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Abstract: Efficient logistics and transport at the port heavily relies on efficient AGV scheduling and
planning for container transshipment. This paper presents a comprehensive approach to address the
challenges in AGV path planning and coordination within the domain of intelligent transportation
systems. We propose an enhanced graph search method for constructing the global path of a
single AGV that mitigates the issues associated with paths closely aligned with obstacle corner
points. Moreover, a centralized global planning module is developed to facilitate planning and
scheduling. Each individual AGV establishes real-time communication with the upper layers to
accurately determine its position at complex intersections. By computing its priority sequence within
a coordination circle, the AGV effectively treats the high-priority trajectories of other vehicles as
dynamic obstacles for its local trajectory planning. The feasibility of trajectory information is ensured
by solving the online real-time Optimal Control Problem (OCP). In the trajectory planning process for
a single AGV, we incorporate a linear programming-based obstacle avoidance strategy. This strategy
transforms the obstacle avoidance optimization problem into trajectory planning constraints using
Karush-Kuhn-Tucker (KKT) conditions. Consequently, seamless and secure AGV movement within
the port environment is guaranteed. The global planning module encompasses a global regulatory
mechanism that provides each AGV with an initial feasible path. This approach not only facilitates
complexity decomposition for large-scale problems, but also maintains path feasibility through
continuous real-time communication with the upper layers during AGV travel. A key advantage of
our progressive solution lies in its flexibility and scalability. This approach readily accommodates
extensions based on the original problem and allows adjustments in the overall problem size in
response to varying port cargo throughput, all without requiring a complete system overhaul.

Keywords: port automation; cooperative control; port AGV planning; trajectory optimization;
KKT conditions

MSC: 46N10; 37N40; 13P25

1. Introduction

Ocean container transport plays a pivotal role in facilitating the global movement
of goods, with standardized container transport emerging as the predominant method
in modern ocean logistics. Modern ports have introduced a plethora of unmanned au-
tomated equipment, including automated cranes, unmanned container trucks (AGV),
and unmanned cranes. These innovations significantly enhance the efficiency of container
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loading and unloading processes while reducing labor costs, eliminating uncertainties
associated with human involvement in these operations. Automated terminal yard man-
agement systems, container tracking systems, and other technologies form the cornerstone
of port digitalization and intelligence. Nevertheless, the rapid unloading and transfer of
goods within confined areas, such as port terminals, pose significant challenges and act
as constraints on the swift turnaround of container ships. This often leads to extensive
queues of container ships waiting outside the port for unloading. In this paper, we delve
into the efficient transshipment of containers within ports to expedite the turnaround of
container ships. Our focus centers on two critical aspects: formulating an optimal global
path for individual AGVs and implementing a cooperative priority strategy for multi-
ple AGVs. To achieve optimal path planning, our approach harnesses augmented graph
search techniques to ensure that the generated paths maintain a safe distance from obstacle
corners. Notably, this approach eliminates the need for employing Voronoi diagrams
(as depicted in Figure 1, right), thereby reducing computational overhead. Furthermore, we
synchronize the sequence of AGVs entering the coordination zone with their proximity to
the destination point, enabling the determination of AGV priorities during local planning
within the complex region. This strategic framework proactively mitigates local deadlocks
and significantly enhances the overall efficiency of task completion.
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Figure 1. Illustration of the path generated by RRT* (left), where the red line represents the path
generated by the RRT* algorithm, while the blue lines represent the branches of the exploring random
tree. The red points indicate the random sampling points used in the algorithm, (right) Voronoi
Graph, the yellow lines represent the feasible edges generated by the Voronoi Graph, while the red
points indicate the obstacles in the environment.

1.1. Related Work

In the realm of single AGV or vehicle motion planning, the grid map serves as the
foundational planning space, given that the environment is known and the locations of
static obstacles, such as container yards, remain fixed. Graph search, a prevalent approach,
stands out for minimizing planning time and enhancing solution efficiency. A frequently
adopted strategy is the bi-level planning approach [1,2], wherein global path planning de-
termines the overarching motion direction, while local optimization refines specific motion
behaviors and tracking trajectories. Global path planning employs the A* algorithm [3],
grounded in heuristic functions. However, the paths generated by A* may occasionally
appear convoluted [4], and navigating around obstacle corners can prove challenging, as de-
picted in Figure 2. Consequently, post-processing techniques such as obstacle inflation [5]
or path smoothing might be requisite for this algorithm. A more sophisticated approach
is the Hybrid A* search algorithm [6], which integrates the robot’s kinematic attributes
into the A* algorithm, yielding smoother paths conducive to robot tracking through the
application of Reeds-Shepp (RS) curves. Nevertheless, it does not suitability for omnidirec-
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tional robots. In contrast, the Probabilistic Roadmap (PRM) algorithm [7] and the Rapidly
Exploring Random Tree (RRT) algorithm [8,9] represent sampling-based techniques adept
at sidestepping the complexity imposed by high-dimensional spaces, as demonstrated
in Figure 1 (left). Despite their merits, they are not devoid of limitations, including slug-
gish solution efficiency, paths characterized by multiple turning points, and challenges
in yielding optimal solutions. Path planning using polynomial curves [10], Bézier curves,
and spline curves [11] contributes to the attainment of smoother paths. Nevertheless,
these algorithms falter in autonomously identifying paths within unknown environments
from starting points. On extended paths, the concatenation of multiple curve segments
becomes requisite. As a result, polynomial curves, Bézier curves, and related techniques
predominantly find application in local path planning for robots. Beyond focusing on
paths in proximity to the globally designated trajectory, local path planning necessitates
accounting for dynamic obstacle avoidance and precise control of robot motion. To this
end, numerical optimization [12–14] proves valuable in generating control inputs directly
trackable by the robot, via the formulation of an objective function alongside constraints
anchored in robot kinematics and initial position. However, numerical optimization en-
tails substantial computational demand, rendering real-time execution for robot tracking
intricate. Furthermore, it mandates the administration of the robot’s motion through a
lower-level tracking algorithm. Moreover, several widely used local planning algorithms,
such as the Dynamic Window Approach (DWA) [15,16], come into play. Nevertheless,
DWA’s drawback lies in intricate parameter tuning, limited efficacy in dynamic obstacle
avoidance, and suboptimal path selection. The Time-Elastic Band (TEB) [17,18], by ma-
nipulating the path via the treatment of obstacles as external forces given a starting point,
yields viable paths. While it excels in dynamic obstacle avoidance, its solution efficiency is
compromised due to the necessity for hypergraph construction and graph optimization
tools like “g2o”. This, in turn, leads to fluctuation-prone control inputs, causing the robot’s
motion to become unstable. Furthermore, approaches like artificial potential fields [19,20]
and swarm intelligence-based algorithms, such as the ant colony algorithm (ACA) [21] and
particle swarm optimization (PSO) [22], find extensive employment. Nevertheless, these
methods are susceptible to local optima, and hard to find a more appropriate solution.

During the collaborative motion planning of multiple AGVs within a port terminal,
each individual AGV can be conceptualized as an independent entity. Examined through
this lens, the multi-AGV scheduling quandary can be reformulated into an integer plan-
ning problem [23]. However, with the escalation of problem magnitude, the emergence
of computational complexity escalation in intricate scenarios becomes a conspicuous chal-
lenge. In existing literature [24], the cooperative predicament faced by each vehicle within
conflict-prone zones is transformed into discrete scheduling quandaries, effectively par-
titioning the overarching complex problem. Although this simplification alleviates the
problem-solving complexity burden, it doesn’t inherently contribute to the enhancement of
the overall road network. Intelligent body planning [25,26], on the other hand, envisions
the terminal’s intelligent body strictly for the purpose of tracking tasks, without factoring
in the influence of the port AGV’s autonomous tracking. Moreover, this approach bypasses
the terminal’s decision-making and planning mechanisms. In analogous vein, certain
methodologies [27,28] approach the problem as a mixed-integer quadratic programming
quandary, invoking formation-based approaches and sequential quadratic programming.
Regrettably, these strategies are marred by suboptimal processing efficiency. Furthermore,
an alternative avenue involves employing reinforcement learning [29–31], swarm intel-
ligence algorithms [32–34], and game theory as planning mechanisms. However, these
approaches grapple with challenges such as intensive computation and marginal impact
on the overall solution effectiveness.

1.2. Our Contribution

In the context of global planning, our methodology capitalizes on an enhanced graph
search algorithm for the purpose of deriving globally feasible paths. Remarkably, we



Axioms 2023, 12, 900 4 of 20

incorporate a penalty mechanism for corner points of obstacles within the search path. This
strategic decision serves a dual purpose: first, it curbs the over-occupancy of the free space
beyond what can be achieved with conventional obstacle unfolding approaches. Second, it
guarantees that the path, while inherently shorter, maintains a significant separation from
the obstacles, effectively remaining close to the central region of the unobstructed space.
This judicious approach helps us circumvent the challenges posed by Voronoi paths [35]
established via the Voronoi diagram. This specific type of path tends to cling too closely to
obstacles, resulting in elongated trajectories, as portrayed in Figure 1 (right). In addition,
we introduce a preferential strategy predicated on the coordination circle. With this strategy,
distinct priority sequences are assigned to individual AGVs, ensuring both efficiency in
overall task completion in the presence of a large number of AGVs and mitigation of
deadlock scenarios within locally complex road conditions. This tactical approach serves to
optimize large-scale AGV operations while simultaneously addressing the complexities
posed by localized environments.

In AGV local planning, we obtain the trajectory information of the underlying tra-
jectory by simplifying the AGV model with Ackerman structure and planning the local
trajectory using a simple kinetic model. In the local planning of obstacle avoidance, we
adopted the method of obstacle avoidance based on the linear planning approach [36],
using the KKT condition, which converts the optimized obstacle avoidance conditions into
the constraints for trajectory optimization.

Figure 2. Illustration of the Path that generated by the A* algorithm (left) and Augmented Graph
Search (right). Where the blue star and red cross demonstrate the start and goal point, respectively.
and the black line (left) and the thin blue line (right) are the result of the A* algorithm, the red line
is the result of the enhanced graph search, and the black dots are the virtual obstacles added in the
enhanced graph search.

2. Problem Formulation

When orchestrating global path planning for the coordinated movement of multiple
AGVs within port transportation, the resulting trajectory must skillfully circumvent a
spectrum of obstacles. These encompass both static impediments like container yards and
dynamic hindrances including other AGVs and pedestrians. Simultaneously, the devised
path should endeavor to be the most direct route to the intended destination, all the while
ensuring minimal interaction among AGVs. This intricate interplay of factors necessitates
the attainment of a finely-balanced solution. Furthermore, the trajectory generated should
also prioritize smoothness, aiming to minimize abrupt maneuvers. Upon delving into the
lower echelons of local planning, it becomes imperative to factor in the specific kinematic
constraints inherent to each robot’s geometric attributes. This meticulous consideration
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aids in curbing tracking errors of the tracking unit, thus elevating the overall path tracking
precision. The conceptual underpinning of this paper is encapsulated in the schematic
delineated in Figure 3. And the defination of the model in our work is shown in Figure 4.

Figure 3. Illustration of Augmented Graph-search-based Motion Planning Framework.

Numerous methodologies have been put forth to facilitate seamless interaction be-
tween AGVs or vehicles and their surroundings. This interaction empowers them to discern
obstacles and other environmental intricacies, leading to insights into their operational
status. To exemplify, in the study by Zhu et al. [37], artificial intelligence techniques are
harnessed to discern environmental anomalies. Conversely, Zhang et al. [38] harness the
power of deep learning to prognosticate vehicle motion. In our study, we make the assump-
tion that interactions involving dynamical obstacles are confined to local knowledge rather
than spanning a global domain. In our proposed multi-AGV planning system for container
transfers in port terminals, unmanned operations play a crucial role. In standardized trans-
fer terminals, only AGVs are responsible for moving and transferring containers within
the terminals. Therefore, we do not need to extensively consider the impact of non-AGV
dynamic obstacles on the operations of these intelligent terminals. However, in our pro-
posed multi-AGV planning coordination system, we can solve the problem of dynamic
obstacle avoidance between non-AGVs, such as sudden appearance of pedestrians, animals,
vehicles, etc., by obtaining the pose and speed of dynamic obstacles, and using additional
prediction modules, these dynamic obstacles can be avoided easily through high-frequency
planning and control. From the perspective of the AGVs themselves, dynamic obstacles,
such as those detected by on-board lidar and visual cameras, can be effectively identified
and tracked. In addition, the position and motion of the robot model can be determined by
an array of sensors within the simulation environment. These encompass encoders, GPS
systems, and Inertial Measurement Units (IMU).

Figure 4. Illustration of pose variables of the Robot.
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2.1. Enhanced Graph Search

Here the green arrow donates the start point, the red arrow is the end point, the red
line is the path the generated by A*, the black pix represents the obstacles, and the light blue
area means the obstacle expansion space. In the A* algorithm, a heuristic function is used as
a guide for the search direction. By continuously updating the heuristic with the minimum
heuristic value, a feasible path can be found on a shorter path. However, by this kind of
approach, the path searched may appear to be close to obstacles, as shown in Figure 2 (left)
the blue circle and Figure 5. While the distance between the path and the obstacle can
be increased by expanding the obstacle, this approach also compresses the active space
further. Therefore, we propose penalizing the inflection point of the path obtained from
the A* algorithm. For example, we can increase its weight to make the inflection point
more difficult to search or add its position to the CloseList in the A* algorithm directly.
This approach can also produce paths away from obstacles, while ensuring shorter paths.
Furthermore, compared with Figure 2 (left), it can better solve the problem of avoiding
corner points of obstacles in graph search algorithms such as A*, as shown in Figure 2
(right). Based on the path obtained by the augmented graph search algorithm, we smooth
the original curve with a B-spline curve and smooth the path by adjusting the weights of
the B-spline curve to reduce the curvature at the critical points of the obstacle corners.

In Figure 2 (left) the blue star is the start point, the red cross means the end point,
the red rectangles are the obstacles, the black line represents the path that generated by the
A*, the light blue area donates the area that searched by A*, the light green area means the
edge that the A* algorithm search in the next. In Figure 2 (right) the black points represent
the penalized points, the blue line represents the original A* path, and the orange line
represents the path generated by the augmented graph search algorithm.

Figure 5. Illustration of the Path that generated by the A* algorithm in Rviz. Where the blue and red
arrow demonstrate the start and goal pose.

While paths obtained through graph searches ensure trajectories free from collisions,
the subsequent smoothing of these paths can inadvertently introduce new collision points,
as exemplified in Figure 6 (left). To address this concern, we propose an adaptive fitting
point approach, visually outlined in Figure 6 (right). In this innovative approach, we employ
an iterative progressive algorithm for each pair of contiguous fitting points. This algorithm
systematically identifies potential collision points along curves connecting these adjacent
fitting points. Our collision detection process is guided by the principles articulated
in references [39]. Should collisions be identified within the interval delimited by the
two fitting points [tj, tj+1], we strategically introduce a new fitting point precisely at the
midpoint of the original path spanning from tj to tj+1. Subsequently, we re-evaluate for
collisions. The inclusion of these supplementary fitting points is governed by the intrinsic
properties of the B-spline curves. It mainly affects the immediately adjacent path segments,
thus leaving the original collision-free path intact.
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Figure 6. Illustration that collision happens during the interval [tj,tj+1]. We add new fit point
tj′ ∈ [tj, tj+1], and modified spline is collision free in [tj,tj+1].

In motion planning, the lower level local path planning serves as a direct planning
module for the robot to make specific behavioral decisions. In the present work, the global
path provides constant guidance from the robot’s starting point to the end point, while
local planning is based on the global path and utilizes numerical optimization to derive
specific trajectory information. The motion control of robots is often limited to a particular
speed to ensure safety and avoid collisions between individual robots, while maintaining
the cost advantage of logistics. To this end, we use an Ackermann-structured robot cart
with front-wheel steering as our simulation model.

2.1.1. Mobile AGV Model

In AGV planning and control, the prevailing approaches often rely on simplified kine-
matic single-track models. In this context, we have harnessed the dynamical model inherent
to our simulations. It is important to note that opting for a more complex model, such as
a two-track dynamics model or a high-dimensional dynamics model, amplifies the com-
putational load associated with tracking and planning, thereby hindering real-time local
tracking optimization. In order to strike a balance between accuracy and computational ef-
ficiency, we have chosen to utilize a low-dimensional, simple dynamic model for our robot.
This model is derived from a variation of a reduced Lagrangian approach [40]. The visual
representation of our warehouse robot model is depicted in Figure 4. The configuration
space of this model is denoted as Q = SE(2) × S1 × S1, comprising local coordinates
q = [x, y, θ, φr, δ f ]. Here, [x, y, θ] represent the robot’s position and orientation, φr denotes
the rolling angle of the robot’s rear wheels, and δ f signifies the angle of the front wheel’s
steering. The vertical mass and inertia of the robot are denoted as m and Iz, while the
inertia of the rear wheel is designated as Ir. Our assumption posits that the robot is subject
to control inputs u = [τ, uσ], encompassing the torque τ applied to the rear wheel and the
front wheel’s steering angle uσ. The Lagrangian formulation that encapsulates the robot
model is formulated as follows:

L(q, q̇) =
1
2

(
m
(

ẋ2 + ẏ2
)
+ Iz θ̇2 + Irφ̇2

r

)
(1)

The nonholonomic constraints can be expressed as:

− sin θdx + cos θdy = 0

conθdx + sin θdy = rwdφr

dθ =
rw tan

(
δ f

)
l

dφr

(2)
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where l is the wheelbase of the model, the rw is the radius of the robot’s wheel.
The Lagrangian (2) and it’s nonholonomic constraints (3) are invariant, the continuous

equations of the robot model can be expressed as fellows:

ẋ = rw cos θφ̇r

ẏ = rw sin θφ̇r

θ̇ =
rwσ

l
dφr(

Ir + mr2
w +

Izσ2r2
w

l2

)
u̇φr = τ − 2Izr2

wσσ̇φ̇r

l2

σ̇ = uσ

(3)

where the σ = tan δ f , and the value of Ir is too small, which can be ignored in practice.

2.1.2. Obstacle Avoidance

In the optimization process of local trajectory generation, it is important to consider,
among other things, obstacle avoidance for dynamic obstacles. Common collision detection
algorithms such as the Gilbert-Johnson-Keerthi (GJK) algorithm [41], Expanding Polytope
Algorithm (EPA) algorithm [42], and area method have limitations such as nonlinearity and
nonfineness, making it difficult to achieve optimal results in the numerical optimization
process. This presents an obstacle to the solution of nonlinear programming. To address this,
we use a linear programming-based collision-free avoidance constraint, which is integrated
into the lower-level optimization model using Karush-Kuhn-Tucker (KKT) conditions [43].

We assume that the warehouse robot, obstacles, etc., can be enclosed by a convex
polygon border, as shown in Figure 7. For two convex polygons M = [m1, . . . , mtm]

and N = [n1, . . . , ntn], where{mi}tm
i=1 and

{
nj
}tn

j=1 are the vertices of the convex polygons
M and N , respectively. The collision-free property of arbitrary convex polygons can be
constructed as follows:

J(M,N ) = min
p+2

∑
k=1
Zk

s.t. MA−N B +Z = 0
tm

∑
i=1

ai +Zp+1 = 1

tn

∑
j=1

bj +Zp+2 = 1

ai > 0, bj > 0, zp > 0

(4)

where ai ∈ A, bi ∈ B.
Especially,

J > 0⇐⇒M∩N = � (5)

When the origin of the coordinate system is insideM(O ∈ M), the Equation (2) can
be simplified as fellows,

J(M,N ) = min 1 + εT P

s.t. QP = T , 1 + εT P > 0

P > 0

(6)

where Q =

[
M N
1 0

]
, T =

[
0
1

]
, P =

[
A
B

]
, ε =

[
0 −1

]
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WhereM and N are each composed of multiple convex polyhedra, the non-touch
constraint is presented as follows:

J = min
Ai∈A,Bj∈B

J
(

Ai, Bj
)
> γ > 0 (7)

where A = {A1, A2, · · · Au}, B = {B1, B2, · · · Bv}, and γ is the relaxation factor. Figure 7
shows an example of two convex polygons: rectangle M and rectangle N that are
collision-free.

Equation (2) or (4) serves as a constraint in local planning and is presented in an
optimal form. In order to integrate it into higher level optimization, the KKT optimally
conditions are applied. However, the optimal problem with KKT conditions is difficult to
solve, as the strict equation constraints often lead to infeasible or local optimal points.

To improve the efficiency of optimization, the KKT conditions are combined with a
relaxation condition [44] and an equilibrium is applied. The Equation (4) with the relaxation
KKT condition can be expressed as follows:∥∥∥−ε− κ +QTλ

∥∥∥ 6 √ε

κTP 6 ε
(8)

where the κ and λ are the Lagrange multipliers, the ε is the margin parameter.

Figure 7. Illustration of collision avoidance of two convex polygonsM and N .

2.1.3. Numerical Method

When tracking the route provided by global planning, the local planner must provide
a feasible trajectory from the local initial position to the local terminal position based on
the global path. In the continuous-time domain, the objective function comprises two
parts—Mayer type and Lagrange type [45]. In this paper, we do not consider the effect of
the final state position and orientation on the objective function. Instead, we incorporate
the soft constraint in the form of weight values to limit it in the objective function. We
formulate the objective function using a time-optimal integration of the acceleration in
the continuous-time domain. Thus, the local programming problem can be formulated
as follows:

min
t,q(t),u(t)

ω1t f + ω2r
(

q(t0), q
(

t f

))
+ ω3

∫ t f

t0

g(u(t))dt

subjectto


q̇(t) = f (t, q(t), u(t))J (q(t)) < 0
J (q(t)) < 0
S(t0, q(t0)) = 0
ql 6 q(t) 6 qu

ul 6 u(t) 6 uu

(9)

Here, {ωi}3
i=1 are the weighting factors, and r(·) is the error function of the end-state

and global path. The function g(·) represents the amount of change of the control quantity,
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while the first constraint represents the system kinematics constraints. The second denotes
the collision-free constraint, and thrid represents the initial restrictions of the system.
Additionally, the last two constraints are the state and control limits of the system.

The above NLP problems can be solved using various software, such as CasADi [46]
and CppAD [47], which are based on nonlinear programming solvers such as IPOPT [48]
and SNOPT [49].

In this study, we have adopted the multiple shooting method [50] as the primary
approach to tackle the optimal control problem. This technique revolves around finding a
problem at a particular time point, effectively splitting the time span into a large number of
smaller intervals. Within each of these intervals, both state and control variables are treated
as independent free entities. This transforms the system of ordinary differential equations
(ODE) into a substantial nonlinear equation system, which can subsequently be addressed
using a nonlinear planning solver. To ensure continuity between state trajectories, matching
constraints are introduced. The continuity of the state variables is refined meticulously
by successive iterations of the algorithm. This iterative process is instrumental in driving
the objective function towards its optimal value. It is essential to acknowledge that the
accuracy of the solution of the problem is profoundly affected by the chosen size of the
solution interval. While a smaller interval may enhance the accuracy of the solution,
it may also escalate the complexity associated with solving the problem. Striking the
right balance between solution accuracy and computational complexity is crucial when
employing this approach.

3. Single AGV Simulation

In this part, we utilized numerical simulations to evaluate the performance of the
single local planner. The objective function and its constraints are shown in Equation (6),
and the model parameters are presented in Table 1. The local trajectory optimization
problems are solved using open-source software CasADi with the nonlinear programming
solver IPOPT on Ubuntu 20.04. Additionally, we present experiments in the simulation
environment Gazebo under ROS.

Table 1. Parameters of Simulation Model.

Symbol Description Value Unit

l wheelbase 0.65 m
r wheel radium 0.330 m

lw axle track 0.605 m
m weight 70 kg

vmax max speed 1.5 m/s
Rmax minimum turning radius 1.6 m

Iz moment of inertia in Z axis 51.64 kg ·m2

3.1. Numerical Simulation

In Figure 8, the initial and terminal poses of the warehouse robot model is
[x0, y0, θ0] = [−5, 1.05, 0] and [x f , y f , θ f ] = [5, 1.05, 0]. The obstacle is a rectangle, which
is formed by (−2,−2), (2,−2), (2, 2), (−2, 2). In Figure 9, the initial and terminal poses of
the model is [x0, y0, θ0] = [−5, 1.25, 0] and [x f , y f , θ f ] = [5, 1.25, 0], the obstacle is a circle,
which radius is

√
2, the center is (0, 0). Two scenarios involving obstacle avoidance are

simulated numerically: rectangular and circular obstacle avoidance with the J-function
ensuring collision-free trajectories. The details are presented below:

In Figure 10, the above figures show the states and control values changing with time
t, avoid rectangle obstacle shown in Figure 8 and circle obstacle shown in Figure 9 are
presented in Figure 10a,b. Here, θ, uσ, σ use the left ordinate and τ uses the right ordinate.

The algorithm governing local planning is outlined in Algorithm 1. The local planner
for a singular AGV embarked on an integrated loop, meticulously traversing each step
of the local planning process. The sequence commences with the publication of the pose
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information for each AGV to the central coordinate (i.e., the global planner). Subsequently,
the algorithm evaluates whether the AGV in question is entering the local coordination
circle. This is accomplished by monitoring the INCircle signal. If the AGV enters the local
coordination circle, the local planner calculates its priority within the circle. In addition, it
acquires trajectory points pertaining to AGVs with higher priority and includes them as
obstacles within its own local trajectory planning. In the subsequent phase, the algorithm
orchestrates the derivation of the local trajectory for the current AGV by solving an Optimal
Control Problem (OCP). Once the local trajectory is acquired, the control signal is dispatched
to the AGV and the trajectory of the current AGV is added to the Path pool. This marks
the conclusion of the current iteration, and the algorithm proceeds to update the pose
and weight (weig) of the current AGV before embarking on the subsequent loop iteration.
This cyclic process continues iteratively, with each AGV undergoing the same sequence
of operations. The algorithm thus facilitates the seamless coordination of AGVs within
the local environment, ensuring dynamic adaptation and adherence to priority-based
trajectory planning.

Figure 8. Illustration of numerical simulation of obstacle avoidance using J-function under rectangu-
lar obstacle.

Figure 9. Illustration of numerical simulation of obstacle avoidance using J-function under
circle obstacles.
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(a) (b)
Figure 10. Variation curve of heading angle θ with time s with J obstacle avoidance. (a) Rectangle
collision avoidance. (b) Circle collision avoidance.

Algorithm 1: Single AGV local planning
Data: AGV position pose, signal of whether in coordination circle InCircle, vehicle

and environments constraints c, global path of ith AGV pg,i (where g

represent the global, i denote the number of AGVs.), grid-based map FG ,
function to get the sequence of other AGVs in the coordination circle fobs(·),
function of getting obstacles position by Oseq fgetobs(·), function of getting
the local trajectory fOCP(·)

Result: Trajectory Tl
1 while True do
2 Publish pose and weig to Center
3 if InCircle then
4 porder ← Pri

(
pg,i
)

; // get the order of priority in current AGV.
5 Oseq ← fobs

(
porder, pose,FG

)
; // get other AGV number in Circle.

6 Obs← fgetobs
(
Oseq, pose,FG

)
; // get obstacles position.

7 end
8 Tl ← fOCP

(
pose, pg,i, obs,FG , c

)
; // get the tracking trajectory by

solving OCP.
9 AGV ← Cunit(Tl) ; // Control AGV movement by control unit.

10 Path Pool ← Tl ;
11 Update pose and weig;
12 sleep();
13 end

// Algorithm ends here

3.2. Single AGV Gazebo Simulation

We conducted further experiments in the Gazebo simulation environment, utilizing
both the global and local planners. The overall process is shown in Figure 11, while the
tracking trajectories and global planning paths are displayed in Figure 12.
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Figure 11. Simulation in S and L environments was conducted under Gazebo. The static obstacle is a
wall, and cuboids and spheres were randomly added as dynamic obstacles.

Figure 12. Simulation in S and L environments using Rviz, where the green lines represent the global
paths and the red lines represent the actual tracking trajectories produced by the warehouse model.

4. Multi AGVs Global Planning

During the port container transportation, we use the single AGV local planning
Algorithm 1 as a local planner for multi-AGV cooperative planning and control in the
port, and by using the global cooperative control central, the AGVs at the intersection are
processed in a synchronous and coordinated manner. The algorithm details are shown in
Algorithm 2.

In the initial phase, the global planner performs an exhaustive evaluation of all AGVs
along with their respective starting points. Subsequently, an initial global path denoted
as Pinit is allocated to each AGV through graph-based searching. Building upon this
foundation, a static obstacle-avoidant path P is derived via Enhanced graph searching,
ensuring its deviation from obstacle corners. Finally, the acquired path P undergoes
smoothing through B-spline curve techniques, resulting in a more refined trajectory. Once
all port AGVs initiate motion, cyclic position detection is performed for each AGV. This
process determines whether or not an AGV enters the coordination circle. After the
circle entry, the AGV priority is established based on their individual weight coefficients,
corresponding to their order of circle entry. This information informs the update of the
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global path details associated with each AGV. In the context of this study, the priority
calculation adheres to the following approach:

ω = c1Order + c2weig (10)

where ω is the final evaluation value for prioritization by the coordination circle, Order and
weig are the values of the order of entering the coordination circle and the distance of this
AGV from the end point, respectively, and c1 and c2 correspond to their weight coefficients.

The path sorting function fo,order(·) operates by ranking in descending order based
on the ω value. This strategy, even when disregarding the order of circle entry, plays a
crucial role in handling the intersection of trajectories between any two AGVs. If a situation
arises where the planned trajectories of two AGVs intersect, the AGV further away from its
destination is given higher priority. As a result, it is given precedence in its local planning
phase. Moreover, its projected trajectory points are incorporated as dynamic obstacle data
in the planning process of the AGV with lower priority. This strategic integration not
only enhances the overall mission efficiency, but also guarantees the successful mission
completion of AGVs. In addition, this prioritization strategy safeguards against potential
deadlocks at intricate intersections among multiple AGVs. Moreover, the inclusion of
the Order component from circle entry (Orderi) in Equation (10) effectively reduces the
time individual AGVs spend within the circle, subsequently curtailing time overhead at
complex intersections.

Besides, we designed two scenarios to demonstrate the global coordinate center algo-
rithm. All simulations are constructed in ROS with Rviz, record the simulation information
and replay in Matlab, the details are follows.

Algorithm 2: Global coordinate circle center

Data: The number of AGV N, grid-based map FG , initial and goal position P∗,s,
P∗,g, AGVs’ position pose, Path weight weig, graph search function GF (·),
Enhanced graph search function G∗F (·), B-spline function SB(·), function of
judging whether AGV in coordinate circle fdispatch(·), path sorting function
fo,order(·).

Result: Sequence of path S.
1 for i← 0 to N do
2 Pinit ← GF

(
FG , P∗,s, P∗,g

)
; // Get Enhanced global path.

3 P← G∗F
(

Pinit,FG , P∗,s, P∗,g
)

; // Get initial global path by graph
search.

4 Pg ← SB(Si)
5 S← Si
6 end
7 while True do

// Cyclic detection of each AGV.
8 for i← 0 to N do
9 Circlei ← fdispatch

(
posei,FG ,

)
; // Judge whether current AGV in

coordinate circle.
10 if Circlei then
11 prio ← fp,order

(
posei,FG , weig

)
; // Get priority of current AGV.

12 Update S;
13 end
14 end
15 end
16 Pathpool ← S

// Algorithm ends here.
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4.1. Port Overview Scenes

The Overview of the port is shown in Figure 13, And the trajectories that all the AGVs
tracking are shown in Figure 14. Where the green dots are the start points of AGV, the light
brown points demonstrate the current position of AGVs and the red dots represent the
goal position.

Figure 13. Port overview scenes. Where the black block demonstrate the container yard, the shadow
blue circle is the coordinate circle, the dark blue block represents the container ship berth, the gap in
the upper right corner is the exit from the port area.

Figure 14. Multi AGVs coordinate transportation in port scenes.

During the intra-port transportation, we evaluate the performance of our proposed
method, the comparison of our method and group coupled method is shown in Figure 15a.
While the coupled approach will compute all the exercisable trajectories before the AGV
tracks them, our proposed approach can start the action with an initial feasible solution and
move closer to the optimal solution in a continuous motion without additional time waiting
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for the computation. The total global calculation time and Enhanced graph searched time
are shown in Figure 15b.

(a) (b)
Figure 15. Comparison of our proposed method and coupled method [51] and the total time in
global planning. (a) Comparison of our method and coupled method. (b) Total planning and
Enhanced graph search time.

We work to bring these paths closer to global optimality through the combined efforts
of the local trajectory planner, controller, and coordination circle during the travel process.
In [51], any addition or removal of an intelligent AGV body necessitates considering
teaming and overall problem scheduling. Moreover, any change in the scenario requires
reconfiguring the problem. In contrast, the semi-decoupled approach we have adopted can
quickly adapt to changes in the number of AGVs and can be readily deployed in various
environments, offering flexibility and efficiency.

4.2. Local Intersections Scenes

During the double intersections scenes that shown in Figure 16, five different port AGV
vehicles entered the inner part of the coordinate circle below at the same time, and through
the algorithms we employed above, the AGVs were given different planning priorities,
allowing for smooth and trouble-free passage even in complex traffic environments.
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Figure 16. Multi AGVs coordinate transportation in double intersections scenes.

5. Conclusions and Future Work

In this work, our primary focus is on addressing the challenge of fast container move-
ment within an intelligent port terminal. The goal is to increase the efficiency of container
loading and unloading, ultimately leading to faster turnaround times for container ships.
We achieve this by carefully planning the efficient flow of AGV vehicles within the port
terminals through a combination of fast global planning for multiple AGV systems, local
planning at the onboard terminals, and the introduction of a coordination circle. To over-
come the inherent challenges associated with graph search paths that are too close to
obstacles, we introduce a novel enhanced graph search approach within the global motion
planning framework. This approach involves imposing a penalty or treating corner points
as obstacles, effectively allowing us to avoid these issues and ignore basic graph search
paths that might lead too close to obstacles. We anchor our approach in the A* search
algorithm or other graph search algorithms, ensuring enhanced spirituality in path lengths.
In addition, we incorporate the concept of a global planning-based coordination circle into
our methodology. This approach greatly simplifies AGV navigation within complex traffic
junctions by prioritizing movement within the coordination zone. In the context of local
planning, we expedite the derivation of feasible tracking trajectories by quickly solving
nonlinear programming (NLP) problems through a linear programming-based obstacle
avoidance technique. Our simulation experiments that combine global planning-based
coordination with local planning demonstrate robust performance in intra-port transporta-
tion scenarios. We also incorporate a global planning module with global regulation to
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provide AGVs with initial feasible paths. This module consistently offers local planning
solutions by continuously solving Optimal Control Problems (OCP) during AGV travel.
Real-time communication between the global planning module and AGVs allows for dy-
namic prioritization at complex traffic junctions. This prioritization takes into account the
proximity to the destination and the order of entry into the coordination zone, effectively
reducing the likelihood of deadlock scenarios and ensuring overall efficiency in container
transport operations within the port environment. In our future work, we plan to apply
multi-AGV systems in real-world ports and factories and consider the impact of forked
devices [52] on the planning and control of AGV carriers during various maneuvering
operations, such as high-speed travel. In addition, we aim to develop accurate models for
vehicle maneuver stability to better meet the practical needs of plant and industrial settings.
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