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Abstract: In this study, we obtained results for the computation of eigen-pairs, singular value decom-
position, pseudoinverse, and the least squares problem for elliptic quaternion matrices. Moreover,
we established algorithms based on these results and provided illustrative numerical experiments to
substantiate the accuracy of our conclusions. In the experiments, it was observed that the p-value in
the algebra of elliptic quaternions directly affects the performance of the problem under consideration.
Selecting the optimal p-value for problem-solving and the elliptic behavior of many physical systems
make this number system advantageous in applied sciences.
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1. Introduction

Eigenvalues and eigenvectors, singular value decomposition, the pseudoinverse, and
the least squares solution form the foundational pillars of matrix theory, with significant
applications in diverse fields such as theoretical and computational mathematics, image
and signal processing, principal component analysis, data compression, machine learning,
deep learning, etc. For example, Israel and Greville comprehensively treated eigenvalues,
eigenvectors, singular value decomposition, the pseudoinverse, and the least squares so-
lution. The book explores the interconnections between these concepts, presenting both
their underlying theories and practical applications across various fields [1]. Samar et al.
presented a K-weighted pseudoinverse and gave results for condition numbers for the
solution of the least squares problem with equality constraint [2]. Samar et al. explored
the conditioning theory of the ML-weighted least squares and ML-weighted pseudoin-
verse problems [3]. Simsek focused on obtaining least-squares solutions for generalized
Sylvester-type quaternion matrix equations using pseudoinverses and applied these solu-
tions to color image restoration processes [4]. Dian et al. presented a novel hyperspectral
image and multispectral image fusion method based on the subspace representation and
convolutional neural network denoiser. They obtained the subspaces via singular value
decomposition of a high-resolution hyperspectral image [5]. Hashemipour et al. proposed a
new lossy data compression framework centered on optimal singular value decomposition
for big data compression [6]. Wang and Zhu focused on the implementation of data re-
duction algorithms in machine learning by using eigenvalues-eigenvectors, singular value
decomposition, and principal component analysis [7].

These mathematical concepts not only form the basis of numerous applications but
also extend to n-dimensional hypercomplex number systems. There is a generalization
involving 2-dimensional hypercomplex numbers [8]. The following is the definition of
these numbers, known as generalized complex numbers:

q(g) = q(g),r + q(g),ii,
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where q(g),r, q(g),i ∈ R, i ̸∈ R and i2 = p (p ∈ R). Generalized Segre quaternions are
generalized complex numbers extended to 4 dimensions. Generalized Segre quaternions
are defined as follows:

q(GS) = q(GS),r + q(GS),ii + q(GS),j j + q(GS),kk,

where q(GS),r, q(GS),i, q(GS),j, q(GS),k ∈ R, i, j, k /∈ R. The multiplication rules for units i, j
and k are given below:

i2 = k2 = p, j2 = 1, ij = ji = k, jk = kj = i, ki = ik = pj, p ∈ R.

Based on the value of p, generalized complex numbers and Segre quaternions are
classified into three categories: they are referred to as hyperbolic complex numbers and
hyperbolic quaternions when p > 0, parabolic complex numbers and parabolic quaternions
when p = 0, and elliptic complex numbers and elliptic quaternions when p < 0, [8,9].
Each number system has various scientific and technological applications. For example,
some problemsin non-Euclidean geometries can be solved by hyperbolic complex numbers
and hyperbolic quaternions [10]. In domains like robotic control and spatial mechanics,
parabolic complex (dual) numbers and parabolic quaternions are employed [11]. On the
other hand, as numerous physical systems demonstrate elliptical behavior, the practical
applications of elliptic complex numbers and elliptic quaternions in applied science are
noteworthy. One of the examples is that, Ozdemir defined elliptic quaternions (non-
commutative) and generated an elliptical rotation matrix for the motion of a point on an
ellipse through some angle about a vector using those quaternions [12]. Dundar et al.
studied elliptical harmonic motion, which is the superposition of two simple harmonic
motions in perpendicular directions with the same angular frequency and phase difference
of π

2 using elliptic complex numbers [13]. Derin and Gungor proposed the generalization
of gravity, including the Proca-type and gravitomagnetic monopole by means of elliptic
biquaternions [14]. Catoni et al. introduced algebraic properties and the differential
conditions of elliptic quaternionic systems [9]. Additionally, Catoni et al. studied the
constant curvature spaces associated with the geometry generated by elliptic quaternions.
They formulated geodesic equations within the context of Riemann geometry [15]. Gua
et al. defined the elliptic quaternionic canonical transform and investigated Parseval’s
theorem with the help of this transform [16]. Yuan et al. obtained the Hermitian solutions
of the elliptic quaternion matrix equation (AXB, CXD) = (E, G) [17]. Tosun and Kosal
characterized the existence of the solution to Sylvester s-conjugate elliptic quaternion matrix
equations. They obtained the solution explicitly using a real representation of an elliptic
quaternion matrix [18]. Gai and Huang developed a new convolutional neural network
with elliptic quaternion values. They conducted extensive experiments on colour image
classification and colour image denoising to evaluate the performance of the proposed
convolutional neural network [19]. Guo et al. studied the problem of solutions to Maxwell’s
equations of elliptic quaternions using a real representation of elliptic quaternion matrices
[20]. Atali et al. obtained the elliptic quaternionic least-squares solution with the minimum
norm of the elliptic quaternion matrix equation AX = B. Furthermore, leveraging the
insights derived from their theories, they developed a novel color image restoration model
known as the elliptical quaternionic least squares restoration filter [21].

As observed, the elliptic quaternions and their matrices find numerous practical ap-
plications in various branches of applied sciences. Thus, further study of the theoretical
properties and numerical computations of elliptic quaternions and their matrices is becom-
ing increasingly necessary. In this regard, we derive outcomes concerning the computation
of eigen-pairs, singular value decomposition, pseudoinverse, and least squares solutions
with the minimum norm for elliptic quaternion matrices. Additionally, algorithms are
formulated based on these results, accompanied by illustrative numerical experiments to
validate our findings’ precision empirically. Within the context of this paper, the following
notations are employed. Let R, C, Cp, and Hp denote the sets of real numbers, complex
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numbers, elliptic complex numbers, and elliptic quaternions, respectively. Rm×n, Cm×n,
Cm×n

p , and Hm×n
p denote the set of all m × n matrices on R, C, Cp and Hp, respectively.

Throughout the study, we will also denote elliptic complex numbers as EC numbers and
elliptic quaternions as EQs for short. Also, we use the following notations: q(□) represents
a complex number when □ = c, an EC number when □ = e, and an EQ when □ = E.
Similarly, Q(□) denotes a complex matrix when □ = c, an EC matrix when □ = e, and an
EQ matrix when □ = E.

2. Preliminaries

In this section, some basic algebraic properties and notations for EC numbers and EQs
are given. This section provides the basis for further operations, which are discussedin the
following sections.

An EC number q(e) is denoted by q(e) = q(e),r + q(e),ii, where i2 = p < 0 and

q(e),r, q(e),i, p ∈ R. The real and imaginary parts of q(e) are denoted by Re
(

q(e)
)
= q(e),r

and Im
(

q(e)
)
= q(e),i, respectively. The conjugate and norm of q(e) ∈ Cp are defined as

q(e) = q(e),r − q(e),ii and
∥∥∥q(e)

∥∥∥
p
=

√
q2
(e),r − pq2

(e),i, respectively [22]. The multiplication of

two EC numbers q1,(e) = q1,(e),r + q1,(e),ii and q2,(e) = q2,(e),r + q2,(e),ii is defined as

q1,(e)q2,(e) =
(

q1,(e),rq2,(e),r + pq1,(e),iq2,(e),i

)
+ i

(
q1,(e),rq2,(e),i + q2,(e),rq1,(e),i

)
.

An EC matrix Q(e) is denoted as Q(e) = Q(e),r + Q(e),ii, where i2 = p < 0, p ∈ R,
and Q(e),r, Q(e),i ∈ Rm×n. The conjugate, transpose, conjugate transpose and Frobenius
norm of Q(e) ∈ Cm×n

p are defined by Q(e) = Q(e),r − Q(e),ii, QT
(e) = QT

(e),r + QT
(e),ii, Q∗

(e) =

QT
(e),r − QT

(e),ii, and ∥Q(e)∥p =
√
∥Q(e),r∥2 − p∥Q(e),i∥2, respectively. The multiplication of

two EC matrices Q1,(e) = Q1,(e),r + Q1,(e),ii and Q2,(e) = Q2,(e),r + Q2,(e),ii is defined as

Q1,(e)Q2,(e) =
(

Q1,(e),rQ2,(e),r + pQ1,(e),iQ2,(e),i

)
+ i

(
Q1,(e),rQ2,(e),i + Q2,(e),rQ1,(e),i

)
.

There exists an isomorphism between EC matrices and complex matrices, as depicted
in the following:

Hp : Cm×n
p → Cm×n

Q(e) = Q(e),r + Q(e),ii → Hp

(
Q(e)

)
= Q(c) = Q(e),r + I

√−pQ(e),i,

where I represents the complex unit (I2 = −1). Some algebraic operations of this isomor-
phism are listed below, where Q(e),1 and Q(e),2 are EC matrices of appropriate sizes:

(a) Hp

(
Q(e),1Q(e),2

)
= Hp

(
Q(e),1

)
Hp

(
Q(e),2

)
,

(b)
(

Hp

(
Q(e),1

))T
= Hp

(
QT

(e),1

)
,

(c)
(

Hp

(
Q(e),1

))∗
= Hp

(
Q∗

(e),1

)
,

(d)
(

Hp

(
Q(e),1

))
= Hp

(
Q(e),1

)
.

Many algebraic properties of EC numbers (or matrices) can be derived from their
corresponding complex counterparts using this isomorphism [8,23].

An EQ q(E) is denoted as q(E) = q(E),r + q(E),ii+ q(E),j j+ q(E),kk, where i2 = k2 = p < 0,
j2 = 1, ij = ji = k, jk = kj = i, ki = ik = pj, and q(E),r, q(E),i, q(E),j, q(E),k, p ∈ R [9,22]. An
EQ q(E) is denoted in the forms:

q(E) =
(

q(E),r + iq(E),i

)
+

(
q(E),j + iq(E),k

)
j = q(e),1e1 + q(e),2e2,
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where

q(e),1 =
(

q(E),r + q(E),j

)
+

(
q(E),i + q(E),k

)
i

and
q(e),2 =

(
q(E),r − q(E),j

)
+

(
q(E),i − q(E),k

)
i,

are EC numbers and e1 = 1+j
2 , e2 = 1−j

2 . Clearly, e1e2 = 0, e1 + e2 = 1, e2
1 = e1 and

e2
2 = e2. As a result, e1 and e2 are disjoint idempotent units. The multiplication of two EQs

q1,(E) = q1,(e),1e1 + q1,(e),2e2 and q2,(E) = q2,(e),1e1 + q2,(e),2e2 is defined by

q1,(E)q2,(E) =
(

q1,(e),1q2,(e),1

)
e1 +

(
q1,(e),2q2,(e),2

)
e2.

The conjugate and norm of the EQ q(E) = q(e),1e1 + q(e),2e2 are defined by

q(E) = q(e),1e1 + q(e),2e2 and
∥∥∥q(E)

∥∥∥
p
= 1√

2

√(∥∥∥q(e),1
∥∥∥2

p
+

∥∥∥q(e),2
∥∥∥2

p

)
, respectively.

An EQ matrix Q(E) is represented as

Q(E) = Q(E),r + Q(E),ii + Q(E),j j + Q(E),kk =
(

Q(E),r + Q(E),ii
)
+ j

(
Q(E),j + Q(E),ki

)
= Q(e),1e1 + Q(e),2e2,

(1)

where
Q(e),1 =

(
Q(E),r + Q(E),j

)
+

(
Q(E),i + Q(E),k

)
i

and
Q(e),2 =

(
Q(E),r − Q(E),j

)
+

(
Q(E),i − Q(E),k

)
i

are EC matrices and Q(E),r, Q(E),i, Q(E),j, Q(E),k ∈ Rm×n [18,21]. The multiplication of two
EQ matrices Q1,(E) = Q1,(e),1e1 + Q1,(e),2e2 and Q2,(E) = Q2,(e),1e1 + Q2,(e),2e2 is defined by

Q1,(E)Q2,(E) =
(

Q1,(e),1Q2,(e),1

)
e1 +

(
Q1,(e),2Q2,(e),2

)
e2.

The conjugate, transpose, conjugate transpose, and Frobenius norm of EQ matrix
Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hm×n

p are defined by Q(E) = Q(e),1e1 + Q(e),2e2, QT
(E) =

QT
(e),1e1 + QT

(e),2e2, Q∗
(E) = QT

(e),1e1 + QT
(e),2e2 and

∥∥∥Q(E)

∥∥∥
p
= 1√

2

√(∥∥∥Q(e),1

∥∥∥2

p
+

∥∥∥Q(e),2

∥∥∥2

p

)
.

3. Eigenvalues and Eigenvectors, Singular Value Decomposition, Pseudoinverse, and
Least Squares Problem for EQ Matrices

In the ensuing discourse, we delineate a series of lemmas pivotal for the computation
of eigen-pairs, singular value decomposition, pseudoinverse, and the resolution of the
least squares problem specifically tailored for EC matrices. Subsequently, leveraging these
foundational lemmas, we derive the pertinent theoretical framework associated with elliptic
quaternion matrices.

3.1. EC Matrices

Lemma 1. A polynomial function of degree N with EC number coefficients presented by

fp(x(e)) = xN
(e) + q(e),N−1xN−1

(e) + . . . + q(e),1x(e) + q(e),0

has exactly N zeros in the set of EC numbers.

Proof. Let
fp(x(e)) = xN

(e) + q(e),N−1xN−1
(e) + . . . + q(e),1x(e) + q(e),0
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be a polynomial of degree N with EC coefficients and values. Its complex representation is
as follows:

Hp

(
fp(x(e))

)
= Hp

(
x(e)

)N
+ Hp

(
q(e),N−1

)
Hp

(
x(e)

)N−1
+ . . . + Hp

(
q(e),1

)
Hp

(
x(e)

)
+ Hp

(
q(e),0

)
.

Since this representation is a polynomial of degree N with complex coefficients and
values, the fundamental theorem of algebra tells us that it has exactly N roots. Suppose that
the complex number x(c) = x(c),r + x(c),i I is a root of the polynomial Hp

(
fp(x(e))

)
. Then,

we have:

Hp

(
fp(x(e))

)
=

(
x(c)

)N
+ Hp

(
q(e),N−1

)(
x(c)

)N−1
+ . . . + Hp

(
q(e),1

)(
x(c)

)
+ Hp

(
q(e),0

)
= 0.

Applying the inverse of the isomorphism Hp to both sides of the above equation,
we get:

fp(x(e)) = H−1
p

(
x(c)

)N
+ q(e),N−1H−1

p

(
x(c)

)N−1
+ . . . + q(e),1H−1

p

(
x(c)

)
+ q(e),0.

This simplifies to:

fp(x(e)) =
(

x(c),r +
i√−p

x(c),i

)N

+ q(e),N−1

(
x(c),r +

i√−p
x(c),i

)N−1

+ . . . + q(e),1

(
x(c),r +

i√−p
x(c),i

)
+ q(e),0 = 0.

Therefore, if x(c) = x(c),r + x(c),i I is a root of the polynomial Hp

(
fp(x(e))

)
, then the

EC number x(e) = x(c),r +
i√−p x(c),i is a root of the polynomial fp(x(e)). As a result, fp(x(e))

has exactly N roots.

Lemma 2. An EC matrix Q(e) ∈ Cn×n
p has at most n elliptic eigenvalues.

Proof. Since the characteristic polynomial fp(λ(e)) = det(Q(e) − λ(e) In) of the matrix
Q(e) ∈ Cn×n

p is an n-th order polynomial with EC coefficients and values, by Lemma 1, the
EC matrix Q(e) has at most n eigenvalues.

Lemma 3. Let the eigenvalues of an complex matrix Hp

(
Q(e)

)
be denoted by λHp(Q(e))

, and let
the corresponding eigenvectors be represented by xHp(Q(e))

. Then, the eigenvalues of the EC matrix

Q(e) ∈ Cn×n
p are given by

λ(e) = Re(λHp(Q(e))
) +

i√−p
Im(λHp(Q(e))

)

and the corresponding eigenvectors are given by

x(e) = Re(xHp(Q(e))
) +

i√−p
Im(xHp(Q(e))

).

The converse of this lemma is also true.

Proof. Let Q(e) ∈ Cn×n
p be an EC matrix, and the eigenvalues of an complex matrix

Hp

(
Q(e)

)
be denoted by λHp(Q(e))

, and let the corresponding eigenvectors be represented

by xHp(Q(e))
. Then, we have Hp

(
Q(e)

)
xHp(Q(e))

= λHp(Q(e))
xHp(Q(e))

. Applying the inverse

of the isomorphism Hp to both sides of the last equation, we get:

Q(e)H
−1
p

(
xHp(Q(e))

)
= H−1

p

(
λHp(Q(e))

)
H−1

p

(
xHp(Q(e))

)
.
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Thus, we get

λ(e) = Re
(

λHp(Q(e))

)
+

i√−p
Im

(
λHp(Q(e))

)
,

and
x(e) = Re

(
xHp(Q(e))

)
+

i√−p
Im

(
xHp(Q(e))

)
.

Lemma 4. Let Q(e) ∈ Cn×n
p . An EC matrix Q(e) is nonsingular if and only if the complex matrix

Hp(Q(e)) is nonsingular. If Hp(Q(e)) is nonsingular, then

Q−1
(e) = Re

((
Hp

(
Q(e)

))−1
)
+

i√−p
Im

((
Hp

(
Q(e)

))−1
)

.

Proof. Let the EC matrix Q(e) = Q(e),r +Q(e),ii be nonsingular. Then, there exists an inverse
matrix Q−1

(e) ∈ Cn×n
p such that Q(e)Q

−1
(e) = Q−1

(e)Q(e) = In. If we apply the isomorphism Hp

to both sides of the last equation, we obtain:

Hp

(
Q(e)

)
Hp

(
Q−1

(e)

)
= Hp

(
Q−1

(e)

)
Hp

(
Q(e)

)
= In.

Hence, we conclude that
(

Hp

(
Q(e)

))−1
= Hp

(
Q−1

(e)

)
. On the other hand, since

Hp

(
Q−1

(e)

)
= Re

((
Hp

(
Q(e)

))−1
)
+ I Im

((
Hp

(
Q(e)

))−1
)

,

we can apply the inverse of the isomorphism Hp to this equation, yielding:

Q−1
(e) = Re

((
Hp

(
Q(e)

))−1
)
+

i√−p
Im

((
Hp

(
Q(e)

))−1
)

.

Lemma 5. Let Q(e) ∈ Cm×n
p be an EC matrix. The pseudoinverse of Q(e), denoted by

(
Q(e)

)†
, is

given by (
Q(e)

)†
= Re

((
Hp

(
Q(e)

))†
)
+

i√−p
Im

((
Hp

(
Q(e)

))†
)

,

where
(

Hp

(
Q(e)

))†
is the pseudoinverse of the complex matrix Hp

(
Q(e)

)
.

Proof. Suppose that Q†
(e) is the pseudoinverse of the matrix Q(e). In that case, the following

equations hold:
Q(e)Q

†
(e)Q(e) = Q(e), Q†

(e)Q(e)Q
†
(e) = Q†

(e),(
Q(e)Q

†
(e)

)∗
= Q(e)Q

†
(e),

(
Q†

(e)Q(e)

)∗
= Q†

(e)Q(e).
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Applying the isomorphism Hp to the above equations, we get the following results:

Hp

(
Q(e)

)
Hp

(
Q†

(e)

)
Hp

(
Q(e)

)
= Hp

(
Q(e)

)
,

Hp

(
Q†

(e)

)
Hp

(
Q(e)

)
Hp

(
Q†

(e)

)
= Hp

(
Q†

(e)

)
,(

Hp

(
Q(e)

)
Hp

(
Q†

(e)

))∗
= Hp

(
Q(e)

)
Hp

(
Q†

(e)

)
,(

Hp

(
Q†

(e)

)
Hp

(
Q(e)

))∗
= Hp

(
Q†

(e)

)
Hp

(
Q(e)

)
.

As a result, we obtain the following pseudoinverse transformation under the isomor-
phism Hp: (

Hp

(
Q(e)

))†
= Hp

(
Q†

(e)

)
,

and (
Q(e)

)†
= Re

((
Hp

(
Q(e)

))†
)
+

i√−p
Im

((
Hp

(
Q(e)

))†
)

.

Lemma 6. Let Q(e) ∈ Cm×n
p . Suppose that the singular value decomposition of the complex matrix

Hp

(
Q(e)

)
is given by Hp

(
Q(e)

)
= U(c)ΣV∗

(c). Then, the singular value decomposition of the EC
matrix Q(e) is

Q(e) = U(e)ΣV∗
(e),

where

U(e) =

(
Re

(
U(c)

)
+

i√−p
Im

(
U(c)

))
and V(e) =

(
Re

(
U(c)

)
+

i√−p
Im

(
U(c)

))
.

The converse of this statement is also true.

Proof. Suppose that the singular value decomposition of the complex representation
Hp

(
Q(e)

)
is given by:

Hp

(
Q(e)

)
= U(c)ΣV∗

(c).

Now, using the expansion of the real and imaginary parts of the unitary matrices, we
have:

Hp

(
Q(e)

)
=

(
Re

(
U(c)

)
+ i Im

(
U(c)

))
Σ
(

Re
(

V∗
(c)

)
+ i Im

(
V∗
(c)

))
.

Applying the inverse of the isomorphism Hp to both sides of the last equation, we
obtain:

Q(e) =

(
Re

(
U(c)

)
+

i√−p
Im

(
U(c)

))
Σ
(

Re
(

V∗
(c)

)
+

i√−p
Im

(
V∗
(c)

))
.

On the other hand, since U(c) and V(c) are unitary matrices, we have

U(e)U
∗
(e) =

(
Re

(
U(c)

)
+

i√−p
Im

(
U(c)

))(
Re

(
UT
(c)

)
− i√−p

Im
(

UT
(c)

))
= In

and
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V(e)V
∗
(e) =

(
Re

(
V(c)

)
+

i√−p
Im

(
V(c)

))(
Re

(
VT
(c)

)
− i√−p

Im
(

VT
(c)

))
= In.

Corollary 1. Let Q(e) ∈ Cm×n
p . Then rank

(
Q(e)

)
= rank

(
Hp

(
Q(e)

))
.

Proof. Since matrices Q(e) and Hp

(
Q(e)

)
have the same number of nonzero singular values,

we have rank
(

Q(e)

)
= rank

(
Hp

(
Q(e)

))
.

Lemma 7. Let Q(e) ∈ Cm×n
p . Suppose that Hp

(
Q(e)

)
= U(c)ΣV∗

(c). In this case, the pseudoin-
verse of EC matrix Q(e) is given by

(
Q(e)

)†
=

(
Re

(
V(c)

)
+

i√−p
Im

(
V(c)

))
Σ†

(
Re

(
U(c)

)
+

i√−p
Im

(
U(c)

))∗
.

Proof. Let Hp

(
Q(e)

)
= U(c)ΣV∗

(c). Then the pseudoinverse of the complex matrix Hp

(
Q(e)

)
is

(
Hp(Q(e))

)†
= V(c)Σ†U∗

(c). From Lemma 5, we have
(

Hp(Q(e))
)†

= Hp(Q†
(e)). Substi-

tuting this into the previous equation, we have: Hp(Q†
(e)) = V(c)Σ†U∗

(c). Applying the
inverse of the isomorphism Hp to both sides, we conclude that

Q†
(e) =

(
Re(V(c)) +

i√−p
Im(V(c))

)
Σ†

(
Re(U(c)) +

i√−p
Im(U(c))

)∗
.

Lemma 8. Let Q1,(e) ∈ Cm×n
p and Q2,(e) ∈ Cm×q

p . Suppose that Hp

(
Q1,(e)

)
= U(c)ΣV∗

(c).
In this case, the least squares solution with the minimum norm X(e) of the EC matrix equation
Q1,(e)X(e) = Q2,(e) is given by

X(e) =

(
Re

(
V(e)

)
+

i√−p
Im

(
V(e)

))
Σ†

(
Re

(
U(e)

)
+

i√−p
Im

(
U(e)

))∗
Q2,(e).

Proof. Let Q1,(e) ∈ Cm×n
p and Q2,(e) ∈ Cm×q

p , and suppose that Hp

(
Q1,(e)

)
= U(c)ΣV∗

(c).
Given the EC matrix equation Q1,(e)X(e) = Q2,(e), the complex representation of this

equation is Hp

(
Q1,(e)

)
Hp

(
X(e)

)
= Hp

(
Q2,(e)

)
. The least-norm least-squares solution to

this complex matrix equation is given by Hp

(
X(e)

)
= V(c)Σ†U∗

(c)Hp

(
Q2,(e)

)
. If we apply

the inverse of the isomorphism Hp to above equation, we get

X(e) =

(
Re

(
V(e)

)
+

i√−p
Im

(
V(e)

))
Σ†

(
Re

(
U(e)

)
+

i√−p
Im

(
U(e)

))∗
Q2,(e).

3.2. EQ Matrices

Let Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hm×n
p . Since e1 and e2 are disjoint idempotent units,

the mathematical properties associated with EQ matrices are closely related to EC matrices
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Q(e),1, Q(e),2. In this subsection, results related to eigen-pairs, singular value decomposi-
tion, pseudoinverse, and least squares solution with the minimum norm for EQ matrices
have been derived from this fact.

Theorem 1. A polynomial function of degree N with EQ number coefficients presented by

fp

(
x(E)

)
= xN

(E) + q(N−1),(E)x
N−1
(E) + . . . + q1,(E)x(E) + q0,(E)

has exactly N2 zeros in the set of EQs.

Proof. The polynomial fp

(
x(E)

)
can be written in the form

fp

(
x(E)

)
=

(
x(e),1e1 + x(e),2e2

)N
+

(
q(N−1),(e),1e1 + q(N−1),(e),2e2

)(
x(e),1e1 + x(e),2e2

)N−1

+ · · ·+
(

q1,(e),1e1 + q1,(e),2e2

)(
x(e),1e1 + x(e),2e2

)
+

(
q0,(e),1e1 + q0,(e),2e2

)
=

((
x(e),1

)N
+

(
q(N−1),(e),1

)(
x(e),1

)N−1
+ . . . +

(
q1,(e),1

)(
x(e),1

)
+ q0,(e),1

)
e1

+

((
x(e),2

)N
+

(
q(N−1),(e),2

)(
x(e),2

)N−1
+ . . . +

(
q1,(e),2

)(
x(e),2

)
+ q0,(e),2

)
e2

= fp

(
x(e),1

)
e1 + fp

(
x(e),2

)
e2,

where fp

(
x(e),1

)
and fp

(
x(e),2

)
are polynomials of degree N with EC number coefficients

and values. Then, these polynomials have exactly N zeros each from Lemma 1. Sup-
pose that the roots of fp

(
x(e),1

)
are xα,(e),1 and the roots of fp

(
x(e),2

)
are xβ,(e),1, where

α, β ∈ {1, 2, 3, . . . , N}. From the last equation, we deduce that the roots of the polyno-
mial fp

(
x(E),1

)
are x(E) = xα,(e),1e1 + xβ,(e),2e2. Since the number of possible different(

xα,(e),1, xβ,(e),2

)
pairs is N2, the polynomial fp

(
x(E),1

)
has exactly N2 zeros in the set of

EQs.

Theorem 2. An EQ matrix Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hn×n
p is nonsingular if and only if the

EC matrices Q(e),1, Q(e),2 ∈ Cn×n
p are nonsingular. If Q(e),1, Q(e),2 ∈ Cn×n

p are nonsingular, then

Q−1
(E) = Q−1

(e),1e1 + Q−1
(e),2e2.

Proof. Suppose that Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hn×n
p is nonsingular and Q−1

(E) = P(e),1e1 +

P(e),2e2 is inverse of Q(E). In this case,

Q(E)Q
−1
(E) =

(
Q(e),1P(e),1e1 + Q(e),2P(e),2e2

)
= Ine1 + Ine2

holds. By this fact,
Q(e),1P(e),1 = In and Q(e),2P(e),2 = In

are obtained. Then, we get

Q−1
(e),1 = P(e),1 and Q−1

(e),2 = P(e),2.

Conversely, let’s assume that Q(e),1, Q(e),2 ∈ Cn×n
p are nonsingular EC matrices. In

this case, (
Q(e),1e1 + Q(e),2e2

)(
Q−1

(e),1e1 + Q−1
(e),2e2

)
= Ine1 + Ine2
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holds. Consequently, Q(E) = Q(e),1e1 + A(e),2e2 ∈ Hn×n
p is nonsingular and

Q−1
(E) = Q−1

(e),1e1 + Q−1
(e),2e2

is valid.

Theorem 3. Let Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hn×n
p . Suppose that λ(e),1 and λ(e),2 are eigen-

values of EC matrices Q(e),1 and Q(e),2 corresponding to the eigenvectors x(e),1 and x(e),2, respec-
tively. Then λ(E) = λ(e),1e1 + λ(e),2e2 is an eigenvalue of Q(E) corresponding to the eigenvector
x(E) = x(e),1e1 + x(e),2e2 and its converse is also true.

Proof. Suppose
(

λ(e),1, x(e),1
)

and
(

λ(e),2, x(e),2
)

are the eigen-pairs of EC matrices Q(e),1

and Q(e),2, respectively. Then,

Q(E)x(E) = Q(E)

(
x(e),1e1 + x(2),2e2

)
=

(
Q(e),1e1 + Q(e),2e2

)(
x(e),1e1 + x(e),2e2

)
= Q(e),1x(e),1e1 + Q(e),2x(e),2e2

= λ(e),1x(e),1e1 + λ(e),2x(e),2e2

=
(

λ(e),1e1 + λ(e),2e2

)(
x(e),1e1 + x(e),2e2

)
= λ(E)x(E).

Thus,
(

λ(E), x(E)

)
is an eigen-pair of Q(E). Conversely, assume that

(
λ(E), x(E)

)
is an

eigen-pair of Q(E). Then, we get Q(E)x(E) = λ(E)x(E) and

Q(e),1x(e),1e1 + Q(e),2x(e),2e2 = λ(e),1x(e),1e1 + λ(e),2x(e),2e2

which implies
Q(e),1x(e),1 = λ(e),1x(e),1 and Q(e),2x(e),2 = λ(e),2x(e),2.

Corollary 2. Let Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hn×n
p . Then, the EQ matrix Q(E) has at most

n2 eigenvalues.

Proof. Let Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hn×n
p . Then, EC matrices Q(e),1 and Q(e),2 have

at most n eigenvalues from Lemma 2. Suppose that eigenvalues of Q(e),1 are λα,(e),1 and
eigenvalues of Q(e),2 are λβ,(e),1, where α, β ∈ {1, 2, 3, . . . , n}. From Theorem 3, we deduce
that eigenvalues of EQ matrix Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hn×n

p are λ(E) = λα,(e),1e1 +

λβ,(e),2e2. Since the number of possible different
(

λα,(e),1, λβ,(e),2

)
pairs is n2, EQ matrix

Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hn×n
p has at most n2 eigenvalues.

Theorem 4. Let Q(E) = Q(e),1e1 +Q(e),2e2 ∈ Hm×n
p . Suppose that singular value decompositions

of Q(e),1 and Q(e),2 are Q(e),1 = U(e),1Σ1V∗
(e),1 and Q(e),2 = U(e),2Σ2V∗

(e),2, respectively. Then,
the singular value decomposition of EQ matrix Q(E) is given by

Q(E) = U(E)Σ(E)V
∗
(E),

where Σ(E) = Σ1e1 + Σ2e2, U(E) = U(e),1e1 + U(e),2e2 and V(E) = V(e),1e1 + V(e),2e2 such that
U(E) and V(E) are unitary matrices.
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Proof. Let the singular value decompositions of Q(e),1 and Q(e),2 be Q(e),1 = U(e),1Σ1V∗
(e),1

and Q(e),2 = U(e),2Σ2V∗
(e),2, respectively. Then, the singular value decomposition of Q(E) is

as follows:

Q(E) = Q(e),1e1 + Q(e),2e2 =
(

U(e),1Σ1V∗
(e),1

)
e1 +

(
U(e),2Σ2V∗

(e),2

)
e2

=
(

U(e),1e1 + U(e),2e2

)
(Σ1e1 + Σ2e2)

(
V(e),1e1 + V(e),2e2

)∗
= U(E)Σ(E)V∗

(E),

where

U(E)U∗
(E) =

(
U(e),1e1 + U(e),2e2

)(
U(e),1e1 + U(e),2e2

)∗
= U(e),1U∗

(e),1e1 + U(e),2U∗
(e),2e2

= Ine1 + Ine2 = In,

V(E)V∗
(E) =

(
V(e),1e1 + V(e),2e2

)(
V(e),1e1 + V(e),2e2

)∗
= V(e),1V∗

(e),1e1 + V(e),2V∗
(e),2e2

= Ine1 + Ine2 = In,

and Σ(E) is hyperbolic matrix. (Σ(E) is real matrix if and only if Σ1 = Σ2.)

Corollary 3. Let Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hm×n
p . Then

rank
(

Q(E)

)
= max

(
rank

(
Q(e),1

)
, rank

(
Q(e),2

))
.

Proof. Let Q(E) = U(E)Σ(E)V∗
(E), Q(e),1 = U(e),1Σ1V∗

(e),1 and Q(e),2 = U(e),2Σ2V∗
(e),2. In this

case, the ranks of matrices Q(E), Q(e),1, and Q(e),2, are equal to the rank of matrix Σ(E), Σ1,
and Σ2, respectively. Since Σ(E) = Σ1e1 + Σ2e2, we get

rank
(

Σ(E)

)
= max(rank(Σ1), rank(Σ2)) = max

(
rank

(
Q(e),1

)
, rank

(
Q(e),2

))
.

Thus, we have

rank
(

Q(E)

)
= max

(
rank

(
Q(e),1

)
, rank

(
Q(e),2

))
.

Corollary 4. Let Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hm×n
p and Q(E) = U(E)Σ(E)V∗

(E). Then, the

pseudoinverse of Q(E) is Q†
(E) = V(E)Σ†

(E)U
∗
(E), where Σ† = Σ†

1e1 + Σ†
2e2 and Σ1, Σ2 ∈ Rm×n.

Proof. Since the units e1 and e2 are adjoint idempotent, we get Q†
(E) = Q†

(e),1e1 + Q†
(e),2e2.

Then, the pseudoinverse of Q(E) is as follows:
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Q†
(E) = Q†

(e),1e1 + Q†
(e),2e2 =

(
V(e),1Σ†

1U∗
(e),1

)
e1 +

(
V(e),2Σ†

2U∗
(e),2

)
e2

=
(

V(e),1e1 + V(e),2e2

)(
Σ†

1e1 + Σ†
2e2

)(
U(e),1e1 + U(e),2e2

)∗
= V(E)Σ†

(E)U
∗
(E).

Theorem 5. The least squares solution with the minimum norm of the EQ matrix equation
Q1,(E)X(E) = Q2,(E) is

X(E) = Q†
1,(E)Q2,(E) = V(E)Σ

†
(E)U

∗
(E)Q2,(E),

where Q1,(E) ∈ Hm×n
p and Q2,(E) ∈ Hm×q

p .

Proof. Let the least squares solution with the minimum norm of the EQ matrix equation
Q1,(E)X(E) = Q2,(E) be X(E). Then we get

∥∥∥Q1,(E)X(E) − Q2,(E)

∥∥∥
p
= min and

∥∥∥Q1,(E)X(E) − Q2,(E)

∥∥∥2

p
=

∥∥∥(Q1,(e),1e1 + Q1,(e),2e2

)(
X(e),1e1 + X(e),2e2

)
−

(
Q2,(e),1e1 + Q2,(e),2e2

)∥∥∥2

p

=
∥∥∥(Q1,(e),1X(e),1e1 + Q1,(e),2X(e),2e2

)
−

(
Q2,(e),1e1 + Q2,(e),2e2

)∥∥∥2

p

=
∥∥∥(Q1,(e),1X(e),1 − Q2,(e),1

)
e1 +

(
Q1,(e),2X(e),2 − Q2,(e),2

)
e2

∥∥∥2

p
.

From the definition of the Frobenius norm of EQ matrices, we have∥∥∥Q1,(E)X(E) − Q2,(E)

∥∥∥2

p
=

1
2

(∥∥∥Q(e),1X(e),1 − Q2,(e),1

∥∥∥2

p
+

∥∥∥Q1,(e),2X(e),2 − Q2,(e),2

∥∥∥2

p

)
.

Hence,
∥∥∥Q1,(E)X(E) − Q2,(E)

∥∥∥
p
= min if and only if

∥∥∥Q1,(e),1X(e),1 − Q2,(e),1

∥∥∥
p
= min, and

∥∥∥Q1,(e),2X(e),2 − Q2,(e),2

∥∥∥
p
= min .

If
∥∥∥Q1,(e),1X(e),1 − Q2,(e),1

∥∥∥
p

= min, then X(e),1 = Q†
1,(e),1Q2,(e),1 and similarly,

X(e),2 = Q†
1,(e),2Q2,(e),2, where Q†

1,(e),1 = V(e),1Σ1U∗
(e),1 and Q†

1,(e),2 = V(e),2Σ2U∗
(e),2. There-

fore, the least squares solution of the equation Q1,(E)X(E) = Q2,(E) is

X(E) =
(

V(e),1Σ1U∗
(e),1Q2,(e),1

)
e1 +

(
V(e),2Σ2U∗

(e),2Q2,(e),2

)
e2

=
((

V(e),1Σ1U∗
(e),1

)
e1 +

(
V(e),2Σ2U∗

(e),2

)
e2

)(
Q2,(e),1e1 + Q2,(e),2e2

)
=

(
V(e),1e1 + V(e),2e2

)
(Σ1e1 + Σ2e2)

(
U∗
(e),1e1 + U∗

(e),2e2

)(
Q2,(e),1e1 + Q2,(e),2e2

)
= V(E)Σ†

(E)U
∗
(E)Q2,(E) = Q†

1,(E)Q2,(E)

which completes the proof.
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3.2.1. Algorithms

The following algorithms delineate the computational procedures for determining
eigen-pairs, singular value decomposition, pseudoinverse computation, and the derivation
of least squares solution with the minimum norm for EQ matrices.

Algorithm 1 This algorithm calculates the eigenvalues and eigenvectors of the EQ matrix
Q(E) ∈ Hn×n

p .

1: Start
2: Input Q(E),r, Q(E),i, Q(E),j, Q(E),k and p
3: Form Q(e),1 and Q(e),2 according to Equation (1)
4: Compute λ(e),1 and λ(e),2 according to Lemma 3 and Theorem 3
5: Compute x(e),1 and x(e),2 according to Lemma 3 and Theorem 3
6: Form λ(E) = λ(e),1e1 + λ(e),2e2 according to Theorem 3
7: Form x(E) = x(e),1e1 + x(e),2e2 according to Theorem 3
8: Output λ(E) and x(E)
9: End

Algorithm 2 This algorithm performs the singular value decomposition of the EQ matrix
Q(E) ∈ Hm×n

p .

1: Start
2: Input Q(E),r, Q(E),i, Q(E),j, Q(E),k and p
3: Form Q(e),1 and Q(e),2 according to Equation (1)
4: Compute Q(e),1 = U(e),1Σ1V∗

(e),1 and Q(e),2 = U(e),2Σ2V∗
(e),2 according to Lemma 6

5: Form U(E) =
(

U(e),1e1 + U(e),2e2

)
, Σ(E) = (Σ1e1 + Σ2e2), and V(E) =(

V(e),1e1 + V(e),2e2

)
according to Theorem 4

6: Output U(E), Σ(E), V(E)
7: End

Algorithm 3 This algorithm calculates the pseudoinverse of the EQ matrix Q(E) ∈ Hm×n
p .

1: Start
2: Run the Algorithm 2 for EQ matrix Q(E)
3: Form Q(E) = U(E)Σ(E)V∗

(E)

4: Compute Q†
(E) = V(E)Σ†

(E)U
∗
(E)

5: Output Q†
(E)

6: End

Algorithm 4 This algorithm calculates the minimum norm least squares solution of the EQ
matrix equation Q1,(E)X(E) = Q2,(E).

1: Start
2: Input Q1,(E),r, Q1,(E),i, Q1,(E),j, Q1,(E),k, Q2,(E),r, Q2,(E),i, Q2,(E),j, Q2,(E),k and p
3: Run the Algorithm 3 for EQ matrix Q1,(E)

4: Compute X(E) = Q†
1,(E)Q2,(E) = V(E)Σ†

(E)U
∗
(E)Q2,(E)

5: Output X(E)
6: End

The fact that EQs are commutative with respect to multiplication, can be written as
a linear combination of two adjoint idempotent units, can choose the most appropriate
p-value for the solution of the problem under consideration, and many physical systems
exhibit elliptical behavior make this number system advantageous in applied sciences.
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Therefore, using the algorithms given above in applied sciences will solve many problems
related to time, memory, and performance in the problem-solving processes.

3.2.2. Numerical Examples

In this subsection, some illustrative examples are given to prove the authenticity of our
results and distinguish them from existing ones. Moreover, all computations are performed
using the MATLAB® 2024a (64 bit) on an Intel(R) Xeon(R) CPU E5-1650 v4 @3.60 GHz
(12 CPUs)/16 GB (DDR3) RAM computer.

Example 1. Given the EQ matrices Q1,(E) and Q2,(E) as follows:

Q1,(E) =

 9 + i − 7j + 2k 2 − 7i + j + 5k 8 − 4i + 7j − 4k
5 + 8i − j + 4k 4 + 7i + j − k 9 − 6i − 3j + 8k

8 + 9i + 3j − 4k 9 − 2i + 8j + 2k 6 − 5i + 9j − 6k

 ∈ H3×3
−0.5,

and

Q2,(E) =

 7 + 2i + 3j + k
7 − 6i + j + 4k

3 + 3i − 5j − 8k

 ∈ H3×1
−0.5.

Let’s find the least squares solution with the minimum norm by using Algorithms 2–4 for p = −0.5.
By the Algorithm 2, we get the singular value decomposition of EQ matrix Q1,(E) as follows:

Σ =

 27.1507 + 5.1850j 0 0
0 13.3956 − 3.6604j 0
0 0 3.5511 + 0.0727j

,

U =

 −0.5887 − 0.0895i + 0.1905j − 0.1797k 0.5737 + 0.2198i + 0.2880j − 0.0213k −0.1504 − 0.0811i + 0.3531j + 0.1408k
−0.2573 − 0.4628i + 0.0895j − 0.0090k −0.2014 − 0.8270i + 0.0050j + 0.3648k 0.1490 + 0.6752i + 0.1013j + 0.4671k
−0.4969 − 0.4443i − 0.2639j + 0.0273k −0.1356 + 0.2676i − 0.1680j − 0.2529k −0.1172 + 0.4220i − 0.326j − 0.7217k

,

and

V =

 −0.6674 + 0.2309j −0.1204 − 0.3768j 0.5534 + 0.1965j
−0.3280 − 0.3659i − 0.1703j + 0.0553k −0.4857 + 0.1440i − 0.0426j + 0.0036k −0.3596 − 0.6220i − 0.2807j + 0.5391k
−0.2692 − 0.5713i − 0.2100j − 0.1815k 0.4859 − 0.3190i + 0.1157j + 0.7682k −0.1476 − 0.1702i + 0.2676j + 0.0299k

.

By Algorithms 3 and 4, the least squares solution and minimum norm are found as

X(E) =Q†
1,(E)Q2,(E) = V(E)Σ

†
(E)U

∗
(E)Q2,(E)

=

 0.7612 − 1.5582i − 0.1979j − 0.5332k
−1.4757 − 0.2366i + 0.1496j + 1.2282k
0.0461 + 0.2919i + 0.4652j − 0.0282k


and ∥∥∥Q1,(E)X(E) − Q2,(E)

∥∥∥
p
= 1.1801 × 10−14,

respectively.

Example 2. Let’s define the dimensions of the EQ matrices Q1,(E) and Q2,(E) given by:

m = 50 : 50 : 1000,
Q1,(E) = rand(m, m) + rand(m, m)i + rand(m, m)j + rand(m, m)k,
Q2,(E) = rand(m, 1) + rand(m, 1)i + rand(m, 1)j + rand(m, 1)k.
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Then, the errors (or minimum norms) corresponding p and m-values are shown in Figure 1. Here,
Algorithm 4 was executed for each m-value, iterating over each p-value in the range −1 ≤ p ≤ −0.1
with a step size of 0.1. The minimal errors were identified and highlighted on the surface plot with
red dots. Also, we compare our new proposed Algorithm 4 and the Algorithm documented by Atali
et al. in [21], focusing on CPU time and error metrics. The experimental results of this comparison
are depicted in Figure 2 (CPU times) and Figure 3 (Errors). Figures 2 and 3 show that our proposed
algorithm outperforms the algorithm presented by Atali et al. in [21] regarding computational
efficiency and accuracy.

Figure 1. Errors corresponding p and m-values.

Figure 2. CPU times comparison proposed algorithm with the algorithm in [21].
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Figure 3. Errors comparison proposed algorithm with the algorithm in [21].

4. Conclusions

In this study, we derived outcomes for determining eigen-pairs, performing singular
value decomposition, obtaining pseudoinverse, and finding the least squares solution with
the minimum norm for EQ matrices. Additionally, we developed algorithms grounded
on these outcomes and presented illustrative numerical instances to validate our results.
This number system is more useful in applied sciences since it allows one to select the ideal
p-value suited for the type of problem, considering the elliptical behavior of many physical
systems. As a result, the use of EQs in today’s critical technology fields—information secu-
rity, data analytics, simulation technologies, robotics, signal processing, image processing,
artificial intelligence, and machine learning—may effectively solve many problems related
to time, memory, and performance.
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