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Abstract: A vertex-degree-based topological index φ associates a real number to a graph G which
is invariant under graph isomorphism. It is defined in terms of the degrees of the vertices of G and
plays an important role in chemical graph theory, especially in QSPR/QSAR investigations. A subset
of k edges in G with no common vertices is called a k-matching of G, and the number of such subsets
is denoted by m(G, k). Recently, this number was naturally extended to weighted graphs, where the
weight function is induced by the topological index φ. This number was denoted by mk(G, φ) and
called the k-matchings of G with respect to the topological index φ. It turns out that m1(G, φ) = φ(G),
and so for k ≥ 2, the k-matching numbers mk(G, φ) can be viewed as kth order topological indices
which involve both the topological index φ and the k-matching numbers. In this work, we solve
the extremal value problem for the number of 2-matchings with respect to general sum-connectivity
indices SCα, over the set Tn of trees with n vertices, when α is a real number in the interval [−1, 0).

Keywords: k-matchings; VDB topological index; k-matchings with respect to a VDB topological index
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1. Introduction

In chemical graph theory, the molecular structure of a compound is represented
as a graph. In this context, atoms are represented as vertices, and chemical bonds are
represented as edges connecting these vertices. One of the main goals of chemical graph
theory is to analyze the molecular structure of a chemical compound through the study of
its molecular graph, using graph theoretical and computation techniques [1].

A topological index, also called a molecular descriptor, is a numerical parameter of a
graph which is invariant under graph isomorphism. It plays an important role in chemical
graph theory, especially in the quantitative structure–property relationship (QSPR) and
the quantitative structure–activity relationship (QSAR) investigations [2,3]. There are a
variety of topological indices that are derived from different concepts such as entropy [4]
and counting polynomials [5]. One important class of topological indices are the vertex-
degree-based topological indices, which are defined in terms of the degrees of the vertices
of the graph.

More precisely, let G = (V, E) be a graph with vertex set V = V(G) and edge set
E = E(G). A vertex-degree-based (VDB for short) topological index φ is defined for the
graph G as

φ = φ(G) = ∑
uv∈E

φdG(u),dG(v) ,

where dG(u) denotes the degree of the vertex u ∈ G, and φi,j is an appropriate function
with the property φi,j = φj,i. For recent results on VDB topological indices, we refer to [6–9],
where extremal value problems in significant classes of graphs are solved. A geometrical
approach to VDB topological indices is considered in [10,11], and in [12], applications to
COVID-19 are found.

Axioms 2024, 13, 658. https://doi.org/10.3390/axioms13100658 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13100658
https://doi.org/10.3390/axioms13100658
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-1645-0386
https://orcid.org/0009-0009-7829-7696
https://orcid.org/0000-0001-8908-1983
https://doi.org/10.3390/axioms13100658
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13100658?type=check_update&version=2


Axioms 2024, 13, 658 2 of 10

Among the VDB topological indices, the general sum-connectivity indices are de-
fined as

SCα(G) = ∑
uv∈E(G)

(dG(u) + dG(v))
α.

They were introduced by Zhou and Trinajstić [13,14] and have attracted the attention
of many researchers due to their interesting mathematical properties and chemical ap-
plicability. For instance, in [15], it is shown that there is a good correlation between
physico-chemical properties and the general sum-connectivity index for benzenoid hydro-
carbons. Bounds for the general sum-connectivity index in different classes of graphs are
found in [16–19]. In [20,21], lower bounds of the line graph are found, and extremal graphs
are characterized.

Another type of topological index is the well-known Hosoya index, denoted by Z(G)
and introduced by Haruo Hosoya in 1971 [22] to report a good correlation of the boiling
points of alkane isomers. In order to properly define it, we must recall that a set of edges
M ⊆ E(G) is called a matching of G if no two edges of M have a vertex in common.
A matching of G with k edges is said to be a k-matching. We denote by m(G, k) the
number of k-matchings of G and assume that m(G, 0) = 1. Then, the Hosoya index Z(G) is
defined as

Z(G) =
⌊ n

2 ⌋
∑
k=0

m(G, k).

It is well known that if T is a tree with n vertices; then,

m(Sn, k) ≤ m(T, k) ≤ m(Pn, k)

for all k ≥ 0, where Sn is the star on n vertices, and Pn is the path on n vertices (see [23]
(Theorem 4.6)).

In view of its structural relationship to both the VDB topological index φ and the
Hosoya topological index Z, the construction of a novel molecular descriptor was intro-
duced in [24], called the Hosoya index of VDB-weighted graphs. It is defined as

Z(G, φ) = ∑
k≥0

mk(G, φ),

where m0(G, φ) = 1, and for k ≥ 1,

mk(G, φ) = ∑
U∈{k-matchings of G}

[
∏

uv∈U
φdG(u),dG(v)

]
.

It turns out that m1(G, φ) = φ(G), so for k = 1, we recover the VDB topological index φ,
and for k ≥ 2, the k-matching numbers mk(G, φ) can be viewed as kth order topological
indices which involve both the topological index φ and the k-matching numbers.

It is our main interest in this paper to study m2(T, φ) when T is a tree, and φ = SCα is
the general sum-connectivity index. Concretely, we find the extremal values of the function
m2(−,SCα) : Tn −→ R, where Tn is the set of trees with n vertices, and α is a real number
in the interval [−1, 0).

2. 2-Matchings with Respect to SCα

By Sn, we denote the n-vertex star. It is straightforward that for any VDB topological
index φ and T ∈ Tn different from the star,

0 = m2(Sn, φ) < m2(T, φ).

Consequently, among all trees with n vertices, Sn attains the minimum number of 2-
matchings with respect to any VDB topological index φ.
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In the next example, we show how to compute the number of 2-matchings with respect
to any VDB topological index φ of the trees depicted in Figure 1.

u1 u2

u3

u4
u5

u6

u7

u8
u9

u1 u2

u3

u4 u5 u6 u7

u8

u9

T1 T2

u1 u2 u3 u4 u5 u6 u7 u8 u9

T3

Figure 1. Trees in Example 1.

Example 1. Consider the tree T1 depicted in Figure 1, and let M2(T1) be the set of 2-matchings
of T1. The elements of M2(T1) are {u1u2, u3u4}, {u1u2, u3u5}, {u1u2, u3u6}, {u1u2, u3u7},
{u1u2, u3u8} and {u1u2, u3u9}. Then, the number of 2-matchings of T1 with respect to φ is
given by

m2(T1, φ) = ∑
U∈M2(T1)

[
∏

uv∈U
φdT1 (u),dT1 (v)

]
= 6φ1,2 φ1,7.

The elements of the set M2(T2) of 2-matchings of T2 in Figure 1 are {u1u3, u4u5}, {u1u3, u5u6},
{u1u3, u6u7}, {u1u3, u7u8}, {u1u3, u7u9}, {u2u3, u4u5}, {u2u3, u5u6}, {u2u3, u6u7},
{u2u3, u7u8}, {u2u3, u7u9}, {u3u5, u6u7}, {u3u5, u7u8}, {u3u5, u7u9}, {u4u5, u6u7},
{u4u5, u7u8}, {u4u5, u7u9}, {u5u6, u7u8} and {u5u6, u7u9}. Consequently,

m2(T2, φ) = ∑
U∈M2(T2)

[
∏

uv∈U
φdT2 (u),dT2 (v)

]
= 8φ2

1,3 + 7φ1,3 φ2,3 + φ3,3 φ2,3 + 2φ3,3 φ1,3.

For the tree T3 of Figure 1, the elements of M2(T3) are {u1u2, u3u4}, {u1u2, u4u5},
{u1u2, u5u6}, {u1u2, u6u7}, {u1u2, u7u8}, {u1u2, u8u9}, {u2u3, u4u5}, {u2u3, u5u6},
{u2u3, u6u7}, {u2u3, u7u8}, {u2u3, u8u9}, {u3u4, u5u6}, {u3u4, u6u7}, {u3u4, u7u8},
{u3u4, u8u9}, {u4u5, u6u7}, {u4u5, u7u8}, {u4u5, u8u9}, {u5u6, u7u8}, {u5u6, u8u9} and
{u6u7, u8u9}. It follows that

m2(T3, φ) = ∑
U∈M2(T3)

[
∏

uv∈U
φdT3 (u),dT3 (v)

]
= φ2

1,2 + 10φ1,2 φ2,2 + 10φ2
2,2.

In this section, we consider 2-matchings with respect to SCα, where α ∈ [−1, 0),
over the set of trees Tn with n ≥ 5 vertices. In order to find the second minimum, we first
analyze 2-matchings with respect to SCα over the set of double-star trees.

Let p ≥ q ≥ 1 and p + q = n − 2. The double-star Sp,q ∈ Tn is a tree with exactly two
vertices of degree greater than 1, one having degree p + 1 and the other one having degree
q + 1. It is easy to see that m2(Sp,q, φ) = pqφp+1,1 φq+1,1.

We distinguish two extreme double-stars with respect to parameters p and q, the dou-
ble star Sn−3,1 and the balanced double-star S⌈ n−2

2 ⌉,⌊ n−2
2 ⌋ (see Figure 2).
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qp

Sp,q

n− 3

Sn−3,1

⌊
n−2
2

⌋⌈
n−2
2

⌉

Sdn−2
2 e,bn−2

2 c

Figure 2. Double-star trees Sp,q, with p + q = n − 2, Sn−3,1 and S⌈ n−2
2 ⌉,⌊ n−2

2 ⌋.

Lemma 1. Let p ≥ q ≥ 1 and p + q = n − 2. If p ̸= n − 3, then

m2(Sp,q,SCα) > m2(Sn−3,1,SCα).

Proof. Let f (p) = m2(Sp,q,SCα) = p(n − p − 2)(p + 2)α(n − p)α defined for
⌈ n−2

2
⌉
≤ p ≤

n − 3. The derivative

d
dp

f (p) =
(n − 2p − 2)[(α + 1)(p + 2)(n − p)− 2αn]

(p + 2)1−α(n − p)1−α
< 0,

since (n − 2p − 2) < 0 for
⌈ n−2

2
⌉
≤ p ≤ n − 3 and (α + 1)(p + 2)(n − p)− 2αn > 0 for

α ∈ [−1, 0) and
⌈ n−2

2
⌉
≤ p ≤ n − 3. Consequently, m2(Sp,q,SCα) > m2(Sn−3,1,SCα), and

it is completed.

Next, we compute the variation of 2-matchings with respect to SCα when “Trans-
formation A” described in [25] is performed. Let uv ∈ E(T), x = dT(v) ≥ 2 and
NT(u) = {v, u1, . . . , uk} where k ≥ 1 and u1, . . . , uk are leaves. Let T′ = T − uu1 −
· · · .uuk + vu1 + · · ·+ vuk and T0 = T − u − u1 · · · − uk (see Figure 3).

T0 v
u

u1

uk

T

T0 v

u1

uk
u

T ′

Figure 3. Trees used in “Transformation A”.

Note that dT′(v) = x + k. For any other vertex in w ∈ V(T0), we denote yw = dT0(w).
Let E0 = {ab ∈ E(T0) : ab ∥ uv}, where ab ∥ uv means that ab and uv are independent
edges, and

AT = ∑
e=ab∈E0

(ya + yb)
α


(x + k + 1)α + k(k + 2)α + ∑

w∈NT0 (v),ab∥wv
(yw + x)α


,

AT′ = ∑
e=ab∈E0

(ya + yb)
α


(k + 1)(x + k + 1)α + ∑

w∈NT0 (v),ab∥wv
(yw + x + k)α


,

BT = k(k + 2)α ∑
w∈NT0 (v)

(yw + x)α.
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Then,

m2(T, φ)− m2(T′, φ) = AT − AT′ + BT

= ∑
e=ab∈E0

(ya + yb)
αk
[
(k + 2)α − (x + k + 1)α]

+ ∑
e=ab∈E0

(ya + yb)
α ∑

w∈NT0 (v),ab∥wv
∆(yw, x, k)

+k(k + 2)α ∑
w∈NT0 (v)

(yw + x)α, (1)

where ∆(yw, x, k) = (yw + x)α − (yw + x + k)α.
Now, we can prove that the double-star Sn−3,1 attains the second minimum number of

2-matchings with respect to SCα over the set Tn.

Theorem 1. Let T ∈ Tn such that T ̸≃ Sn and T ̸≃ Sn−3,1. If −1 ≤ α < 0, then,

m2(T,SCα) > m2(Sn−3,1,SCα) = (n − 3)3α(n − 1)α.

Proof. Assume T ∈ Tn is not a double-star and is of the form depicted in Figure 3; then, T0
is a subtree of T different from a star with v as a central vertex. If T′ is the tree obtained
from T by “Transformation A”, then, T′ is not a star. Since −1 ≤ α < 0, using relation (1),
we obtain

m2(T,SCα)− m2(T′,SCα) > 0.

Applying this transformation repeatedly, we obtain a sequence of trees T, T′, . . . , T∗

such that m2(T,SCα) > m2(T′,SCα) > · · · > m2(T∗,SCα), and T∗ is a double-star with n
vertices. Now, the result follows from Lemma 1.

Using appropriate values of α in the previous theorem, we obtain the results for the
sum-connectivity index SC [13] and the harmonic index H [26,27].

Corollary 1. Let n ≥ 5 and T ∈ Tn such that T ̸≃ Sn and T ̸≃ Sn−3,1.

1. m2(T,SC) > m2(Sn−3,1,SC) = (n−3)√
3(n−1)

.

2. m2(T,H) > m2(Sn−3,1,H) = 4(n−3)
3(n−1) .

Next, we show that for −1 ≤ α < 0, the maximum number of 2-matchings with
respect to SCα is attained in the path Pn, among all trees in Tn. It is easy to see that

m2(Pn,SCα) = 32α + 22α+13α(n − 4) + 24α−1(n − 5)(n − 4).

Recall that a branching vertex of a tree T is a vertex of degree k ≥ 3. If v is a branching
vertex of degree k of a tree T, then T can be viewed as the coalescence of k subtrees of T at
the vertex v. A branching vertex v of T is an outer branching vertex of T if all branches of
T at v (except for possibly one) are paths. The concept of the outer branching vertex was
introduced in [28]. In the mentioned paper, it was shown that a tree T ∈ Tn has no outer
branching vertex if and only if T ≃ Pn.

Now, we compute the variation of 2-matchings with respect to SCα when “Transfor-
mation C” described in [25] is performed.

Let T ∈ Tn, T ̸≃ Pn; then, there exists an outer branching vertex uk ∈ V(T) and two
paths u1 · · · uk and uk · · · up (branches at uk) with 1 < k < p < n. Then, T can be viewed as
a coalescence at vertex uk of a subtree T0 and the path u1 · · · uk · · · up. We construct the tree
T′ as T′ = T − uk−1uk + upuk−1 (see Figure 4).
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T0

u1 uk−1 uk uk+1 up

T

T0

uk uk+1 up uk−1 u1

T ′

Figure 4. Trees used in “Transformation C”.

Let x = dT0(uk) > 0; then, dT(uk) = x + 2 and dT′(uk) = x + 1. For any other
vertex in w ∈ V(T0), we denote yw = dT0(w). We also distinguish the subset of edges
E0 = {ab ∈ E(T0) : a ̸= uk, b ̸= uk}.

Now, we compute the difference ∆m2 = m2(T,SCα)− m2(T′,SCα), where ∆(yw, x) =
(yw + x + 2)α − (yw + x + 1)α. By symmetry, we may assume 1 < k ≤

⌈ p
2
⌉

and consider
only the following three cases:

1. If k = 2 and p = 3,

∆m2 = ∑
ab∈E0

(ya + yb)
α[(x + 3)α − 3α

]

+ ∑
w∈NT0 (uk)


 ∑

ab∈E0,ab∥wuk

(ya + yb)
α


∆(yw, x)

−3α ∑
w∈NT0 (uk)

(yw + x + 1)α. (2)

2. If k = 2 and p > 3,

∆m2 = ∑
ab∈E0

(ya + yb)
α[(x + 4)α − 4α

]

+ ∑
w∈NT0 (uk)


(p − 3)4α + 3α + ∑

ab∈E0,ab∥wuk

(ya + yb)
α


∆(yw, x)

−4α ∑
w∈NT0 (uk)

(yw + x + 2)α, (3)

3. If k > 2 and p > k + 1,

∆m2 = ∑
ab∈E0

(ya + yb)
α[2(x + 4)α − (x + 3)α + 3α − 2 · 4α

]

+ ∑
w∈NT0 (uk)


(p − 3)4α + 3α + ∑

ab∈E0,ab∥wuk

(ya + yb)
α


∆(yw, x)

+ ∑
w∈NT0 (uk)

(yw + x + 2)α(3α − 2 · 4α). (4)

Theorem 2. Let n ≥ 5 and T ∈ Tn such that T ̸≃ Pn. If −1 ≤ α < 0, then,

m2(T,SCα) < m2(Pn,SCα) = 32α + 22α+13α(n − 4) + 24α−1(n − 5)(n − 4).

Proof. Since T ∈ Tn with T ̸≃ Pn, then T has the form depicted in Figure 4. Let T′ be a
tree obtained from T by “Transformation C”. For −1 ≤ α < 0, the expression ∆(yw, x) =
(yw + x + 2)α − (yw + x + 1)α < 0 for any integer x > 0. We have to consider the three
cases in “Transformation C”.

For k = 2 and p = 3, by relation (2), ∆m2 < 0 if −1 ≤ α < 0. The same occurs for
k = 2 and p > 3. By relation (3), ∆m2 < 0 if −1 ≤ α < 0.
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For the case k > 2 and p > k + 1, by relation (4), we have to prove that

2(x + 4)α − (x + 3)α + 3α − 2 · 4α < 0,

3α − 2 · 4α < 0,

for −1 ≤ α < 0. Note that

3α − 2 · 4α < 2α − 22α+1 = 2α(1 − 2α+1) < 0.

Let f (x) = 2(x + 4)α − (x + 3)α + 3α − 2 · 4α defined for x ≥ 0. The derivative

d
dx

f (x) = α
2(x + 3)1−α − (x + 4)1−α

(x + 3)1−α(x + 4)1−α
= α

(
2

1
1−α (x + 3)

)1−α
− (x + 4)1−α

(x + 3)1−α(x + 4)1−α
.

Note that for −1 ≤ α < 0, 2
1

1−α >
√

2 > 1 and 3
(

2
1

1−α

)
> 3

√
2 > 4. It follows

that d
dx f (x) < 0 for x ≥ 0, which means that f (x) is strictly decreasing for x ≥ 0. Then,

f (x) ≤ f (0) = 0. Consequently, in this case, ∆m2 < 0 if −1 ≤ α < 0.
Applying this transformation repeatedly, we obtain a sequence of trees T, T′, . . . , T∗

such that m2(T; φ) < m2(T′; φ) < · · · < m2(T∗; φ) and T∗ ≃ Pn.

Using appropriate values of α in the previous theorem, we obtain the results for the
sum-connectivity index SC and the harmonic index H.

Corollary 2. Let n ≥ 5 and T ∈ Tn such that T ̸≃ Pn.

1. m2(T;SC) < m2(Pn,SC) = 1
3 + 1√

3
(n − 4) + 1

8 (n − 5)(n − 4).

2. m2(T;H) < m2(Pn,H) = 4
9 + 2

3 (n − 4) + 1
8 (n − 5)(n − 4).

In the following example, we show that if α is not in this interval, the result is not
necessarily true.

Example 2. For α = 1, we have SC1 = FZ , the First Zagreb index [29], defined by φi,j = i + j.
It is easy to see that

m2(Sn−3,1,FZ) = 3(n − 3)(n − 1)

m2(Pn,FZ) = 9 + 24(n − 4) + 8(n − 5)(n − 4)

m2(S⌈ n−2
2 ⌉,⌊ n−2

2 ⌋,FZ) =

⌈
n − 2

2

⌉⌊
n − 2

2

⌋(⌈
n − 2

2

⌉
+ 2
)(⌊

n − 2
2

⌋
+ 2
)

and
m2(Sn−3,1,FZ) < m2(Pn,FZ) < m2(S⌈ n−2

2 ⌉,⌊ n−2
2 ⌋,FZ)

for n ≥ 8. Consequently, the path Pn is not an extreme tree with respect to the number of
2-matchings of trees weighted with the First Zagreb index.

The same situation occurs with the Second Zagreb index SZ [29] defined by φi,j = ij,
as we can see in our next example.

Example 3. It is easy to check that

m2(Sn−3,1,SZ) = 2(n − 3)(n − 2)

m2(Pn,SZ) = 4 + 16(n − 4) + 8(n − 5)(n − 4)

m2(S⌈ n−2
2 ⌉,⌊ n−2

2 ⌋,SZ) =

⌈
n − 2

2

⌉⌊
n − 2

2

⌋(⌈
n − 2

2

⌉
+ 1
)(⌊

n − 2
2

⌋
+ 1
)
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and
m2(Sn−3,1,SZ) < m2(Pn,SZ) < m2(S⌈ n−2

2 ⌉,⌊ n−2
2 ⌋,SZ)

for n ≥ 8. Hence, the path Pn is not an extreme tree with respect to the number of 2-matchings of
trees weighted with the Second Zagreb index.

Finally, we give an example of a VDB topological index where Sn−3,1 is not an extreme
tree over Tn \ {Sn} .

Example 4. In the case of the Forgotten index F [30], defined by φi,j = i2 + j2, we have

m2(Sn−3,1,F ) = 5(n − 3)
(
(n − 2)2 + 1

)

m2(Pn,F ) = 25 + 80(n − 4) + 32(n − 5)(n − 4)

m2(S⌈ n−2
2 ⌉,⌊ n−2

2 ⌋,F ) =

⌈
n − 2

2

⌉⌊
n − 2

2

⌋((⌈
n − 2

2

⌉
+ 1
)2

+ 1

)

·
((⌊

n − 2
2

⌋
+ 1
)2

+ 1

)

and
m2(Pn,F ) < m2(Sn−3,1,F ) < m2(S⌈ n−2

2 ⌉,⌊ n−2
2 ⌋,F )

for n ≥ 6. In other words, the double-star Sn−3,1 is not an extreme tree with respect to the number
of 2-matchings of trees weighted with the Forgotten index.

3. Conclusions

The novel topological indices mk(G, φ) of a graph G with respect to a VDB topological
index φ described in [24] are natural extensions of VDB topological indices, which involve
both the topological index φ and the k-matching numbers, perhaps two of the most impor-
tant concepts of chemical graph theory. In this paper, we initiate the study of 2-matchings
with respect to general sum-connectivity indices over the significant class of trees with
a fixed number of vertices. The techniques used here are successful in showing that the
extremal values of the function m2(−,SCα) : Tn \ {Sn} −→ R are attained in the path Pn
and the double-star Sn−3,1, when α is a real number in the interval [−1, 0). As we noted
in Example 2, the result is no longer true when α /∈ [−1, 0). So, a first natural question is
the following:

Problem 1. Find the extremal values of m2(−,SCα) : Tn \ {Sn} −→ R, when α /∈ [−1, 0).

Other important types of vertex-degree-based topological indices are the general
Randić indices Rα [31,32], which are obtained from the symmetric functions φi,j = (ij)α,
where α ∈ R. Using the same technique with some minor adaptations, we were able to
show that the double-star Sn−3,1 attains the second minimal value of m2(−,Rα) when
α ∈ [−1, 0). However, we failed in showing that the path Pn attains the maximal value. So,
another problem is the following:

Problem 2. Find the maximal value of m2(−,Rα) : Tn \ {Sn} −→ R, when α ∈ [−1, 0).

On the other hand, it would be of great interest to determine extremal values of
m2(G, φ) or, more generally, of mk(G, φ), when G belongs to other interesting classes of
graphs, for instance, chemical trees, hexagonal systems or unicyclic graphs, just to mention
a few.
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2024, 8, 123. [CrossRef]

17. Vetrík, T. General approach for obtaining extremal results on degree-based indices illustrated on the general sum-connectivity
index. Electron. J. Graph Theor. Appl. 2023, 11, 125–133. [CrossRef]

18. Swartz, E.; Vetrík, T. General sum-connectivity index and general Randic index of trees with given maximum degree. Discret.
Math. Lett. 2023, 12, 181–188.

19. Wang, H. General (α,2)-Path Sum-Connectivirty Indices of One Important Class of Polycyclic Aromatic Hydrocarbons. Symmetry
2018, 10, 426. [CrossRef]

20. Chen, X. General sum-connectivity index of a graph and its line graph. Appl. Math. Comput. 2023, 443, 127779. [CrossRef]
21. Su, Z.; Tang, Z.; Chen, S. A note on the general sum–connectivity index of a graph and its line graph. MATCH Commun. Math.

Comput. Chem. 2024, 92, 631–642. [CrossRef]
22. Hosoya, H. Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated

hydrocarbons. Bull. Chem. Soc. Jpn. 1971, 44, 2332–2339. [CrossRef]
23. Li, X.; Shi, Y.; Gutman, I. Graph Energy; Springer: New York, NY, USA, 2013.
24. Cruz, R.; Gutman, I.; Rada, J. Hosoya index of VDB-weighted graphs. Discret. Appl. Math. 2022, 317, 18–25. [CrossRef]
25. Deng, H. A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs. MATCH Commun.

Math. Comput. Chem. 2007, 57, 597–616.
26. Ali, A.; Zhong, L.; Gutman, I. Harmonic index and its generalizations: Extremal results and bounds. MATCH Commun. Math.

Comput. Chem. 2019, 81, 249–311.
27. Fajtlovicz, S. On conjectures on Graffiti-II. Congr. Numer. 1987, 60, 187–197.
28. Cruz, R.; Monsalve, J.; Rada, J. Trees with maximum exponential Randić index. Discret. Appl. Math. 2020, 283, 634–643. [CrossRef]
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