacak [44], despite
using the same mesh size. A comparison of the errors is also displayed in Figure 2 below to
show the behaviour of the performance of the NMCFs versus Yagider and Karabacak [44].

Table 1. Showing the numerical results for test problem 5.1.

x Exact Results NMCFs Results AEs in NMCFs
0.1 0.1947083556680159200 0.1947091711543252300 8.1548630 x 10797
0.2 0.1829813709520361500 0.1829865712999870800 5.2003480 x 109
0.3 0.1639638132942570800 0.1639688742954361300 5.0610010 x 100
0.4 0.1384113212579074500 0.1384142557064305700 2.9344490 x 1070
0.5 0.1073395314304028500 0.1073414975338517800 1.9661030 x 10~%
0.6 0.0719877982915558400 0.0719893725902818500 1.5742990 x 10~%
0.7 0.0337668596353071160 0.0337672585371394250 3.9890180 x 10~
0.8 —0.005800535872526165 —0.005801049555132515 5.1368260 x 10797
0.9 —0.045138469521280010 —0.045138088107911740 3.8141340 x 10797
1.0 —0.082675613529302500 —0.082675613529302500 0.0000000

Table 2. Comparison of errors in NMCFs and Yagider and Karabacak [44] for test problem 5.1.

X AEs in NMCFs AEs in Yagider and Karabacak [44]
0.1 8.1548630 x 10~%7 2.7000000 x 10~%
0.2 5.2003480 x 1079 1.6800000 x 10~%7
0.3 5.0610010 x 10~% 1.8551000 x 10~%
0.4 2.9344490 x 1070 1.0017300 x 10~%
0.5 1.9661030 x 10~% 3.6361800 x 10~%
0.6 1.5742990 x 10~% 1.0226850 x 10~%
0.7 3.9890180 x 10~ 2.4043250 x 10~04
0.8 5.1368260 x 10~ 4.9437380 x 10704
0.9 3.8141340 x 1079 9.1526730 x 1094

1.0

0.0000000 x 1000

1.5558685 x 1003
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—-@- NMCF

—— Yagider and Karabacak (2014)

Logqo(Error)

0.0 0.2 04 0.6 0.8 1.0
X-values

Figure 2. Comparison of errors in NMCFs versus Yagider and Karabacak [44] for test problem 5.1.

5.2. Test Problem Two

To demonstrate the accuracy of various numerical methods and gain a conceptual
understanding of physical flows, the modified Burgers—Fisher equation, which combines
the reaction, convection, and diffusion mechanism, has been taken into consideration by a
number of authors. The Burgers-Fisher equation refers to this equation because it combines
characteristics of the Fisher equation for diffusion, transport, and reactions with those
of the Burgers—Fisher equation for the convective phenomenon. We are also interested
in analyzing the numerical solution of the modified Burgers—Fisher equation because it
exhibits relatively quick convergence and accuracy, and this will help to show the accuracy
of the suggested method. If we take into account the modified Burgers—Fisher equation
formed below:

ou ou  d%u

a—i—ua:@—i—u(l—u), (x,t) eu=1[0,T] x(0,T],T >0, (64)

subjected to the following initial conditions:

1 1 x
u(x,0) = 5~ Etlmh(i)’ xeQ (65)
and the boundary conditions given by
u(0,1) = 5+ %tunh(%), fe (0,T),x € 60,
1 1 56 1 (66)
u(1,t) = 5+ Etanh(g - Z)' te (0,T],x € 6Q2
the theoretical solution of (64) is given as
1 1 5t «x
u(x,y) = 5~ Etunh(g — Z). (67)

Source: Lima et al. [45].

The second test problem considered belongs to a class of convection—diffusion reaction
equations known as the modified Burgers—Fisher equation. The numerical solution is
taken into consideration as a means of applying the proposed formulas (NMCFs). This
problem was earlier solved by Lima et al. [45], who proposed a finite element method.
In Table 3, the numerical results were presented, while, in Table 4, the comparison of
the absolute errors in the NMCFs against that of Lima et al. [45] is illustrated within the
interval of integration. The results revealed that the performance of the NMCFs is far
better than the method of Lima et al. [45] in terms of accuracy and give better convergence.
The comparison of the errors is displayed in Figure 3 for better interpretation and reader
understanding.
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Table 3. Showing the computational results for test problem 5.2.

x Exact Results NMCFs Results AEs in NMCFs
0.1 0.49106345176865770 0.491062975092073030 4.8 x 10797
0.2 0.47732805754796130 0.477326955296469500 1.1 x 1079
0.3 0.46225942047677904 0.462257661946340660 1.8 x 1079
0.4 0.45270432190392235 0.452702242491803130 2.1 x1070%
0.5 0.44047118471204494 0.440468940064822230 2.2 x 1070
0.6 0.42696371653650966 0.426961857234471400 1.9 x 10706
0.7 0.42696185723447140 0.416233741164731440 8.9 x 10707
0.8 0.40425905953324964 0.404260159925367000 1.1 x 10706
0.9 0.39108589473886196 0.391090346399732170 45 x 1070
1.0 0.38195699940974250 0.381964156062750360 7.2 x 10706

Table 4. Comparison of AEs in NMCFs against Lima et al. [45] for test problem 5.2.

x AEs in NMCFs AEs in Lima et al. [45]
0.1 48 x 10797 1.0 x 107
0.2 1.1 x 1079 8.0 x 10~%
0.3 1.8 x 10796 6.0 x 10704
0.4 2.1 x 1079 7.0 x 10704
0.5 2.2 x107% 8.0 x 10~%
0.6 1.9 x 1079 8.0 x 1070
0.7 8.9 x 10797 9.0 x 107%
0.8 1.1 x 1079 8.0 x 107%
0.9 45 % 1070 1.4 x 1093
1.0 7.2 x 10706 7.0 x 10704
i IV R
5 1.x107 —=— Lima et al. (2021)
= 5.x 107°
g 1%
o 5.
1.x1078

0.0 0.2 04 0.6 0.8 1.0
X-values

Figure 3. Comparison of errors in NMCFs versus Lima et al. [45] for test problem 5.2.

5.3. Test Problem Three

The Burgers equation is a convection—diffusion equation that can explain the evolu-
tionary process by which a convective phenomenon can maintain balance with a diffusive
behavior in a variety of areas of applied mathematics to comprehend the Navier—Stokes
equations’ fundamental characteristics. The pressure can be ignored in this simple equation,
but the nonlinear and viscous terms still have an impact. The Reynolds number in the
Navier—Stokes equations is the proportion of a flow’s advective to viscous contributions. It
is crucial to take into account an accurate and reliable numerical method for the simulation
in order to obtain the evolution of this flow. The behavior of the modified Burgers equation
in the following form was examined by the authors in Lima et al. [45].

ou ou 19%u

g‘f—ua—zﬁ, (x,t)GUE[O,T]X(O,T],T>O, (68)
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subjected to the following initial conditions:

1
M(x,o) = m X € Q, (69)
and the boundary conditions given by
1
u(O,t):m, t e (O,T],xeéﬂ,
) (70)
u(l,t) = (ETL te (0,T],x € 6Q2
the theoretical solution of (68) is given as
1
u(x,y) = e (71)
(1+e ™0 )

Source: Lima et al. [45].

Next, in test problem three, the second-order nonlinear Navier-Stokes equations,
which are a classical example of convection-diffusion equations, were put into consider-
ation and solved using the NMCFs. The numerical solution, which comprises the exact
results, NMCFs results, and the absolute errors, are shown in Table 5. The problem had been
solved earlier by Lima et al. [45]. The numerical solution was executed at x-values ranging
between 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, and 1.0. The NMCFs results generated show
some level of outstanding performance over the method proposed by Lima et al. (2021),
who constructed a finite element method with error correlation. Apparently, the results gen-
erated by the NMCFs give a minimal error against the method proposed by Lima et al. [45],
as seen in Table 6. From the results, one can see that the proposed method has demon-
strated excellently, with good performance with varying mesh points. The behavior of
the performance of test problem three with the NMCFs and the method proposed by the
authors in Lima et al. [45] is presented in plot form for better clarification in Figure 4.

Table 5. Showing the results for test problem 5.3.

x Exact Results NMCFs Results AEs in NMCFs
0.1 0.45338575868105696 0.4533846995902536 1.1 x 10706
0.2 0.40492152613386595 0.40491952790249813 2.0 x 1070
0.3 0.3582425862347542 0.35823985347997894 2.7 x 1070
0.4 0.31410440319529837 0.3141011779927165 3.2 x 1070
0.5 0.273090250573869 0.27308678350641447 3.5 x 1070
0.6 0.2316531587086934 0.23164969524452944 3.4 x 1070
0.7 0.1982925977359844 0.19828934296755002 33 x 1070
0.8 0.1686815943978195 0.16867869569239505 2.9 x107%
0.9 0.1427053084191849 0.14270286639846103 2.4 x107%
1.0 0.1201511074867948 0.12014918056539994 1.9 x 1070
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Table 6. Comparison of errors in NMCFs and Lima et al. [45] for test problem 5.3.

X AEs in NMCFs AEs in Lima et al. [45]
0.1 1.1 x 1079 1.9 x 1079
0.2 2.0 x 1079 24 %1079
0.3 2.7 x 10706 2.1 x 1079
0.4 32 x 1070 2.0x 1079
0.5 3.5 x 10700 1.9 x 1079
0.6 3.4 x 1070 1.7 x 10~
0.7 3.3 x 10700 1.5 x 1079
0.8 2.9 x 10706 1.3 x 1079
0.9 2.4 x 1070 1.3 x 107
1.0 1.9 x 1079 3.0x10%

NMCF
103 -/'ﬂ—.*H\._\ @

— —— Lima et al (2021)

S 10
m

o

> 107°

(@]
|

107°

0.0 0.2 0.4 0.6 0.8 1.0
X-values

Figure 4. Comparison of errors in NMCFs versus Lima et al. [45] for test problem 5.3.

5.4. Test Problem Four

Consider the Laplace equation given below:

Pu  %u

@4‘@:0,3(,]/6 [0,1}, (72)

subjected to the conditions on the boundary domain given below:
u(x,0) =e%, uy(0,x) = cos(y),

the exact solution of (72) is given as

u(x,y) = e* cos(y). (73)

Source: Xu and Wang [47].

Similarly, in test problem four, the Laplace equation was solved using the NMCFs.
The numerical solution, which comprises the exact results, NMCFs results. and the absolute
errors are shown in Tables 7 and 8. Before now, Biala et al. [46] and Xu and Wang [47] had
solved the problem with their own approach. For instance, Biala et al. [46] proposed a block
unification algorithm of order two via a shifted Chebychev’s polynomial. Meanwhile, Xu
and Wang [47] constructed a method named a parallel iterative algorithm. The numerical
solution was implemented at N-values ranging between 32,40, and 48. The NMCFs
obtained show better performances in terms of accuracy and convergence over the method
proposed by the existing methods. The behavior of the performance of test problem four
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with the NMCFs and the method proposed by the authors in Biala et al. [46] and Xu and
Wang [47] are presented in a curve for better interpretation in Figure 5.

Table 7. Showing the results for test problem 5.4.

N Exact Results NMCFs Results AEs in NMCFs
16 1.0643645158455162 1.0643645183902837 2.5448 x 10~
24 1.0419993959674516 1.0419993959681841 7.3253 x 10~%
32 1.0316174618605911 1.0316174648212710 2.9607 x 109
40 1.0253134960263788 1.0253134960268170 43832 x 10~13
48 1.0216581918640595 1.0216581918644914 43188 x 10~13

Table 8. Comparison of errors in NMCFs with Xu and Wang [47] and Biala and Jator [46] for test
problem 5.4.

N AEs in NMCFs AEs in Biala and Jator [46] AEs in Xu and Wang [47]

16 2.5448 x 10~ 1.2800 x 1096 3.9000 x 1079
24 7.3253 x 10~% 2.6800 x 10797 1.7400 x 10~%
32 2.9607 x 109 8.7600 x 10708 9.7700 x 10~
40 43832 x 10713 3.6700 x 10798 6.2600 x 1070
48 43188 x 1013 1.8000 x 1098 4.3500 x 1079
-4
N '\’\t\.\. -

= 1076 _\.\.\.\. —— Biala and Jator (2017)
o
5 108! | —¢— Xuand Wang 2011)
>
8 1 0—10 |

1 0—12 |

20 25 30 35 40 45
N-values

Figure 5. Comparison of errors in NMCFs versus Biala et al. [46] and Xu and Wang [47] for test
problem 5.4.

5.5. Test Problem Five
Finally, the PDE with the Dirichlet boundary condition as follows is considered:

u  u

o "o

_ 2 _ m(1-y)
- Zn(Zny 27ty>e sin(ntx), x,y € [0,1], (74)

subjected to the conditions on the boundary domain given below:
u(x,0) =u(x,1),
the exact solution of (74) is given as

u(x,y) = e sin(mx) + ¢ sin(7x). (75)

Source: Volkov et al. [48].

Lastly, test problem five is solved using the NMCFs. The numerical results containing
the exact results, NMCFs results, and the absolute errors are shown in Tables 9 and 10. Biala
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and Jator [46] and Volkov et al. [48] had solved the problem with their own techniques
before now. In the work of Biala and Jator [46], a block unification algorithm of order
two via a shifted Chebychev’s polynomial was constructed, analyzed, and implemented.
Likewise, Volkov et al. [48] presented a parallel iterative algorithm. The numerical solution
was implemented at N-values ranging between 16, 32, 64, and 128. The NMCFs obtained
show superiority in performance in terms of accuracy over the method proposed by the
existing methods. The behavior of the performance of test problem five with the NMCFs
and the method proposed by the authors in Biala and Jator [46] and Volkov et al. [48] are
presented in a figure for better usage in Figure 6.

Table 9. Showing the results for test problem 5.5.

N Exact Results NMCFs Results AEs in NMCFs
16 0.21242359899585922 0.2124235991762159 1.8036 x 1010
32 0.11276006163890931 0.1127600617361654 9.7256 x 10~ 11
64 0.06256009950548104 0.06256009955588866 5.0408 x 10~ 11
128 0.24947430690102754 0.24947430707441792 1.7339 x 10712

Table 10. Comparison of errors in NMCFs with Volkov et al. [48] and Biala and Jator [46] for test
problem 5.5.

N AEs in NMCFs AEs in Biala and Jator [46] AEs in Volkov et al. [48]
16 1.8036 x 1010 1.2860 x 10703 3.2660 x 10792
32 9.7256 x 10~ 1 3.1530 x 10~ 8.2100 x 10~%
64 5.0408 x 10~ 1 7.9130 x 10~% 2.053 x 1079
128 1.7339 x 10712 1.9750 x 10~% 5.1280 x 1094
—@— NMCF
107%]
= —— Biala and Jator (2017)
(@]
5107
4 —¢— Volkov et al. (2013)
07‘_ -8
S 10

10-11} .\‘_\.\q

0 20 40 60 80 100 120
N-values

Figure 6. Comparison of errors in NMCFs versus Biala and Jator [46] and Volkov et al. [48] for test
problem 5.5.

6. Conclusions

This article presents a ninth-order multistep collocation formula that was designed
using orthogonal polynomial collocation. The formulas derived from the continuous func-
tion were combined in a step-by-step block approach algorithm. The proposed formulas
(NMCFs) were used to solve a class of partial differential equations ranging from the
Helmholtz equation to the convection diffusion reaction equations resulting from the semi-
discretization of the problems studied. Because the NMCFs were implemented block by
block, they do not require the starting values and predictors that are associated with the
predictor-corrector method. The numerical results demonstrate a significant improvement
over other methods in the literature.
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Yo(¢) = — (¢ +6)
Yi(9) = (¢ +7)
h29

= (2 ¢8 + 2497 +99 ¢° +105¢° — 189 p* — 693 ¢ + 1287 p* — 9225 ¢ + 65871 )

= (14 ¢® +203¢7 + 913 ¢° + 1145 ¢° — 2033 ¢* — 4777 ¢ + 67 p* — 11917 $ + 152107)

= (14 ¢8 + 23897 4 1313 ¢° + 2095 ¢° — 2875 p* — 7523 ¢° — 3631 p? + 10369 ¢ + 17705)

= (14 ¢® + 273 ¢7 + 1893 ¢° + 5025 p° — 393 p* — 21729 ¢> — 14757 ¢* + 46059 ¢ + 21027)

No(¢) = 7357600
M(¢) = _18}11?%
Ay (¢p) = 1811117200
N —_—
A(9) = *72}1527120
Bs(9) = - 18}111200
2
Ne(¢) = 18?47200
A7 (¢p) = _18}11%00
h%9

B8s(9) = 7557600
d=(¢p+6)(¢p+7)

(2 @8 + 4497 4+ 379 ¢° + 1625 ¢° + 3571 ¢* + 3515 ¢ + 343 p* — 889 ¢ — 2849 )

When compared to existing methods in the literature, the numerical experiments
presented in this paper clearly show that the NMCFs have a reasonably wide stability
region displayed in Figure 1 and enjoy good accuracy and fast convergence advantages.
Figures 2—-6 show the comparison of errors for test problems 1-5. Because they are more
accurate, provide better convergence, and are computationally faster, the NMCFs can be
extended to solve problems that model real-life phenomena with numerous applications of
higher-order PDEs in the future.
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(28 @8 + 441 ¢” 4 2181 ¢°® + 2925 ¢° — 4551 ¢* — 12405 > — 2913 ¢ + 29679 ¢ — 263481 )
(28 ¢% +511¢” 4 3161 ¢° + 6445 ¢° — 5791 ¢* — 25937 $° 4- 2063 ¢ + 4135 ¢ — 140401 )

(4 08 + 83 ¢ + 643 ¢ + 2195 ¢5 + 2167 ¢* — 5827 ¢ — 17183 ¢ — 13567  — 9143)




Axioms 2023, 12, 891 24 0f 27
Appendix B
o) = -1, ¥1(¢) =1
2
Ay(p) = % (20 ¢° + 450 ¢8 + 3960 ¢ + 16800 ¢° + 32004 ¢° + 6300 p* — 62640 > — 64800 ¢? + 468873 )
/ hz 9 8 7 6 5 4 3 2
M) = ~ 14000 (4o¢ + 945 ¢® + 8640 ¢” + 37800 ¢° + 74088 ¢° + 17010 ¢* — 143760 ¢°> — 151200 ¢* — 1827161 )
2
Ny(¢) = m (7140 ¢° + 3465 ¢° + 33120 7 + 150780 p° + 307188 ¢° + 84420 ¢* — 589680 ¢° — 635040 > + 1476877 )
2
Ny(¢) = — 1814400 (280 @° + 7245 ¢% + 72720 7 + 348600 ¢° + 750456 ¢° 4 256410 ¢p* — 1421280 ¢° — 1587600 > — 2178735)
) 2 (A1)

24(9) = soemes (140 ¢° + 3780 ¢° + 39960 ¢7 + 204120 ¢° + 477036 ¢° + 215460 p* — 888720 ¢° — 1058400 ¢ + 665663)

h2
! e —
5(9) = ~ 1514300 (
h2
86(#) = 1512200 (140 @° + 4095 8 + 48240 ¢” 4 287700 ¢° + 866628 ¢° + 921060 ¢* — 1254960 ¢> — 3175200 > + 2207829)

h2
! —_——_
27(9) = 1814400 (

5(9) = Somren0 (20 ¢° + 630 ¢° + 8280 ¢ + 58800 ¢° + 243684 ¢° + 590940 ¢* + 784080 ¢° + 453600 > — 74375)

Appendix C
0 0 0 0 0 0 0 0 0
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