
Citation: Alqefari, A.A.; Alzaid, A.A.;

Qarmalah, N. On the Conflation of

Negative Binomial and Logarithmic

Distributions. Axioms 2024, 13, 707.

https://doi.org/10.3390/axioms

13100707

Academic Editors: Yolanda Gómez

and Inmaculada Barranco-Chamorro

Received: 19 August 2024

Revised: 7 October 2024

Accepted: 11 October 2024

Published: 13 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

On the Conflation of Negative Binomial and
Logarithmic Distributions
Anfal A. Alqefari 1 , Abdulhamid A. Alzaid 1 and Najla Qarmalah 2,*

1 Department of Statistics and Operations Research, College of Sciences, King Saud University, P.O. Box 2455,
Riyadh 11451, Saudi Arabia; 438203970@student.ksu.edu.sa (A.A.A.); alzaid@ksu.edu.sa (A.A.A.)

2 Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University,
P.O. Box 84428, Riyadh 11671, Saudi Arabia

* Correspondence: nmbinqurmalah@pnu.edu.sa; Tel.: +966-18236238

Abstract: In recent decades, the study of discrete distributions has received increasing attention
in the field of statistics, mainly because discrete distributions can model a wide range of count
data. One common distribution used for modeling count data, for instance, is the negative binomial
distribution (NBD), which performs well with over-dispersed data. In this paper, a new count
distribution is introduced, called the conflation of negative binomial and logarithmic distributions,
which is formed by conflating the negative binomial and logarithmic distributions, resulting in a
distribution that possesses some of the properties of negative binomial and logarithmic distributions.
The distribution has two parameters and is verified by a positive integer. Two modifications are
proposed to the distribution, which includes zero as a support point. The new distribution is valuable
from a theoretical perspective since it is a member of the weighted negative binomial distribution
family. In addition, the distribution differs from the NBD in the sense that the probability of lower
counts is inflated. This study discusses the characteristics of the proposed distribution and its
modified versions, such as moments, probability generating functions, likelihood stochastic ordering,
log-concavity, and unimodality properties. Real-world data are used to evaluate the performance of
the proposed models against other models. All computations shown in this paper were produced
using the R programming language.

Keywords: conflation distributions; weighted distribution; shifted distribution; negative binomial
distribution; logarithmic distribution; discrete distributions; dispersion index; likelihood ratio
stochastic order; log-concavity; unimodality
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1. Introduction

The analysis and modeling of count data have received significant attention in recent
decades, with a particular emphasis being placed on the development of discrete distri-
butions. A widely used model for the analysis and modeling of count data is the Poisson
distribution (PD). The important condition for the PD is an equal dispersion of count data.
The equal dispersion can be evaluated using a statistical measure known as an index of
dispersion (ID). The ID defines the quantity of variability in a distribution. The definition
of the ID is given below:

Definition 1. The index of dispersion of a distribution, denoted as ID, can be defined as follows:

ID =
Var(Y)

µ
,

where Var(Y) and µ are the variance and the mean of Y, respectively. The ID implies the following:
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• If ID > 1, then it is over-dispersion.
• If ID < 1, then it is under-dispersion.
• If ID = 1, then it is equal dispersion.

For more details, see [1].
However, this condition is rarely observed in practical scenarios. Count data often

show over-dispersion, thereby requiring an investigation of modeling alternatives, which
provide greater flexibility than the PD. The negative binomial distribution (NBD) is a
frequently employed alternative distribution for modeling count data, particularly for
data that show over-dispersion. The NBD is extensively employed in the modeling of
diverse datasets, including biological, medical sciences, accident statistics, social sciences,
economics, quality control, ecology, and so forth. The study [2] outlines the NBD as
a mixture of PDs, and the mean of the PD is a random variable following a gamma
distribution. The probability mass function (pmf) of the NBD is denoted as follows:

f (x) =
Γ(x + r)

Γ(x + 1)Γ(r)
px(1 − p)r, 0 < p < 1, r > 0, x = 0, 1, 2, . . . .

For more details about the NBD and its properties, see [1].
Furthermore, count data frequently display an excess of zeros and heterogeneity in

variance, making traditional statistical distributions insufficient for modeling purposes.
Nevertheless, the NBD is frequently favored over the PD because of its ability to provide
increased flexibility in modeling data that appear over-dispersed, as previously indicated.
Many studies have developed alternative models to deal with the presence of excess zeros
and variability in the dataset. For example, zero-inflated models, hurdle models, or finite
mixture models have been proposed in order to more efficiently deal with this issue. In
addition, the mixing of PD or NBD with a lifetime distribution is frequently employed for
the same issue. For example, numerous research studies have demonstrated that the mixed
negative binomial distribution offers a superior fit for count data in comparison to the PD
and NBD. Moreover, weighted distributions are used to solve the problem by multiplying
count distributions with weight functions, as developed in [3,4]. Since then, the concept
of weighted distributions has established itself in the literature as a powerful tool for
modeling. By allowing us to adjust probabilities based on specific weights assigned to each
outcome, weighted distributions provide a flexible framework that enhances our ability to
accurately represent and analyze complex real-world phenomena. This adaptability has
made weighted distributions invaluable in various fields such as statistics, biostatistics,
biomedicine, ecology, survival data analysis, meta-analysis, and intervention data analysis.
For discrete distributions, the weighted distribution is defined as follows:

Definition 2. Let X be a random variable with pmf f (x) and let w(x) be a non-negative weighting
function such that 0 < E[w(X)] < ∞ exists and is finite. Then, the pmf fw(x) is defined as follows:

fw(x) =
w(x) f (x)
E[w(X)]

, x ∈ N.

is a weighted distribution of f (x).

For more information on weighted distributions for discrete random variables, refer
to the work [1] on the subject. For example, the modified negative binomial distribution
in [5] can be viewed as a weighted geometric distribution.

Although the standard distributions possess attractive characteristics, they do not
provide the best fit for real-world data that have deviations. The source of deviations can
be either inflation in low counts or high dispersion. Hence, there is a need to develop new
distributions that demonstrate superior performance. In this study, we employ the idea of
conflation as a tool to cope with the presence of excess zeros or generally low counts and
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over-dispersed data. The concept of the conflation of probability distributions is presented
by [6] and defined as follows:

Definition 3. If f1, f2, . . . , fn are pmfs, then the corresponding conflated distribution fC is

fC(x) = ∏n
i=1 fi(x)

∑y∈A ∏n
i=1 fi(y)

, x ∈ N. (1)

where A is the intersection of the supports of all the distributions. In terms of random variables, if
X1, . . . , Xn are independent with pmfs f1, . . . , fn, respectively, then

fC(x) = P(X1 = x | X1 = X2 = . . . = Xn).

Ref. [6] presented conflation as a method for consolidating data from several indepen-
dent experiments, all of which were designed to measure the same unknown quantity. In
other words, distribution conflation is a distribution that inherits some properties from its
components. For n = 2, Equation (1) can be viewed as a weighted distribution, where one
mass function is the parent distribution and the other one is a weight function. In this sense,
the conflation distributions are weighted distributions. Hence, one may use conflation
methods to model data with a high excess of low counts and over-dispersion by conflating
a distribution with a decreasing mass function with an over-dispersed distribution.

As a result, we introduce a new distribution by combining the NBD and the logarithmic
distribution (LD) into a single distribution that reflects the common information between
them with minimal loss of information. The pmf of the LD is given by:

fLD(x) =
−1

log(1 − p)
px

x
, 0 < p < 1, x = 1, 2, 3, . . . .

For more details about the logarithmic distribution and its properties, see [1].
The new distribution is called the conflation of negative binomial and logarithmic

distributions (CNBLD). The LD has a decreasing pmf, hence it is capable of modeling
data with a high frequency for low counts while the NBD is over-dispersed; therefore,
their conflation is expected to handle data expressing high excesses of low counts and
over-dispersion. The LD does not support zero, hence the CNBLD inherits this property,
which limits the applications of the CNBLD to positive count data. To overcome this
problem, the study also presents two modifications of the CNBLD. The first modification
shifts the CNBLD one position to the left, resulting in the shifted CNBLD that is denoted as
SCNBLD. The SCNBLD retains the flexibility of the CNBLD but extends its support to zero
values. The second modification conflates a shifted logarithmic distribution with the NBD,
resulting in the conflation of a negative binomial shift logarithmic distribution (CNBSLD).
The CNBSLD also aims to combine the features of both distributions to provide flexibility
and the ability to model a wider range of data.

The structure of this paper is organized as follows: Section 2 presents the definitions
and discusses the graphical representations of the proposed models; Section 3 describes
some of the statistical properties of the proposed models, such as moments, log-concavity,
index of dispersion, and likelihood ratio stochastic order; Section 4 discusses the estimation
of the parameters using the method of moments and the maximum likelihood method
and evaluates the accuracy of these estimates by a simulation study; Section 5 outlines the
usefulness of the new distribution across several fields, showing its superior performance
compared to the existing modified negative binomial distributions employed to fit similar
data; finally, Section 6 presents a conclusion.

2. Conflation of Negative Binomial and Logarithmic Distributions

In this section, the conflation of negative binomial logarithmic distributions (CNBLD),
and the developed versions of the CNBLD are introduced. The developed versions of
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the CNBLD are named as follows: shifted conflation of negative binomial logarithmic
distributions (SCNBLD) and conflation of negative binomial weighted by shift logarithmic
distribution (CNBSLD). This section outlines the pm f s, the cumulative distribution func-
tions (cd f ), which are denoted as F(·), the survival functions (s f ), which are denoted as
(F(·)), and the hazard rate functions (h) of the CNBLD, SCNBLD, and CNBSLD.

Definition 4. The random variable Y is said to follow the CNBLD with parameters r > 0 and
0 < θ < 1 if its pm f is given as follows:

f (y) = P(Y = y) = C−1(r, θ)
Γ(y + r)θy

Γ(y + 1)Γ(r)y
, y = 1, 2, . . . .

Here, C−1(r, θ) is the normalizing constant that can be expressed as follows:

C(r, θ) =
∞

∑
k=1

Γ(k + r)
Γ(k + 1)Γ(r)

θk

k

=
∞

∑
z=0

Γ(z + r + 1)
Γ(z + 2)Γ(r)

θz+1

z + 1

= θr
∞

∑
z=0

(1)z(1)z(r + 1)z

(2)z(2)z

θz

z!

= θr 3F2(1, 1, r + 1; 2, 2; θ).

where (a)u = Γ(a+u)
Γ(a) is the Pochhammer symbol, and 3F2 is a generalized hypergeometric function;

for more details, see [1,7] .

The generalized hypergeometric function is available in popular programming pack-
ages such as R, Mathematica, MATLAB, Python, and others. In this paper, we used the
genhypergeo(.) function from the hypergeo package in R.

In comparison with (1), in terms of random variables, if X and Z are independent

random variables with X following an NBD and Z following an LD, then Y d
= X | X = Z.

In the special case when r = 1, the CNBLD reduces to the LD.

Remark 1. It should be noted that according to Definition 4, the CNBLD is a weighted negative
binomial distribution with an LD as the weight function. In addition, the CNBLD can be considered
as a weighted logarithmic distribution with an NBD as the weighting function.

Next, the pm f s of the CNBLD are visualized for different values of parameters θ = 0.2,
0.5, and 0.8 and r = 1, 4, and 8 in Figure 1. The parameter θ has an impact on the dispersion
of the distribution, while the parameter r is mainly responsible for the shape of the CNBLD.
In general, the shape of the pm f s of the CNBLD is skewed to the right; however, with an
increase in the value of r and θ, the distribution becomes less skewed and displays more
symmetry. On the other hand, for smaller values of θ and r, the pmf of the CNBLD is a
decreasing function with a high probability for low y values. However, as θ and r increase,
the function’s behavior shifts, initially rising to a peak before decreasing. This change
illustrates how larger parameters introduce greater variability into the distribution.

Figure 1. The pm f s of the CNBLD for different values of θ and r.
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The cd f , s f , and h of the CNBLD, respectively, are as follows:

F(y) = 1 − θyΓ(y + r + 1) 3F2(1, y + 1, y + r + 1; y + 2, y + 2; θ)

Γ(y + 2)Γ(r + 1)(y + 1) 3F2(1, 1, r + 1; 2, 2; θ)
,

F(y) =
θyΓ(y + r + 1) 3F2(1, y + 1, y + r + 1; y + 2, y + 2; θ)

Γ(y + 2)Γ(r + 1)(y + 1) 3F2(1, 1, r + 1; 2, 2; θ)
,

and

h(y) =
(y + 1)2

θy(y + r) 3F2(1, y + 1, y + r + 1; y + 2, y + 2; θ)
.

We have

F(y) =
∞

∑
t=y+1

C−1(r, θ)
Γ(t + r)

Γ(t + 1)Γ(r)
θt

t

= C−1(r, θ)A(y)

where

A(y) =
∞

∑
t=y+1

Γ(t + r)
Γ(t + 1)Γ(r)

θt

t

=
∞

∑
z=0

Γ(z + y + r + 1)
Γ(z + y + 2)Γ(r)

θz+y+1

z + y + 1

= θy+1
∞

∑
z=0

(1)z(y + 1)z(y + r + 1)zΓ(y + r + 1)
(y + 2)z(y + 2)z(y + 1)Γ(y + 2)(r − 1)!

θz

z!

=
θy+1Γ(y + r)

Γ(y + 1)Γ(r − 1)(y + 1)

∞

∑
z=0

(1)z(y + 1)z(y + r + 1)z

(y + 2)z(y + 2)z

θz

z!

=
θy+1Γ(y + r)

Γ(y + 1)Γ(r − 1)(y + 1) 3F2(1, y + 1, y + r + 1; y + 2, y + 2; θ)

Thus, according to A(y), the s f can be given as follows:

F(y) =
θyΓ(y + r + 1) 3F2(1, y + 1, y + r + 1; y + 2, y + 2; θ)

Γ(y + 2)Γ(r + 1)(y + 1) 3F2(1, 1, r + 1; 2, 2; θ)
.

Using the definition of the s f , the cd f can be defined as follows:

F(y) = 1 − F(y)

Further, the h of the CNBLD can be calculated as follows:

h(y) =
f (y)
F(y)

.

Most real-life count data have zero as a possible value. Therefore, the current study
developed the CNBLD using two methods for this purpose. The first method was the
obvious one which shifted the CNBLD by one to the left. The second method shifted the
LD conflated with the NBD. Therefore, we obtained the following two definitions:

Definition 5. The random variable Y is said to follow the SCNBLD with parameters r > 0 and
0 < θ < 1, if its pm f is given by the following:

f (y) =
Γ(y + r + 1)θy

Γ(y + 2)Γ(r + 1) 3F2(1, 1, r + 1; 2, 2; θ)(y + 1)
, y = 0, 1, 2, . . . .
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Consequently, we obtain the cd f , the s f , and the h functions of the SCNBLD, respec-
tively, as follows:

F(y) = 1 − θy+1Γ(y + r + 2) 3F2(1, y + 2, y + r + 2; y + 3, y + 3; θ)

Γ(y + 3)Γ(r + 1)(y + 2) 3F2(1, 1, r + 1; 2, 2; θ)
,

F(y) =
θy+1Γ(y + r + 2) 3F2(1, y + 2, y + r + 2; y + 3, y + 3; θ)

Γ(y + 3)Γ(r + 1)(y + 2) 3F2(1, 1, r + 1; 2, 2; θ)
,

and

h(y) =
(y + 2)2

θ(y + 1)(y + r + 1) 3F2(1, y + 2, y + r + 2; y + 3, y + 3; θ)
.

Definition 6. The random variable Y is said to follow the CNBSLD with parameters r > 0 and
0 < θ < 1 if its pm f is given as follows:

f (y) =
θ(r − 1)Γ(y + r)θy

Γ(y + 1)Γ(r)
(
(1 − θ)−(r−1) − 1

)
(y + 1)

, y = 0, 1, . . . .

Remark 2. Note that the CNBSLD is a shifted LD for r = 1 and a geometric distribution for r = 2,
and hence the CNBSLD can be considered as an extension of the two distributions.

The following theorem can be used to derive the CNBSLD.

Theorem 1. If X and Z are independent random variables following an NBD with parameters
r > 0 and 0 < p1 < 1 and a shifted logarithmic distribution with parameter 0 < p2 < 1, then

P(Y = y) = P(X = y | X = Z)

where θ = p1 p2.

Proof. The proof can be obtained directly by calculating the conditional probability.

The cd f , s f , and the h of the CNBSLD are, respectively:

F(y) = 1 − θy+2(r − 1)Γ(y + r + 1) 2F1(1, y + r + 1; y + 3; θ)

Γ(y + 2)Γ(r)(y + 2)
[
(1 − θ)−(r−1) − 1

] ,

F(y) =
θy+2(r − 1)Γ(y + r + 1) 2F1(1, y + r + 1; y + 3; θ)

Γ(y + 2)Γ(r)(y + 2)
[
(1 − θ)−(r−1) − 1

] ,

and

h(y) =
y + 2

θ(y + r) 2F1(1, y + r + 1; y + 3; θ)
.

Here, 2F1(·, ·; ·; ·) is the Gaussian hypergeometric function (see [1,7] for more informa-
tion). It is possible to calculate the s f of the CNBSLD as follows:

F(y) =
∞

∑
t=y+1

θ(r − 1)Γ(t + r)θt

Γ(t + 1)Γ(r)((1 − θ)−(r−1) − 1)(t + 1)

=
θ(r − 1)

((1 − θ)−(r−1) − 1)(t + 1)
B(y)
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where

B(y) =
∞

∑
t=y+1

Γ(t + r)θt

Γ(t + 1)Γ(r)(t + 1)

=
∞

∑
z=0

Γ(z + y + r + 1)θz+y+1

Γ(z + y + 2)Γ(r)(z + y + 2)

=
θy+1Γ(y + r + 1)

Γ(y + 2)Γ(r)(y + 2)

∞

∑
z=0

z!Γ(y + r + 1 + z)Γ(y + 3)
Γ(y + r + 1)Γ(y + 3 + z)

θz

z!

=
θy+1Γ(y + r + 1)

Γ(y + 2)Γ(r)(y + 2)

∞

∑
z=0

(1)z(y + r + 1)z

(y + 3)z

θz

z!

=
θy+1Γ(y + r)2F1(1, y + r + 1; y + 3; θ)

Γ(y + 1)Γ(r − 1)(y + 2)
.

Thus, according to B(y), the s f can be given as follows:

F(y) =
θy+2(r − 1)Γ(y + r + 1) 2F1(1, y + r + 1; y + 3; θ)

Γ(y + 2)Γ(r)(y + 2)
[
(1 − θ)−(r−1) − 1

]

Using the definition of the s f , the cd f can be defined as follows:

F(y) = 1 − F(y)

Further, the h of the CNBSLD can be calculated as follows:

h(y) =
f (y)
F(y)

.

A comparison between the SCNBLD, the CNBSLD, and the NBD can be made by
looking at the pm f s for different values of θ and r. Figure 2 shows the pm f s for r = 1, 4,
and 8 with θ = 0.2, 0.5, and 0.8. The shape of all distributions is skewed to the right but
tends to be symmetric for large θ and r. The difference between the distributions decreases
significantly as θ and r increase, and the distributions behave more similarly. The pm f s
appears identical for relatively large y, depending on the value of r in all plots with small
probabilities of all distributions. For example, the pm f s of all distributions are the same
after y = 4 when θ = 0.25 and r = 1. In general, as the value of r increases, the value of
y at which the pm f is constant increases. The plots show that both r and θ have a clear
influence on the behavior of the different distributions.
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Figure 2. The pm f s of the SCNBLD, the CNBSLD, and the NBD for different values of θ and r.

3. Some Statistical Properties

In this section, we examine several useful statistical properties of the CNBLD, SCNBLD,
and CNBSLD. These include deriving the mean, variance, and probability generating
functions for each distribution. In addition, we calculate the index of dispersion (ID) for
the CNBLD, SCNBLD, and CNBSLD, which provides information about the variability
relative to their means. Furthermore, we discuss the likelihood ratio stochastic order and
log-concavity property for the new distributions. The likelihood ratio stochastic order study
is extended to the NBD to provide a more comprehensive understanding of the relative
behaviors and properties of these distributions.

3.1. Moments and Probability Generating Functions

The statistical results for the moment and probability generating functions associated
with the CNBLD are reviewed below.

The mean, the variance, and the probability generating function for the CNBLD are
given as follows:

µ = C−1(r, θ)
[
(1 − θ)−r − 1

]
,

Var(Y) =
r2θ2(1 − θ)−(r+1)

3F2(1, 1, r + 1; 2, 2; θ)− [(1 − θ)−r − 1]2

[θr 3F2(1, 1, r + 1; 2, 2; θ)]2
,

and

G(s) =
s3F2(1, 1, r + 1; 2, 2; θs)

3F2(1, 1, r + 1; 2, 2; θ)
.

Figure 2. The pm f s of the SCNBLD, the CNBSLD, and the NBD for different values of θ and r.

3. Some Statistical Properties

In this section, we examine several useful statistical properties of the CNBLD, SCNBLD,
and CNBSLD. These include deriving the mean, variance, and probability generating
functions for each distribution. In addition, we calculate the index of dispersion (ID) for
the CNBLD, SCNBLD, and CNBSLD, which provides information about the variability
relative to their means. Furthermore, we discuss the likelihood ratio stochastic order and
log-concavity property for the new distributions. The likelihood ratio stochastic order study
is extended to the NBD to provide a more comprehensive understanding of the relative
behaviors and properties of these distributions.

3.1. Moments and Probability Generating Functions

The statistical results for the moment and probability generating functions associated
with the CNBLD are reviewed below.

The mean, the variance, and the probability generating function for the CNBLD are
given as follows:

µ = C−1(r, θ)
[
(1 − θ)−r − 1

]
,

Var(Y) =
r2θ2(1 − θ)−(r+1)

3F2(1, 1, r + 1; 2, 2; θ)− [(1 − θ)−r − 1]2

[θr 3F2(1, 1, r + 1; 2, 2; θ)]2
,

and

G(s) =
s3F2(1, 1, r + 1; 2, 2; θs)

3F2(1, 1, r + 1; 2, 2; θ)
.
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The formulas above can be given as follows:

µ =
∞

∑
y=1

y C−1(r, θ)θyΓ(y + r)
yΓ(y + 1)Γ(r)

= C−1(r, θ)
∞

∑
y=1

θyΓ(y + r)
Γ(y + 1)Γ(r)

= C−1(r, θ)
[
(1 − θ)−r − 1

]
.

For the variance, the second moment can be expressed as follows:

E(Y2) =
∞

∑
y=1

y2 C−1(r, θ)θyΓ(y + r)
yΓ(y + 1)Γ(r)

= C−1(r, θ)
∞

∑
y=1

yθyΓ(y + r)
Γ(y + 1)Γ(r)

= C−1(r, θ)rθ
∞

∑
z=0

Γ(z + r + 1)θz

Γ(z + 1)Γ(r + 1)

=
(1 − θ)−(r+1)

3F2(1, 1, r + 1; 2, 2; θ)

Hence, the variance can be shown to be as follows:

Var(Y) = E(Y2)− µ2

=
(1 − θ)−(r+1)

3F2(1, 1, r + 1; 2, 2; θ)
−
[
C−1(r, θ)

[
(1 − θ)−r − 1

]]2

=
r2θ2(1 − θ)−(r+1)

3F2(1, 1, r + 1; 2, 2; θ)− [(1 − θ)−r − 1]2

[θr3F2(1, 1, r + 1; 2, 2; θ)]2

The form of the probability generating function becomes obvious from the pm f of
the CNBLD.

The following introduces the moments and probability generating function related to
the SCNBLD.

µ = C−1(r, θ)
[
(1 − θ)−r − 1

]
− 1,

Var(Y) =
r2θ2(1 − θ)−(r+1)

3F2(1, 1, r + 1; 2, 2; θ)− [(1 − θ)−r − 1]2

[θr 3F2(1, 1, r + 1; 2, 2; θ)]2
,

and

G(s) = 3F2(1, 1, r + 1; 2, 2; θs)
3F2(1, 1, r + 1; 2, 2; θ)

.

The results can be obtained from the fact that Z = Y − 1, where Y follows a CNBLD.
Finally, the moments and probability generating function of the CNBSLD are as follows:
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The mean, the variance, and the probability generating function for the CNBSLD can
be given as follows:

µ =
(1 − θ)r + rθ − 1
1 − (1 − θ)r − θ

,

Var(Y) =
θ(r − 1)[(1 − θ)r[θ(r − 1) + 1] + θ − 1]

(θ − 1)[(1 − θ)r + θ − 1]2
,

and

G(s) =
(1 − sθ)−(r−1) − 1

s
[
(1 − θ)−(r−1) − 1

] .

They can be obtained as follows:

E(Y + 1) =
∞

∑
y=0

(y + 1)θ(r − 1)θyΓ(y + r)
((1 − θ)−(r−1) − 1)(y + 1)Γ(y + 1)Γ(r)

=
θ(r − 1)

(1 − θ)−(r−1) − 1

∞

∑
y=0

Γ(y + r)θy

Γ(y + 1)Γ(r)

=
θ(r − 1)(1 − θ)−r

(1 − θ)−(r−1) − 1

=
θ(r − 1)

1 − (1 − θ)r − θ
.

Hence,

µ = E(Y)

= E(Y + 1)− 1

=
θ(r − 1)

1 − (1 − θ)r − θ
− 1

=
(1 − θ)r + rθ − 1
1 − (1 − θ)r − θ

.

For the variance, we obtain the following:

E[Y(Y + 1)] =
∞

∑
y=0

y(y + 1)θ(r − 1)Γ(y + r)θy

((1 − θ)−(r−1) − 1)(y + 1)Γ(y + 1)Γ(r)

=
θ(r − 1)

(1 − θ)−(r−1) − 1

∞

∑
y=0

yθyΓ(y + r)
Γ(y + 1)Γ(r)

=
θ(r − 1)θr(1 − θ)−(r+1)

(1 − θ)−(r−1) − 1

=
θ2r(r − 1)

(θ − 1)[(1 − θ)r + θ − 1]
.

Hence, the variance is

Var(Y) = E[y(y + 1)]− E(y)− µ2

=
θ2r(r − 1)

(θ − 1)[(1 − θ)r + θ − 1]
− (1 − θ)r + rθ − 1

1 − (1 − θ)r − θ
−
[
(1 − θ)r + rθ − 1
1 − (1 − θ)r − θ

]2

=
θ(r − 1)[(1 − θ)r(θ(r − 1) + 1) + θ − 1]

(θ − 1)[(1 − θ)r + θ − 1]2
.
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The form of the probability generating function becomes obvious from the shape of
the pm f of the CNBSLD.

3.2. Index of Dispersion

In this subsection, we introduce the ID of the NBD, SCNBLD, and CNBSLD that are
denoted as IDNBD, IDSCNBLD, and IDCNBSLD, respectively, for different values of r and
θ. The IDNBD, IDSCNBLD, and IDCNBSLD for different values of θ and r are calculated in
Table 1. Since IDSCNBLD and IDCNBSLD have complicated mathematical formulas, the IDs
are calculated for selected values of r and θ.

• IDNBD is given by 1
1−θ . This implies that as θ increases, IDNBD increases, indicating

higher dispersion with higher θ.
• For SCNBLD and CNBSLD, as θ increases, IDSCNBLD and IDCNBSLD increase. This

means that for a fixed r, the dispersion increases as θ increases.
• For SCNBLD and CNBSLD, as r increases, IDSCNBLD and IDCNBSLD also increase.

This suggests that for a fixed θ, the dispersion increases as r increases.
• If r > 1, then IDCNBSLD < IDSCNBLD; as a result, the SCNBLD is more suitable

for data with greater dispersion. This suggests that the value of r determines the
interchangeability of the two distributions.

Table 1. The index of dispersion for the NBD, SCNBLD, and CNBSLD for different values of r and θ.

SCNBLD CNBSLD NBD

r θ Mean Variance ID Mean Variance ID Mean Variance ID

0.2 0.0883 0.1042 1.1807 0.0590 0.0699 1.1840 0.1250 0.1562 1.25
0.5 0.5 0.3079 0.5220 1.6955 0.2071 0.3536 1.7071 0.5 0.5 2

0.8 0.9104 3.2622 3.5833 0.6180 2.2361 3.6180 2 10 5

0.2 0.1889 0.2378 1.2592 0.25 0.3125 1.25 0.5 0.625 1.25
2 0.5 0.7718 1.5855 2.0541 1 2 2 2 4 2

0.8 3.2785 17.3486 5.2916 4 20 5 8 40 5

0.2 0.4323 0.6115 1.4143 0.6937 0.9421 1.3579 1.25 1.5625 1.25
5 0.5 2.3418 6.0804 2.5965 3.2667 7.3956 2.2639 5 10 2

0.8 13.5341 79.5349 5.8766 15.0256 79.7172 5.3054 20 100 5

0.2 0.7403 1.1536 1.5581 1.2143 1.7396 1.4325 2 2.5 1.25
8 0.5 4.7797 13.0137 2.7226 6.0551 13.7213 2.2660 8 16 2

0.8 25.7471 140.5006 5.4569 27.0003 139.9917 5.1848 32 160 5

3.3. Log-Concavity Property

Log-concave probability distributions are essential in various areas, including reliabil-
ity theory, labor economics, monopoly theory, mechanism design theory, political science,
and law. Refer to [8] for additional information.

Definition 7. A discrete random variable X is log-concave if f 2(x + 1) ≥ f (x) f (x + 2) for all x.

Theorem 2. The pmf of the CNBLD is log-concave for r ≥ 7 and log-convex for r ≤ 2.

Proof. For y = 1, 2, 3, . . ., we have

A(y, r) =
( f (y + 1))2

f (y) f (y + 2)
=

(
Γ(y+r+1)

Γ(y+2)

)2

Γ(y+r)Γ(y+r+2)
Γ(y+1)Γ(y+3)

· y(y + 2)
(y + 1)2
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Using the property that Γ(y + 1) = yΓ(y), we can obtain:

A(y, r) =
y(y + 2)2

(y + 1)3
(y + r)

(y + 1 + r)

=
y(y + 2)2

(y + 1)3

(
1 − 1

y + 1 + r

)
.

As a result, we observe that A(y, r) shows an increase in r for y = 1, 2, 3, . . .. Therefore,
A(1, r) ≥ 1 implies A(y, r) ≥ 1 for any y, but A(1, r) ≥ 1 if and only if 9

8 · 1+r
2+r ≥ 1.

Equivalently, this is true if and only if r ≥ 7. Thus, A(y, r) ≥ 1 indicates that f (y) is
log-concave when r ≥ 7.

For r ≤ 2, A(y, r) ≤ A(y, 2), resulting in

A(y, r) ≤ y(y + 2)2(y + 2)
(y + 1)3(y + 3)

≤ (y + 1)(y + 2)2(y + 2)
(y + 2)(y + 1)2(y + 3)

=
(y + 2)2

(y + 1)(y + 3)
≤ 1.

This completes the proof.

The CNBLD offers a flexible alternative to the NBD, with properties that depend on
the parameter r. While the NBD is log-concave and unimodal for r ≥ 1 and log-convex
for r ≤ 1, the CNBLD has similar properties, but with different transition points: it is log-
concave and unimodal when r ≥ 7 and log-convex when r ≤ 2. Moreover, the transition
from log-convex to log-concave in the CNBLD is gradual as r increases from 2 to 7, which
improves its ability to model more diverse and precise datasets. This flexibility makes the
CNBLD particularly well suited for developing precise statistical models that better fit the
unique characteristics of the data and allow for a more effective analysis and interpretation
compared to the NBD.

Remark 3. Using a similar argument, we can conclude that A(2, r) ≥ 1 if and only if r ≥ 3.4.
Thus, for 3.4 ≤ r < 7, the pmf of the CNBLD is log-concave on the set {2, 3, 4, . . .}. The transition
from log-convexity to log-concavity occurs gradually as r rises from 2 to 7.

Remark 4. The SCNBLD is log-convex for r ≤ 2 and log-concave for r ≥ 7, in contrast to the
NBD, which is log-convex for r ≤ 1 and log-concave for r ≥ 1. This is because log-concavity does
not change with shifting.

Theorem 3. The CNBSLD is log-convex for r ≤ 1 and log-concave for r ≥ 1.

Proof. The conclusion is derived from the log-concavity of the NBD, which remains un-
changed by truncation and shifting.

3.4. Likelihood Ratio Stochastic Order

The likelihood ratio stochastic ordering provides a powerful method for comparing
distributions, regardless of whether they belong to the same family with different param-
eters or are of completely different types. We can determine the ordering relationship
between random variables by analyzing the likelihood ratio, which gives us insights into
their probabilistic behavior and trends. In this section, we discuss the likelihood ratio
stochastic ordering for our new distributions. We also extend this discussion to compare
the likelihood ratio stochastic ordering for our new distributions with the NBD.

First, we introduce the definition of the likelihood ratio stochastic order used in
this subsection.

Definition 8. Let Y1 and Y2 be two discrete random variables with pmfs f (y) and g(y), respectively.
We say that Y1 is smaller than Y2 in the likelihood ratio stochastic order (denoted by Y1 ≤lr Y2 if the
ratio g(y)

f (y) is non-decreasing in y over the union of the supports of Y1 and Y2.
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The likelihood ratio stochastic order is very strong; it implies the hazard stochastic
order and other stochastic orders. For more details on the implications and applications of
stochastic ordering, see [9]. In this subsection, we refer to the CNBLD with parameters θ
and r as CNBLD(r,θ).

Theorem 4. Let Y1 and Y2 be two random variables following CNBLD (θ1,r) and CNBLD(θ2,r),
respectively. If θ1 ≤ θ2, then Y1 ≤lr Y2.

Proof. Let f(θ,r)(y) be the pm f of the CNBLD (θ, r). Then, we obtain the following:

f(θ2,r)(y)
f(θ1,r)(y)

= Φr(θ1, θ2)(
θ2

θ1
)y.

Here, Φr(θ1, θ2) =
C(r,θ2)
C(r,θ1)

. Since the ratio ( θ2
θ1
)y increases in y if and only if θ1 ≤ θ2, this

implies Y1 ≤lr Y2.

Remark 5. For the SCNBLD and the CNBSLD, the following implications hold:

• If Y1 and Y2 are two random variables following SCNBLD(θ1, r) and SCNBLD(θ2, r), respec-
tively, such that θ1 ≤ θ2, then Y1 ≤lr Y2.

• If Y1 and Y2 are two random variables following CNBSLD(θ1, r) and CNBSLD(θ2, r), respec-
tively, such that θ1 ≤ θ2, then Y1 ≤lr Y2.

Proof. The proof is similar to the proof of Theorem 4.

Theorem 5. Let Y1 and Y2 be two random variables following CNBLD(θ,r1) and CNBLD(θ,r2),
respectively. If r1 ≤ r2, then Y1 ≤lr Y2.

Proof. Let f(θ,r)(y) be the pm f of CNBLD(θ, r). Then, we obtain the following:

f(θ,r2)
(y)

f(θ,r1)
(y)

= Ψθ(r1, r2)
(y + r2 − 1)!
(y + r1 − 1)!

= Ψθ(r1, r2)(y + r2 − 1)(y + r2 − 2) . . . (y + r1).

Here Ψθ(r1, r2) = C(r2,θ)
C(r1,θ)(r2−1)(r2−2)...r1! . Since, the ratio

f(θ,r2)
(y)

f(θ,r1)
(y) increases in y if and

only if r1 ≤ r2, this implies Y1 ≤lr Y2.

Remark 6. For the SCNBLD and the CNBSLD, the following implications hold:

• If Y1 and Y2 are two random variables following SCNBLD(θ, r1) and SCNBLD(θ, r2), respec-
tively, such that r1 ≤ r2, then Y1 ≤lr Y2.

• If Y1 and Y2 are two random variables following CNBSLD(θ, r1) and CNBSLD(θ, r2), respec-
tively, such that r1 ≤ r2, then Y1 ≤lr Y2.

Proof. The proof is similar to the proof of Theorem 5.

Corollary 1. Let Y(θ1,r1)
be a random variable from CNBLD(θ2, r2). If r1 ≤ r2, and θ1 ≤ θ2, then

we conclude from Theorems 4 and 5 the following:

Y(θ1,r1)
≤lr Y(θ2,r1)

≤lr Y(θ2,r2)
.

Hence, the following is given:

Y(θ1,r1)
≤lr Y(θ2,r2)

.
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Theorem 6. Let Y1, Y2, and Y3 be three random variables following SCNBLD(θ, r), CSNBLD(θ, r)
and NBD(θ, r), respectively. Then, Y1 ≤lr Y2 ≤lr Y3.

Proof. To prove that Y1 ≤lr Y2, we examine the following ratio:

fSCNBLD(y)
fCNBSLD(y)

= Λ1(r, θ)
y + r
y + 1

.

where Λ1(r, θ) = (1−θ)−(r−1)−1
θr(r−1) 3F2(1,1,r+1;2,2;θ) . We observe that the term y+r

y+1 is an increasing
function of y when r > 1. Therefore, Y1 ≤lr Y2.

Similarly, we need to examine the following ratio:

fNBD(y)
fSCNBLD(y)

= Λ2(r, θ)
(y + 1)2

y + r
.

Here, Λ2(r, θ) = r(1 − θ)r
3F2(1, 1, r + 1; 2, 2; θ). We observe that the term (y+1)2

y+r is an
increasing function of y. Hence, Y2 ≤lr Y3.

Since we have showed that Y1 ≤lr Y2 and Y2 ≤lr Y3, we conclude that Y1 ≤lr Y2 ≤lr Y3.
This means that in the likelihood ratio stochastic order, Y3 is stochastically larger than Y2,
and Y2 is stochastically larger than Y1.

In various fields such as economics, insurance, and risk management, the stochas-
tic order of the likelihood ratio is concerned with risk analysis and decision-making by
identifying which distributions are more or less likely to produce large values.

4. Estimation and Simulation Study

This section examines the estimation of CNBLD and CNBSLD parameters using the
method of moment (MM) and the maximum likelihood (ML) method. Two scenarios
were investigated: one where r was known, and another where r was unknown. In all
scenarios, it was assumed that Y1, Y2, . . . , Yn represented a random sample drawn from the
distribution under study. Furthermore, simulation studies were employed to assess the
efficiency of the estimates delivered by the proposed methods.

4.1. Parameter Estimation of the CNBLD
4.1.1. Case 1: r Is Known

Here, we had only one parameter θ to estimate using the MM as follows:

E(Y) = ȳ,

Or equivalently, this can be achieved as follows:

C−1(r, θ)
[
(1 − θ)−r − 1

]
− ȳ = 0. (2)

Using the ML method, the likelihood function can be given as follows:

L(θ, r|y1, y2, . . . , yn) =
θ∑n

i=1 yi−n

[r! 3F2(1, 1, r + 1; 2, 2; θ)]n

n

∏
i=1

Γ(yi + r)
yiΓ(yi + 1)

, (3)

Further, the log-likelihood function l(θ) from Equation (3) above is given as follows:

ℓ(θ) =

(
n

∑
i=1

yi − n

)
ln θ − n[ln Γ(r + 1) + ln 3F2(1, 1, r + 1; 2, 2; θ)]

+
n

∑
i=1

[ln Γ(yi + r)− ln Γ(yi + 1)− ln yi]
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The ML estimate of θ is the solution of the equation ∂l(θ)
∂θ = 0. Now, since ∂

∂θ 3F2(1, 1,

r+1; 2, 2; θ) = (r+1)
4 3F2(2, 2, r + 2; 3, 3; θ), we have:
(

n

∑
i=1

yi − n

)
1
θ
− n(r + 1)

4
3F2(2, 2, r + 2; 3, 3; θ)

3F2(1, 1, r + 1; 2, 2; θ)
= 0,

(
n

∑
i=1

yi − n

)
1
θ
− n(r + 1)

4

4(1−θ)−r−4θr 3F2(1,1,r+1;2,2;θ)−4
θ2r(1+r)

3F2(1, 1, r + 1; 2, 2; θ)
= 0,

(
n

∑
i=1

yi − n

)
1
θ
− n

θ2r
(1 − θ)−r − θr 3F2(1, 1, r + 1; 2, 2; θ)− 1

3F2(1, 1, r + 1; 2, 2; θ)
= 0,

(1 − θ)−r − 1
θr 3F2(1, 1, r + 1; 2, 2; θ)

− ȳ = 0.

⇐⇒ C−1(r, θ)
[
(1 − θ)−r − 1

]
− ȳ = 0. (4)

which is the same as Equation (2). Thus, if r is known, the ML estimate of θ is the same as
that of the MM estimate.

4.1.2. Case 2: r Is Unknown

To obtain the MM estimates of θ and r, the following equations were used:

E(Y) = ȳ,

and

E(Y2) =
1
n

n

∑
i=1

y2
i ,

Or equivalently, the following could be used:

(1 − θ)−r − 1
θr3F2(1, 1, r + 1; 2, 2; θ)

− ȳ = 0 (5)

and
(1 − θ)−(r+1)

3F2(1, 1, r + 1; 2, 2; θ)
− 1

n

n

∑
i=1

y2
i = 0. (6)

Numerical solutions for Equations (5) and (6) are not achievable using algebraic
methods. Therefore, the equations were solved using the “nleqslv” function from the
“nleqslv” package in the R programming language, which gave the MM estimate of r and θ.

Using the ML method, the likelihood function as defined in Equation (3) were used to
determine the ML estimates for the unknown parameters r and θ as the solutions of the
likelihood equations as the following:

∂ℓ(θ, r)
∂θ

=
∂[(∑n

i=1 yi − n) ln θ − n(ln 3F2(1, 1, r + 1; 2, 2; θ))]

∂θ
= 0,

∂ℓ(θ, r)
∂r

=
∂[−n(ln Γ(r + 1) + ln 3F2(1, 1, r + 1; 2, 2; θ)) + ∑n

i=1 ln Γ(yi + r)]
∂r

= 0,

These two equations must be solved numerically to determine the MLEs of the pa-
rameters θ and r. Since the generalized hypergeometric function 3F2 makes the system of
equations complex, numerical methods are generally used to obtain the solutions.
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4.2. Simulation Study for the CNBLD

To evaluate the methods of estimation, we performed the following simulations as
outlined below:

4.2.1. Case 1: r Is Known

In this simulation study, we considered the values r = 1, 5 and 10 and θ = 0.2, 0.5 and
0.8. The simulation algorithm consisted of the following steps:

Algorithm 1: Simulation algorithm wher r is known

1. Choose the values r, θ and the sample size n = 10, 20, 50, 100, and 500.
2. Generate a total of 1000 random samples of size n from a standard uniform distribution,

namely, {U1, U2, . . . , Un} such that Ui ∼ Uni f (0, 1) and i = 1, . . . , n.
3. Divide the unit interval [0, 1] into intervals: Ij = [F(Yj−1), F(Yj)], where F(Yj) is the cd f of

the CNBLD for Yj, j = 1, 2, . . . .
4. Find j such that Ui ∈ Ij.
5. Return Yj.
6. Repeat steps 4 and 5 for i = 1, 2, . . . , n.
7. Use the likelihood function in Equation (3) that takes these parameters as input and returns

a negative log-likelihood function.
8. Find the ML for θ.
9. Repeat steps 1 to 8 for N = 1000 times to calculate the following:

(a) The standardized bias of the simulated estimates is defined as follows:

SBias(θ̂) =
1
N

N

∑
i=1

(θ̂ − θ)

θ

(b) The average of the mean squared error of the simulated estimates is defined
as follows:

MSE(θ̂) =
1
N

N

∑
i=1

(θ̂ − θ)2

Simulation and concluding results:
The simulation results are shown in Tables 2–4 below.

Table 2. The ML results of the CNBLD for different values of θ when r = 1.

n θ θ̂ |SBias| MSE

10 0.1874 0.0627 0.0153
20 0.1912 0.0437 0.0075
50 0.2 0.1931 0.0343 0.0055

100 0.1954 0.0229 0.0037
500 0.1996 0.0018 0.0018

10 0.4789 0.0421 0.0106
20 0.4883 0.0233 0.0059
50 0.5 0.4962 0.0074 0.0048

100 0.4971 0.0058 0.0016
500 0.5006 0.0012 0.0009

10 0.7841 0.0199 0.0049
20 0.7919 0.0101 0.0021
50 0.8 0.7974 0.0032 0.0009

100 0.7984 0.0018 0.0004
500 0.7987 0.0015 0.0002
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Table 3. The ML results of the CNBLD for different values of θ when r = 5.

n θ θ̂ |SBias| MSE

10 0.1879 0.0604 0.0063
20 0.1909 0.0452 0.0032
50 0.2 0.1982 0.0091 0.0013

100 0.1985 0.0077 0.0006
500 0.2005 0.0025 0.0001

10 0.4892 0.0215 0.0044
20 0.4961 0.0078 0.0021
50 0.5 0.4980 0.0039 0.0008

100 0.5004 0.0008 0.0004
500 0.5003 0.0006 0.0001

10 0.7961 0.0049 0.0009
20 0.7981 0.0024 0.0004
50 0.8 0.7994 0.0008 0.0002

100 0.7998 −0.0003 0.0001
500 0.8001 0.0002 0.00002

Table 4. The ML results of the CNBLD for different values of θ when r = 10.

n θ θ̂ |SBias| MSE

10 0.1920 0.0396 0.0025
20 0.1977 0.0114 0.0013
50 0.2 0.1983 0.0083 0.0005

100 0.1997 0.0011 0.0002
500 0.1999 0.0003 0.0001

10 0.4981 0.0037 0.0014
20 0.4987 0.0025 0.0007
50 0.5 0.4991 0.0019 0.0002

100 0.4995 0.0009 0.0001
500 0.4996 0.0007 0.000004

10 0.7984 0.0019 0.0004
20 0.7992 0.0009 0.0002
50 0.8 0.7995 0.0006 0.00007

100 0.8002 0.0003 0.000004
500 0.8000 0.00004 0.000002

From Tables 2–4, it is possible to conclude the following:

• The MSE of θ decreases along with an increase in n, and thus the estimator of θ
is consistent.

• The |SBias| decreases as θ increases.

4.2.2. Case 2: r Is Unknown

Numerical solutions were used to obtain the parameter estimates of θ and r, when r
was unknown. In that scenario, we considered r = 1, 4 and 8 and θ = 0.2, 0.5, and 0.8. The
simulation algorithm involved the following steps:

Algorithm 2: Simulation algorithm wher r is unknown

1. Generate 1000 random samples of size n from the CNBLD following steps 1–6 in Algorithm 1.
2. Solve the system of nonlinear equations in Equations (5) and (6) and find the MM estimates

for θ and r.
3. Find the ML estimates for θ and r using Equation (3).
4. Repeat steps 1 to 3 for N = 1000 times to calculate the Bias, SBias, MSE, and SMSE for both

ML and MM methods.
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Simulation and concluding results:
The results are reported in Table 5. From Table 5, one can conclude the following:

• For MM and ML estimates, the MSE of r and θ decrease as n increases.
• For a large n, both the ML and MM estimates are good, but for a small n, the ML

estimate is better than the MM estimate according to small values of the SBias for
ML estimates.

Table 5. The MM and ML results for the CNBLD for different values of θ and r.

n
θ

Method
θ̂

|SBias| MSE
r r̂

10 0.2 MM 0.3651 0.8258 0.0705
1 1.4973 0.4973 0.9397

0.2 ML 0.1220 0.3895 0.0122
1 1.4926 0.4926 0.8077

20 0.2 MM 0.2217 0.1088 0.0090
1 1.2123 0.2123 0.7119

0.2 ML 0.2390 0.1951 0.0086
1 1.1533 0.1533 0.6424

50 0.2 MM 0.1869 0.0655 0.0071
1 1.1565 0.1565 0.5158

0.2 ML 0.2038 0.0192 0.0038
1 1.1286 0.1286 0.4967

100 0.2 MM 0.2095 0.0479 0.0043
1 0.9843 0.0156 0.2600

0.2 ML 0.1969 0.0175 0.0022
1 1.0454 0.0454 0.2554

500 0.2 MM 0.2047 0.0239 0.0039
1 0.9971 0.0028 0.0038

0.2 ML 0.1967 0.0161 0.0019
1 0.9935 0.0064 0.0026

10 0.5 MM 0.4710 0.0579 0.0022
4 4.3024 0.0756 0.7953

0.5 ML 0.5091 0.0182 0.0015
4 4.1335 0.0333 0.1841

20 0.5 MM 0.5041 0.0083 0.0019
4 4.2085 0.0521 0.2568

0.5 ML 0.4932 0.0134 0.0005
4 4.0683 0.0171 0.0733

50 0.5 MM 0.4980 0.0039 0.0003
4 4.1167 0.0292 0.2368

0.5 ML 0.5046 0.0093 0.0001
4 3.9921 0.0019 0.0584

100 0.5 MM 0.5009 0.0019 0.0002
4 3.9884 0.0028 0.1885

0.5 ML 0.4960 0.0078 0.00009
4 3.9982 0.0004 0.0049
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Table 5. Cont.

n
θ

Method
θ̂

|SBias| MSE
r r̂

500 0.5 MM 0.4975 0.0048 0.00005
4 3.9954 0.0011 0.0041

0.5 ML 0.4994 0.0011 0.00002
4 3.9993 0.0002 0.0007

10 0.8 MM 0.8015 0.0019 0.0001
8 7.9200 0.0799 0.2022

0.8 ML 0.7969 0.0038 0.00008
8 8.1446 0.0181 0.1093

20 0.8 MM 0.7992 0.0009 0.00002
8 8.0291 0.0036 0.0668

0.8 ML 0.7994 0.0008 0.00001
8 8.0045 0.0006 0.0569

50 0.8 MM 0.7994 0.0007 0.00001
8 8.0232 0.0029 0.0211

0.8 ML 0.7999 0.0001 0.000009
8 8.0031 0.0004 0.0199

100 0.8 MM 0.7997 0.0004 0.000001
8 8.0196 0.0024 0.0107

0.8 ML 0.7998 0.0003 0.0000005
8 8.0029 0.0003 0.0014

500 0.8 MM 0.7999 0.0001 0.0000008
8 8.0122 0.0015 0.0010

0.8 ML 0.7998 0.00003 0.0000002
8 7.9999 0.000009 0.0003

4.3. Parameter Estimation of the CNBSLD

In this subsection, estimation methods and simulation study were conducted to assess
the performance of the CNBSLD as follows:

4.3.1. Case 1: r Is Known

Here, we had only one parameter θ to estimate using the MM. It was obtained by the
following equation:

E(Y) = ȳ,

Or equivalently, this could be achieved with the following:

(1 − θ)r + rθ − 1
1 − (1 − θ)r − θ

− ȳ = 0.

Using the ML method, the likelihood function can be given as follows:

L(θ, r|y1, y2, . . . , yn) =
n

∏
i=1

(
θ(r − 1)θyi Γ(yi + r)

((1 − θ)−(r−1) − 1)(yi + 1)Γ(yi + 1)Γ(r)

)

Simplified, the likelihood function becomes:

L(θ, r|y1, y2, . . . , yn) =

(
θ(r − 1)

(1 − θ)−(r−1) − 1

)n
θ∑n

i=1 yi
n

∏
i=1

(
Γ(yi + r)

(yi + 1)Γ(yi + 1)Γ(r)

)
. (7)
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Further, the log-likelihood function l(θ) from Equation (7) above is given as follows:

ℓ(θ) = n log
(

θ(r − 1)
(1 − θ)−(r−1) − 1

)
+

n

∑
i=1

yi log(θ) +
n

∑
i=1

log
[

Γ(yi + r)
(yi + 1)Γ(yi + 1)Γ(r)

]

The ML estimate of θ is the solution of the equation ∂l(θ)
∂θ = 0. Then,

n
θ
+

(1 − θ)−rn(1 − r)
(1 − θ)1−r − 1

+
∑n

i=1 yi

θ
= 0

(1 − θ)−r(θr − 1) + 1
(1 − θ)1−r − 1

− ȳ = 0.

4.3.2. Case 2: r Is Unknown

To obtain the MM estimates of θ and r, the following equations were used:

E(Y) = ȳ ,

and

E(Y2) =
1
n

n

∑
i=1

y2
i ,

Or equivalently, the following could be used:

(1 − θ)r + rθ − 1
1 − (1 − θ)r − θ

− ȳ = 0 (8)

and
θr(θr − 1)− (1 − θ)r+1 − θ + 1

(θ − 1)[(1 − θ)r + θ − 1]
− 1

n

n

∑
i=1

y2
i = 0. (9)

Numerical solutions for Equations (8) and (9) are not achievable using algebraic
methods. Therefore, the equations were solved numerically, which gave the MM estimate
of r and θ.

Using the ML method, the likelihood function as defined in Equation (7) were used to
determine the ML estimates for the unknown parameters r and θ as the solutions of the
likelihood equations as the following:

∂ℓ(θ, r)
∂θ

=
∂
[
n log

(
θ(r−1)

(1−θ)−(r−1)−1

)
+ ∑n

i=1 yi log(θ)
]

∂θ
= 0,

∂ℓ(θ, r)
∂r

=
∂
[
n log

(
θ(r−1)

(1−θ)−(r−1)−1

)
+ ∑n

i=1 log
(

Γ(yi+r)
Γ(r)

)]

∂r
= 0,

These two equations must be solved simultaneously to determine the MLEs of the
parameters θ and r.

4.4. Simulation Study for the CNBSLD

To evaluate the methods of estimation, we performed the following simulations as
outlined below:
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4.4.1. Case 1: r Is Known

In this simulation study, Algorithm 1 of the simulation outlined in Section 4.2.1 was
implemented with the exception of the following:

• In step 3, F(Yj) was the cd f of the CNBSLD.
• In step 2, the likelihood function employed was represented by Equation (7).

Simulation and concluding results:
The simulation results are shown in Tables 6–8 below.
From Tables 6–8, it is possible to conclude the following:

• The MSE decreases along with an increase in n.
• The |SBias| decrease as n increases.
• Both|SBias| and MSE show that n = 10 or more is required to accurately estimate θ.

Table 6. The ML estimates of the CNBSLD for different values of θ when r = 0.9.

n θ θ̂ |SBias| MSE

10 0.1805 0.0971 0.0258
20 0.1859 0.0700 0.0139
50 0.2 0.1951 0.0244 0.0059

100 0.1966 0.0169 0.0029
500 0.1997 0.0012 0.0006

10 0.4696 0.0606 0.0201
20 0.4769 0.0461 0.0129
50 0.5 0.4895 0.0209 0.0076

100 0.4964 0.0072 0.0034
500 0.4998 0.0004 0.0005

10 0.7821 0.0222 0.0049
20 0.7919 0.0101 0.0027
50 0.8 0.7922 0.0097 0.0017

100 0.7964 0.0044 0.0006
500 0.7998 0.00013 0.00012

Table 7. The ML estimates of the CNBSLD for different values of θ when r = 5.

n θ θ̂ |SBias| MSE

10 0.1937 0.0314 0.0043
20 0.1971 0.0145 0.0013
50 0.2 0.1981 0.0095 0.0007

100 0.1985 0.0071 0.0004
500 0.1995 0.0025 0.00008

10 0.4914 0.0173 0.0036
20 0.4945 0.0109 0.0019
50 0.5 0.4989 0.0022 0.0006

100 0.5003 0.0005 0.0003
500 0.50004 0.00007 0.00006

10 0.7970 0.0037 0.0025
20 0.7980 0.0024 0.0004
50 0.8 0.7991 0.0012 0.0002

100 0.8001 0.0002 0.00008
500 0.80002 0.00003 0.00001
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Table 8. The ML estimates of the CNBSLD for different values of θ when r = 10.

n θ θ̂ |SBias| MSE

10 0.1962 0.0191 0.0019
20 0.1972 0.0139 0.0009
50 0.2 0.1984 0.0076 0.0004

100 0.1995 0.0025 0.0002
500 0.2004 0.0019 0.00003

10 0.4978 0.0044 0.0014
20 0.4992 0.0016 0.0007
50 0.5 0.4998 0.0002 0.0003

100 0.4999 0.0001 0.000006
500 0.49996 0.00006 0.000002

10 0.7979 0.0026 0.0004
20 0.7992 0.0009 0.0002
50 0.8 0.7999 0.0001 0.00006

100 0.7999 0.00006 0.000007
500 0.800008 0.00001 0.000003

4.4.2. Case 2: r Is Unknown

In this case, a similar strategy and the steps of Algorithm 2 of the simulation outlined
in Section 4.2.2 were followed, with the exception of the following:

• In step 1, random samples were generated from the CNBSLD.
• In step 2, the nonlinear equations represented by Equations (8) and (9) were solved to

find the MM estimates of θ and r.
• In step 3, Equation (7) was solved numerically to obtain the ML estimates of θ and r.

Simulation and concluding results:
The simulation results are shown in Table 9 below.

Table 9. The MM and ML for the CNBSLD for different values of θ and r.

n
θ

Method
θ̂

|SBias| MSE
r r̂

10 0.2 MM 0.1804 0.0979 0.0155
0.9 1.3265 0.4739 0.5303

0.2 ML 0.1881 0.0591 0.0131
0.9 1.2100 0.3444 0.2422

20 0.2 MM 0.1936 0.0315 0.0102
0.9 1.1537 0.2819 0.1378

0.2 ML 0.1912 0.0439 0.0094
0.9 1.1431 0.2701 0.1245

50 0.2 MM 0.1967 0.0160 0.0071
0.9 1.1131 0.2368 0.0901

0.2 ML 0.1922 0.0392 0.0062
0.9 1.1037 0.2263 0.0789

100 0.2 MM 0.1984 0.0077 0.0027
0.9 1.0856 0.2062 0.0600

0.2 ML 0.1980 0.0096 0.0018
0.9 1.0726 0.1918 0.0509

500 0.2 MM 0.2004 0.0021 0.0012
0.9 0.8898 0.0112 0.0439

0.2 ML 0.1995 0.0023 0.0009
1 0.8989 0.0011 0.0261
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Table 9. Cont.

n
θ

Method
θ̂

|SBias| MSE
r r̂

10 0.5 MM 0.4532 0.0935 0.0126
4 3.7684 0.0579 0.6007

0.5 ML 0.5192 0.0384 0.0031
4 3.8734 0.0316 0.5942

20 0.5 MM 0.4906 0.0187 0.0028
4 4.1546 0.0387 0.3911

0.5 ML 0.4933 0.0133 0.0015
4 4.0958 0.0239 0.3027

50 0.5 MM 0.4977 0.0045 0.0019
4 4.0633 0.0158 0.2131

0.5 ML 0.4982 0.0034 0.0013
4 4.0153 0.0038 0.1142

100 0.5 MM 0.5011 0.0022 0.0007
4 4.0362 0.0091 0.0179

0.5 ML 0.5014 0.0029 0.0002
4 4.0041 0.0010 0.0155

500 0.5 MM 0.5001 0.0003 0.00009
4 4.0212 0.0053 0.0099

0.5 ML 0.5009 0.0018 0.00003
4 4.0009 0.0002 0.0033

10 0.8 MM 0.7970 0.0036 0.0001
8 8.1414 0.0177 0.2299

0.8 ML 0.7972 0.0034 0.00009
8 8.1306 0.0163 0.1737

20 0.8 MM 0.7989 0.0013 0.00003
8 7.9725 0.0034 0.0471

0.8 ML 0.7999 0.0002 0.00002
8 8.1433 0.0179 0.0337

50 0.8 MM 0.7992 0.0009 0.00001
8 8.0094 0.0012 0.0175

0.8 ML 0.80009 0.0001 0.000002
8 7.9884 0.0014 0.0033

100 0.8 MM 0.7995 0.0006 0.000007
8 7.9958 0.0005 0.0034

0.8 ML 0.80001 0.00002 0.000001
8 7.9992 0.00009 0.0025

500 0.8 MM 0.8002 0.0003 0.000002
8 8.0039 0.0004 0.0029

0.8 ML 0.800001 0.000002 0.0000008
8 8.00001 0.000001 0.0016

From Table 9, one can conclude the following:

• For the MM estimate, the MSE of r and θ decreases as n increases.
• For the ML estimate, the MSE of r and θ decreases as n increases.
• For a large n, both the ML and MM estimates are good, but for a small n, the ML

estimate is better than the MM estimate according to the |SBias|.
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5. Applications

In this section, the effectiveness of the CNBLD, SCNBLD, and CNBSLD is evaluated
using real datasets and compared with other existing distributions. The parameter estimates
for these distributions were obtained using the ML method. The tools of comparison used
were the Akaike information criterion (AIC) and the Bayesian information criterion (BIC).
In general, the smaller the values of these statistics, the better the fit to the data. The
calculations were performed using the R programming language.

5.1. The Number of Eggs per Flower Head

According to [10], the zero-truncated Poisson–Lindley distribution (ZTPLD) provides
a better fit for data relating to the number of eggs per flower head, shown in Table 10,
compared to the zero-truncated PD (ZTPD). The study [11] proposes the application of the
ZTPD to the dataset.

Application and Concluding Results

The calculated values for the mean, variance, and dispersion index were 3.0340, 3.3436,
and 1.1020, respectively. These values indicated the presence of over-dispersion. In Table 10,
when comparing the observed frequencies of the ZTPLD and CNBLD, we noticed that the
LD had an impact on the CNBLD by gradually raising the probability of small values of Y.
On the other hand, the truncated zero effect on the ZTPLD just increased its probability at
zero. Table 10 clearly shows that the CNBLD model provided a superior fit to the data with
lower AIC and BIC values.

Table 10. Number of counts of flower heads as per the number of fly eggs.

Y O.F 1 ZTPD ZTPLD CNBLD

1 22 15.28 26.78 21.42
2 18 21.86 19.77 19.79
3 18 20.84 13.94 16.81
4 11 14.90 9.53 12.45
5 9 8.53 6.37 8.12
6 6 4.06 4.19 4.73
7 3 1.66 2.72 2.51
8 0 0.59 1.74 1.22
9 1 0.19 1.11 0.55

Total 88 88 88 88

ML θ̂ = 2.8604 θ̂ = 0.7186 θ̂ = 0.1267
r̂ = 28.1719

AIC 335.09 336.76 331.93

BIC 337.57 339.24 336.89
1 O.F = observed frequency.

5.2. The Number of Hospital Stays by United States Residents Aged 66 and Over

These data cover the number of hospitalizations of United States residents aged 66
and up, as reported by [12]. This dataset had 80.37% zeros with a sample ID of 1.882. These
characteristics showed over-dispersion and a high number of zero counts. The zero-inflated
negative binomial-generalized exponential (ZINB-GE) distribution was used on the same
dataset as in the analysis of [13]. The ZINB-GE distribution outperformed the zero-inflated
Poisson distribution (ZIPD) and the zero-inflated negative binomial distribution (ZINBD)
in terms of data fit.

Application and Concluding Results

Table 11 shows that the SCNBLD and CNBSLD models suited the data well. These
models outperformed the ZINB-GE model based on the lower AIC and BIC values, indi-
cating they could handle over-dispersion and significant numbers of zero counts in the
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dataset. As a result, the SCNBLD and CNBSLD models are most suited for modeling
hospitalizations of United States residents aged 66 and older.

Table 11. Number of hospital stays by United States residents aged 66 and over.

Y O.F 1 PD ZIPD NBD ZINBD ZINB-GE SCNBLD CNBSLD

0 3541 3277.3 1816.5 3544.4 3541.1 3541.1 3543.1 3543.7
1 599 969.9 1609.5 583.5 533.4 601.0 595.8 591.3
2 176 143.5 712.9 177.4 217.7 168.7 167.7 170.9
3 48 14.1 210.6 62.3 68.7 56.4 58.5 59.9
4 20 1.05 46.7 23.3 18.9 21.6 22.9 23.2
5 12 0.06 8.4 9 4.4 9.7 9.7 9.5
6 5 0 1.3 3.6 1.3 4.4 4.3 4.1
7 1 0 0.1 1.4 0.5 1.8 2 1.8
8 4 0 0 0.6 0 1.3 0.9 0.8

Total 4406 4406 4406 4406 4406 4406 4406 4406

ML θ̂ = 0.2959 ϕ̂ = 0.6659 θ̂ = 0.4437 ϕ̂ = 0.6040 ϕ̂ = 0.1645 θ̂ = 0.5935 θ̂ = 0.5337
θ̂ = 0.8859 r̂ = 0.3709 r̂ = 3.9683 r̂ = 2.2040 r̂ = 0.1333 r̂ = 0.6252

θ̂ = 0.8415 α̂ = 1.0331
α̂ = 7.3573

AIC 6611.01 6122.84 6023.24 6078 6022 6019.23 6020.16

BIC 6617.40 6135.62 6036 6079 6048 6032.02 6032.94
1 O.F = observed frequency.

5.3. Accident Frequency Data among Machinists

In this subsection, the data concerning the frequency of accidents among 414 ma-
chinists originated from a study conducted towards the end of World War I. This study
was performed by the Industrial Fatigue Research Board and was documented in a report
published in [14]. The data covered a three-month period and were designed to assess the
frequency of industrial accidents, particularly in environments with heavy machinery; they
were used in [2].

Application and Concluding Results

The values for the mean, variance, and dispersion index were 0.4831, 1.0106, and
2.0919, respectively. Based on Table 12, the SCNBLD and CNBSLD models were considered
the best fit for these data as they had the lowest AIC and BIC values.

Table 12. Accident frequency among 414 machinists: a statistical count over an undefined period.

Y O.F 1 PD NBD SCNBLD CNBSLD

0 296 255.38 296.70 296.60 296.57
1 74 123.37 71.01 72.42 72.18
2 26 29.80 26.41 72.42 25.65
3 8 4.79 10.99 10.43 10.56
4 4 0.58 4.81 4.66 4.69
5 4 0.06 2.17 2.19 2.19
6 1 0.005 1.002 1.08 1.06
7 0 0.0003 0.46 0.54 0.52
8 1 0 0 0.27 0.27

Total 414 414 414 414 414

ML θ = 0.4830 θ = 0.5046 θ = 0.6048 θ = 0.5794
r = 0.4742 r = 0.6148 r = 0.8400

AIC 855.82 768.06 767.63 767.68
BIC 859.85 776.11 775.68 775.73

1 O.F = observed frequency.
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6. Conclusions

This study presented a novel distribution by employing the concept of conflating
probability distributions, specifically combining the NBD and the LD into a single distri-
bution that captured their shared information with minimal loss. The newly introduced
distribution was referred to as the conflation of negative binomial and logarithmic distribu-
tions (CNBLD). The CNBLD is capable of modeling positive count data from the LD, but it
does not take into consideration zero values, unlike the NBD. In order to overcome this
constraint, two novel modified models were introduced. The first model was the SCNBLD,
which was obtained by shifting the CNBLD one position to the left. The second model was
the combination of the negative binomial and shifted logarithmic distributions (CNBSLD),
which merged a shifted logarithmic distribution with the NBD to incorporate the charac-
teristics of both distributions. These two distributions provided increased flexibility and
the capacity to model a wider range of data. An investigation was conducted to examine
the valuable statistical characteristics of the CNBLD, SCNBLD, and CNBSLD. In addition,
we studied the estimation of the CNBLD and CNBSLD parameters using the methods
of MM and ML. The efficiency of the estimations given by these methods was assessed
by simulation studies. The simulation results demonstrated that both the ML and MM
estimates exhibited consistency. The efficacy of these models was assessed by testing them
against diverse distributions using real data. The new distributions exhibited superior
performance in accurately fitting the data when compared to other models. Finally, despite
the fact that we used these new models on particular datasets, we were able to expand their
suitability and employ them in various study domains, demonstrating their potential as a
proficient substitute for modeling count data.
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5. Barmalzan, G.; Saboori, H.; Kosari, S. A Modified Negative Binomial Distribution: Properties, Overdispersion and Underdisper-

sion. J. Stat. Theory Appl. 2019, 18, 343–350. [CrossRef]
6. Hill, T. Conflations of probability distributions. Trans. Am. Math. Soc. 2011, 363, 3351–3372. [CrossRef]
7. Abramowitz, M.; A., S.I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; US Government

Printing Office: Washington, DC, USA, 1968.

http://doi.org/10.2307/2341080
http://dx.doi.org/10.1111/j.1469-1809.1934.tb02105.x
http://dx.doi.org/10.2991/jsta.d.191105.001
http://dx.doi.org/10.1090/S0002-9947-2011-05340-7


Axioms 2024, 13, 707 27 of 27

8. Bagnoli, M.; Bergstrom, T. Log-concave probability and its applications. In Rationality and Equilibrium: A Symposium in Honor of
Marcel K. Richter; Springer: New York, NY, USA, 2006; pp. 217–241.

9. Shaked, M.; Shanthikumar, J.G. Stochastic Orders; Series in Statistics; Springer: New York, NY, USA, 2007.
10. Shanker, R.; Hagos, F.; Sujatha, S.; Abrehe, Y. On zero-truncation of Poisson and Poisson-Lindley distributions and their

applications. Biom. Biostat. Int. J. 2015, 2, 168–181. [CrossRef]
11. Finney, D.; Varley, G. An example of the truncated Poisson distribution. Biometrics 1955, 11, 387–394. [CrossRef]
12. Flynn, M.; Francis, L.A. More flexible GLMs zero-inflated models and hybrid models. Casualty Actuar. Soc. 2009, 2009, 148–224.
13. Aryuyuen, S.; Bodhisuwan, W.; Supapakorn, T. Zero inflated negative binomial-generalized exponential distribution and its

applications. Songklanakarin J. Sci. Technol. 2014, 36, 483–491.
14. Greenwood, M.; Woods, H.M. The Incidence of Industrial Accidents upon Individuals: With Special Reference to Multiple Accidents; HM

Stationery Office: London, UK, 1919.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.15406/bbij.2015.02.00045
http://dx.doi.org/10.2307/3001776

	Introduction
	Conflation of Negative Binomial and Logarithmic Distributions
	Some Statistical Properties
	Moments and Probability Generating Functions
	Index of Dispersion
	Log-Concavity Property
	Likelihood Ratio Stochastic Order

	Estimation and Simulation Study
	Parameter Estimation of the CNBLD
	Case 1: r Is Known
	Case 2: r Is Unknown

	Simulation Study for the CNBLD
	Case 1: r Is Known
	Case 2: r Is Unknown

	Parameter Estimation of the CNBSLD
	Case 1: r Is Known
	Case 2: r Is Unknown

	Simulation Study for the CNBSLD
	Case 1: r Is Known
	Case 2: r Is Unknown


	Applications
	The Number of Eggs per Flower Head 
	The Number of Hospital Stays by United States Residents Aged 66 and Over
	 Accident Frequency Data among Machinists

	Conclusions
	References

