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Abstract: The main objective of this article is to present the formulation of a Capital Asset Pric-
ing Model ordered weighted average CAPMOWA and its extensions, called CAPM-induced OWA
(CAPMIOWA), CAPM Bonferroni OWA (CAPMBon-OWA), and CAPM Bonferroni-induced OWA
CAPMBon-IOWA. A step-by-step process for applying this new proposal in a real case of formu-
lating investment portfolios is generated. These methods show several scenarios, considering the
attitude, preferences, and relationship of each argument, when underestimation or overestimation of
the information by the decision maker may influence the decision-making process regarding portfolio
investments. Finally, the complexity of the method and the incorporation of soft information into
the modeling process lead to generating a greater number of scenarios and reflect the attitudes and
preferences of decision makers.

Keywords: CAPM; OWA operator; Bonferroni OWA; portfolio investment
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1. Introduction

Stock exchanges around the world are institutions that were created to support the sale
and purchase of different values, such as shares, bonds, and other financial instruments.
Companies need financial resources for their operation or expansion projects. In these cases,
companies turn to stock exchanges. In this sense, stock markets and financial institutions
pay tribute to channel investor savings in the neighborhood of productive investment,
which are sources of growth and employment in countries around the world [1].

Risk is the main problem faced when investing in a stock exchange. In the context of
stock exchanges, the aspects to consider when transferring risk are coverage, assurance,
and diversification [2–4]. Within the diversification strategy, there is always the dilemma
of selecting a company based on which criteria to invest in. Different studies have indi-
cated relations between the price of action with aspects such as dividend policy, profit for
action, return on capital and profit after taxes [5,6], estimated growth in the long term of the
company [7], exchange rate [8], interest rates [9], and the value of futures [10], among others.

As can be seen, there are different criteria for selecting which asset and at what time.
Because different criteria are considered, employing a Multi-Criteria Decision Analysis
(MCDA) approach for this type of problem is adequate, where different opinions converge
and unified results should be generated. The MCDA significantly improves the quality
of the decision-making process by introducing transparency, analytical rigor, audibility,
and conflict resolution for multidimensional decision problems [11]. The importance of
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the MCDA method is based on the opinions of those responsible for decision making.
Although MCDA defines the “what” as being necessary to structure the decision problem,
it does not support those responsible for decision making in the “how” to do so. Explicit
consideration of the elements of the decision quality in MCDA can help the “how” and
sensitize those responsible for making decisions about the criteria’s importance, scope,
and uncertainty. As can be seen, in investment decisions, specifically in portfolios, the
influences of attitude and approximate reasoning on the content of information, rather than
its measurement, are of considerable importance [12,13].

Another critical method for aggregating information within the decision-making
process is the Ordered Weighted Averaging (OWA) operator [14,15]. This technique allows
for information analysis through a parameterized study of maximum and minimum,
generating different selection scenarios based on optimistic or pessimistic visions of the
information used. The OWA operator has generated several extensions and has been
used within various areas such as for suppliers [16], financial decisions [17], forecasting
of the exchange rate [18], imports and exports [19], variance, and covariance [20], among
others. Additionally, the use of OWA operators in conjunction with MCDA models has
been studied, for example, with the OWA TOPSIS with MCDA [21], so combining both
decision-making methodologies can considerably improve their quality.

Derived from the preceding, the use of MCDA models with OWA operator extensions
would allow for generating new selection processes that best the profile of the investment
portfolio through criteria selection based on the needs of the decision maker and the
quantitative information of the company, allowing for the construction of an adaptable
and flexible methodology suited to the needs of the financial environment characterized
by uncertainty [22]. Given the current uncertainty of financial markets and the volatility
of the price of shares within stock exchanges [23], it is necessary to generate adaptable
and flexible portfolios that represent the realities of each of the investors based on their
preferences and the characteristics of companies.

One of the ways to select the assets that will make up a portfolio is by considering the
function of the expected yield according to the risk they have. To analyze this, the Capital
Asset Pricing Model (CAPM) is used, whereby an expected return can be calculated by
analyzing the market performance, the risk-free rate, and the expected performance of
the specific asset. One of the weaknesses of the CAPM is that it only considers historical
data within formulations, as can be seen through the means, variance, and covariance
used, which would suggest that the markets have a cyclical behavior, which often does
not happen. On the other hand, it is considered that all data are equally crucial through
simple means, so the use of weights that allow for differentiating between the importance
of the data when performing calculations would present necessary support for the decision
maker and, in such a way, be able to generate diverse scenarios based on expectations,
knowledge, and future visions of the financial market. In this sense, incorporating the OWA
operator will allow for generating new formulations in the function of the expectations and
knowledge of the financial market of a decision maker.

Based on the above, the objective of this article is to present an extended version of the
CAPM through the incorporation of a weight vector, which will be used within the means,
variances, and covariances, including the expectations of the decision maker within the
formulation, and generate greater dynamism in the formulation, which, within its base
structure, only allows a single result. At this point, the CAPMOWA and its extensions,
called CAPMIOWA, CAPMBon−OWA, and CAPMBon−IOWA, are presented. These methods
can represent different scenarios, considering the attitude, preferences, and relationship of
each argument. Also, a step-by-step process for the application of this new proposal in a
real case for the formulation of investment portfolios is generated. The results show several
scenarios, considering that underestimation or overestimation of the information by the
decision maker may influence the decision-making process regarding portfolio investments.
The document is structured as follows. Section 2 presents the preliminary formulations
for the OWA, IOWA, Var-OWA, CovOWA, VarBonOWA, and BonOWACov operators and
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the CAPM, Section 3 presents a new proposition (CAPM) with Var-OWA and OWA-Cov
combined with Bonferroni means and induced variables. In Section 4, the CAPMOWA,
CAPMIOWA, CAPMBon−OWA, and CAPMBon−IOWA are applied to create a portfolio using
the Mexican Stock Exchange. Section 5 presents the main conclusions of the article.

2. Preliminaries

The following section briefly formulates and conceptualizes the OWA operator [15],
IOWA operator [24], and Bonferroni means [25] combined with the variance and covariance
extension [26,27] and CAPM formulation [28]. The first definition that will be presented is
the OWA operator.

Definition 1. An OWA operator of dimension n is a mappingOWA : Rn → R with an associated weight
vector W of dimension n, such that ∑n

j=1 wj = 1 and wj ∈ [0, 1], according to the following formula:

OWA(a1, a2, . . . , an) =
n

∑
j=1

wjbj, (1)

where bj is the jth largest element of the collection ai.

The OWA operator can be extended when the ordering process is not made based on
the values of the attributes, but considering a specific order given by the expert or decision
maker. This extension was named the induced OWA (IOWA) operator [24], which can be
defined as follows.

Definition 2. An IOWA operator of dimension n is mapping IOWA : Rn×Rn → R with an
associated weight vector W of dimension n, such that ∑n

j=1 wj = 1 and wj ∈ [0, 1], where an
induced set of ordering variables are included (ui), such that the formula is:

IOWA(⟨u1, a1⟩, ⟨u2, a2⟩, . . . , ⟨un, an⟩) =
n

∑
j=1

wjbj, (2)

where bj is the ai value of the OWA pair < ui, ai > with the jth largest ui. ui is the order-inducing
variable and ai is the argument variable.

Another two interesting extensions are using the variance and covariance as a base
with a combination of the OWA operator. These new operators are named OWAvar operator
and OWAcov [26,29] and are defined as follows.

Definition 3. The Var-OWA (σ2
OWA) is defined as follows.

σ2
OWA(a1, . . . , an) =

n

∑
j=1

wjDj (3)

where Dj is the jth smallest of the (ai − µ)2, ai is the argument variable, µ is the average (in this
case, the OWA operator), wj ∈ [0, 1], and ∑n

j=1 wj = 1.

Definition 4. In the case of the OWACov, the definition is as follows:

OWACov(X, Y) =
n

∑
j=1

wjKj, (4)

where Kj is the jth largest (xi − µ)(yi − v); xi is the argument variable of the first set of elements
X = {x1, . . . , xn}; yi is the argument variable of the second set of elements Y = {y1, . . . , yn};
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µ and v are the averages (or the OWA operator) of the sets X and Y, respectively; wj ∈ [0, 1];
and ∑n

j=1 wj = 1.

Based on Definitions 3 and 4, new extensions were made using the Bonferroni means
as an important element to analyze and include the interrelationship of the arguments in
the formulation. In this sense, the formulations of the VarBonOWA (σ2

BONOWA) and the
BONOWACov are defined as follows [26,27].

Definition 5. The VarBonOWA (σ2
BONOWA) formulation is as follows.

σ2
BONOWA(a1, . . . , an) =

(
1
n∑

i
ar

i σ2
OWA

(
Li)) 1

r+q

(5)

where σ2
OWA

(
Li) =

(
1

n−1 ∑n
j = 1
j ̸= i

aq
j

)
, with

(
Li) being the vector of all

(
aj − µj

)2 except

(ai − µi)
2, ai and aj being the argument variables, µj and µi being the averages (in this case,

the OWA operator), and w being an n − 1 vector Wi associated with αi, whose components wij
are the OWA weights. Let W be an OWA weighing vector of dimension n − 1 with components
wi ∈ [0, 1] when ∑i wi = 1. Here, r and q represent parameters to compensate for possible errors.
Then, we can define this aggregation as σ2

OWA
(

Li) = (∑n−1
j=1 wiaπk(j)

)
, where aπk(j) is the largest

element in Li and wi =
1

n−1 for all i.

Definition 6. The Bonferroni Ordered Weighted Average Covariance (BONOWACov) operator in
the formulation is as follows.

BONOWACov(X, Y) =
(

1
n∑i ar

i OWACovW
(
Ei)) 1

r+q
, (6)

where OWACovW
(
Ei) =

(
1

n−1 ∑n
j=1

j ̸=i

aq
j

)
, with

(
Ei) being the vector of all (xi − µOWACov)

(yi − vOWACov) except the
(
xj − µOWACov

)(
yj − vOWACov

)
, xi being the argument variable of the

first set of elements X = {x1, . . . , xn}, yi being the argument variable of the second set of elements
Y = {y1, . . . , yn}, and w being an n − 1 vector Wi associated with αi, whose components wij are
the OWACov weights. Let W be an OWACov weighing vector of dimension n − 1 with components
wi ∈ [0, 1] when ∑i wi = 1. Then, we can define this aggregation as OWACovW

(
Li) =(

∑n−1
j=1 wiaπk(j)

)
, where aπk(j) is the largest element in Li and wi =

1
n−1 for all i.

Finally, both definitions can be extended using the IOWA operator, with their defini-
tions being as follows.

Definition 7. In the VarBonIOWA, let W be an OWA weighing vector of dimension n − 1 with
components wi ∈ [0, 1] when ∑i wi = 1, where the weights are associated according to the largest
value of ui and ui is the order-inducing variable.

σ2
BONIOWA(⟨u1, a1⟩, . . . , ⟨un, an⟩) =

(
1
n∑

i
br

i σ2
IOWA

(
Li)) 1

r+q

, (7)

where bi is the ai value of the σ2
BONIOWA pair < ui, ai > with the jth largest ui and

σ2
IOWA

(
Li) = ( 1

n−1 ∑n
j=1

j ̸=i

bq
j

)
, with

(
Li) being the vector of all

(
bj − µj

)2 except (bi − µi)
2, bi
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and bj being the argument variables, µj and µi being the averages (in this case, the OWA operator),
and w being an n − 1 vector Wi associated with αi, whose components wij are the OWA weights.

Definition 8. In the BonIOWACov, let W be an IOWACov weighing vector of dimension n − 1
with the components wi ∈ [0, 1] when ∑i wi = 1, where the weights are associated according to the
largest value of ui, and ui is the order-inducing variable.

BonIOWACov(U, X, Y) =
(

1
n∑i br

i IOWACovW
(
Ei)) 1

r+q
, (8)

where bi is the ai value of the BonIOWACov pair < ui, ai > with the jth largest ui,

IOWACovW
(
Ei) =

(
1

n−1 ∑n
j=1

j ̸=i

bq
j

)
, with

(
Ei) is the vector of all (xi − µIOWAcov)

(yi − vIOWAcov) except
(

xj − µIOWAcov
)(

yj − vIOWAcov
)
, xi being the argument variable of the

first set of elements X = {x1, . . . , xn}, yi being the argument variable of the second set of elements
Y = {y1, . . . , yn}, and w being an n − 1 vector Wi that is associated with αi, whose components
wij are the IOWACov weights.

Definition 9. According to the CAPM, the expected excess return on a portfolio/asset is:

CAPM = R f + βi

(
Rb − R f

)
(9)

where CAPM is the expected return of the portfolio/asset, R f is the risk-free rate of interest, βi is

the coefficient that is related to the systematic risk, and
(

Rb − R f

)
is the equity risk premium.

For the calculation of the beta value, the formulation of publicly traded companies
using historical prices [30] will be considered as follows:

βi =
Cov

(
Rp, Rb

)
Var(Rb)

(10)

where Cov is the covariance, Rp is the return of the asset, Rb is the return of the market, and
Var is the variance.

3. Capital Asset Pricing Model (CAPM) with Var-OWA and OWA-Cov Combined with
Bonferroni Means and Induced Variables

Considering these preceding proposals, a new extension of the Capital Asset Pricing
Model (CAPM) is put forth, which combines the OWA operator with its variance and
covariance extensions. Since Equation (9) incorporates the beta value and the variance and
covariance are considered in its calculation (Equation (10)), it seems appropriate to propose
a Capital Asset Pricing Model (CAPM) OWA operator. This would combine the CAPM
with σ2

OWA and OWACov to reflect the potential for underestimation or overestimation on
the part of decision makers. Based on the above, it is possible to use the OWA operator to
calculate the βi, and in this sense, the formulation will be as follows:

Proposition 1. The βOWA formulation is as follows:

βOWA =
OWACov

(
Rp, Rb

)
σ2

OWA(Rb)
, (11)

where OWACov is the OWA covariance (Equation (4)) (OWACov characteristics are shown widely
in Equation (4) and they are applied in βOWA), Rp is the return of the asset, Rb is the return of the
marketm and σ2

OWA is the OWA variance (Equation (3)) (σ2
OWA characteristics are shown widely

in Equation (3) and they are applied in βOWA).
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Also, some special cases of the βOWA can be seen when the OWA operator is not used
in the whole formulation, and such cases can be seen in Table 1. It is important to note that
Case 3 is the traditional β.

Table 1. Special cases of the βOWA.

Operator Total Case 1 Case 2 Case 3

βOWA
Uses:

OWACov and σ2
OWA

Uses:
OWACov and Var

Uses:
Cov and σ2

OWA

Uses:
Cov and Var

With the definition of the βOWA, it is possible to define the CAPMOWA as follows:

Proposition 2. The CAPMOWA is calculated as follows:

CAPMOWA = R f + βOWA
(

Rb − R f
)
, (12)

where CAPMOWA is the expected return of the portfolio/asset, R f is the risk-free rate of interest,
βowa is the new coefficient that combines an objective assessment of the risk by the market and
a subjective assessment of the market data by decision makers, and

(
Rb − R f

)
is the equity

risk premium.

On the other hand, by associating the weights with induced variables, a reordering
is obtained when considering the induced value µ (Equation (2)). Thus, the Capital Asset
Pricing Model (CAPM)-Induced OWA operator is defined as CAPMIOWA. In this sense,
the formulations of the β IOWA and CAPMIOWA values are as follows:

Proposition 3. The β IOWA formulation is defined as follows:

β IOWA =
IOWACov

(
Rp, Rb

)
σ2

IOWA(Rb)
, (13)

where IOWACov is the induced OWA covariance (Equations (2) and (4)) (IOWACov characteristics
are shown widely in Equations (2) and (4) and they are applied in β IOWA), Rp is the return of the as-
set, Rb is the return of the market, and σ2

IOWA is the induced OWA variance (Equations (2) and (3))
(σ2

IOWA characteristics are shown widely in Equations (2) and (3) and they are applied in β IOWA).
In both, the order-inducing variable is ui.

Therefore, with β IOWA, it is possible to define the CAPMIOWA as follows:

Proposition 4. The CAPMIOWA is calculated as follows:

CAPMIOWA = R f + β IOWA
(

Rb − R f
)
, (14)

where CAPMIOWA, IOWA pair < ui, ai > with the jth largest ui. ui is the order-inducing variable
and ai is the argument variable and the expected return of the portfolio/asset, R f is the risk-free
rate of interest, β IOWA is the coefficient that is related to the systematic risk, and

(
Rb − R f

)
is the

equity risk premium related to the reordering variable ui.

It is important to note that the main properties of the OWA operator are applied to the
CAPMIOWA and CAPMOWA operators. These are the following:

(a) It is monotonic, because if ai ≥ di, for all i, then CAPMOWA(a1, . . . , an) ≥ CAPMOWA
(b1, . . . , bn); CAPMIOWA(⟨ui, ai⟩, . . . , ⟨un, an⟩) ≥ CAPMIOWA(⟨ui, bi⟩, . . . , ⟨un, bn⟩). (b)
Commutativity: Let

(
a′1, a′2, . . . , a′n

)
be any permutation o f (a1, a2, . . . , an), then: CAPMOWA(

a′1, a′2, . . . , a′n
)

= CAPMOWA(b1, b2, . . . , bn), and CAPMIOWA(⟨ui, ai⟩, . . . , ⟨un, an⟩) =
CAPMIOWA(⟨ui, bi⟩, . . . , ⟨un, bn⟩). (c) Idempotency: Let ai = a, i = 1, 2, . . . , n, then
CAPMOWA(a, a, . . . , a) = a, and Let |ui, ai| = a, i = 1, 2, . . . , n, then CAPMOWA
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(⟨ui, ai⟩, . . . , ⟨un, an⟩) = a. (d) Boundedness: The CAPMOWA and CAPMIOWA lie be-
tween the max and min operators min(a1, a2, . . . , an) ≤ CAPMOWA(a1, a2, . . . , an) ≤
max(a1, a2, . . . , an) and min(⟨u1, a1⟩, . . . , ⟨un, an⟩) ≤ CAPMIOWA(⟨u1, a1⟩, . . . , ⟨un, an⟩) ≤
max(⟨u1, a1⟩, . . . , ⟨un, an⟩).

Now, considering the varying degrees of complexity inherent to decision-making
processes, it becomes imperative to propose methodologies that facilitate the aggregation of
disparate forms of information, encompassing both hard and soft datasets. This is achieved
using the Bonferroni means extension, as presented in Equations (5)–(8).

Proposition 5. The βBonOWA formulation is defined as follows:

βBonOWA =
BonOWACov

(
Rp, Rb

)
σ2

BonOWA(Rb)
, (15)

where BonOWACov is the Bonferroni OWA covariance (Equation (6)) (BonOWACov character-
istics are shown widely in Equation (6) and they are applied in βBonOWA), Rp is the return of the
asset, Rb is the return of the market, and σ2

BonOWA is the Bonferroni OWA variance (Equation (5))
(σ2

BonOWA characteristics are shown widely in Equation (5) and they are applied in βBonOWA).

With the definition of the βBonOWA, it is possible to define the CAPMBonOWA as follows:

Proposition 6. The CAPMBonOWA is calculated as follows:

CAPMBonOWA = R f + βBonOWA
(

RM − R f
)
, (16)

where CAPMBonOWA is the subjective return of the portfolio/asset, R f is the risk-free rate of interest,
BBonOWA is the coefficient that is related to the interrelated and systematic risk simultaneously, and(
Rb − R f

)
is the equity risk premium.

(a) Commutativity: Let
(
a′1, a′2, . . . , a′n

)
be any permutation o f (a1, a2, . . . , an), then:

CAPMBonOWA
(
a′1, a′2, . . . , a′n

)
= CAPMBonOWA(a1, a2, . . . , an). (b) Idempotency: Let aj = a,

j = 1, 2, . . . , n, then CAPMBonOWA(a, a, . . . , a) = a. (c) Monotonicity: Let ai(i = 1, 2, . . . , n)
and bi(i = 1, 2, . . . , n) be two collections of crisp data I f ai ≥ bi f or all i, then CAPMBonOWA
(a1, a2, . . . , an) ≥ CAPMBonOWA(b1, b2, . . . , bn). (d) Boundedness: The CAPMBonOWA lies
between the max and min operators: min(a1, a2, . . . , an) ≤ CAPMBonOWA(a1, a2, . . . , an) ≤
max(a1, a2, . . . , an).

Some special cases of the βBonOWA operator are shown as follows:
If r = 1 and q = 1, then Equation (2) reduces to the following:

βBonOWA1,1 =

(
1
n ∑i a1

i

(
1

n−1 ∑n
j=1

j ̸=i

a1
j

)) 1
2
(Rp, Rb)

(
1
n ∑i a1

i

(
1

n−1 ∑n
j=1

j ̸=i

a1
j

)) 1
2
(Rb)

, (17)

If q = 0, then Equation (2) reduces to the following:

βBonOWAr,0 =

(
1
n ∑i ar

i

) 1
r+0 (

Rp, Rb
)

(
1
n ∑i ar

i

) 1
r+0

(Rb)

, (18)
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If r = 2 and q = 0, then Equation (2) reduces to the square mean as follows:

βBonOWA2,0 =

(
1
n ∑i a2

i

) 1
2 (

Rp, Rb
)

(
1
n ∑i a2

i

) 1
2
(Rb)

, (19)

If r = 1 and q = 0, then Equation (2) reduces to the usual average as follows:

βBonOWA1,0 =
1
n ∑n

k=1 ai
(

Rp, Rb
)

1
n ∑n

k=1 ai(Rb)
, (20)

If r → +∞ and q = 0, then Equation (2) reduces to the max operator as follows:

lim
r→∞

βBonOWA∞,0 =
max{ai}

(
Rp, Rb

)
max{ai}(Rb)

, (21)

If r → 0 and q = 0, then Equation (2) reduces to the geometric mean operator as follows:

lim
r→∞

βBonOWAr,0 =
(∏n

i=1 ai)
1
n
(

Rp, Rb
)

(∏n
i=1 ai)

1
n (Rb)

, (22)

Proposition 7. The βBonIOWA formulation is defined as follows:

βBonIOWA =
BonIOWACov

(
Rp, Rb

)
σ2

BonIOWA(Rb)
, (23)

where BonIOWACov is the Bonferroni-induced OWA covariance (Equation (8)) (BonIOWACov
characteristics are shown widely in Equation (6) and they are applied in βBonIOWA), Rp is the
return of the asset, Rb is the return of the market, and σ2

BonIOWA is the Bonferroni-induced OWA
variance (Equation (7)) (σ2

BonIOWA characteristics are shown widely in Equation (5) and they are
applied in βBonIOWA). In both, the order-inducing variable is ui.

Proposition 8. The CAPMBonIOWA is calculated as follows:

CAPMBonIOWA = R f + βBonIOWA
(

RM − R f
)
, (24)

where CAPMBonIOWA is the expected return of the portfolio/asset, R f is the risk-free rate of interest,
βBonIOWA is the coefficient that is related to the interrelated and systematic risk simultaneously,
and

(
Rb − R f

)
is the equity risk premium related to the reordering variable ui.

(a) Commutativity: Let
(
a′1, a′2, . . . , a′n

)
be any permutation o f (a1, a2, . . . , an), then:

CAPMBonIOWA(⟨ui, ai⟩, . . . , ⟨un, an⟩) = CAPMBonIOWA(⟨ui, bi⟩, . . . , ⟨un, bn⟩). (b) Idempo-
tency: Let |ui, ai| = a, i = 1, 2, . . . , n, then CAPMBonIOWA(⟨ui, ai⟩, . . . , ⟨un, an⟩) = a.
(c) Monotonicity: Let ai(i = ⟨u1, 1⟩, . . . , ⟨un, an⟩) and bi(i = ⟨ui, b1⟩, . . . , ⟨un, bn⟩) be two col-
lections of crisp data I f |ui, ai| ≥ |ui, bi| f or all i, then CAPMBonIOWA(⟨u1, 1⟩, . . . , ⟨un, an⟩) ≥
CAPMBonIOWA(⟨ui, b1⟩, . . . , ⟨un, bn⟩). (d) Boundedness: The CAPMBonIOWA lies between
the max and min operators: min(⟨ui, ai⟩, . . . , ⟨un, an⟩) ≤ CAPMBonIOWA(⟨ui, ai⟩, . . . , ⟨un, an⟩)
≤ max(⟨ui, ai⟩, . . . , ⟨un, an⟩).

Some special cases of the βBonIOWA operator are shown as follows:
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If r = 1 and q = 1, then Equation (2) reduces to the following:

βBonIOWA1,1 =

(
1
n ∑i ⟨ui, ai⟩1

i

(
1

n−1 ∑n
j=1

j ̸=i

⟨ui, ai⟩1
j

)) 1
2 (

Rp, Rb
)

(
1
n ∑i ⟨ui, ai⟩1

i

(
1

n−1 ∑n
j=1

j ̸=i

⟨ui, ai⟩1
j

)) 1
2

(Rb)

, (25)

If q = 0, then Equation (2) reduces to the following:

βBonIOWAr,0 =

(
1
n ∑i⟨ui, ai⟩r

i

) 1
r+0 (Rp, Rb

)
(

1
n ∑i⟨ui, ai⟩r

i

) 1
r+0

(Rb)

, (26)

If r = 2 and q = 0, then Equation (2) reduces to the square mean as follows:

βBonIOWA2,0 =

(
1
n ∑i⟨ui, ai⟩2

i

) 1
2 (Rp, Rb

)
(

1
n ∑i⟨ui, ai⟩2

i

) 1
2
(Rb)

, (27)

If r = 1 and q = 0, then Equation (2) reduces to the usual average as follows:

βBonIOWA1,0 =
1
n ∑n

k=1⟨ui, ai⟩
(

Rp, Rb
)

1
n ∑n

k=1⟨ui, ai⟩(Rb)
, (28)

If r → +∞ and q = 0, then Equation (2) reduces to the max operator as follows:

lim
r→∞

β
BonIOWA∞,0

=
max{⟨ui, ai⟩}

(
Rp, Rb

)
max{⟨ui, ai⟩}(Rb)

, (29)

If r → 0 and q = 0, then Equation (2) reduces to the geometric mean operator as follows:

lim
r→∞

β
BonIOWAr,0

=
(∏n

i=1⟨ui, ai⟩)
1
n
(

Rp, Rb
)

(∏n
i=1⟨ui, ai⟩)

1
n (Rb)

, (30)

A novel family of CAMP method extensions has been proposed, comprising the follow-
ing four new approaches: CAPMOWA, CAPMIOWA, CAPMBonOWA, and CAPMBonIOWA.
Each of these cases presents a different level of complexity. The CAPMOWA considers the
attitude of the decision maker by the inclusion of the weighting vector and the reordering
process based on the value of the arguments. The CAPMIOWA incorporates a new reorder-
ing process based on induced values, which allows the decision maker to select what will
be the ordering relationship between the weights and arguments based on criteria that
they consider to be the most appropriate based on their knowledge. The CAPMBonOWA
not only incorporates the weighting vector, but through the use of Bonferroni means, it
allows for the interrelatedness of these arguments, simultaneously allowing for a more
complex analysis between the arguments. Finally, the CAPMBonIOWA considers the attitude
of the decision maker, the ordering of arguments according to the induced variable, and the
interrelatedness of these arguments simultaneously. Thus, each of the proposed methods
can represent a different scenario, considering the attitude, preferences, and relationship of
each argument to make a portfolio investment decision.



Axioms 2024, 13, 660 10 of 21

4. Application of the CAPMOWA and Its Extensions in Creating an Investment Portfolio

In this section, the use of the CAPMOWA and its extensions in the Mexican Stock Exchange
is explored. Also, the step-by-step instructions for using this new operator are presented.

4.1. Step by Step

To incorporate the expectations and knowledge of the decision maker into the portfolio
selection process with the use of the CAPMOWA and its extensions, it is necessary to consider
the following steps:

1. Define the investor’s profile. The purpose of this is to identify financial instruments
that could be part of the investor’s potential portfolio. This profile is related to
knowledge of the different fixed income instruments and equity instruments, and it
also considers the attitude of the investors to potential losses and aversion to risk.
Many financial institutions obtain this information through different questionnaires
provided to the person.

2. Define the value limits of the β. The objective is that the assets that make up the
investment portfolio are directly related to the investor’s profile. Therefore, those
with a high result have a higher volatility than the market, so their possibility for
profit or loss can be more significant. In this way, what is sought is that the companies
that make up the portfolio meet the risk criteria allowed by the investor.

3. Define the assets that will make up the portfolio. The types of assets that will make up
the investment portfolio must be identified. For this research, only stocks will be used.

4. Define the industries that will make up the portfolio. Each industry has different risks
and volatilities; therefore, investors may feel more open to one type of industry than
another, so the search for possible assets should be limited based on the industries
defined as possible for investment.

5. Define the number of assets that will make up the portfolio.
6. Define the possible shares to integrate the portfolio through the β traditional.
7. Calculate the βOWA and its extensions for defining shares that can make up the

investment portfolio.
8. Identify which assets will be part of the portfolio.
9. Calculate the CAPM, CAPMOWA, and its extensions for each of the assets.
10. Identify the weight of each asset within the portfolio.
11. Calculate the CAPM, CAPMOWA, and its extensions for the investment portfolio and

analyze the results.

4.2. Application in an Investment Portfolio

Within this section, the steps defined in the previous point will be used to identify
the specific structures of investment portfolios through the use of the traditional CAPM,
CAPMOWA, and its extensions.

Step 1. In this case, the investor is male, 36 years old, with an investment horizon of
3 years, an average income of MXN 50,000 Mexican pesos per month, a mortgage loan with
a monthly payment of MXN 10,500, without additional equity, with an investment capacity
of MXN 1,000,000, a risk tolerance defined as moderate, and an investment objective of a
return of more than two or three percent higher than Mexican Treasury Certificates. With all
the above information, it can be defined that the investor’s profile is moderate, indicating that
it can make investments in different equity instruments, but it has a medium aversion to risk,
and because of that, the possible investment options must consider limited potential losses.

Step 2. In this case, the limits established for the β value are 1± 0.30, that is, a minimum
value of 0.70 and a maximum value of 1.30. These limit values are obtained considering
the investor profile and, after some talk rounds, the main objective is to obtain a value that
meets the risk aversion of the investor.

Step 3. The portfolio only considers stocks from the Mexican market, and a selection
of 23 stocks is made (See Table 2), so all of them are used to form the portfolio. Yahoo
Finance and programming in R are used to download the daily information of each stock
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from 1 January 2021 to 31 December 2023. The decision to only include the Mexican Stock
market is because the investor that provided the information can only invest in these assets;
because of this limitation, the proposed method is presented considering this. This is also
an exciting approach, because even when an investor has limited asset options, it is always
important to measure the risk of those assets and include in the portfolio only options that
meet the requirements provided by the investor.

Table 2. Symbol, names, and β values.

Symbol Name Beta

GRUMAB.MX Gruma, S.A.B. de C.V. 0.5582
GENTERA.MX Gentera, S.A.B. de C.V. 0.6381

OMAB.MX Grupo Aeroportuario del Centro Norte, S.A.B. de C.V. 1.0546
GAPB.MX Grupo Aeroportuario del Pacífico, S.A.B. de C.V. 1.3007

FEMSAUBD.MX Fomento Económico Mexicano, S.A.B. de C.V. 0.8007
AC.MX Arca Continental, S.A.B. de C.V. 0.4906

GMEXICOB.MX Grupo México, S.A.B. de C.V. 1.4889
CEMEXCPO.MX CEMEX, S.A.B. de C.V. 1.5406

GCC.MX GCC, S.A.B. de C.V. 0.7323
MEGACPO.MX Megacable Holdings, S. A. B. de C. V. 0.5507

TLEVISACPO.MX Grupo Televisa, S.A.B. 1.4779
GCARSOA1.MX Grupo Carso, S.A.B. de C.V. 1.3786
GFNORTEO.MX Grupo Financiero Banorte, S.A.B. de C.V. 0.825

BIMBOA.MX Grupo Bimbo, S.A.B. de C.V. 0.4555
ALPEKA.MX ALPEK, S.A.B. de C.V. 0.7325
ALSEA.MX Alsea, S.A.B. de C.V. 0.6207

KIMBERA.MX Kimberly-Clark de México, S. A. B. de C. V. 1.0612
ASURB.MX Grupo Aeroportuario del Sureste, S. A. B. de C. V. 0.5046

CUERVO.MX Becle, S.A.B. de C.V. 0.4502
LABB.MX Genomma Lab Internacional, S.A.B. de C.V. 0.5263

BOLSAA.MX Bolsa Mexicana de Valores, S.A.B. de C.V. 0.7592
BBAJIOO.MX Banco del Bajío, S.A., Institución de Banca Múltiple 0.6921
PINFRA.MX Promotora y Operadora de Infraestructura, S. A. B. de C. V. 1.1042

In addition, daily profitability is generated through the Actual value
Actual value−1

− 1. Subsequently,
the omitted data are deleted, and the database is exported to Excel 365 version 2408 (The
R 4.4.1 code is in Appendix A).

Step 4. Due to the low number of shares with movements in the Mexican Stock Market,
segmentation by industry is not carried out.

Step 5. Because the Mexican Stock Market does not have a lot of companies, the
portfolio will consider all the stocks that meet the requirements.

Step 6. The asset selection process is carried out based on the β and βOWA, where we
analyze them separately. Initially, Table 2 shows the values using the β. In this regard,
the following shares meet the requirements: OMAB. MX, FEMSAUBD. MX, GCC. MX,
BIMBOA. MX, ALSEA. MX, ASURB. MX, BBAJIOO. MX, and GCARSOA1. MX.

Step 7. To calculate βOWA and its extensions, it is necessary to calculate the xOWA
and yOWA, and a specific weight for each data piece must be determined to calculate both
operations. To simplify the process, the decision maker is asked to give particular weight
to each year analyzed, which are 2021 = 0.20, 2022 = 0.30, and 2023 = 0.50 (To obtain this
information, the investor that completed the information of step 1 is asked the following
question: Considering the results obtained in the last three years, in your expertise, what is
the significance of the results for each specific year, considering that the sum of the 3 years
must be 1? One way to visualize this is the possibility that the behavior of the shares will be
like that year. The investor gave all the information about each share, such as their volatility
graphs and their average annual returns. The main purpose of this step is to obtain the
economic knowledge and expectation of the investor.). It is worth mentioning that a more
diffuse analysis could assign a different weight to the months or days of each year. To
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obtain the β IOWA, the induced values are I = (3, 2, 1), with the weighting vector and the
induced values of the βBon−OWA and βBon−IOWA being obtained considering r = q = 1.

To make it clear how the calculation is made, let us take MXX as an example, which
is the Mexican S&P, where y = 0.00037578, and this result is the average of all the MXX
values from 1 January 2021 to 31 December 2023. For the calculation of yOWA , the aver-
age will be identified for each year, where 2021 = 0.0007351, 2022 = −0.0003199, and
2023 = 0.0007135. Once the averages per year are obtained, the values are reordered and
then multiplied by the weights so the final multiplication is yOWA = (−0.0003199 × 0.20) +
(0.0007135 × 0.30) + (0.0007351 × 0.50) = 0.0005176. Also, the process for the yIOWA =
(0.0007135 × 0.20) + (−0.0003199 × 0.30) + (0.00071351 × 0.50) = 0.0000004143, for the
case of the yBon−OWA the calculation is the following.

yBon−OWA
(
V 1)

= 0.20 × (|−0.0003199|+ |0.0007135|) = 0.0002067

yBon−OWA
(
V 2)

= 0.30 × (|0.0007135|+ |0.0007351|) = 0.0004346

yBon−OWA
(
V 3)

= 0.50 × (|−0.0003199|+ |0.0007351|) = 0.0005275

yBon−OWA =
(

1
3 [{|−0.0003199| × |0.0002067|}+ {|0.0007135| × |0.0004346|}

+{|0.00073505| × |0.0005275|}
) 1

1+1
= 0.0005046

Finally, in the case of the yBon−IOWA, the process is

yBon−OWA
(
V 1)

= 0.20 × (|0.0007351|+ |−0.0003199|) = 0.0002067

yBon−OWA
(
V 2)

= 0.30 × (|−0.0003199|+ |0.0007351|) = 0.0003165

yBon−OWA
(
V 3)

= 0.50 × (|0.0007351|+ |0.0007135|) = 0.0007243

yBon−OWA =
(

1
3 [{|0.0007135| × |0.0002067|}+ {|0.0003199| × |0.0003165|}

+{|0.0007351| × |0.0007243|}]
) 1

1+1
= 0.0004808

The average for each year and the results using different aggregation operators are
presented in Table 3.

With these new averages, the CovOWA and VarOWA are calculated. Assignments of
monthly weights are enough for analysis purposes, and a weight related to each month is deter-
mined by the investor as W = (0.10, 0.05, 0.5, 0.10, 0.10, 0.05, 0.05, 0.10, 0.10, 0.10, 0.05, 0.15)
(To obtain the relative weights for the importance of each month, the guiding question for
the investor is the following: Considering the impact that each month has on the volatility
of the stock price, what weight would you assign to each of the months? Remember that
the sum must equal 1. A simple way to understand the question is to consider the follow-
ing: Which months have the highest volatility? and from there, assign weight. The main
purpose is that the investors visualize if there are some months that are easier for the share
to have the same pattern and assign it a higher weight, and for those where the changes
are specific to some events that are hard to replicate in the future, assign them a lower
weight.). Considering that the information that is analyzed is for three years (36 months),
the weights will be divided by 1

3 to make the sum equal to one, and the induced values are
I = (10, 9, 8, 5, 6, 4, 2, 3, 11, 12, 7, 1). The β results are presented in Table 4.

Step 8. In this step, the different suggestions of portfolios are analyzed based on the
considerations of the investor. These portfolios are presented in Table 5.
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Table 3. Averages daily stocks by year and by aggregation operator.

Symbol 2021 2022 2023 OWA IOWA Bon-OWA Bon-IOWA
GRUMAB.MX 0.0005055 0.0002882 0.0008949 0.0006567 0.0005182 0.0005123 0.0004540
GENTERA.MX 0.0016087 0.0024034 0.0007947 0.0018432 0.0016843 0.0014331 0.0012836

OMAB.MX 0.0005700 0.0009790 0.0013587 0.0010870 0.0008504 0.0008512 0.0007393
GAPB.MX 0.0013762 0.0003898 0.0008959 0.0010348 0.0009842 0.0008012 0.0007687

FEMSAUBD.MX 0.0003877 −0.0000109 0.0016638 0.0009460 0.0005233 0.0007377 0.0005798
AC.MX 0.0015547 0.0010510 0.0008520 0.0012631 0.0012631 0.0010028 0.0009857

GMEXICOB.MX 0.0005546 −0.0004100 0.0016822 0.0009255 0.0004907 0.0008585 0.0006955
CEMEXCPO.MX 0.0014912 −0.0019151 0.0022475 0.0011881 0.0006206 0.0015974 0.0014990

GCC.MX 0.0012801 −0.0005963 0.0019400 0.0012348 0.0008492 0.0011432 0.0010341
MEGACPO.MX 0.0000122 −0.0007710 −0.0007888 −0.0003829 −0.0003829 0.0003795 0.0004038

TLEVISACPO.MX 0.0009566 −0.0027733 −0.0012319 −0.0004459 −0.0006001 0.0012668 0.0013730
GFNORTEO.MX 0.0011140 0.0008094 0.0013262 0.0011592 0.0010651 0.0009207 0.0008763

BIMBOA.MX 0.0017992 0.0014150 0.0003174 0.0013876 0.0013876 0.0010612 0.0009736
ALPEKA.MX 0.0010333 0.0011461 −0.0028989 0.0003033 0.0002807 0.0013258 0.0012524
ALSEA.MX 0.0016535 0.0000824 0.0023575 0.0016913 0.0013230 0.0012773 0.0011476

KIMBERA.MX −0.0000676 0.0006687 0.0008574 0.0006158 0.0003383 0.0004874 0.0003833
ASURB.MX 0.0012203 0.0006121 0.0008623 0.0009913 0.0009663 0.0007826 0.0007633

CUERVO.MX 0.0002852 −0.0005637 −0.0007576 −0.0001780 −0.0001780 0.0004052 0.0004086
LABB.MX 0.0009686 −0.0005574 −0.0003678 0.0002624 0.0002435 0.0005743 0.0005750

BOLSAA.MX −0.0005605 0.0002576 0.0000520 0.0000323 −0.0001926 0.0002442 0.0003054
BBAJIOO.MX 0.0017532 0.0028339 0.0002515 0.0019932 0.0017771 0.0015150 0.0012436
PINFRA.MX −0.0002168 0.0004060 0.0008427 0.0004998 0.0001819 0.0004566 0.0003656

GCARSOA1.MX 0.0003556 0.0011733 0.0035974 0.0022218 0.0012493 0.0017222 0.0012481
MXX 0.0007351 −0.0003199 0.0007135 0.0005176 0.0004143 0.0005046 0.0004808

Table 4. Calculation of the βOWA and its extensions.

Stocks β βOWA βIOWA βBon-OWA βBon-IOWA

GRUMAB.MX 0.558 0.498 0.341 0.580 0.337
GENTERA.MX 0.638 0.923 0.892 0.995 0.874

OMAB.MX 1.054 1.150 1.177 1.184 1.164
GAPB.MX 1.300 1.241 1.197 1.276 1.190

FEMSAUBD.MX 0.800 0.667 0.594 0.740 0.593
AC.MX 0.490 0.658 0.538 0.607 0.531

GMEXICOB.MX 1.488 1.592 1.452 1.543 1.454
CEMEXCPO.MX 1.541 1.579 1.377 1.532 1.401

GCC.MX 0.732 0.817 0.827 0.862 0.831
MEGACPO.MX 0.551 1.008 0.755 1.051 0.772

TLEVISACPO.MX 1.478 1.985 1.858 2.227 1.921
GFNORTEO.MX 1.379 1.072 1.100 1.196 1.092

BIMBOA.MX 0.825 0.723 0.617 0.809 0.607
ALPEKA.MX 0.455 0.840 0.408 0.832 0.442
ALSEA.MX 0.733 0.929 0.873 1.082 0.868

KIMBERA.MX 0.621 0.792 0.645 0.787 0.643
ASURB.MX 1.061 0.826 0.816 0.895 0.808

CUERVO.MX 0.505 0.670 0.789 0.829 0.804
LABB.MX 0.450 0.940 0.563 0.742 0.570

BOLSAA.MX 0.526 0.936 0.825 0.907 0.834
BBAJIOO.MX 0.759 0.868 0.770 1.063 0.757
PINFRA.MX 0.692 0.966 0.919 0.945 0.917

GCARSOA1.MX 1.104 1.705 1.456 1.622 1.444

Step 9. For the calculation of the CAPM, CAPMOWA, and its extensions, the risk-free
rate that will be used is R f = 7.12%, which corresponds to the average of the 28-day
Treasury Certificates (CETES) from 2 January 2020 to 28 December 2023, and the market
risk rate is rm = 9.46%, which represents the average yield from 2020 to 2023. To better
understand the calculations, the CAPM and CAPMOWA for the GRUMAB.MX action will
be performed. The results of all shares can be found in Table 6.

CAPM = 7.12% + 0.5582380(9.46% − 7.12%) = 8.43%

CAPMOWA = 7.12% + 0.4976700(9.46% − 7.12%) = 8.28%
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CAPMIOWA = 7.12% + 0.3410421(9.46% − 7.12%) = 7.92%

CAPMBon−OWA = 7.12% + 0.5800337(9.46% − 7.12%) = 8.48%

CAPMBon−IOWA = 7.12% + 0.3366573(9.46% − 7.12%) = 7.91%

Table 5. Share selection for each portfolio.

Portfolio Shares

Using β
OMAB. MX, FEMSAUBD. MX, GCC. MX, BIMBOA. MX, ALSEA. MX, ASURB. MX, BBAJIOO. MX

and GCARSOA1. MX

Using βOWA

GENTERA.MX, OMAB.MX, GAPB.MX, GCC.MX, MEGACPO.MX, GFNORTEO.MX, BIMBOA.MX,
ALPEKA.MX, ALSEA.MX, KIMBERA.MX, ASURB.MX, LABB.MX, BOLSAA.MX, BBAJIOO.MX

and PINFRA.MX
using βIOWA

GENTERA.MX, OMAB.MX, GAPB.MX, GCC.MX, MEGACPO.MX, GFNORTEO.MX, ALSEA.MX,
ASURB.MX, CUERVO.MX, BOLSAA.MX, BBAJIOO.MX and PINFRA.MX

using
βBon-OWA

GENTERA.MX, OMAB.MX, GAPB.MX, FEMSAUBD.MX, GCC.MX, MEGACPO.MX, GFNORTEO.MX,
BIMBOA.MX, ALPEKA.MX, ALSEA.MX, KIMBERA.MX, ASURB.MX, CUERVO.MX, LABB.MX,

BOLSAA.MX, BBAJIOO.MX and PINFRA.MX
using

βBon-IOWA
GENTERA.MX, OMAB.MX, GAPB.MX, GCC.MX, MEGACPO.MX, GFNORTEO.MX, ALSEA.MX,

ASURB.MX, CUERVO.MX, BOLSAA.MX, BBAJIOO.MX and PINFRA.MX

Table 6. CAPM and CAPMOWA for the 23 shares.

Stocks CAPM CAPMOWA CAPMIOWA CAPMBon-OWA CAPMBon-IOWA

GRUMAB.MX 8.43% 8.28% 7.92% 8.48% 7.91%
GENTERA.MX 8.61% 9.28% 9.21% 9.45% 9.17%

OMAB.MX 9.59% 9.81% 9.87% 9.89% 9.84%
GAPB.MX 10.16% 10.02% 9.92% 10.11% 9.90%

FEMSAUBD.MX 8.99% 8.68% 8.51% 8.85% 8.51%
AC.MX 8.27% 8.66% 8.38% 8.54% 8.36%

GMEXICOB.MX 10.60% 10.84% 10.52% 10.73% 10.52%
CEMEXCPO.MX 10.72% 10.82% 10.34% 10.70% 10.40%

GCC.MX 8.83% 9.03% 9.06% 9.14% 9.06%
MEGACPO.MX 8.41% 9.48% 8.89% 9.58% 8.93%

TLEVISACPO.MX 10.58% 11.77% 11.47% 12.33% 11.61%
GFNORTEO.MX 10.35% 9.63% 9.69% 9.92% 9.67%

BIMBOA.MX 9.05% 8.81% 8.56% 9.01% 8.54%
ALPEKA.MX 8.19% 9.08% 8.08% 9.07% 8.15%
ALSEA.MX 8.83% 9.29% 9.16% 9.65% 9.15%

KIMBERA.MX 8.57% 8.97% 8.63% 8.96% 8.62%
ASURB.MX 9.60% 9.05% 9.03% 9.21% 9.01%

CUERVO.MX 8.30% 8.69% 8.97% 9.06% 9.00%
LABB.MX 8.17% 9.32% 8.44% 8.86% 8.45%

BOLSAA.MX 8.35% 9.31% 9.05% 9.24% 9.07%
BBAJIOO.MX 8.90% 9.15% 8.92% 9.61% 8.89%
PINFRA.MX 8.74% 9.38% 9.27% 9.33% 9.27%

GCARSOA1.MX 9.70% 11.11% 10.53% 10.92% 10.50%

It is important to remember that not all stocks will be part of our portfolio, but only
those specified in Step 8.

Step 10. Identification of the weight of each asset within the portfolio.
The selection of the weight that each asset will have within the portfolio depends on

the types of assets that are integrated, whether they are bonds, stocks, currencies, metals,
or any other kind of instrument; however, by considering only stocks in the portfolio, the
decision is made that each of these has a weight equal to 1

n .
Step 11. The portfolio performance calculation in Table 7 shows an example of how

they are calculated based on the CAPM, and Table 8 presents the results using all the
aggregation operators.
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Table 7. Results for the portfolio CAPM.

Symbol CAPM Weight Weighted Performance
OMAB.MX 9.59% 0.125 1.20%

FEMSAUBD.MX 8.99% 0.125 1.12%
GCC.MX 8.83% 0.125 1.10%

BIMBOA.MX 9.05% 0.125 1.13%
ALSEA.MX 8.83% 0.125 1.10%
ASURB.MX 9.60% 0.125 1.20%

BBAJIOO.MX 8.90% 0.125 1.11%
GCARSOA1.MX 9.70% 0.125 1.21%

Total 9.19%

Table 8. Results of portfolio performance based on different aggregation operators.

Operator Result

CAPM 9.19%
CAPMOWA 9.31%
CAPMIOWA 9.25%

CAPMBon-OWA 9.35%
CAPMBon-IOWA 9.25%

Based on the results obtained in Table 9, it can be seen that the ranking of portfolios
should be CAPMBon−OWA > CAPMOWA > CAPMIOWA or CAPMBon−IOWA > CAPM.
Even when the results show us an increase in the possible future profitability of the portfolio,
the application is really in the selection of assets, since this decision must consider the
investor’s characteristics so that he does not face more or less risk than he is willing to. An
interesting fact can be visualized in step 8, where we consider portfolios from 8 stocks to 17,
which may meet or fail to meet the investor’s criteria, depending on how the information
is analyzed. Thus, this article aims to present an alternative way to calculate CAPM and
β to identify the possible returns of assets considering different opinions on and future
visions for the market of the investor or decision maker. It is essential to recognize that
using the characteristics and expectations of each decision maker presents a significant
limitation, since the parameters of acceptance and rejection are individual. Hence, the aim
is to find a portfolio that considers the knowledge and expectations of the investor, and
with that information, obtain the different risk possibilities and select the one that meets all
the conditions expected and provides the highest expected return.

Table 9. Portfolios analysis.

Portfolio Coefficient p-Value R-Square (adj)

CAPM 0.8849 0.000 61.71%
CAPMOWA 0.7862 0.000 62.78%

CAPMIOWA and
CAPMBon-IOWA

0.8287 0.000 60.08%

CAPMBon-OWA 0.7706 0.000 65.97%

To perform a better analysis of the portfolio generated, a linear regression will be
made considering the expected returns of the different four portfolios’ expected returns
(dependent variable) with the market expected returns (RM). Also, the CAPMIOWA and
CAPMBon−IOWA portfolio consider the same stocks, because one regression is conducted
for the two operators. The hypotheses that are presented are the following: H0 = βi = 0
and H1 = 1.30 > βi > 0.70. We want to prove that the expected returns of the portfolio are
still in the same risk range that the decision maker indicated in step 2 of Section 4.2. The
complete results are presented in Appendix B and a summary of the results are presented
in Table 9.
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With the results obtained by the different models, it is possible to accept H1, consider-
ing that all portfolios have a β between 0.70 and 1.30. Another interesting result is that all
portfolios have a p-Value of 0.000, remembering that the variables are significant when the
p-value is less than 0.050. These results demonstrate that the portfolios being proposed to
the decision maker have the characteristics that the investor wants.

As seen with the different proposed portfolios, various scenarios can be generated. One
of the main advantages is that these propositions include the information and expectations
of the investor, remembering that the main idea is to create a portfolio that can meet the
requirements that were settled in the initial stage. Because of that, with the addition of the
weighting vector, induced values, and Bonferroni means, subjective information can be
included in the formulation. One of the main limitations of this method is that the results
are susceptible to changes in the weighting vector and will produce different portfolios
based on the information provided by the investor. It is important to consider that this
limitation is also the importance of the methods proposed because, in the end, what the
investor wants is to have a portfolio that can meet all their requirements and not just a
generic one that does not include the expectations and knowledge that they have about the
past, present, and future of the market.

Finally, another significant limitation is the complexity of using these methods in
comparison to the traditional one, as can be seen in the results; in the end, the CAPMIOWA
and CAPMBon−IOWA present the same asset selection and, because of this, the same results.
Considering that the process of using the CAPMBon−IOWA is more complex, it may seem
that, in the end, it has no benefit. The same could have happened with the other extensions
if the asset or the weighting vector or induced values changed, and in the end, the asset
selection remained the same for the different operators. However, an important point to
consider is that, when the market presents, in general, a low volatility, it may be possible
that the use of complex formulations and extensions of the CAPM is not needed because the
results will remain similar, but considering that the data selection in this article was from
2021 to 2023, years where COVID-19 was prevalent and economic recovery was occurring,
the markets presented a lot of speculation, and this is when subjective information can
cause significant changes in portfolio selections. Another relevant fact to consider when
deciding whether to use complex methods like the ones proposed here are the assets that
can be included in the portfolio, because if the portfolio has an important percentage in
fixed income instruments like government bonds, usually, the β will not change much, even
when different equity instruments are selected, but if the portfolio is mainly composed
of equity instruments, then the complexity of the portfolio increases and the use of more
complex methodologies is required.

5. Conclusions

This article aims to present an improvement in the Capital Asset Pricing Model
(CAPM) formulation using different aggregation methods based on the OWA operator. The
proposed method is called the Capital Asset Pricing Model OWA operator (CAPMOWA)
operator. The main idea of this operator is that the ordering step considers the decision
maker’s attitude towards selecting assets considering their risk. Thus, this method can
consider both the information derived from the stock market and the attitude of the de-
cision makers in a Multi-Criteria Decision Analysis (MCDA). Moreover, the proposed
method combines the IOWA operator and the Bonferroni OWA extension related to vari-
ance and covariance. This results in the introduction of three new extensions, as follows: the
CAPMIOWA, CAPMBon−OWA, and CAPMBon−IOWA operators. In this sense, each operator
offers a different level of complexity. The CAPMIOWA operator considers attitude and re-
ordering according to the induced variable, the CAPMBon−OWA operator considers attitude
and the simultaneous interrelationship of the arguments, while the CAPMBon−IOWA opera-
tor considers attitude, the ordered induced variable, and the simultaneous interrelationship
of the arguments. Therefore, each method enables the generation of disparate scenarios
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and complexities, wherein an underestimation or overestimation of the information by the
decision maker may influence the decision-making process regarding portfolio investments.

Among the main results, the proposed methods generate different selections of stocks,
considering that the formulation of the β generates different possibilities of stocks that
meet the investor’s requirements. In the end, considering the final CAPM of the various
portfolios, the CAPMBon−OWA was the most profitable one, considering 17 stocks in contrast
to the 8 stocks of the traditional CAPM. As can be seen from the results, using different
methods can include or exclude the assets that can be included in the portfolio so that
the investors’ preferences continue to be considered. That focus is not lost within the
portfolio. Indeed, incorporating soft information and investors’ expectations into the
modeling process generates a more significant number of scenarios. Furthermore, the
complexity of the modeling itself is reflected in the way the attitudes and preferences of
decision makers are represented.

These new propositions that include the perception, knowledge, and expectations of
the investor in the asset selection process are essential, because sometimes the use of a
generic portfolio does not consider important elements for the decision maker, and because
of that, they do not meet the requirements and limitations that the portfolio must have, and in
this specific article, this means having a higher risk than the investor is willing to face. In this
sense, this custom-made portfolio, where the investor has more active participation in the asset
selection, can incorporate different subjective elements and improve the portfolio quality.

Within future research directions, it is possible to visualize the use of different ag-
gregation operators in other stages of analysis of the investment portfolio, as is the case
of the relative weight of each asset within the portfolio, which, in the case of this arti-
cle, was considered an equal weight; however, fuzzy or multi-criteria techniques could
also be used to obtain such weights. Also, other options include the application of ex-
tensions using distance measures to make a comparison between the ideal and the real
information [31,32], using experts to weigh the perceptions of decision makers [33,34], or
incorporating penalty functions to consider the potential for disagreement among decision
makers [35,36]. Similarly, further extensions can be made by utilizing other OWA exten-
sions, such as Heavy Operators [37,38] and Prioritized Operators [39,40]. Finally, some
interesting works have been developed with the use of extensions based on the Bonferroni
means, such the normalized Bonferroni weighted mean operator [41,42] or its extension
using distance measures [43], interval values [44], or linguistic information [43,45].
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Appendix A

```{r}
tickers <- c(“GRUMAB.MX”, “GENTERA.MX”, “OMAB.MX”, “GAPB.MX”, “FEMSAUBD.

MX”, “AC.MX”, “GMEXICOB.MX”, “CEMEXCPO.MX”, “GCC.MX”, “MEGACPO.MX”, “TLE-
VISACPO.MX”, “GFNORTEO.MX”, “BIMBOA.MX”, “ALPEKA.MX”, “ALSEA.MX”, “KIM-
BERA.MX”, “ASURB.MX”, “CUERVO.MX”, ”LABB.MX”, ”BOLSAA.MX”, “BBAJIOO.MX”,
”PINFRA.MX”, ”GCARSOA1.MX”, “ˆMXX”)
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start <- “2021-01-01”
end <- “2023-12-31”
n <- length(tickers)
p <- getSymbols(Symbols = tickers[1], src = “yahoo”,
from = start, to = end,
auto.assign = F)[, 6]
```

```{r}
for (i in 2:n){
p = merge(p, getSymbols(Symbols = tickers[i], src = “yahoo”,
from = start, to = end,
auto.assign=F)[, 6])
}
names(p) = gsub(“.Adjusted”, ““, names(p))
head(p)
```

```{r}
ret = p/lag(p) - 1
ret = ret[-1, ]
tail(ret)
```

```{r}
apply(is.na(ret), 2, sum)
```

```{r}
ret2 = na.omit(ret)
```

```{r}
write.csv(as.data.frame(ret2),”base.csv”)
```

Appendix B

1. Portfolio CAPM
Regression Equation

Port f olio CAPM = 0.000828 + 0.8849 RM

Coefficients

Term Coef SE Coef 95% CI T-Value p-Value VIF

Constant 0.000828 0.000241 (0.000355, 0.001300) 3.44 0.001
RM 0.8849 0.0254 (0.8351, 0.9347) 34.88 0.000 1.00

Model Summary

S R-sq R-sq (adj) PRESS R-sq (pred) AICc BIC

0.0066091 61.76% 61.71% 0.0331086 61.51% −5432.54 −5418.69
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2. Portfolio CAPMOWA
Regression Equation

Port f olio CAPMOWA = 0.000403 + 0.7862RM

Coefficients

Term Coef SE Coef 95% CI T-Value p-Value VIF

Constant 0.000403 0.000209 (−0.000007, 0.000814) 1.93 0.054
RM 0.7862 0.0220 (0.7430, 0.8295) 35.68 0.000 1.00

Model Summary

S R-sq R-sq (adj) PRESS R-sq (pred) AICc BIC

0.0057404 62.83% 62.78% 0.0250087 62.54% −5645.31 −5631.47

3. Portfolio CAPMIOWA and CAPMBon−IOWA
Regression Equation

Port f olio CAPMIOWA&CAPMBon−IOWA = 0.000413 + 0.8287RM

Coefficients

Term Coef SE Coef 95% CI T-Value p-Value VIF

Constant 0.000413 0.000233 (−0.000045, 0.000871) 1.77 0.077
RM 0.8287 0.0246 (0.7804, 0.8770) 33.70 0.000 1.00

Model Summary

S R-sq R-sq (adj) PRESS R-sq (pred) AICc BIC

0.0064054 60.13% 60.08% 0.0311633 59.78% −5479.79 −5465.94

4. Portfolio CAPMBon−OWA
Regression Equation

Port f olio CAPMBon−OWA = 0.000346 + 0.7706RM

Coefficients

Term Coef SE Coef 95% CI T-Value p-Value VIF

Constant 0.000346 0.000191 (−0.000029, 0.000722) 1.81 0.070
RM 0.7706 0.0202 (0.7311, 0.8102) 38.24 0.000 1.00

Model Summary

S R-sq R-sq (adj) PRESS R-sq (pred) AICc BIC

0.0052489 66.01% 65.97% 0.0209027 65.75% −5780.48 −5766.63
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