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Abstract: Based on Type-I generalized progressive hybrid censored samples (GPHCSs), the parameter
estimate for the unit-half logistic-geometry (UHLG) distribution is investigated in this work. Using
maximum likelihood estimation (MLE) and Bayesian estimation, the parameters, reliability, and
hazard functions of the UHLG distribution under GPHCSs have been assessed. Likewise, the
computation is carried out for the asymptotic confidence intervals (ACIs). Furthermore, two bootstrap
CIs, bootstrap-p and bootstrap-t, are mentioned. For symmetric loss functions, like squared error loss
(SEL), and asymmetric loss functions, such as linear exponential loss (LL) and general entropy loss
(GEL), there are specific Bayesian approximations. The Metropolis–Hastings samplers methodology
were used to construct the credible intervals (CRIs). In conclusion, a genuine data set measuring the
mortality statistics of a group of male mice with reticulum cell sarcoma is regarded as an application
of the methods given.

Keywords: type-I generalized progressive hybrid censoring; unit-half logistic-geometry distribution;
maximum likelihood estimation; Bayesian estimation; Markov chain Monte Carlo; simulation study
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1. Introduction

Due to budgetary or scheduling restrictions, participants in life and reliability tests
have the option to end the experiment before all units fail. The term “censored samples”
applies in this instance to these units. Censored samples come in several forms. These
kinds are mostly determined by cost and timing factors. They are known as time-factor-
dependent Type-I censored samples. Type-II censored samples are those that are restricted
based on quantity or cost. The duration and cost of the experiment play a significant role in
hybrid censored samples. The duration and cost of the experiment play a significant role in
hybrid censored samples.

A hybrid system was created out of the censoring systems Type-I and Type-II. More-
over, the Type-I and Type-II hybrid censoring algorithms were provided by Epstein et al.
and Childs et al. in [1,2], appropriately. These censored systems, albeit widely utilized, only
allow the units to be removed from the test at the predetermined endpoint. Balakrishnan
and Aggarwala [3] proposed a Type-II progressive censoring to address the issues, but it
still needed a lengthy test time. Recently, Cho et al. [4] suggested a generalized Type-I
progressive hybrid censored scheme (GPHCS), and Lee et al. [5] introduced Type-II GPHCS.
Bayesian estimation has been examined by Nagy et al. in [6,7], and Nagy and Alrasheedi
in [8,9], based on GPHCS from different distributions.
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The squared error loss is without a doubt the most-often-used loss function in Bayesian
inference. Symmetric loss functions may not be appropriate in many situations, especially
when the implications of positive and negative errors differ. One of the most widely
utilized asymmetric loss functions is the linear exponential loss function (LL). It was
initially observed by Varian [10]. With Type-I hybrid censored data, Nagy et al. [11]
computed the Bayesian and E-Bayesian estimates of parameters of an exponential model
based on simple step stress. The majority of these loss functions were used in this process.

In statistical analysis, data sets are represented by various distributions. In several
well-known distribution families, new distributions have emerged recently, such as the
new distribution, to be more flexible when modeling real data. In the first step of data
modeling, in [12], Ramadan and colleagues created a new continuous distribution known
as the unit half logistic geometry distribution, which included mixing several distributions
in some way. Model versatility is offered by the UHLG distribution. The probability
density function (PDF), cumulative distribution function (CDF), reliability function (RF),
and hazard function (HF) are given in that succession for the random variable X with a
UHLG distribution.

f (z; β) =
2β

[β + (2 − β)z]2
; 0 < z < 1, 0 < β; (1)

F(z; β) = 1 − β(1 − z)
β + (2 − β)z

; (2)

R(z; β) =
β(1 − z)

β + (2 − β)z
; (3)

and
H(z; β) =

2
(1 − z)[β + (2 − β)z]

. (4)

The UHLG distribution is a new distribution that comes with several merits since it has
only one parameter, as it can model bounded data between (0, 1). It also has a hazard
function which has decreasing, increasing, and bathtub shapes. Figure 1 shows the different
shapes of the UHLG’s PDF and HF.
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Figure 1. (a) The PDF, and (b) HF for the UHLGD with different values of β.

The work in this research is motivated by the importance of UHLG, since it can be used
to represent bounded data in the interval (0, 1), and it has only one parameter, resulting
in statistical inference in a closed form. It is also prompted by the GPHCS’s extensive
scope, which includes a variety of censoring situations. The novelty of this study is that it
is the first time that a comparison has been made between the classical and the Bayesian
methods for the estimation and statistical inference of UHLG distribution parameters, using
statistical data resulting from GPHCS.
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The remainders of this research are arranged as follows: In Section 2, the model of
study under the GPHCS is clarified. While in Section 3, we offer the maximum-likelihood
estimators with the asymptotic confidence intervals (ACI) for SF, HF, and the unknown
UHLG distribution parameter β. The bootstrap confidence intervals for the unknown
parameters, SF and HF, are computed in Section 4, utilizing two parametric bootstrapping
strategies, p and t. In addition, Section 5 derives Bayes estimates for the previously
described parameters and functions for a range of loss functions, including the squared
error loss function (SELF), the LINEX (linear exponential) loss function (LLF), and the
general entropy loss function (GELF). The actual data set has been examined in Section 6.
In Section 7, a simulation study is conducted to assess the performance of the different
estimators developed in this paper. Lastly, in Section 8, we wrap up the article.

2. The Model Clarification

Think about testing n equivalent units over the course of a lifetime. With the prede-
fined censoring scheme

R = (R1, R2, ..., Rm) satisfying n = m + R1 + . . . + Rm.

Let T > 0 and the prefixed integers 0 < k < m < n be. The ending time is

T∗ = max{Zk:m:n, min{Zm:m:n, T}}

The Figure 2 shows GPHCS, where we have three different cases.
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Figure 2. A schematic representation of a Type-I extended GPHCS.

Based on the GPHCS for all cases, s, n∗ indicate the number of failures seen up to T
and T∗, respectively. This yields the joint PDF as written by Cho et al. [4] and updated by
Nagy et al. in [7] and Nagy and Alrasheedi in [9].

fZ(z) = C
[

F̄(T)
]R∗

τ n∗

∏
i=1

[
f (zi:n∗ :n)[F̄(zi:n∗ :n)]

R∗
i
]
, (5)

where,

C =
n∗

∏
i=1

(
m

∑
j=i

(
R∗

j + 1
))

and R∗
j is the jth value of the vector R∗
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[z, R∗] =



[
(z1:m:n, R1), . . . , (zs:m:n, Rs), (zs+1:m:n, 0), ..., (zk−1:m:n, 0),(
zk:m:n, R∗

k = n − k −
s
∑

j=1
Rj

)]
, Case-I,

[(z1:m:n, R1), . . . , (zs:m:n, Rs)], Case-II,
[(z1:m:n, R1), . . . , (zm:m:n, Rm)], Case-III,

(6)

with the number of units eliminated at the time T is R∗
τ , as determined by

R∗
τ =


0, Case-I,

n − s −
s
∑

j=1
Rj, Case-II,

0, Case-III,

(7)

and

n∗ =


k Case-I,
s Case-II,
m Case-III,

(8)

under the GPHCS, β’s likelihood function may be obtained by applying (1) and (3) in (5), as

L(β; z) = C
n∗

∏
i=1

2β

[β + (2 − β)zi]
2

[
β(1 − zi)

β + (2 − β)zi

]R∗
i
[

β(1 − T)
β + (2 − β)T

]R∗
τ

= C(2β)n∗
[

β(1 − T)
β + (2 − β)T

]R∗
τ n∗

∏
i=1

1

[β + (2 − β)zi]
2

[
β(1 − zi)

β + (2 − β)zi

]R∗
i
, (9)

where zi = zi:n∗ :n for simplicity of notation.

3. Maximum Likelihood Evaluation

Equation (9) provides the associated log-likelihood function, which is as follows:

log L(β|z) ∝ n∗ log(2β) + R∗
τ{log[β(1 − T)]− log[β + (2 − β)T]} − 2

n∗

∑
i=1

log[β + (2 − β)zi]

+
n∗

∑
i=1

R∗
i {log[β(1 − zi)]− log[β + (2 − β)zi]}. (10)

The likelihood equations can be obtained by determining the first and second partial
derivatives of (10) with respect to β and equating them to zero.

∂ ln L(β|z)
∂β

=
n∗

β
+ R∗

τ

{
1
β
− 1 − T

β + (2 − β)T

}
− 2

n∗

∑
i=1

1 − zi
β + (2 − β)zi

+
n∗

∑
i=1

R∗
i

{
1
β
− 1 − zi

β + (2 − β)zi

}
. (11)

It is useful to produce a range of values that, with a particular degree of confidence, could
accommodate the precise parameter as well as a point estimate for the unknown parameter.
Interval estimation is the term used in statistical inference to describe this process. We
suggest using the asymptotic normality of the MLE to build the ACI of β. Equation (10),
which provides the log-likelihood function, gives us
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∂2 ln L(β|z)
∂β2 =

−n∗

β2 + R∗
τ

{
−1
β2 − (1 − T)2

[β + (2 − β)T]2

}
− 2

n∗

∑
i=1

(1 − zi)
2

[β + (2 − β)zi]
2

+
n∗

∑
i=1

R∗
i

{
(1 − zi)

2

[β + (2 − β)zi]
2 − 1

β2

}
, (12)

Since there are no closed-form solutions for Equations (11) and (12), the estimates are
obtained using the Newton–Raphson iteration technique. For more details and information
regarding the phases of the algorithm’s operation, we can consult [13–15]. The algorithm is
described as follows:

1. After setting k = 0, estimate the parameter β using the moments technique or another
way to serve as the starting value for iterations; the estimates are then denoted as (β0).

2. Now, we can determine
[

∂ ln L(β|z)
∂β

]
(βk)

, along with the Fisher information matrix that

was seen I−1(β).
3. Update β as

(βk+1) = (βk) +

[
∂ ln L(β|z)

∂β

]
(βk)

I−1(β). (13)

4. After setting k = k + 1, return to Step 1.
5. Iterate repeatedly until βk+1 − βk is less than a predetermined threshold. The MLE of

the parameters, represented as β̂ML, represents the final estimations of β.

Furthermore, by substituting β̂ML with the MLEs of R(t) and H(t), the invariant
property of MLEs may be established.

ŜML(t) =
β̂ML(1 − z)

β̂ML +
(

2 − β̂ML

)
z

, (14)

and
ĤML(t) =

2

(1 − z)
[

β̂ML −
(

2 − β̂ML

)
z
] . (15)

Asymptotic Confidence Intervals

In this subsection, for large n∗, the asymptotic confidence intervals for β, RF and
HF are obtained depending on the MLE of β. The 100(1 − γ)% two-sided approximate
confidence interval for β is given by(

β̂ − zγ/2

√
V
(

β̂
)

, β̂ + zγ/2

√
V
(

β̂
))

,

where zγ/2 is the γ/2th quantile value of the standard normal distribution z and V
(

β̂
)

is

the estimated variance of β̂ML, which is given by
(
− ∂2 ln L(β|x)

∂β2

)−1

β̂ML
.

The 100(1 − γ)% two-sided approximate confidence interval for S(t) and H(t) are
given by (

Ŝ(t)− zγ/2

√
V
(

Ŝ(t)
)

, Ŝ(t) + zγ/2

√
V
(

Ŝ(t)
))

,

and (
Ĥ(t)− zγ/2

√
V
(

Ĥ(t)
)

, Ĥ(t) + zγ/2

√
V
(

Ĥ(t)
))

.
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where the variances V
(

Ŝ(t)
)

and V
(

Ĥ(t)
)

are obtained using the delta method; the reader
can refer to Greene [16] and Nagy et al. [6].

4. Bootstrap Interval Estimation

A parametric bootstrap interval provides much more information about the population
value of the relevant quantity than a point estimate. Furthermore, asymptotic results
show poor performance in confidence intervals with small sample sizes. The β, S(t),
and H(t) bootstrap confidence intervals are computed using two parametric bootstrap
techniques. Initially, the percentile bootstrap-p confidence interval was proposed, according
to Efron [17]. The second is the bootstrap-t confidence interval, which he first described in
Hall [18].

4.1. Bootstrap-p Interval Estimation

In this subsection, the necessary steps that describe the process of computing the
bootstrap confidence interval of type p are mentioned depending on the MLE of β.

1. Based on the original data z = z1:m:n, . . . , zm:m:n, T, obtain by maximizing Equation (10).
2. Based on the generalized progressive censoring scheme R∗ generate a type-II pro-

gressive censoring sample z = z1:m:n, . . . , zm:m:n, T from the parameterized UHLG
distribution β̂ML, applying the method outlined in [19].

3. Obtain the MLEs from the bootstrap sample and use Ψ̂ML to denote the bootstrap
estimate. In this case, Ψ might be β, S(t), and H(t).

4. To obtain the intended results, steps (2) and (3) need be carried out N boot times.

Ψ̂1ML, Ψ̂2ML, ..., Ψ̂NbootML

5. Arrange Ψ̂1ML, Ψ̂2ML, ..., Ψ̂NbootML in ascending order.

Let G1(x) = P
(

Ψ̂ML ≤ x
)

be the cumulative distribution function of Ψ̂ML. Define

Ψ̂boot−pML = G−1
1 (x) for the given x. The approximate bootstrap-p 100(1 − γ)% CI of Ψ̂ML,

is given by [(γ

2

)
Ψ̂boot−pML,

(
1 − γ

2

)
Ψ̂boot−pML

]
4.2. Bootstrap-t Interval Estimation

In this subsection, the required steps for computing the bootstrap confidence interval
of type t is introduced depending on the MLE of β.

1. Equation (10) may be maximized to produce z = z1:m:n, . . . , zm:m:n, T based on the
original data.

2. Based on the generalized progressive censoring scheme R∗, generate a Type-II progres-
sive censoring sample z = z1:m:n, . . . , zm:m:n, T from the adjustable UHLG distribution
β̂ML, following the method stated in [19].

3. A bootstrap estimate is indicated by Ψ̂ML (in our example, Ψ might) be β, R(t), and
H(t). Obtain the MLEs based on the bootstrap sample.

4. Equation (10) may be maximized to produce z = z1:m:n, . . . , zm:m:n, T based on the
original data.

5. The value of the T∗Ψ statistic can be defined as(
Ψ̂∗

ML − Ψ̂ML

)
√

̂
var
(

Ψ̂∗
ML

) .

6. Steps 2 through 5 should be repeated N times to obtain T∗Ψ
1 , T∗Ψ

2 ...., T∗Ψ
Nboot.

7. Sort T∗Ψ
1 , T∗Ψ

2 ...., T∗Ψ
Nboot in ascending order to produce the sequences that are ordered.

T∗Ψ
1 , T∗Ψ

2 ...., T∗Ψ
Nboot.
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Let G2(x) = P(T∗ ≤ x) be the cumulative distribution function of T∗. Define

Ψ̂boot−tML = Ψ̂ML + G−1
1 (x)

√
̂

var
(

Ψ̂∗
ML

)
for the given x. The approximate bootstrap-t

100(1 − γ)% CI of Ψ̂ML, is given by[(γ

2

)
Ψ̂boot−tML,

(
1 − γ

2

)
Ψ̂boot−tML

]
.

5. Bayes Estimation

Conventional methods might produce erroneous and misleading results when cen-
sored data is provided or tests have small sample sizes. By leveraging additional prior
knowledge, such as historical data or an understanding of the statistical inferential process,
the Bayesian technique could be applied in this scenario to produce estimates that are
more precise. Here, we treat the parameters as random variables and obtain Bayesian
estimates for the parameters that account for uncertainty. Before the failure data were
gathered, the joint prior distribution, characterizing parameter uncertainty, was created.
The Bayesian technique is particularly useful in reliability analysis because it allows for the
incorporation of previous knowledge into the study (see [20,21]). This is important, since a
big barrier to reliability studies is the lack of easily accessible data. The Bayesian estimating
(BE) technique is applied, assuming that the prior distribution of the parameter is not
informative, in order to estimate the unknown parameter β. Furthermore, the unknown
values β are supplied in order to provide the prior distribution.

π(β) =
1
β

.

Thus, the joint posterior distribution function is given by

π∗(β|z) = L(β|z)π(β)/
∫

L(β|z)π(β)dβ. (16)

One common symmetric loss function that is used is the square error loss function. Let
g(β) be any function in terms of the parameter β under SEL; the Bayesian estimator is
represented by ĝ(β)BS can be obtained as

ĝ(β)BS = Eβ[g(β)|z], (17)

with Eβ[g(β)|z] is the expected value, as determined by the posterior distribution. Thus,
from (17), under the SELF, the Bayesian estimates of β, R(t), and H(t) are, in turn, as follows:

β̂BS =
∫

βπ∗(β|z)dβ, (18)

R̂(t)BS =
∫

β̂(1 − z)

β̂ +
(

2 − β̂
)

z
π∗(β|z)dβ, (19)

and
Ĥ(t)BS =

∫ 2
(1 − z)[β − (2 − β)z]

π∗(β|z)dβ. (20)

The Bayesian estimator for g(β) under the linex loss function (LL), denoted by ĝ(β)BL, can
be obtained as

β̂BL =
−1
υ

ln
{

Eβ[exp(−υβ)|z]
}

, (21)
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where υ is constant with Eβ[exp(−υβ)|z] is finite. Thus, from (21), the Bayesian estimators
of β, R(t), and H(t) are, respectively, ascertained using the LLF.

β̂BL =
−1
υ

ln
[∫

exp(−υβ)π∗(β|z)dβ

]
, (22)

R̂(t)BL =
−1
υ

ln


∫

exp

 −β̂(1 − z)υ

β̂ +
(

2 − β̂
)

z

π∗(β|z)dβ

, (23)

and

Ĥ(t)BL =
−1
υ

ln
{∫

exp
[

−2υ

(1 − z)[β − (2 − β)z]

]
π∗(β|z)dβ

}
. (24)

The Bayesian estimator for any parameter β GEL function denoted by β̂BE can be obtained as

β̂BE =
{

Eβ

[
β−κ |z

]}−1
κ , (25)

where κ is constant with Eβ[β
−κ |z] is finite. Thus, from (25), the Bayesian estimates of

β, R(t), and H(t) pursuant to the GELF are, in turn, the following:

β̂BE =

[∫
β−κπ∗(β|z)dβ

]−1
κ

, (26)

R̂(t)BE =


∫  β̂(1 − z)

β̂ +
(

2 − β̂
)

z

−κ

π∗(β|z)dβ


−1
κ

, (27)

and

Ĥ(t)BE =

{∫ [ 2
(1 − z)[β − (2 − β)z]

]−κ

π∗(β|z)dβ

}−1
κ

. (28)

where the computation of the various integrals in Equations (18)–(28) cannot be solved
analytically. Consequently, the MCMC approach is used to generated samples from the
joint posterior density function in Equation (16). To apply the MCMC approach, we
consider the Gibbs within the Metropolis–Hastings (M-H) samplers procedures. M-H and
Gibbs sampling are two efficient MCMC methods that have been widely used in statistics.
These methods have been the subject of extensive discussion recently. See [22–26] for
additional details. The MCMC Algorithm 1 generates β samples from conditional posterior
distributions, which are then used to approximate Bayes estimates of them.

Algorithm 1: MCMC method

Step 1 start with β(0) = β̂ML
Step 2 set i = 1
Step 3 generate a proposal β(∗) from N(β(i−1), V(β))
Step 4 calculate the acceptance probabilities

dβ = min
[

1, π∗(β(∗) |z)
π∗(β(i−1) |z)

]
Step 5 generate u1 to follow a Uni f orm(0, 1) distribution, if u1 ≤ dβ, set β(i) = β(∗),
else set β(i) = β(i−1)

Step 6 set i = i + 1, repeat steps 3 to 6, N times and obtain
(

β(j)
)

, j = 1, 2, ..., N.

Step 7 remove the first B values for β, which is the burn-in period of β(j) where
j = 1, 2, ..., N − B.
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6. Real Data Application

In this section, a real data set has been investigated under GPHCS. The data were
mentioned in Hoel [27] and they represent the mortality of 39 male mice after receiving
a radiation dose of 300 r at an age of 1.25–1.5 months with a reticulum cell sarcoma as a
mortality cause.

The complete data set, which is given in Table 1, are the ratios of the lifetimes with
respect to the maximum lifetime, which equals 770.

Table 1. Mortality data for 39 male mice due to reticulum cell sarcoma.

0.0519 0.0545 0.0662 0.0805 0.2117 0.2325 0.2675 0.2883 0.2961
0.3234 0.3273 0.3662 0.4207 0.4325 0.4428 0.4753 0.5000 0.5286
0.5454 0.5597 0.5727 0.5987 0.6000 0.6259 0.6714 0.6714 0.6805
0.7325 0.7364 0.7610 0.8038 0.8052 0.8065 0.8078 0.8403 0.8454
0.8909 0.9883 0.9909

For the purpose of testing the good fitting of the UHLGD for the data set. A set of
testing procedures has been executed based on the complete data; the resulting test statistic
and p-value are obtained in Table 2 with an MLE of β = 2.4383.

Table 2. Goodness-of-fit test for the real data with UHLG distribution.

Statistic p-Value

Kolmogorov–Smirnov 0.1053 0.7406
Anderson–Darling 0.5028 0.7426
Cramér-von Mises 0.0675 0.7668
Pearson χ2 6.9231 0.5449

The difference between the empirical distribution of the data and the UHLGD dis-
tribution function is shown in Figure 3a, and the probability plot (P-P plot) for the data
is displayed in Figure 3b. The P-P plot of the data in comparison to a created set of data
appears in Figure 3c.

Empirical Distribution of the real data CDF of UHLGD
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Real Data Generated data from UHLGD
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(a) (b) (c)

Figure 3. (a) The CDF, (b) P-P plot, and (c) P-P plot for the real data set compared with another set of
UHLGD generated data.

To illustrate the methods of estimation that were applied in this paper, three ran-
domly samples of GPHCS have been obtained from the complete set of data with m = 25
observations and the minimum number of observed lifetimes is k = 18. Table 3 shows
the three schemes with three different values of T. The MLEs for both the complete and
GPHCS samples are obtained; also, the BEs based on the non-informative priors for dif-
ferent loss functions of the parameter β are executed. Some reliability functions like the
survival function S(t = 0.6) and the hazard rate function H(t = 0.6) are estimated. All of
these results can be investigated in Table 4. Table 5 presents the lower and upper bounds
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with average length (AL) of the asymptotic (ACI), credible (CCI), bootstrap-p (BCI-p) and
bootstrap-t (BCI-t) confidence intervals of β and S(t = 0.6) and H(t = 0.6). Figure 4 shows
the bootstrap iteration and the distributions of β for schemes 1, 2 and 3. Its obvious that the
distributions are semi normal.

Table 3. GPHC schemes and samples obtained from the complete set of lifetimes.

Scheme T R and Sample

Sch. 1 0.3

R = (1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17), RT = 0

(T < Xk < Xm)

x = (0.0519, 0.0545, 0.0662, 0.0805, 0.2324, 0.2675, 0.2883
0.2961, 0.3234, 0.3273, 0.3662, 0.4207, 0.4325, 0.4428
0.4753, 0.5000, 0.5286, 0.54545)

Sch. 2
0.7

R = (1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1),
RT = 6

(Xk < T < Xm) x = (0.05194, 0.0545, 0.0662, 0.0805, 0.2324, 0.2675, 0.2883
0.2961, 0.3234, 0.3273, 0.3662, 0.4208, 0.4325, 0.4428
0.4753, 0.5000, 0.5286, 0.5454, 0.5597, 0.6000, 0.6714)

Sch. 3
0.9

R = (1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

(Xk < Xm < T)

1, 0, 1, 2), RT = 0

x = (0.05194, 0.05454, 0.06623, 0.08052, 0.23247, 0.26753, 0.28831
0.2961, 0.3234, 0.3273, 0.3662, 0.4207, 0.4325, 0.4428
0.4753, 0.5000, 0.5286, 0.5454, 0.5597, 0.5727, 0.6000,
0.6714, 0.7325, 0.7364, 0.7610)

Table 4. The ML and Bayesian estimates of β, S(t = 0.6) and H(t = 0.6) based on the different
GPHCSs for the real data.

Parameter Scheme MLE (Complete) MLE BNIFS BNIFL BNIFG

β
Sch. 1

2.4383
2.6948 2.8581 2.6806 2.6640

Sch. 2 2.4775 2.6045 2.4678 2.4424
Sch. 3 2.3639 2.4737 2.3559 2.3273

S(t = 0.6)
Sch. 1

0.44836
0.4732 0.4766 0.4752 0.4677

Sch. 2 0.4523 0.4550 0.4537 0.4464
Sch. 3 0.4407 0.4430 0.4418 0.4347

H(t = 0.6)
Sch. 1

2.2985
2.1950 2.1807 2.1564 2.1459

Sch. 2 2.2821 2.2710 2.2490 2.2408
Sch. 3 2.3304 2.3210 2.3002 2.2932

Table 5. The values of (L,U) and AL of ACI, CCI, BCI-p and BCI-t for β, S(t = 0.6) and H(t = 0.6)
based on the different GPHCSs of the real data.

ACI CCI BCI − p BCI − t

Parameter Scheme (L, U) AL (L, U) AL (L, U) AL (L, U) AL

β
Sch. 1 (1.098, 4.292) 3.194 (1.713, 4.422) 2.710 (0.988, 3.585) 2.597 (0.000, 3.367) 5.316
Sch. 2 (1.069, 3.886) 2.816 (1.385, 4.662) 3.277 (0.715, 2.661) 1.946 (0.000, 2.653) 6.510
Sch. 3 (1.052, 3.676) 2.623 (1.269, 4.448) 3.179 (1.294, 4.255) 2.960 (0.535, 3.361) 2.826

S(t = 0.6)
Sch. 1 (0.325, 0.621) 0.295 (0.363, 0.596) 0.232 (0.248, 0.544) 0.297 (0.173, 0.545) 0.373
Sch. 2 (0.311, 0.593) 0.282 (0.316, 0.608) 0.293 (0.192, 0.470) 0.278 (0.022, 0.470) 0.449
Sch. 3 (0.304, 0.577) 0.274 (0.297, 0.597) 0.300 (0.301, 0.587) 0.285 (0.288, 0.581) 0.293

H(t = 0.6)
Sch. 1 (1.580, 2.810) 1.231 (1.675, 2.646) 0.971 (1.897, 3.133) 1.235 (1.892, 3.447) 1.555
Sch. 2 (1.695, 2.869) 1.173 (1.631, 2.843) 1.212 (2.198, 3.362) 1.164 (2.200, 4.075) 1.875
Sch. 3 (1.761, 2.900) 1.140 (1.676, 2.928) 1.252 (1.722, 2.906) 1.184 (1.738, 2.966) 1.228
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Scheme 1 Scheme 2 Scheme 3

Figure 4. Bootstrap iteration and its distributions of β for schemes 1, 2 and 3.

7. Simulation Study

In this section, the proposed methods have been compared to show their efficiency
and performance. The assessment and comparison of the various estimates is carried
out using the Monte Carlo simulation method. For each simulation trial, 5000 generated
GPHCS samples with a real value of β = 0.5 were generated from the UHLGD, and
the estimates β̂, ˆS(t = 0.6), and ˆH(t = 0.6) were obtained, including the average of the
estimates (AE = 1

5000 ∑5000
i=1 β̂i), and the expected bias (EB = |AE − rv|), where rv is the

real value of the parameter and the mean square error (MSE = 1
5000 ∑5000

i=1 (β̂i − β)2). The
average widths (AW) and coverage probabilities (CP) of the suggested 95% confidence
intervals are also computed for β, S(t), and H(t), for which several confidence intervals,
such as the ACI, CCI, BCI-p, and BCI-t, have been developed. The estimates BNIFS, BNIFL,
and BNIFG are the Bayesian estimates that were obtained using the loss functions SEL,
LINEX and GEL, respectively. Upon first generating the samples, we used the algorithm
proposed by Balakrishnan and Aggarwala [3] to produce a progressive Type-II censored
sample with size m from the UHLGD, then we adapted the true case of GPHCS accord-
ing to the value of T, Xk, and Xm. In this simulation, we tried three different values of
T = (0.2, 0.8, 0.95) to increase the variability of the GPHCS cases with different values of
(n, m, k) = (50, 30, 20), (70, 50, 30). Three different censoring schemes have been proposed
via this simulation, which are as follows:

1. Scheme 1: Ri = 0 if i = 1, 2, 3, ..., m − 1, and Rm = n − m.
2. Scheme 2: R1 = n − m and Ri = 0 for i = 2, 3, ..., m.
3. Scheme 3: Ri = 1 if i = 1, 2, 3, ..., n − m, otherwise Ri = 0.

The non-informative prior of β has been assumed for two reasons: the first is that
we didn’t have any information about the distribution of β and the second is that the
complexity of the computations is high when the informative priors are used. The hyper-
parameters for the LINEX and GEL loss functions are chosen to be (h, q) = (0.5, 0.5),
respectively. One thousand is the number of iterations of the bootstrap algorithm which
was used to obtain the bootstrap confidence intervals of β, S(t = 0.6) & H(t = 0.6).

Tables 6–8 show the AE, EB and MSE for the parameter estimate β̂, and the estimates
of the reliability measures ˆS(t = 0.6), and ˆH(t = 0.6), respectively. Tables 9–11 show the
AWs and CPs for 95% ACIs, CCIs, as well as the BCI-p and BCI-t of the parameter β, and
also for the reliability measures S&H.
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Table 6. The ML and Bayesian estimates’ values of AE, EB, and MSE for β based on the various
GPHCSs in order to study the simulation.

AE EB MSE

(n, m, k) T Schemes MLE BNIFS BNIFL BNIFG MLE BNIFS BNIFL BNIFG MLE BNIFS BNIFL BNIFG

(50, 30, 20) 0.2 sch 1 0.5152 0.5385 0.5328 0.5104 0.0152 0.0385 0.0328 0.0104 0.0150 0.0182 0.0171 0.0148
sch 2 0.5085 0.5381 0.5299 0.4988 0.0085 0.0381 0.0299 0.0012 0.0254 0.0298 0.0274 0.0243
sch 3 0.5095 0.5376 0.5308 0.5047 0.0095 0.0376 0.0308 0.0047 0.0193 0.0229 0.0213 0.0189

0.8 sch 1 0.5131 0.5322 0.5272 0.5069 0.0131 0.0322 0.0272 0.0069 0.0179 0.0201 0.0191 0.0173
sch 2 0.5294 0.5570 0.5484 0.5173 0.0294 0.0570 0.0484 0.0173 0.0313 0.0370 0.0339 0.0293
sch 3 0.5334 0.5588 0.5520 0.5266 0.0334 0.0588 0.0520 0.0266 0.0225 0.0269 0.0250 0.0215

0.95 sch 1 0.5174 0.5367 0.5316 0.5112 0.0174 0.0367 0.0316 0.0112 0.0166 0.0188 0.0178 0.0160
sch 2 0.5273 0.5548 0.5463 0.5153 0.0273 0.0548 0.0463 0.0153 0.0280 0.0333 0.0305 0.0262
sch 3 0.5275 0.5529 0.5460 0.5208 0.0275 0.0529 0.0460 0.0208 0.0249 0.0294 0.0273 0.0240

(70, 50, 30) 0.2 sch 1 0.5096 0.5255 0.5217 0.5062 0.0096 0.0255 0.0217 0.0062 0.0140 0.0157 0.0151 0.0138
sch 2 0.5084 0.5273 0.5225 0.5027 0.0084 0.0273 0.0225 0.0027 0.0158 0.0176 0.0168 0.0154
sch 3 0.4971 0.5153 0.5112 0.4935 0.0029 0.0153 0.0112 0.0065 0.0100 0.0109 0.0105 0.0098

0.8 sch 1 0.5169 0.5291 0.5258 0.5118 0.0169 0.0291 0.0258 0.0118 0.0128 0.0139 0.0134 0.0124
sch 2 0.5193 0.5352 0.5306 0.5119 0.0193 0.0352 0.0306 0.0119 0.0162 0.0180 0.0172 0.0155
sch 3 0.5176 0.5334 0.5292 0.5121 0.0176 0.0334 0.0292 0.0121 0.0155 0.0173 0.0165 0.0150

0.95 sch 1 0.5183 0.5305 0.5272 0.5133 0.0183 0.0305 0.0272 0.0133 0.0135 0.0147 0.0142 0.0131
sch 2 0.5193 0.5352 0.5306 0.5119 0.0193 0.0352 0.0306 0.0119 0.0162 0.0180 0.0172 0.0155
sch 3 0.5158 0.5314 0.5273 0.5103 0.0158 0.0314 0.0273 0.0103 0.0147 0.0163 0.0156 0.0142

Table 7. The ML and Bayesian estimates’ values of AE, EB, and MSE for S(t = 0.6) based on the
various GPHCSs in order to study the simulation.

AE EB MSE

(n, m, k) T Schemes MLE BNIFS BNIFL BNIFG MLE BNIFS BNIFL BNIFG MLE BNIFS BNIFL BNIFG

(50, 30, 20) 0.2 Sch. 1 0.1456 0.1496 0.1493 0.1441 0.0027 0.0067 0.0064 0.0012 0.0009 0.0009 0.0009 0.0008
Sch. 2 0.1433 0.1482 0.1478 0.1405 0.0004 0.0053 0.0049 0.0024 0.0014 0.0014 0.0014 0.0013
Sch. 3 0.1439 0.1488 0.1485 0.1423 0.0010 0.0059 0.0056 0.0006 0.0011 0.0012 0.0012 0.0011

0.8 Sch. 1 0.1449 0.1481 0.1479 0.1431 0.0020 0.0052 0.0050 0.0002 0.0010 0.0010 0.0010 0.0010
Sch. 2 0.1480 0.1524 0.1519 0.1447 0.0051 0.0095 0.0090 0.0018 0.0017 0.0017 0.0017 0.0016
Sch. 3 0.1495 0.1538 0.1535 0.1475 0.0066 0.0109 0.0106 0.0046 0.0012 0.0013 0.0013 0.0012

0.95 Sch. 1 0.1460 0.1493 0.1490 0.1442 0.0031 0.0064 0.0061 0.0013 0.0009 0.0010 0.0010 0.0009
Sch. 2 0.1477 0.1520 0.1516 0.1444 0.0048 0.0091 0.0087 0.0015 0.0015 0.0016 0.0016 0.0014
Sch. 3 0.1480 0.1522 0.1519 0.1460 0.0051 0.0093 0.0090 0.0031 0.0013 0.0014 0.0014 0.0013

(70, 50, 30) 0.2 Sch. 1 0.1443 0.1471 0.1469 0.1432 0.0014 0.0042 0.0040 0.0003 0.0008 0.0008 0.0008 0.0008
Sch. 2 0.1438 0.1471 0.1469 0.1422 0.0009 0.0042 0.0040 0.0007 0.0009 0.0009 0.0009 0.0009
Sch. 3 0.1415 0.1448 0.1446 0.1403 0.0014 0.0019 0.0017 0.0026 0.0006 0.0006 0.0006 0.0006

0.8 Sch. 1 0.1461 0.1482 0.1480 0.1447 0.0032 0.0053 0.0051 0.0018 0.0007 0.0008 0.0007 0.0007
Sch. 2 0.1465 0.1491 0.1488 0.1444 0.0036 0.0062 0.0059 0.0015 0.0009 0.0010 0.0009 0.0009
Sch. 3 0.1461 0.1488 0.1486 0.1445 0.0032 0.0059 0.0057 0.0016 0.0009 0.0009 0.0009 0.0008

0.95 Sch. 1 0.1464 0.1485 0.1483 0.1450 0.0035 0.0056 0.0054 0.0021 0.0008 0.0008 0.0008 0.0007
Sch. 2 0.1465 0.1491 0.1488 0.1444 0.0036 0.0062 0.0059 0.0015 0.0009 0.0010 0.0009 0.0009
Sch. 3 0.1457 0.1484 0.1482 0.1442 0.0028 0.0055 0.0053 0.0013 0.0008 0.0009 0.0009 0.0008
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Table 8. The ML and Bayesian estimates’ values of AE, EB, and MSE for H(t = 0.6) based on the
various GPHCSs in order to study the simulation.

AE EB MSE

(n, m, k) T Schemes MLE BNIFS BNIFL BNIFG MLE BNIFS BNIFL BNIFG MLE BNIFS BNIFL BNIFG

(50, 30, 20) 0.2 Sch. 1 3.5602 3.5433 3.5381 3.5388 0.0112 0.0281 0.0333 0.0326 0.0149 0.0164 0.0172 0.0172
Sch. 2 3.5698 3.5491 3.5418 3.5427 0.0016 0.0223 0.0296 0.0287 0.0238 0.0249 0.0262 0.0262
Sch. 3 3.5672 3.5466 3.5405 3.5413 0.0042 0.0248 0.0309 0.0301 0.0190 0.0203 0.0212 0.0212

0.8 Sch. 1 3.5631 3.5495 3.5449 3.5455 0.0083 0.0219 0.0265 0.0259 0.0174 0.0182 0.0188 0.0188
Sch. 2 3.5500 3.5319 3.5245 3.5254 0.0214 0.0395 0.0469 0.0460 0.0286 0.0303 0.0320 0.0319
Sch. 3 3.5436 3.5258 3.5198 3.5205 0.0278 0.0456 0.0516 0.0509 0.0212 0.0230 0.0242 0.0241

0.95 Sch. 1 3.5583 3.5446 3.5400 3.5406 0.0131 0.0268 0.0314 0.0308 0.0161 0.0170 0.0177 0.0176
Sch. 2 3.5513 3.5332 3.5258 3.5267 0.0201 0.0382 0.0456 0.0447 0.0262 0.0278 0.0294 0.0293
Sch. 3 3.5501 3.5324 3.5264 3.5271 0.0213 0.0390 0.0450 0.0443 0.0227 0.0243 0.0255 0.0254

(70, 50, 30) 0.2 Sch. 1 3.5656 3.5538 3.5503 3.5508 0.0058 0.0176 0.0211 0.0206 0.0136 0.0144 0.0149 0.0148
Sch. 2 3.5673 3.5537 3.5492 3.5498 0.0041 0.0177 0.0222 0.0216 0.0156 0.0163 0.0168 0.0168
Sch. 3 3.5772 3.5634 3.5595 3.5600 0.0058 0.0080 0.0119 0.0114 0.0101 0.0104 0.0107 0.0107

0.8 Sch. 1 3.5578 3.5492 3.5461 3.5466 0.0136 0.0222 0.0253 0.0248 0.0126 0.0131 0.0134 0.0134
Sch. 2 3.5563 3.5455 3.5413 3.5418 0.0151 0.0259 0.0301 0.0296 0.0160 0.0166 0.0172 0.0171
Sch. 3 3.5579 3.5467 3.5428 3.5433 0.0135 0.0247 0.0286 0.0281 0.0151 0.0158 0.0163 0.0163

0.95 Sch. 1 3.5565 3.5480 3.5449 3.5453 0.0149 0.0234 0.0265 0.0261 0.0133 0.0137 0.0141 0.0141
Sch. 2 3.5563 3.5455 3.5413 3.5418 0.0151 0.0259 0.0301 0.0296 0.0160 0.0166 0.0172 0.0171
Sch. 3 3.5595 3.5483 3.5445 3.5450 0.0119 0.0231 0.0269 0.0264 0.0143 0.0149 0.0154 0.0153

Table 9. The AL and CP values of ACI, CCI, BCI-p and BCI-t for β based on the different GPHCSs in
order to study the simulation.

ACI CCI BCI − p BCI − t

(n, m, k) T Schemes AL CP AL CP AL CP AL CP

(50, 30, 20) 0.2 Sch. 1 0.5338 0.952 0.5471 0.950 0.3692 0.982 0.8165 0.882
Sch. 2 0.6283 0.924 0.6481 0.942 0.3678 0.750 0.6257 0.702
Sch. 3 0.5730 0.932 0.5897 0.960 0.3840 0.745 0.7318 0.710

0.8 Sch. 1 0.5085 0.941 0.4927 0.923 0.5245 0.951 0.5255 0.903
Sch. 2 0.6480 0.933 0.6381 0.905 0.6809 0.954 0.6683 0.885
Sch. 3 0.5850 0.952 0.5758 0.932 0.6033 0.976 0.6005 0.898

0.95 Sch. 1 0.5131 0.944 0.5059 0.921 0.5288 0.953 0.5447 0.910
Sch. 2 0.6454 0.935 0.6352 0.917 0.6765 0.967 0.6704 0.910
Sch. 3 0.5801 0.955 0.5747 0.930 0.5954 0.956 0.5956 0.903

(70, 50, 30) 0.2 Sch. 1 0.4435 0.933 0.4487 0.918 0.2336 0.213 0.6773 0.100
Sch. 2 0.5002 0.943 0.5034 0.952 0.2443 0.400 0.5247 0.400
Sch. 3 0.4653 0.960 0.4694 0.970 0.2611 0.393 0.6399 0.390

0.8 Sch. 1 0.4245 0.938 0.4265 0.922 0.4355 0.949 0.4368 0.916
Sch. 2 0.4942 0.940 0.4951 0.922 0.5072 0.952 0.4932 0.900
Sch. 3 0.4711 0.938 0.4677 0.933 0.4821 0.955 0.4835 0.918

0.95 Sch. 1 0.4254 0.936 0.4268 0.922 0.4367 0.944 0.4376 0.912
Sch. 2 0.4942 0.940 0.4951 0.922 0.5072 0.952 0.4932 0.900
Sch. 3 0.4685 0.946 0.4658 0.936 0.4789 0.960 0.4808 0.908
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Table 10. The values of AL and CP of ACI, CCI, BCI-p and BCI-t for S(t = 0.6) based on the different
GPHCSs in order to study the simulation.

ACI CCI BCI − p BCI − t

(n, m, k) T Schemes AL CP AL CP AL CP AL CP

(50, 30, 20) 0.2 Sch. 1 0.1278 0.956 0.1260 0.950 0.0951 0.982 0.1756 0.918
Sch. 2 0.1499 0.932 0.1469 0.942 0.0905 0.750 0.1337 0.710
Sch. 3 0.1373 0.953 0.1352 0.960 0.0963 0.745 0.1593 0.723

0.8 Sch. 1 0.1218 0.941 0.1149 0.923 0.1216 0.951 0.1253 0.919
Sch. 2 0.1523 0.935 0.1432 0.905 0.1518 0.954 0.1558 0.908
Sch. 3 0.1382 0.954 0.1308 0.932 0.1369 0.976 0.1411 0.922

0.95 Sch. 1 0.1227 0.948 0.1174 0.921 0.1226 0.953 0.1286 0.920
Sch. 2 0.1522 0.941 0.1436 0.917 0.1511 0.967 0.1567 0.920
Sch. 3 0.1372 0.955 0.1307 0.930 0.1354 0.956 0.1403 0.920

(70, 50, 30) 0.2 Sch. 1 0.1066 0.931 0.1049 0.918 0.0626 0.213 0.1438 0.118
Sch. 2 0.1203 0.952 0.1174 0.952 0.0629 0.400 0.1121 0.400
Sch. 3 0.1131 0.963 0.1106 0.970 0.0688 0.393 0.1399 0.390

0.8 Sch. 1 0.1019 0.942 0.1000 0.922 0.1023 0.949 0.1047 0.927
Sch. 2 0.1181 0.940 0.1151 0.922 0.1172 0.952 0.1177 0.922
Sch. 3 0.1128 0.945 0.1092 0.933 0.1124 0.955 0.1155 0.933

0.95 Sch. 1 0.1020 0.938 0.1000 0.922 0.1025 0.944 0.1048 0.924
Sch. 2 0.1181 0.940 0.1151 0.922 0.1172 0.952 0.1177 0.922
Sch. 3 0.1124 0.952 0.1090 0.936 0.1119 0.960 0.1151 0.920

Table 11. The values of AL and CP of ACI, CCI, BCI-p and BCI-t for H(t = 0.6) based on the different
GPHCSs in order to study the simulation.

ACI CCI BCI − p BCI − t

(n, m, k) T Schemes AL CP AL CP AL CP AL CP

(50, 30, 20) 0.2 Sch. 1 0.5323 0.956 0.5294 0.952 0.3961 0.982 0.7316 0.918
Sch. 2 0.6248 0.932 0.6165 0.942 0.3773 0.750 0.5572 0.710
Sch. 3 0.5720 0.953 0.5678 0.960 0.4014 0.745 0.6637 0.723

0.8 Sch. 1 0.5074 0.941 0.4866 0.920 0.5067 0.951 0.5222 0.919
Sch. 2 0.6347 0.935 0.6077 0.896 0.6327 0.954 0.6492 0.908
Sch. 3 0.5757 0.954 0.5537 0.926 0.5705 0.976 0.5881 0.922

0.95 Sch. 1 0.5114 0.948 0.4977 0.921 0.5106 0.953 0.5359 0.920
Sch. 2 0.6342 0.941 0.6094 0.921 0.6298 0.967 0.6428 0.920
Sch. 3 0.5717 0.955 0.5532 0.926 0.5642 0.956 0.5843 0.920

(70, 50, 30) 0.2 Sch. 1 0.4442 0.931 0.4398 0.913 0.2608 0.213 0.5990 0.118
Sch. 2 0.5012 0.952 0.4936 0.943 0.2620 0.400 0.4670 0.400
Sch. 3 0.4714 0.963 0.4645 0.977 0.2867 0.393 0.5829 0.390

0.8 Sch. 1 0.4246 0.942 0.4187 0.918 0.4263 0.949 0.4363 0.927
Sch. 2 0.4922 0.940 0.4827 0.922 0.4883 0.952 0.4903 0.922
Sch. 3 0.4698 0.945 0.4587 0.930 0.4685 0.955 0.4813 0.933

0.95 Sch. 1 0.4249 0.938 0.4183 0.914 0.4270 0.944 0.4366 0.924
Sch. 2 0.4922 0.940 0.4827 0.922 0.4883 0.952 0.4903 0.922
Sch. 3 0.4681 0.952 0.4567 0.934 0.4664 0.960 0.4796 0.920

8. Conclusions and Discussion

In this paper, the survival and hazard rate functions of the UHLGD lifetime distribu-
tion, as well as its unique parameter, are estimated using the ML and Bayesian methods
when the observed sample is a GPHCS. Together with the Bayesian estimates based on
SEL, Linex, and GEL functions based on the non-informative prior distribution, the MLEs
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are looked at as well. Additionally, the parameters, survival, and hazard functions are
calculated, along with the 95% asymptotic (ACI), credible (CCI), bootstrap-p (BCI-p), and
bootstrap-t (BCI-t) confidence intervals. The numerical analysis leads to the conclusion of
the following observations:

• The MLEs and the Bayesian estimates based on the non-informative priors function
semi-equally in most circumstances, as the MSE shows.

• We observed that the GEL outperforms the SEL and LINEX loss functions in the
Bayesian estimation.

• Generally speaking, the MSE falls as n and m rise.
• As T increases, the average length of the confidence intervals decreases.
• The bootstrap-p confidence intervals have the highest coverage probability in a large

proportion of situations.
• Compared to Schemes 2 and 3, censoring Scheme 1 performs better.
• We have observed that the projections are rather close to those of the entire sample

because of the real data estimates.

Lastly, evaluating and modeling the lifespan resulting from medical conditions as well
as electronic components can be carried out using the suggested methodologies that rely on
the GPHCS. This will ensure that there are no time or financial losses and that the analysis
is carried out as efficiently as possible based on a one-parameter lifetime distribution.
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