New Results Achieved for Fractional Differential Equations with Riemann–Liouville Derivatives of Nonlinear Variable Order
Abstract
:1. Introduction
2. Preliminaries
- (1)
- if then .
- (2)
- if then .Set
- (3)
- The function is continuous as a composition of two continuous functions, hence we can set:
3. Achieved Existence Results
- (A1)
- The function is continuous on its domain.
- (A2)
- The function is a continuous function with respect to its first variable and satisfies:
3.1. Existence Result in
3.2. Existence Result in
4. Uniform Stability
5. Approximate Numerical Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods, 1st ed.; World Scientific: Singapore, 2012; ISBN 978-981-4355-20-9. [Google Scholar]
- Magin, R. Fractional Calculus in Bioengineering, 1st ed.; Begell House: Redding, CA, USA, 2006; ISBN 978-1567002157. [Google Scholar]
- Kilbas, A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; Elsevier: New York, NY, USA, 2006; ISBN 9780444518323. [Google Scholar]
- Petráš, I. Fractional-Order Nonlinear Systems, 1st ed.; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2011; ISBN 978-3-642-18101-6. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications, 1st ed.; Gordon and Breach: Yverdon, Switzerland, 1993; ISBN 9782881248641. [Google Scholar]
- Stamova, I.M.; Stamov, G.T. Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications, 1st ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2017; ISBN 9781498764834. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, 1st ed.; Springer: Beijing, China, 2015; ISBN 978-3-642-14003-7. [Google Scholar]
- Liouville, J. Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. J. Ec. Polytech. 1832, 13, 1–69. [Google Scholar]
- Liouville, J. Mémoire sur le calcul des différentielles à indices quelconques. J. Ec. Polytech. 1832, 13, 71–162. [Google Scholar]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 2006, 45, 765–771. [Google Scholar] [CrossRef]
- Heymans, N.; Kitagawa, M. Modelling “unusual” behaviour after strain reversal with hierarchical fractional models. Rheol. Acta 2004, 43, 383–389. [Google Scholar] [CrossRef]
- Koeller, R.C. Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 1984, 51, 299–307. [Google Scholar] [CrossRef]
- Schiessel, H.; Blumen, A. Hierarchical analogues to fractional relaxation equations. J. Phys. A 1993, 26, 5057–5069. [Google Scholar] [CrossRef]
- Samko, S.; Ross, B. Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1993, 1, 277–300. [Google Scholar] [CrossRef]
- Lorenzo, C.F.; Hartley, T.T. Initialization, conceptualization, and application in the generalized fractional calculus. Crit. Rev. Biomed. Eng. 2007, 35, 477–553. [Google Scholar] [CrossRef]
- Samko, S. Fractional integration and differentiation of variable order: An overview. Nonlinear Dyn. 2013, 71, 653–662. [Google Scholar] [CrossRef]
- Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications. J. Fract. Calc. Appl. 2019, 22, 27–59. [Google Scholar] [CrossRef]
- Valerio, D.; Costa, J.S. Variable-order fractional derivatives and their numerical approximations. Signal Process. 2011, 91, 470–483. [Google Scholar] [CrossRef]
- Almeida, R.; Tavares, D.; Torres, D.F.M. The Variable-Order Fractional Calculus of Variations, 1st ed.; Springer: Cham, Switzerland, 2019; ISBN 978-3-319-94005-2. [Google Scholar]
- Benkerrouche, A.; Souid, M.S.; Stamov, G.; Stamova, I. On the solutions of a quadratic integral equation of the Urysohn type of fractional variable order. Entropy 2022, 24, 886. [Google Scholar] [CrossRef]
- Garrappa, R.; Giusti, A.; Mainardi, F. Variable-order fractional calculus: A change of perspective. Commun. Nonlinear Sci. Numer. Simul. 2021, 102, 105904. [Google Scholar] [CrossRef]
- Odzijewicz, T.; Malinowska, A.B.; Torres, D.F.M. Fractional variational calculus of variable order. In Advances in Harmonic Analysis and Operator Theory, 1st ed.; Almeida, A., Castro, L., Speck, F.O., Eds.; Birkhäuser: Basel, Switzerland, 2013; Volume 229, pp. 291–301. [Google Scholar]
- Zhang, S.; Hu, L. The existence of solutions and generalized Lyapunov-type inequalities to boundary value problems of differential equations of variable order. AIMS Math. 2020, 5, 2923–2943. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, S.; Hu, L. Approximate solutions to initial value problem for differential equation of variable order. J. Fract. Calc. Appl. 2018, 9, 93–112. [Google Scholar]
- Ali, U.; Ahmad, H.; Abu-Zindah, H. Soliton solutions for nonlinear variable-order fractional Korteweg–de Vries (KdV) equation arising in shallow water waves. J. Ocean Eng. Sci. 2022. [Google Scholar] [CrossRef]
- Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review. Proc. R. Soc. A 2020, 476, 20190498. [Google Scholar] [CrossRef]
- Lu, X.; Li, H.; Chen, N. An indicator for the electrode aging of lithium-ion batteries using a fractional variable order model. Electrochim. Acta 2019, 299, 378–387. [Google Scholar] [CrossRef]
- Sun, H.G.; Chen, W.; Chen, Y.Q. Variable-order fractional differential operators in anomalous diffusion modeling. Physica A 2009, 388, 4586–4592. [Google Scholar] [CrossRef]
- Sweilam, N.H.; AL-Mekhlafi, S.M.; Alshomrani, A.S.; Baleanu, D. Comparative study for optimal control nonlinear variable-order fractional tumor model. Chaos Solitons Fract. 2020, 136, 1–10. [Google Scholar] [CrossRef]
- Zhuang, P.; Liu, F.; Anh, V.; Turner, I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 2009, 47, 1760–1781. [Google Scholar] [CrossRef]
- Obembe, A.D.; Hossain, M.E.; Abu-Khamsin, S.A. Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Petrol. Sci. Eng. 2017, 152, 391–405. [Google Scholar] [CrossRef]
- Diaz, G.; Coimbra, C.F.M. Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dynam. 2009, 56, 145–157. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, F.; Phanikumar, M.S.; Meerschaert, M.M. A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl. 2013, 66, 693–701. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Baleanu, D.; Souid, M.S.; Hakem, A.; Inc, M. Boundary value problem for nonlinear fractional differential equations of variable order via Kuratowski MNC technique. Adv. Differ. Equ. 2021, 365, 1–19. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Etemad, S.; Hakem, A.; Agarwal, P.; Rezapour, S.; Ntouyas, S.K.; Tariboon, J. Qualitative study on solutions of a Hadamard variable order boundary problem via the Ulam-Hyers-Rassias stability. Fractal Fract. 2021, 5, 108. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Karapinar, E.; Hakem, A. On the boundary value problems of Hadamard fractional differential equations of variable order. Math. Meth. Appl. Sci. 2022, 46, 3187–3203. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Sitthithakerngkiet, K.; Hakem, A. Implicit nonlinear fractional differential equations of variable order. Bound. Value Probl. 2021, 2021, 64. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Stamov, G.; Stamova, I. Multiterm impulsive Caputo–Hadamard type differential equations of fractional variable order. Axioms 2022, 11, 634. [Google Scholar] [CrossRef]
- Bouazza, Z.; Souid, M.S.; Hatira Günerhan, H. Multiterm boundary value problem of Caputo fractional differential equations of variable order. Adv. Differ. Equ. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Bouazza, Z.; Souid, M.S.; Etemad, S.; Kaabar, M.K.A. Darbo fixed point criterion on solutions of a Hadamard nonlinear variable order problem and Ulam-Hyers-Rassias stability. J. Funct. Spaces 2022, 2022, 1769359. [Google Scholar]
- Refice, A.; Souid, M.S.; Stamova, I. On the boundary value problems of Hadamard fractional differential equations of variable order via Kuratowski MNC technique. Mathematics 2021, 9, 1134. [Google Scholar] [CrossRef]
- Rezapour, S.; Souid, M.S.; Etemad, S.; Bouazza, Z.; Ntouyas, S.K.; Asawasamrit, S.; Tariboon, J. Mawhin continuation technique for a nonlinear BVP of variable order at resonance via piece-wise constant functions. Fractal Fract. 2021, 5, 216–230. [Google Scholar] [CrossRef]
- Zhang, S. Existence of solutions for two-point boundary-value problems with singular differential equations of variable order. Electron. J. Differ. Equ. 2013, 2013, 1–16. [Google Scholar]
- Kesavan, S. Functional Analysis, 1st ed.; Hindustan Book Agency: New Delhi, India, 2009; ISBN 978-93-86279-42-2. [Google Scholar]
- Alsaedi, A.; Ahmad, B.; Alghamdi, B.; Ntouyas, S.K. On a nonlinear system of Riemann–Liouville fractional differential equations with semi-coupled integro-multipoint boundary conditions. Open Math. 2021, 19, 760–772. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Graef, J.R.; Henderson, J. Implicit Fractional Differential and Integral Equations: Existence and Stability, 1st ed.; Walter de Gruyter: Berlin, Germany, 2018; ISBN 9783110553130. [Google Scholar]
- Benchohra, M.; Bouriah, S.; Nieto, J.J. Existence and Ulam stability for nonlinear implicit differential equations with Riemann–Liouville fractional derivative. Demonstr. Math. 2019, 52, 437–450. [Google Scholar] [CrossRef]
- Luca, R. On a system of Riemann–Liouville fractional differential equations with coupled nonlocal boundary conditions. Adv. Differ. Equ. 2021, 2021, 134. [Google Scholar] [CrossRef]
- Corduneanu, C. Principles of Differential and Integral Equations, 2nd ed.; AMS Chelsea Publishing: Providence, RI, USA, 2008; ISBN 978-0821846223. [Google Scholar]
t | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
0.23 | 0.72 | 1.6 | 3.1 | 5.15 | 7.7 | 10.5 | 13.32 | 15.9 | 18 | |
0.35 | 0.3 | 0.20 | 0.2 | 0.22 | 0.3 | 0.35 | 0.44 | 0.54 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelhamid, H.; Stamov, G.; Souid, M.S.; Stamova, I. New Results Achieved for Fractional Differential Equations with Riemann–Liouville Derivatives of Nonlinear Variable Order. Axioms 2023, 12, 895. https://doi.org/10.3390/axioms12090895
Abdelhamid H, Stamov G, Souid MS, Stamova I. New Results Achieved for Fractional Differential Equations with Riemann–Liouville Derivatives of Nonlinear Variable Order. Axioms. 2023; 12(9):895. https://doi.org/10.3390/axioms12090895
Chicago/Turabian StyleAbdelhamid, Hallouz, Gani Stamov, Mohammed Said Souid, and Ivanka Stamova. 2023. "New Results Achieved for Fractional Differential Equations with Riemann–Liouville Derivatives of Nonlinear Variable Order" Axioms 12, no. 9: 895. https://doi.org/10.3390/axioms12090895
APA StyleAbdelhamid, H., Stamov, G., Souid, M. S., & Stamova, I. (2023). New Results Achieved for Fractional Differential Equations with Riemann–Liouville Derivatives of Nonlinear Variable Order. Axioms, 12(9), 895. https://doi.org/10.3390/axioms12090895