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Abstract: Current work provides an algebraic and geometric technique for building topological
quantum codes. From the lattice partition derived of quotient lattices Λ′/Λ of index m combined
with geometric technique of the projections of vector basis Λ′ over vector basis Λ, we reproduce
surface codes found in the literature with parameter [[2m, 2, |a| + |b|]] for the case Λ = Z2 and
m = a2 + b2, where a and b are integers that are not null, simultaneously. We also obtain a new class
of surface code with parameters [[2m, 2, |a|+ |b|]] from the Λ = A2-lattice when m can be expressed
as m = a2 + ab + b2, where a and b are integer values. Finally, we will show how this technique can
be extended to the construction of color codes with parameters [[18m, 4, 6(|a|+ |b|)]] by considering
honeycomb lattices partition A2/Λ′ of index m = 9(a2 + ab + b2) where a and b are not null integers.

Keywords: surface codes; color codes; flat torus; lattice

MSC: 81P70; 52C07; 81Q35

1. Introduction

Quantum coding theory made a significant advance with the discovery of CSS
codes [1,2], leading to the development of the richer structure known as stabilizer quantum
codes [3]. Since the superposition of states is essential for quantum information process-
ing, interactions with the environment can easily destroy these superpositions, making
quantum systems extremely fragile. Stabilizer codes, acting locally, can offer an alternative
solution to this problem.

Kitaev [4] proposed a class of stabilizer codes associated with a square lattice, i.e.,
sublattices of Z2 with squares as fundamental regions. These codes depend on the topology
of a surface and belong to the general class of topological quantum codes. Such codes
are used to store quantum information in the non-local degrees of freedom of strongly
correlated quantum systems with topological order. Because they are encoded non-locally,
these quantum states are resistant to local noise that does not alter the system’s overall
topology. This construction relies on an intrinsic physical mechanism that enables the topo-
logical system to self-correct local errors, which is remarkable because it does not require
external detection and correction of quantum errors, unlike traditional non-topological
codes. The system’s physical properties provide the mechanism for protecting the encoded
quantum states. Interactions described by a Hamiltonian in certain lattices or on surfaces
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with non-trivial topology control this mechanism. The ground state of these Hamiltonians
exhibits topological order, characterized by a robust type of ground state degeneracy that is
resilient to local disturbances. This robustness is due to an energy gap in the Hamiltonian
spectrum separating the ground state from excited states. Moreover, this degeneracy de-
pends on the topology of the network where the strongly correlated system’s Hamiltonian
is defined. Intuitively, topological order is a form of long-range entanglement in the ground
and excited states of a quantum system. Topology may further enhance protection in
ordinary-circuit quantum computing. For example, combining topological distribution and
dynamical decoupling can improve error correction capabilities [5,6].

To build topological quantum codes, we can consider a tiling (tessellation) of the flat
torus surface. The most significant classes of topological quantum codes are surface codes
and color codes. We obtain surface codes on a flat torus by associating Pauli operators X
and Z with the vertices and faces of the polygons that tessellate the torus. The encoded
qubits correspond to the homologically non-trivial cycles on the torus surface.

Bombin and Martin-Delgado introduced the color codes [7]. They constructed these
codes on three-valent tessellations with three-colorable faces, allowing for the coloring of
each face using three different colors, resulting in distinct colors for neighboring faces. Each
face of the tessellation has two Pauli operators attached, allowing for encoding twice as
many qubits as surface codes, as proved in [8].

Sarvepalli and Raussendorf [9] proposed color codes with parameters [[18.4s, 4, 2s+2]]
on the flat torus obtained from honeycomb lattices, i.e., sublattices of A2, where the Voronoi
regions are regular hexagons, which give rise to a three-valent tessellation. The qubits
are attached to each vertex of the regular hexagons that tessellate the torus. In [10], the
procedure for constructing color codes with parameters [[18m2, 4, 4m]] was expanded to
any positive integer value of m, not only for the case where m is expressed as m = 2s, as
obtained in [9].

Kitaev [4] proposed surface codes with parameters [[2m2, 2, m]] derived from the
Zm × Zm tessellation of the flat torus by m2 squares (where each square represents a
fundamental region of the Z2 lattice). In contrast to the proposal in [4], the authors in [7]
introduced new classes of surface codes with parameters [[m, 2, d]]. The way this structure
is made is based on how the torus surface can be tiled with m polyominoes [11]. Each region
is a match for a Lee sphere with radius r that is part of the Z2 lattice. The centers of these
polyominoes are codewords of classic perfect codes C that have associated an algebraic
structure of a cyclic additive group. This class of surface codes has been constructed only
in cases where m can be simultaneously expressed in the forms m = 2r2 + 2r + 1 and
m = a2 + b2 for some positive integer r and at least one pair of non-zero integers a and b.

In [12], the geometric method for making surface codes from Z2-lattices using poly-
ominoes, which was first suggested in [7], was expanded to all situations where m can be
written as m = a2 + b2. Similar to the work in [7], the centers C of the regions that cover the
Zm ×Zm tessellation also have associated the algebraic structure of a cyclic group.

Recently, the study of surface codes derived from honeycomb lattices has also gained
attention. These lattices were initially studied by Kitaev in [13]. The honeycomb lattice has
a fundamaental role, since it is a topologically ordered system involving only two-body
interactions [14], and it is also used to build new quantum memories [15].

The main goal of this work is to extend the procedure for building topological codes
via square lattices Z2 to honeycomb lattices A2. If we consider the question about the
construction of topological codes derived from lattices from an algebraic and geometric
point of view, the following questions appear in this context:

1. Is it possible to obtain surface codes with the same parameters [[2m2, 2, m]] of Kitaev
construction [4] from honeycomb lattices partition of index m2?

2. Is it possible to get surface codes from the tessellations of the torus that have regions
congruent to Lee spheres with radius r and centers on the codewords of the classic
perfect code C, which come from the A2-lattices?
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3. Is it possible to get color codes from the tessellations of the torus that have regions
congruent to Lee spheres with radius r and centers on the codewords of the classic
perfect code C, which come from the A2-lattices?

The goal is to develop fundamental tools from lattice theory to answer these questions.
We can obtain the flat torus geometrically by identifying the opposite sides of the parallelo-
gram. If the parallelogram is the fundamental region of a lattice Λ, we will denote the flat
torus by T = R2/Λ.

For instance, if we choose β = {(1, 0), (0, 1)} as the lattice basis associated with Z2-
lattice, we find a unit area square as the fundamental region associated with Z2-lattices.
Because of this, considering this lattice basis gives us a parallelogram P , and a Voronoi V
partition that are the same up to a translation [10,16].

These partitions produce tessellations that are self-dual. Therefore, we can perform
the analysis of the minimum distance of surface codes using either the parallelogram or
Voronoi partition. From there, several works [4,12,17] have proposed families of surface
codes derived from Z2 lattices.

If we choose β = {(1, 0), ( 1
2 ,

√
3

2 )} as the lattice basis for A2, on the other hand, we get

a parallelogram whose sides are parallel to the vectors e1 = (1, 0) and e2 = ( 1
2 ,

√
3

2 ). This
is the fundamental region for the A2-lattices. As a result of choosing this lattice basis, we
obtain parallelogram P and Voronoi V partitions that are not equal to a translation one each
other. However, P and Voronoi V are congruent partitions on the flat torus [10,16]. As a
result, in [10], new classes of surface codes and color codes were proposed, with parameters
[[3m2, 2, m]] and [[18m2, 4, 4m]], respectively.

We look at an algebraic and geometric alternative way to build topological codes on
the flat torus that is related to the Z2 and A2 lattices in this work. For this purpose, we
consider as the lattice basis γ of sublattices Λ of index m = a2 + b2 in Z2:

γ = {(a, b), (−b, a)}. (1)

We will get the same surface codes as in [4,7,12] by using the algebraic technique of
lattice partition and the geometric technique of projecting a vector from the basis γ of Λ,
which is shown by Equation (1), onto the vectors e1 = (1, 0) and e2 = (0, 1) in Z2.

Classic perfect codes C are obtained from the A2-lattice. They are based on how the
honeycomb lattice partition (Zm ×Zm) can also be tiled by m regions, where each region is
congruent to a Lee sphere of radius r. This class of classic perfect codes has been constructed
only in cases where m can be simultaneously expressed in the forms m = 3r2 + 3r + 1 and
m = a2 + ab + b2 for some positive integer r and at least one pair of non-zero integers
a and b (for more details, see [18]). The centers of these m regions, which recover the
Zm ×Zm-tessellation, also form a cyclic code C.

We consider the lattice basis γ of sublattices Λ of index m = a2 + ab + b2 in A2:

γ = {(a, b), (−b, a + b)}. (2)

Thus, generalizing these ideas, using lattice partition concepts and the geometric
technique of projecting vectors u = (a, b) and v = (−b, a + b) onto vectors (1, 0) and
( 1

2 ,
√

3
2 ), respectively, we obtain new classes of surface codes with parameters [[2m2, 2, m]]

and [[2m, 2, |a|+ |b|]] on the flat torus T = R2/Λ, where {u, v} is the lattice basis associated
with the sublattice Λ of index m = a2 + ab + b2 in A2. This answers questions (1) and (2).

Finally, we consider sublattices Λ′′ with basis β′′ = {3a, 3b), (3a, 3a − 3b)} and index
9m on honeycomb lattices A2, where m = 1 or m = a2 + ab + b2 for at least one pair of
non-zero integers a and b. We prove that A2 induces a Z3m ×Z3m-tessellation on each flat
torus T, which is tiled by 9m regular hexagons. Because of this algebraic and geometric
description of T = R2/Λ′′, we get a more general process to obtain color codes with
parameters [[18m, 4, 6(|a|2 + |b|2)]], for m = 9(a2 + ab + b2). This answers question (3).
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2. Lattices in Rn

A lattice is a subset of Rn isomorphic to the additive group Zn. We can analyze
subgroups (sublattices) and partitions (coset decompositions) induced by subgroups thanks
to this algebraic structure. The Euclidean metric and volume notion of the space in which
the underlying lattice is embedded are passed down to it.

Formally speaking, a lattice Λ is a set of points Λ = {x ∈ Rn : x = ∑m
i=1 λiui and λi ∈

Z}, where {u1, u2, . . . , um} is a set of linearly independent vectors in Rn. This set of points
is known as the lattice basis. We define Λ as a lattice in Rn with rank m. The lattice is said
to have complete rank in Rn if m = n. We solely take into account full-rank lattices in our
current work.

If Λ is a n-dimensional lattice with basis {u1, u2, . . . , un}, its generator matrix is
given by

M =


u11 u12 · · · u1n
u21 u22 · · · u2n

...
...

. . .
...

un1 un2 · · · unn

,

where ui = (ui1, ui2, . . . , uin), for i = 1, 2, . . . , n. If its generator matrix has full rank, the
lattice has full rank. The matrix G = MMT is called the Gram matrix of the lattice Λ, where
MT is the transpose of M. An equivalent definition is Λ = {x = λM | λ ∈ Zn}. The
determinant of the lattice Λ is defined by Det(Λ) = Det(G).

What follows are important examples of full rank lattices in R2.

Example 1. Let β = {e1, e2} be a basis in R2.

1. Considering e1 = (1, 0) and e2 = (0, 1), we get the lattice Z2, and the generator matrix is

M =

(
1 0
0 1

)
.

2. Considering e1 = (1, 0) and e2 = ( 1
2 ,

√
3

2 ), we get the honeycomb lattice A2, and the generator
matrix is given by

M =

(
1 0
1
2

√
3

2

)
.

Given a lattice Λ, a subset Λ′ ⊂ Λ is a sublattice if Λ′ itself is a lattice, i.e., Λ′ is an
additive subgroup of Λ. The sublattice Λ′ can also be characterized as

Λ′ = {x = λBM | λ ∈ Zn}, (3)

where M is the generator matrix associated to the lattice Λ, and B is a square matrix of
integers.

Example 2. Consider the lattice Z2 with basis β = {e1, e2} and generating matrix M of item (1)
in the Example 1

1. We get a family of sublattices Λ′ = mZ2 in Z2, generated by the integer basis β′ =
{mu1, mu2} and generating matrix M′ = BM, where

B =

(
m 0
0 m

)
.

2. Give a positive integer m that can be expressed as m = a2 + b2, where a and b are integer
values. We can also obtain a family of sublattices Λ′′ of index m in Z2 generated by the integer
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basis α = {u, v}, where u = (a, b) and v = (−b, a). The generating matrix is given by
M′′ = B′M, with,

B′ =

(
a b
−b a

)
.

Example 3. Consider the honeycomb lattice A2 with basis β = {e1, e2} and generating matrix M
from item (2) of Example 1.

1. For the integer basis β′ = {mu1, mu2} and generating matrix M′ = BM, we obtain a family
of sublattices Λ = mA2 of index m2 in A2,

B =

(
m 0
0 m

)
.

2. Give a positive integer m that can be expressed as m = a2 + ab + b2, where a and b are
integer values. We can also obtain a family of sublattices Λ′′ of index m in A2 generated by
the integer basis γ = {u, v}, where u = (a, b) and v = (−b, a + b). The generating matrix
is given by M′′ = B′M, with,

B′ =

(
a b
−b a + b

)
.

3. Give a positive integer m that can be expressed as m = 9(a2 + ab + b2), where a and b are
integer values. We can also obtain a family of sublattices Λ′′ of index m in A2 generated by
the integer basis β′′ = {u, v}, where u = (3a, 3b) and v = (−3b, 3(a + b)). The generating
matrix is given by M′′′ = BM, with

B =

(
3a 3b
−3b 3(a + b)

)
.

2.1. Quotient Groups and Quotient Lattices

Let Λ be an n-dimensional lattice with basis {u1, . . . , un}. The fundamental paral-
lelepiped of Λ is made up of all the points in Rn that are linear combinations of the basis
vectors with coefficients that are between 0 and 1.

P = {x =
n

∑
i=1

αiui; 0 < α1, . . . , αn < 1} .

The Figures 1 and 2 illustrate the fundamental regions of the sublattices Λ′′ of index 5
and 7 in Z2 and A2, respectively.

Figure 1. Fundamental region of the sublattice Λ′ with index 5 in Z2 is generated by the basis
γ = {u, v}, where u = (2, 1) and v = (−1, 2).
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Figure 2. Fundamental region of the sublattice Λ′ with index 7 in A2 is generated by the basis
γ = {u, v}, where u = (2, 1) and v = (−1, 3).

Let Λ′ be a sublattice of Λ, and suppose that the generator matrices are M and
M′ = BM, respectively. We can prove that

|Λ/Λ′| = volume(P′)

volume(P)
= |det(B)|, (4)

where volume(P′) and volume(P) are the volume of the fundamental parallelepiped P′,
which is associated to the sublattice Λ′, and the volume of the parallelepiped P, associated
to the lattice Λ, respectively. The Equation (4) gives that the fundamental region of the
lattice Λ induces a partition of the fundamental region of the Λ′ sublattice. The meaning is
that the fundamental region of Λ′ can be covered by l copies of the fundamental region of
Λ, where l is the index of the sublattice Λ′ in Λ, and is given by Equation (5).

The sublattice Λ′ induces a partition of Λ into cosets, and they have a structure of an
additive group, denoted by Λ/Λ′, and the cardinality is given by the Equation (5):

l = |Λ/Λ′| = |det(B)|. (5)

We also say that Λ′ has index l in Λ.

Example 4. Let Λ = Z2 be the lattice given by item (1) of Example 1.

1. The family of sublattices Λ′ = mZ2 in Z2 given by the item (1) of Example 2 has index
l = det(B) = m2, i.e., the quotient group Λ/Λ′ has cardinality m2.

2. The family of sublattices Λ′ in Z2 given by the item (2) of Example 2 has index m = det(B) =
a2 + b2, i.e., the quotient group Λ/Λ′ has cardinality m = a2 + b2.

Example 5. Let Λ be a honeycomb sublattice of A2 of Example 2.

1. The family of sublattices Λ′ = mA2 in A2 given by the item (1) of Example 3 has index
det(B) = m2, i.e., the quotient group Λ/Λ′ has cardinality m2.

2. The family of sublattices Λ′ in A2 given by the item (2) of Example 3 has index det(B) =
m = a2 + ab + b2, i.e., the quotient group Λ/Λ′ has cardinality m = a2 + ab + b2.

3. The family of sublattices Λ′ in A2 given by the item (3) of Example 3 has index det(B) = 9m,
i.e., the quotient group Λ/Λ′ has cardinality 9m, where m = 1 or m = a2 + ab + b2 for some
0 ̸= a, b ∈ Z

Remark 1.

1. If you translate the lattice Λ of Example 2 by the vector ( 1
2 , 1

2 ), you get a set of points τ(Λ) in
R2 that have the same shape and arrangement as Λ. The action of translation Λ can result in
0 ̸∈ τ(Λ). Therefore, τ(Λ) does not have a lattice structure (see Figure 3).

2. This set of points τ(Λ) in R2 has the same shape and arrangement as Λ. It was made by

translating Λ of Example 3 by the vector ( 1
2 ,

√
3

2 ). The action of translation Λ can result in
0 ̸∈ τ(Λ) (see Figure 4). Therefore, τ(Λ) does not have a lattice structure. However, it will be
very useful in this work to construct new classes of surface codes from the honeycomb lattice.
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Figure 3. In blue, we have the fundamental region P of the lattice 6Z2 covered by 36 squares, and in
red, the square of the fundamental region P translated by the vector (1/2, 1/2) covered by 36 squares.

Figure 4. In blue, we have the fundamental region P of the lattice 6A2 covered by 36 parallelograms,
and in red, the fundamental region P of the lattice 6A2 translated by the vector (1/2,

√
3/4) covered

by 36 parallelograms.

2.2. Lattice Partitions

Parallelepiped partitions and Voronoi partitions derived from lattices Λ in Euclidean
spaces are of importance to us in our work.

Definition 1. For a lattice Λ, a fundamental region P0 is a bounded set such that it produces a
partition P = {Pλ : λ ∈ Λ} from Rn when translated by points of the lattice Λ. Consequently,

1. each region Pλ is obtained by translating P0 by a lattice point λ, that is,

Pλ = P0 + λ = {x : (x − λ) ∈ P0} .

2. the regions do not intersect, that is, P◦
λ ∩ P◦

λ′ ̸= ∅ for all λ ̸= λ′ ∈ Λ, where A◦ denotes the
interior of a set A ⊂ Rn.

3. the union of all regions covers the whole space Rn, i.e, ∪λ∈ΛPλ = Rn.

All regions belonging to the parallelogram partition Pλ are congruent, which is an
important geometric property.

From Definition 1, each point x ∈ Rn can be written uniquely as

x = λ + xe where λ ∈ Λ and xe ∈ P0. (6)

An approximation xe of x ∈ Rn satisfying (6) is found for each point λ ∈ Λ. The points
xe ∈ P0 that satisfy (6) can be seen as the error in the approximation made by a lattice point
λ ∈ Λ to each point x ∈ Rn. This approximation is indicated by λ = QΛ(x). We refer to
the quantization of x as QΛ(x).

Using the nearest-neighbor rule, the Voronoi partition is another important partition
of the space. The Euclidean norm on Rn is denoted by ∥.∥. The distance of a point x in Rn

from Λ is given by
∥x − Λ∥ = min

λ∈Λ
∥x − λ∥ .

The nearest-neighbor quantizer QN
Λ maps x to its closest lattice point:

QN
Λ (x) = arg min

λ∈Λ
∥x − λ∥ .
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Then, we define:

Definition 2. The set Vλ = {x ∈ Rn : QN
Λ (x) = λ} of all points that are quantized to λ, is the

Voronoi region associated with a n-dimensional lattice point λ ∈ Λ.

According to the definition of QN
Λ , the resulting Voronoi regions are congruent. For

each lattice Λ, let V0 be the Voronoi region associated with the lattice point 0 ∈ Λ. If we
translate V0 by lattice points λ ∈ Λ, we obtain a partition V = {Vλ : λ ∈ Λ} of Rn. The
union of all these regions give a covering of the whole space Rn, where Vλ = V0 + λ =
{x ∈ Rn : (x − λ) ∈ V0}. All Voroni regions belonging to the Voronoi partition {Vλ, λ ∈ Λ}
are congruent.

In R2, parallelepipeds are given by parallelograms, which is the case of interest in this
work. Therefore, we will refer to them as partitions of parallelograms.

Proposition 1 ([10,16]). The parallelogram partition and Voronoi partition of the honeycomb
lattice Λ are equivalent.

3. Tessellations of the Flat Torus

For this work, we are interested in the Euclidean space R2. Here, we provide defini-
tions and general results for the flat torus.

Definition 3. Let G be a discrete set of isometries acting on a metric space X. If a closed set F ⊂ X,
with a non-empty interior F◦, satisfies the following conditions, it is a fundamental region for G:

1. ∪T∈GT(F) = X;
2. F◦ ∩ T(F)◦ = ∅, for every, T ∈ G − {Id}. The family {T(F) : T ∈ G} is called a

tessellation of X.

A covering of X by copies of F under the action of a group of isometries G is called a
G-tessellation, or tessellation of X associated to G.

In each of these cases, the region F in Definition 3 can be seen as the closure of the
fundamental regions of the two partitions that are examined in Examples 2–4 with respect
to the Euclidean norm.

The parallelogram partitions P of the sublattice Λ with index m2 in Z2 are also shown
in Example 2. These are shown by squares, with lattice points at their points.

We can get the parallelogram partitioning P by translating the sublattice Λ of index
m2 in Z2, as shown in Example 3, by a vector with coordinates ( 1

2 , 1
2 ) in R2. This gives us

another parallelogram partitioning P ′ by m2 square. The tessellations obtained from the
parallelogram partitioning P and P ′ are dual tessellation (illustrated by Figure 3).

The parallelogram partitioning P of the sublattice Λ of index m2 in A2, in Example 3,
is given by parallelograms, where the vertices of the parallelograms are also lattice points.

The parallelogram partitioning P is linked to the sublattice Λ of index m2 in A2

in item (1) of Example 3 by a vector of coordinates ( 1
2 ,

√
3

4 ) in R2, and we get P ′ by m2

parallelograms. The tessellations obtained from the parallelogram partitioning P and P ′

are dual tessellations (illustrated by Figure 4).
The construction of the topological codes that we will propose on the flat torus essen-

tially depends on covering a parallelogram P′ with (smaller) congruent parallelograms. The
parallelogram P′ to be considered will be the fundamental region of a sublattice Λ = Z2

or A2. The smaller parallelogram P to be considered will be the fundamental region of a
sublattice Λ′ of Λ, in both cases of Λ = Z2 and Λ = A2.

The geometric arrangement of a fundamental region of a lattice depends on the choice
of the lattice basis, which is not unique. To distinguish which basis was chosen to generate
the lattice Λ, we will use the notation Λγ when we fix γ as the chosen basis.
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Remark 2. Different lattice basis of the same lattices in R2 reproduce different parallelogram
partitions in R2.

Given an n-dimensional lattice Λβ and an n-dimensional sublattice Λγ of Λβ and
a basis β = {u1, . . . , un} of that lattice, the flat torus Tγ is defined as the quotient space
Rn/Λγ. In the quotient, we define the map µ : Rn → Rn defined as µγ(x) = x mod Λ =
x − ∑n

i=1[xi]ui, where x = ∑n
i=1 xiui and [xi] denotes the greatest integer less than or equal

to x. Therefore, x, y ∈ Rn belongs to the same coset in Tγ if and only if µγ(x) = µγ(y), i.e.,
x − y = ∑n

i=1 miui, mi ∈ Z. The flat torus Tγ can be seen as the quotient of the Euclidean
space Rn by a group of translations.

For a torus Tγ generated by the basis γ, we define the quotient map µγ : Rn → Tγ

using the fundamental region P in Rn, given by the basis γ.
The Euclidean distance d in Rn induces a distance dγ on the flat torus Tγ. The distance

measure on the flat torus between two cosets a and b ∈ Λβ/Λγ with a, b ∈ Rn, is (see
Figure 5)

dγ(ā, b̄) = min{d(z, y) = ∥z − y∥; z ∈ ā, y ∈ b̄} .

For R2, the flat torus Tγ can be constructed from a parallelogram P, a fundamental
region of the l parallelogram partition associated to Λγ, sublattice either from Λ = Z2 or
from Λ = A2 generated by the basis γ = {u, v}, since we identify the opposite sides (see
Figure 6).

Figure 5. The distance dγ on the flat torus is viewed as the Euclidean distance d in R2; dγ(ā, b̄) =
d(a, b) but dγ(ā′, c̄) = d(a′, c).

Figure 6. Edge identification to obtain the torus (sides of the parallelogram identified by vector u1

and u2).

With some conditions, the next result from [18] shows that it is possible to get tes-
sellations on the flat torus Tγ generated by the tessellation associated with the lattice Λβ

in Rn.

Proposition 2. Let the bases of the lattices Λγ and Λβ be γ = {u1, . . . , un} and β = {v1, . . . , vn},
respectively. Let Λβ be the tessellation of Rn, with the polytope P supported on γ serving as its
fundamental region. If Λγ is a sublattice of Λβ, and µγ is the quotient map on the flat torus, we
have that Λβ induces a G-tessellation on the flat torus Tγ = Rn/Λγ with fundamental region
µγ(P), where G = Λβ/Λγ.
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We will use Proposition 3 to find families of Zm × Zm-tessellations that come from
Λ = Z2-lattices based on Proposition 2. On each flat torus Tγ, we also obtain families of
Zm ×Zm-tessellations.

Proposition 3 ([10]). Assume that Λβ is any lattice of Rn with basis β = {u1, u2, . . . , un}.
Let Λγ be a sublattice of index mn (m > 1) with Λγ having basis γ = {mu1, mu2, . . . , mun}.
Thus, in each flat torus Tγ ≃ Rn/Λ′, the lattice Λβ generates a Zmn -tessellation, where we have
Λβ/Λγ ≃ Zmn to the quotient lattice.

Corollary 1 ([10]). By Proposition 3, we have that:

1. For the family of sublattices with basis γ and index m2 in the lattice Λβ = Z2, as illustrated
in item (1) of the Example 3, Λβ = Z2 induces a Zm × Zm-tessellation in each flat torus
Tγ ≃ R2/Λγ.

2. As stated in item (1) of Example 4, the lattice Λβ = A2 induces a Zm × Zm-tessellation in
each flat torus Tγ ≃ R2/Λγ of the sublattice family with basis γ and index m2 in the lattice
A2.

Corollary 2. By Proposition 3, we have that:

1. As described in item (1) of the Example 3, the lattice Λβ = Z2 induces a Zm-tessellation
in each flat torus Tγ ≃ R2/Λγ of sublattice family with basis γ and index m in the lattice
Λβ = Z2.

2. As described in item (2) of the Example 3, the lattice Λβ = A2 induces a Zm-tessellation
in each flat torus Tγ ≃ R2/Λγ of sublattice family with basis γ and index m in the lattice
Λβ = A2.

3. As described in item (3) of the Example 3, the lattice Λβ = A2 induces a Z9m-tessellation
in each flat torus Tγ ≃ R2/Λγ of sublattice family with basis γ and index 9m in the lattice
Λβ = A2, where m = 1 or m = a2 + ab + b2 for some 0 ̸= a, b ∈ Z.

4. Surface Codes Derived from Z2 and A2 Lattices

Kitaev [4] proposed surface codes obtained from Zm ×Zm-tessellations of the flat torus
Tγ = R2/Λγ, where Λγ = mZ2. The lattice Z2 creates a Zm × Zm tessellation in the flat
torus Tγ that is made up of m2 squares, as shown in item (1) of Corollary 1.

The partition of parallelograms (squares) yields this tessellation. Geometrically, the
dual tessellation that goes with it is made by translating a fundamental P parallelogram
partition, and it is covered by m2 squares.

The qubits are in a biunivocal correspondence with the edges of the m2 squares
covering the flat torus Tγ in the building of surface codes. The parameters for this class of
codes are [[2m2, 2, m]], where the code length is determined by the number of edges in the
squares that tile the Zm ×Zm-tessellation. The genus of the orientable surface g determines
how many information qubits there are; since g = 1 in the flat torus, k = 2g = 2 qubits are
encoded. The distance can be found by calculating the minimal distance between edges in
the smallest homologically non-trivial cycle of the flat torus’s Zm ×Zm-tessellation. From
the parallelogram partition or the translated parallelogram partition in R2, we have 2m2

squares. A homologically non-trivial cycle is the path taken by the edges that cannot be
contracted on a face.

We now consider the lattice points Q0 = (0, 0), Q1 = (m, 0), Q2 = (0, m), and Q3 =
(m, m) ∈ Λγ. The sides of the fundamental region P0 (parallelogram) are characterized
by the line segments Q0Q1 and Q0Q3. We also consider the vectors u and v of the basis γ,
which are parallel to the line segments Q0Q1 and Q0Q3, respectively. Notice that in the flat
torus Tγ, the point Q0 is identified with both points Q1 and Q3.

When we fix β = {e1, e2} as the lattice basis of Z2, where e1 = (1, 0) and e2 = (0, 1),
we find that the shortest of these two paths corresponds to the minimal number of edges
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belonging to orthogonal axes in the Zm ×Zm tessellations. These edges are parallel to the
lattice basis vectors e1 and e2, respectively. Therefore, we conclude that d = m.

In [10], the authors obtained the surface codes [[3m2, 2, m]] as a consequence of two
equivalent ways of covering the fundamental region of sublattice Λγ = mA2 with index
m2 in A2: with parallelograms or regular hexagons. However, as shown in item (2) of
Corollary 1, the lattice A2 creates a Zm × Zm tessellation in the flat torus Tγ. This means
that Tγ is tiled by a m2 parallelogram. This tessellation originates from the partition of
parallelograms. Geometrically, its dual tessellation is obtained by translation of the m2

parallelograms by the vector ( 1
2 ,

√
3

2 ). Each parallelogram is congruent to fundamental

region P of honeycomb lattices A2 when we set the lattice basis β = {(1, 0), ( 1
2 ,

√
3

2 )}.
We then created a new class of surface codes where the qubits are in biunivocal

correspondence with the edges of the m2 parallelogram that tile the flat torus Tγ. The
length of this code is given by the number of edges in the Zm ×Zm-tessellation, which is
2m2, since each edge is shared by the vertices.

We can now look at the lattice points Q0 = (0, 0), Q1 = (m, 0), Q2 = (0, m), and
Q3 = (m, m) ∈ Λγ. The sides of the fundamental region P0 (parallelogram) are made up
of the line segments Q0Q1 and Q0Q3. We also consider the vectors u and v of the basis γ,
which are parallel to the line segments Q0Q1 and Q0Q3, respectively. Notice that in the flat
torus Tγ, the point Q0 is associated with both points Q1 and Q3. When we fix β = {e1, e2}
as the lattice basis of A2, where e1 = (1, 0) and e2 = ( 1

2 ,
√

3
2 ), we also find that the shortest

of these two paths corresponds to the minimal number of edges on the line parallel to the
vectors e1 = (1, 0) and e2 = ( 1

2 ,
√

3
2 ), respectively. Thus, we conclude that d = m.

After these conclusions and results, we present Proposition 4.

Proposition 4. Let M be the collection of all the families of Zm × Zm-tessellations of the flat
torus Tγ = R2/Λγ given by the m2 parallelogram that are congruent to fundamental region of the
A2-lattice described by item (2) of Corollary 1. We then obtain a new class of codes with parameters
[[2m2, 2, m]].

This answers the question (1) that we asked in the introduction.

Surface Codes from Zm-Tessellation of the Flat Torus Obtained from Z2-Lattices

In [7], the proposed surface codes were based on the Lee sphere with radius r that
recover the Zm ×Zm-tessellation of the flat torus Tγ = R2/Λγ. Here, Λγ was the sublattice
with index m2 in Z2 and was created by the basis γ = {u, v}, where u = (m, 0) and
v = (0, m) and m was a positive integer. The minimum distance of the code is the least
number of edges to be transversed between two Lee spheres of the Zm ×Zm-tessellation.
The basic Lee sphere with radius r can be used to recover the Zm ×Zm-tessellation of the
flat torus Tγ = R2/Λγ. This is possible since there are non-null r, a and b ∈ Z such that
m = 2r2 + 2r + 1 and m = a2 + b2.

In [12], the authors used this method to get surface codes from the Z2-lattice by picking
regions that recover the Zm ×Zm-tessellation of the flat torus Tγ = R2/Λγ, which includes
cases where there is no integer solution for the equation m = 2r2 + 2r + 1. From there, the
authors obtained surface codes with parameters [[2m, 2, d]] for the cases m = a2 + b2, where
d = |a|+ |b|.

Now, we begin reproducing the surface codes with parameters [[2m, 2, d]] for the cases
m = a2 + b2, where d = |a| + |b|. We consider β = {e1, e2} as lattice basis of Z2 and
γ = {(a, b), (−b, a)} as lattice basis of sublattice Λγ of index m in Z2, where e1 = (1, 0) and
e2 = (0, 1), respectively. This class of codes is also found by Zm × Zm-tessellation of the
flat torus Tγ = R2/Λγ. This is because of the lattice partition Z2/Λγ and the geometric
technique of projecting the lattice basis γ onto e1 and e2.
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Proposition 5. Let M be the set of all families of Zm-tessellation of the flat torus Tγ = R2/Λγ

tiled by m squares. Then, there are 2m qubits attached at the edges of these m squares.

Proof. The qubits are identified with the edges of the squares of the Zm-tessellation of the
flat torus Tγ = R2/Λγ. Since each square has four edges that are common to two squares,
the number of qubits is given by 4m

2 = 2m.
Similarly, we relate the Zm-tessellation of the flat torus to the qubits on the square’s

edges. The number of qubits is also given by 4m
2 = 2m.

We also know that the homological group associated with the flat torus is isomorphic
to the group Z2 ×Z2. From the elementary results of group theory, we conclude that the
homology group has two generators. Therefore, we obtain that each code C, constructed
from each flat torus Tγ, encodes k = 2 qubits. Based on Proposition 5, we obtain an algebraic
procedure for obtaining surface codes from families of the flat torus Tγ in Proposition 6.

Additionally, we are aware that the group Z2 ×Z2 is isomorphic to the homological
group connected to the flat torus. From the basic group theory results, we deduce that
the homology group has two generators. As a result, we derive that k = 2 qubits are
encoded by each code C that is built from each flat torus Tγ. We derive an algebraic process
for obtaining surface codes from families of the flat torus Tγ in Proposition 6, based on
Proposition 5.

Proposition 6. From the flat torus, Tγ = R2/Λγ, where Λγ is the sublattice of index m in Z2,
generated by basis {(−b, a), (a, b)} with a2 + b2 = m, we obtain a surface code with parameters
[[2m, 2, d]], where d = |a|+ |b|.

Proof. We obtain the code parameters for each flat torus Tγ from Proposition 5. Then,
we only need to calculate the code’s distance. The weight of the Pauli operator with the
minimum weight, which preserves the code subspace and acts non-trivially on it, is by
definition the minimum distance of a stabilizer code. We can see this distance as a function
of the homology of the surface since we are dealing with a special kind of homological code.
Accordingly, the fewest number of qubits in the support of a homologically non-trivial
cycle between the tessellation and dual tessellation associated to the flat torus Tγ is the
minimum distance.

The homologically non-trivial cycles, which are generated from the Zm tessellation
given by m squares, are the paths determined by the edges that cannot be contracted into a
face with respect to the covering of the flat torus Tγ. Note that nontrivial cycles on the flat
torus are characterized by the possibilities of combinations of paths along the edges of the
m squares with edges parallel to the vectors of the basis β = {e1, e2}, where e1 = (1, 0) and
e2 = (0, 1).

In order to obtain these minimal paths, we use the fact that the fundamental region
P′ of the lattice Λγ (square) with sides of length |a|+ |b| parallel to the vectors u and v, is
circumscribed in a square with sides parallel to the vectors e1 and e2 (see Figure 7). In fact,
the side of length l parallel to the vector e1 can be seen as the sum of the lengths of the
projections of the vectors u and v onto e1, given by (−b, 0) and (a, 0), respectively, that is,
l = |a|+ |b|. Similarly, the side of length l parallel to the vector e2 can be seen as the length
of the projection of the vector sum u + v = (a − b, a + b) onto e2, given by (0, a + b), that is,
l = a + b. Therefore, d = a + b.

We now extend the method to get surface codes though Zm-tessellation of the flat
torus-derived sublattices of A2 as consequence of lattice partition A2/Λγ, where Λγ is
a sublattice of index m in A2 and generate by basis γ = {(a, b), (−b, a + b)}, such that,
m = a2 + ab + b2.
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Figure 7. Projection of vector basis Λγ over vector basis of Z2-lattice.

Proposition 7. Let M be the set of all families of Zm-tessellation of the flat torus Tγ = R2/Λγ with
m parallelograms, that are congruent to fundamental region of A2-lattice, described by Corollary 2.
Then, there are 2m qubits attached at edege derived from m polygons.

Proof. The qubits are associated with the edges of the Zm-tessellation of the parallelogram
which gives origen to flat torus Tγ = R2/Λγ. Since the edges of each parallelogram are
shared between two parallelograms, the number of qubits is given by 4m

2 = 2m.
Similarly, on the edges of the translated parallelogram of Zm-tessellation of the flat

torus we associate the qubits. The number of qubits is also given by 4m
2 = 2m.

Since the homological group associated with the flat torus is isomorphic to the group
Z2 ×Z2, from results of group theory, we obtain that the homology group has two genera-
tors. Thus, the code C constructed from each flat torus Tγ, encodes k = 2 qubits because
there are two stabilizer operators in each hexagonal face. From Proposition 5, we get
an algebraic procedure for obtaining surface codes from families of the flat torus Tγ in
Proposition 8.

Proposition 8. From each flat torus Tγ = R2/Λγ, where Λγ is the sublattice of index m in A2
generated by basis {(a, b), (−b, a + b)} with a2 + ab + b2 = m, we obtain a surface code with
parameters [[2m, 2, d]], where d = |a|+ |b|.

Proof. By Proposition 7, we get the parameters of the code on each flat torus Tγ. We need
only obtain the distance of the code.

To find nontrivial cycles on the flat torus, we can look at the different ways that the
edges of the m parallelograms can be put together. These edges must be parallel to the
vectors of the basis β = {e1, e2}, where e1 = (1, 0) and e2 = ( 1

2 ,
√

3
2 ).

We use the fact that the basic region P0 of the lattice Λγ (parallelogram) has sides
that are |a|+ |b| long and |a|+ 2|b| wide, and they are parallel to the vectors u and v. This
region is surrounded by a larger parallelogram whose sides are parallel to the vectors e1
and e2 (see Figure 8). In fact, we can see the side of length l parallel to the vector e1 as the
sum of the lengths of the projections of the vectors u and v onto e1, represented by (−b, 0)
and (a, 0), respectively, meaning l = a + b.

Meanwhile, the side of length l′ parallel to the vector e2 can be seen as the length of
the projection of the vector sum u + v = (a − b, a + 2b) onto e2, given by (0, a + 2b), that is,
l′ = a + 2b. Thus, d = min l, l′ = a + b.
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Figure 8. Projection of vector basis Λγ over vector basis of A2-lattice.

This answers question (2) that we raseid in introduction .

5. Color Codes from Honeycomb Lattices

To build color codes from the flat torus, we require a three-valent tessellation with
three colorable faces. These properties are presented by Z9m-tessellation of the flat torus
Tβ′′ , where m = a2 + ab + b2. Therefore, we provide an algebraic/geometric method in
this section to construct quantum color codes with parameters [[18m, 4, 6(|a|+ |b)]] from
tessellations Z9m on the flat torus T

β
′′ .

The tessellation by regular hexagons (the lattice’s fundamental region) is depicted in
Figure 9, where the lattice’s points are the hexagons’ barycentres. On the left, we observe
that a parallelogram (a fundamental region of the lattice) is obtained from a regular hexagon
by means of rearrangements. On the other hand, as the image on the right illustrates, the
parallelogram in the bigger region is the fundamental region of the sublattice, while the
smallest parallelogram represents a fundamental region of the lattice. The number of
parallelograms that cover the larger one (or, conversely, the number of hexagons in the
larger parallelogram) is given by the lattice’s sublattice’s index. Each smallest parallelogram
has two vertices of a hexagon-based tessellation, which indexes the qubits, as seen in the
right figure. The following statement, where m = a2 + ab + b2, grants control over the faces
in the Z9m-tessellations.

Figure 9. Equivalence between Voronoi and fundamental region associated to the honeycomb lattice.

Proposition 9. If M is the set of coverings of the flat torus Tβ′′ with 9m regular hexagons in each
covering, then we have 18m qubits linked with the edges of these regular polygons.

Proof. The basis vectors β′′ and the basis vectors of the family of sublattices Λ′′ of the
hexagonal lattice Λ are parallel, according to Proposition 8. The Z9m-tessellation is 3-
colorable because the length of the vectors in β′′ is three times the length of the vectors in
basis β.

Because of the topology of the quotient group A2/Λ′′, there are 9m coset representa-
tives on each flat torus Tβ′′ . As can be seen in Figure 9, in each parallelogram covering the
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flat torus T, there are two vertices of regular hexagons that also cover the flat torus. As
a result, we conclude that each coset representative has two qubits. Thus, there are 18m
qubits linked on each flat torus Tβ′′ .

As can be seen in Figure 9, there are two vertices of the regular hexagons that cover
the flat torus T in each parallelogram that covers it. As so, we deduce that every coset
representative has two qubits on it. Consequently, each flat torus Tβ′′ has 18m qubits on
it.

We have that the homological group associated with the flat torus is isomorphic to the
group Z2 ×Z2. According to group theory results, we conclude that the homology group
has two generators. We obtain that each code C, which is made up of each flat torus Tβ′′ ,
encodes k = 4 qubits since each hexagonal face has two stabilizer operators.

Propositions 11 and 10, which are based on Proposition 9, provide an algebraic method
for deriving color codes from families of the flat torus Tβ′′ = R2/Λ′′.

Proposition 10. The flat torus Tβ′′ = R2/Λ′′ gives origen to a color code with parameters
[[18, 4, 6]], where Λ′′ is sublattice of A2 generated by basis β′′ = {(3,−3), (3, 0)}.

Proof. From Figure 10, we have that the code distance is d = 6.

Figure 10. Color code with distance 4 from Z9-tessellation of flat torus Tβ′′ .

Proposition 11. Each flat torus Tβ′′′ = R2/Λ′′′ gives origen to a color code with parameters
[[18m, 4, 6(|a| + |b|)]], where Λ′′′ is the sublattice of A2 generated by basis
β′′′ = {(3a, 3b), (−3a, 3(a + b))}.

Proof. We obtain the code’s parameters on each flat torus Tβ′′′ , where β′′′ = (3a, 3b),−3a +
(3a + 3b)) is the lattice basis associated with Λ′′′ as it was done before. Then, we only need
to calculate the distance of the code.

Observe that the minimum path given by the number of edges passing through lattice
points in the fundamental region of the lattice generated by the basis β′′ = (3,−3), (3, 0)
and parallel to the vectors e1 = (1, 0) and e2 = ( 1

2 ,
√

3
2 ) is given by d′ = 6. Thuw, the

minimum distance of the color code obtained from the equivalent tessellation of the flat
torus Tβ′′ = R2/Λ′′ by hexagons, from Proposition 10, is given by d9 = 4.

Similarly, we observe that the minimum number of edges passing through lattice
points in the fundamental region of the lattice generated by (3a, 3b), (−3a, 3(a + b)) and
parallel to the vectors e1 = (1, 0) and e2 = ( 1

2 ,
√

3
2 ) is given by d9m = 6(a + b).

In the lattice Λ′′′, when traversing the minimum path d9m = |a|+ |b| edges in the
covering of the flat torus Tβ′′′ parallel to the vectors of the basis e1 = (1, 0) and e2 = ( 1

2 ,
√

3
2 ),
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to find the distance d of the color code in the equivalent covering of Tβ′′′ by hexagons, we

will use the solution to the relation d′
6 = d

3(a+b) , that is, d = 6(|a|+ |b|).

This answers question (3) that we raised in the introduction.
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