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Abstract: In differential geometry, the concept of golden structure represents a compelling area
with wide-ranging applications. The exploration of golden Riemannian manifolds was initiated
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Subsequently, numerous researchers have contributed significant insights with respect to golden
Riemannian manifolds. The purpose of this paper is to provide a comprehensive survey of research
on golden Riemannian manifolds conducted over the past decade.
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1. Introduction

For nearly two thousand years, the concept of the golden ratio has fascinated scholars
from diverse disciplines. The allure of the golden ratio extends beyond mathematics;
it captivates biologists, artists, musicians, historians, architects, and psychologists alike.
The golden ratio, known for its aesthetic harmony and proportionality, is extensively
employed in iconic architectural structures and artworks, musical composition frameworks,
harmonious frequency ratios, and human body measurements. It is likely fair to say that the
golden ratio has inspired more scholars in various fields than any other number throughout
the history of mathematics [1].

Polynomial structures on a manifold, as discussed in [2], were the foundation for
the concept of golden structure. C. E. Hretcanu and M. Crasmareanu investigated some
characteristics of the induced structure on an invariant submanifold within a golden
Riemannian manifold in [3]. In [4], Crasmareanu and Hretcanu used a corresponding
almost product structure to study the geometry of the golden structure on a manifold.
In [5], Hretcanu and Crasmareanu demonstrated that a golden structure also induces a
golden structure on each invariant submanifold. The issue of integrability for golden
Riemannian structures was examined by Gezer et al. in [6]. Ozkan studied a golden
semi-Riemannian manifold in [7], where he defined the golden structure’s horizontal lift in
the tangent bundle. Other structures on golden Riemannian manifolds have been studied
by many authors (see, e.g., [8–10]).

However, in the study of differential geometry, the theory of submanifolds is an
intriguing subject. Its roots are in Fermat’s work on the geometry of surfaces and plane
curves. Since then, it has been developed in different directions of differential geometry
and mechanics. It is still a vibrant area of study that has contributed significantly to the
advancement of differential geometry in the present era. Among all the submanifolds of
an ambient manifold, there are two well known types: invariant submanifolds and anti-
invariant submanifolds. The differential geometry of submanifolds in golden Riemannian

Axioms 2024, 13, 724. https://doi.org/10.3390/axioms13100724 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13100724
https://doi.org/10.3390/axioms13100724
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-1270-094X
https://orcid.org/0000-0001-5920-1227
https://orcid.org/0009-0008-2280-492X
https://doi.org/10.3390/axioms13100724
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13100724?type=check_update&version=1


Axioms 2024, 13, 724 2 of 54

manifolds was initially studied by Crasmareanu and Hretcanu. Certain characteristics of
invariant submanifolds in a Riemannian manifold with a golden structure were investigated
by Hretcanu and Crasmareanu in [3], which have been advanced considerably since
then. Various classifications of submanifolds within golden Riemannian manifolds have
been established based on how their tangent bundles react to the golden structure of the
ambient manifold and been explored by numerous geometers. Erdoğan and Yıldırım
presented the idea of semi-invariant submanifolds within golden Riemannian manifolds as
a generalization of both invariant and anti-invariant types, followed by an analysis of the
geometry of their defining distributions [11]. The properties and distributions associated
with semi-invariant submanifolds in golden Riemannian manifolds were further explored
by Gök, Keleş, and Kılıç [12]. The notion of pointwise slant submanifolds and pointwise
bi-slant submanifolds in golden Riemannian manifolds was introduced by Hretcanu and
Blaga in [13].

R. L. Bishop and B. O’Neill [14] proposed the idea of a warped product. Warped-
product CR submanifolds in a Kähler manifold, which consist of warped products of
holomorphic and totally real submanifolds, were first studied by B.-Y. Chen in [15–19].
Later, Riemannian manifolds with golden warped products were studied by Blaga and
Hretcanu [20], who also investigated submanifolds with pointwise semi-slant and hemi-
slant warped products within locally golden Riemannian manifolds [13].

The similarities between the geometries of semi-Riemannian submanifolds and their
Riemannian counterparts are well established, yet the study of lightlike submanifolds
presents unique challenges due to the intersection of their normal vector bundles with the
tangent bundle. This complexity adds to the intrigue of researching lightlike geometry,
which finds practical applications in mathematical physics, notably in general relativity
and electromagnetism [21]. Duggal and Bejancu were pioneers in the study of lightlike
submanifolds within semi-Riemannian manifolds [21]. In 2017, Poyraz and Yasar explored
lightlike hypersurfaces in golden semi-Riemannian manifolds [22] and further extended
their research to define lightlike submanifolds of golden semi-Riemannian manifolds in
2019 [23]. Subsequently, numerous researchers have investigated various types of lightlike
submanifolds in golden semi-Riemannian manifolds, as evidenced by references [24–29],
among others. Additionally, the concept of a lightlike hypersurface in meta-golden Rie-
mannian manifolds was introduced by Erdoğan et al. [30].

Finding the optimal inequality between the intrinsic and extrinsic invariants of a
Riemannian submanifold is a key problem in submanifold geometry. Chen [31,32] devel-
oped the δ invariants in this context, which are known today as Chen invariants. Utilizing
these invariants, along with the mean curvature, which is the key extrinsic invariant
of Riemannian submanifolds, he formulated sharp inequality relationships, which are
well known as Chen inequalities. The study of Chen invariants and Chen inequalities
across various submanifolds in diverse ambient spaces has been thoroughly pursued
(see, e.g., [32–34]). Research on Chen inequalities within golden Riemannian manifolds
and golden-like statistical manifolds was conducted by Choudhary and Uddin [35] and
Bahadir et al. [36], respectively.

Thanks to F. Casorati [37], the widely accepted Gaussian curvature can be substituted
with the Casorati curvature. Within the framework of Casorati curvatures for submanifolds
across diverse ambient spaces, geometric inequalities have been formulated. The rationale
behind the introduction of this curvature by F. Casorati is that it disappears precisely when
both principal curvatures of a surface in E3 are zero, aligning more closely with the typical
understanding of curvature. Numerous scholars have explored Casorati curvatures to
derive sharp inequalities for specific submanifolds in varied golden ambient spaces (refer
to [38–41], etc.). Moreover, in 1979, P. Wintgen [42] introduced a significant geometric
inequality involving Gauss curvature, normal curvature, and square mean curvature
known as Wintgen’s inequality [43]. For slant, invariant, C-totally real, and Lagrangian
submanifolds in golden Riemannian spaces, generalized Wintgen-type inequalities were
introduced by Choudhary et al. [44].
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Motivated by the previously mentioned advancements in the subject, the purpose of
this paper is to provide a comprehensive survey of the latest progress on golden Riemannian
manifolds achieved over the past decade.

2. Preliminaries

Throughout this paper, let Γ(TM) denote the set consisting of all smooth vector fields
on a (smooth) manifold (M).

2.1. Golden Structure and Golden Riemannian Manifolds

Take a semi-Riemannian manifold (M̄, ḡ) and a (1, 1) tensor field (F) on M̄. Assume
that F satisfies the

L(X) = Xn + anXn−1 + . . . + a2X + a1 I = 0,

where I is the identity transformation and Fn−1(p), Fn−2(p), . . . , F(p), I (for X = F) are lin-
early independent at each point (p) on M̄. Consequently, the polynomial L(X) is referred to
as the structure polynomial [2,4,45]. In particular, if we choose the structure polynomial as

L(X) = X2 + I, then the structure is almost complex;

L(X) = X2 − I, then the structure is an almost product;

L(X) = X2, then the structure is an almost tangent.

Definition 1. Suppose (M̄, ḡ) is a semi-Riemannian manifold equipped with a (1, 1) tensor field
(ϕ) on M̄. If

ϕ2 − ϕ − I = 0,

holds, then the tensor field (ϕ) is referred to as a golden structure. If the Riemannian metric (ḡ) is
compatible with ϕ, i.e., ḡ(ϕX, Y) = ḡ(X, ϕY) for all X, Y ∈ Γ(TM̄), then (M̄, ḡ, ϕ) is called a
golden Riemannian manifold [2,45,46].

If we replace X in the foregoing equation with ϕX, we obtain

ḡ(ϕX, ϕY) = ḡ(ϕ2X, Y) = ḡ(ϕX, Y) + ḡ(X, Y).

Consider a manifold (M̄) endowed with a type-(1, 1) tensor field (F), where F2 = I but F is
not equal to ±I. This tensor field (F) is known as an almost product structure. If this structure (F)
admits a Riemannian metric (ḡ) satisfying

ḡ(FX, Y) = ḡ(X, FY), ∀X, Y ∈ Γ(TM̄),

hence, (M̄, ḡ) is called an almost-product Riemannian manifold. Moreover, a golden structure can
be produced by an almost product structure (F) in the manner described below.

ϕ =
1
2
(I +

√
5F).

On the contrary, if ϕ is a golden structure, then

F =
1√
5
(2ϕ − I)

is an almost product structure [4,45].

Example 1 ([5]). Take an Euclidean 6-space R6 with natural coordinates (ζ1, ζ2, ζ3, ζ4, ζ5, ζ6) and
suppose ϕ : R6 → R6 symbolizes a (1, 1) tensor field defined by

ϕ(ζ1, ζ2, ζ3, ζ4, ζ5, ζ6) = (ψζ1, ψζ2, ψζ3, (1 − ψ)ζ4, (1 − ψ)ζ5, (1 − ψ)ζ6)
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for any vector field (ζ1, ζ2, ζ3, ζ4, ζ5, ζ6) ∈ R6, where ψ = 1+
√

5
2 and 1 − ψ = 1−

√
5

2 are the roots
of the equation ζ2 = ζ + 1. Then, one can obtain

ϕ2(ζ1, ζ2, ζ3, ζ4, ζ5, ζ6) =
(

ψ2ζ1, ψ2ζ2, ψ2ζ3, (1 − ψ)2ζ4, (1 − ψ)2ζ5, (1 − ψ)2ζ6

)
=(ψζ1, ψζ2, ψζ3, (1 − ψ)ζ4, (1 − ψ)ζ5, (1 − ψ)ζ6)

+ (ζ1, ζ2, ζ3, ζ4, ζ5, ζ6).

Thus, ϕ2 − ϕ − I = 0. Moreover,

⟨ϕ(ζ1, . . . , ζ6), (Ω1, . . . , Ω6)⟩ = ⟨(ζ1, . . . , ζ6), ϕ(Ω1, . . . , Ω6)⟩,

for every vector field (ζ1, ζ2, ζ3, ζ4, ζ5, ζ6), (Ω1, Ω2, Ω3, Ω4, Ω5, Ω6) ∈ R6, where the standard
metric on R6 is denoted by ⟨ , ⟩. As a result, the manifold

(
R6, ⟨ , ⟩, ϕ

)
is a golden riemannian manifold.

2.2. Golden-like Statistical Manifolds

An interesting characteristic of golden structures is that they always occur in pairs;
for instance, if ϕ represents a golden structure, then ϕ∗ = I − ϕ also qualifies as one.
This phenomenon is similarly observed in almost tangent structures (J and −J) and
almost complex structures (F and −F). Consequently, exploring the relationship between
golden and product structures becomes a pertinent question. Consider M̄ as a Riemannian
manifold and let ∇ represent a torsion-free affine connection. The configuration (M̄, ḡ,∇)
is termed a statistical manifold when ∇ḡ is symmetric. Another affine connection (∇∗) is
defined by

Xḡ(Y, Z) = ḡ(∇XY, Z) + ḡ(∇∗
XZ, Y)

for vector fields X, Y,, and Z on M̄. The affine connection (∇∗) is referred to as the conjugate
(or dual) to ∇ relative to ḡ. This connection (∇∗) is torsion-free, ensures that ∇∗ ḡ is symmet-
ric, and complies with the equation ∇∗ = ∇+∇∗

2 . It is evident that the set (M̄,∇∗, ḡ, ) forms
a statistical manifold. Curvature tensors R and R∗ on M̄ correspond to affine connections
∇ and ∇∗, respectively. Additionally, the curvature tensor field (R0) linked with ∇0 is
known as the Riemannian curvature tensor. Then [4,22,46]

ḡ(R(X, Y)Z, W) = −ḡ(Z, R∗(X, Y)W)

for vector fields X, Y, Z, and W on M̄, where

R(X, Y)Z = [∇X ,∇Y]Z −∇[X,Y]Z.

Generally, since the dual connections are not metric, the sectional curvature is unable
to be defined in a statistical setting as it is in semi-Riemannian geometry. Hence, Opozda
introduced two types of sectional curvature on statistical manifolds (See [47,48]).

Considering that π is a plane section in TM̄ with an orthonormal basis ({X, Y}), where
M̄ is a statistical manifold, the definition of the sectional K curvature is [47]

K(π) =
1
2
[ḡ(R(X, Y)Y, X) + ḡ(R∗(X, Y)Y, X)− ḡ(R0(X, Y)Y, X)].

Definition 2 ([36]). Let (M̄, ḡ, ϕ) be a golden semi-Riemannian manifold equipped with a tensor
field ϕ∗ of type (1, 1) satisfying

ḡ(ϕX, Y) = ḡ(X, ϕ∗Y) (1)

for vector fields X, Y ∈ Γ(TM̄). In view of (1), we have

(ϕ∗)2X = ϕ∗X + X, (2)

ḡ(ϕX, ϕ∗Y) = ḡ(ϕX, Y) + ḡ(X, Y). (3)
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Then, (M̄, ḡ, ϕ) is called a golden-like statistical manifold.
According to (2) and (3), the tensor ϕ + ϕ∗ and ϕ − ϕ∗ are symmetric and skew-symmetric

with respect to ḡ, respectively.

Equations (1)–(3) imply the following proposition.

Proposition 1 ([36]). (M̄, ḡ, ϕ) is a golden-like statistical manifold if and only if it is (M̄, ḡ, ϕ∗).

Remark 1. If one chooses ϕ = ϕ∗ in a golden-like statistical manifold, then we have a golden
semi-Riemannian manifold.

2.3. Golden Lorentzian Manifolds

For the locally golden space form of M̄ = M̄p(cp) × M̄q(cq), where cp and cq are
constant sectional curvatures of Riemannian manifolds M̄p and M̄q, respectively, the Rie-
mannian curvature tensor (R) is expressed as follows in [49]:

R(X, Y)Z =
(∓

√
5 + 3)cp + (±

√
5 + 3)cq

10
[ḡ(Y, Z)X − ḡ(X, Z)Y]

+
(∓

√
5 − 1)cp + (±

√
5 − 1)cq

10
[ḡ(ϕY, Z)X − ḡ(ϕX, Z)Y

+ ḡ(Y, Z)ϕX − ḡ(X, Z)ϕY] +
cp + cq

5
[ḡ(ϕY, Z)ϕX − ḡ(ϕX, Z)ϕY]

where X, Y and Z ∈ Γ(TN).
The golden Lorentzian manifold is defined as follows.

Definition 3 ([50]). Let us consider a semi-Riemannian manifold (M̄n, ḡ) where ḡ has a signature
of (−,+,+, · · · ,+) (+ appears (n − 1) times). Then, M̄ stands for a golden Lorentzian manifold
if it is endowed with a golden structure (ϕ) and ḡ is ϕ-compatible.

Example 2 ([50]). Let R3
1 represent the semi-Euclidean space and consider the signature of ḡ as

(−,+,+). If ϕ stands for a (1, 1) tensor field, then it is easy to show that if

ϕ(ζ1, ζ2, ζ3) =
1
2

(
ζ1 +

√
5ζ2, ζ2 +

√
5ζ1, 2ψζ3

)
,

for any vector field (ζ1, ζ2, ζ3) ∈ R3
1, where ψ = 1+

√
5

2 is the golden mean, then

ϕ2 = ϕ + I,

and hence, ϕ is a golden structure on R3
1. Moreover, ḡ may also be verified to be ϕ-compatible. Thus,(

R3
1, ḡ, ϕ

)
becomes a golden Lorentzian manifold.

2.4. Meta-Golden Semi-Riemannian Manifolds

The following structure is comparable to the golden Ratio (see [51]). The authors of [30]

obtained χ = 1
ψ + 1

χ′ , where the meta-golden Chi ratio is χ =
1+
√

4ψ+5
2ψ and ψ = 1+

√
5

2 ,

which suggests that χ2 − 1
ψ χ − 1 = 0. Thus, the roots are are given by 1

2
( 1

ψ ±
√

4 + 1
ψ2

)
.

The correlation between the meta-golden Chi ratio (χ) and continued fractions was found
in [51]. If we denote the positive root by χ = 1

2
( 1

ψ +
√

4 + 1
ψ2

)
and the negative root by

χ. = 1
2
( 1

ψ −
√

4 + 1
ψ2

)
, then we have [51]
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χ. =
χ

ψ
, (4)

ψχ2 = ψ + χ, (5)

ψχ.2 = ψ + χ.. (6)

It was stated in [4] that an endomorphism (ϕ) on a manifold (M̄) is an almost golden
structure if it satisfies

ϕ2X = ϕX + X (7)

for any X ∈ Γ(TM̄). Hence, given a semi-Riemannian metric (ḡ) on M̄, (ḡ, ϕ) is referred to
as an almost golden semi-Riemannian structure if

ḡ(ϕX, Y) = ḡ(X, ϕY) (8)

for X, Y ∈ Γ(TM̄). Therefore, (M̄, ḡ, ϕ) is called an almost golden semi-Riemannian
manifold. Because of (8), we obtain [4]

ḡ = (ϕX, ϕY) = ḡ(X, ϕY) + ḡ(X, Y). (9)

Definition 4 ([52]). Let F be a (1, 1) tensor field on an almost golden manifold (M̄, ϕ) that satisfies

ϕF2X = ϕX + FX

for every X ∈ Γ(TM̄). Then, F is called an almost meta-golden structure and (M̄, ϕ, F) is called
an almost meta-golden manifold.

Theorem 1 ([52]). A (1, 1) tensor field (F) on an almost golden manifold (M̄, ϕ) is an almost
meta-golden structure if

F2 = ϕF − F + 1.

Definition 5 ([30]). Let F be an almost meta-golden structure on (M̄, ϕ, ḡ). If F is compatible
with a semi-Riemannian metric (ḡ) on M̄, namely

ḡ(FX, Y) = ḡ(X, FY),

or
ḡ(FX, FY) = ḡ(ϕX, FY)− ḡ(X, FY) + ḡ(X, Y),

then (M̄, ϕ, F, ḡ) is known as an almost meta-golden semi-Riemannian manifold, where for X,
Y ∈ Γ(TM̄).

Remark 2. An almost meta-golden semi-Riemannian manifold is called a meta-golden semi-
Riemannian manifold if ∇̄F = 0, where ∇̄ is a Levi–Civita connection of M̄. In this instance, we
also have ∇̄ϕ = 0. In the remainder of this paper,almost meta-golden semi-Riemannian manifolds
and meta-golden semi-Riemannian manifolds are referred to as AMGsR manifolds and MGsR
manifolds, respectively.

2.5. Norden Golden Manifolds

The notion of an almost Norden golden manifold can be recalled from [4,53]. Let M̄
be a manifold and ϕ be an endomorphism on M̄ such that

ϕ2 = ϕ − 3
2

I.

Then, (M̄, ϕ) is called an almost complex golden manifold. Let ḡ be a semi-Riemannian
metric on M̄ such that

ḡ(ϕX, Y) = ḡ(X, ϕY), (10)
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Then, (M̄, ϕ, ḡ) is called an almost Norden golden manifold. Note that (10) is compa-
rable to

ḡ(ϕX, ϕY) = ḡ(ϕX, Y)− 3
2

ḡ(X, Y).

Moreover, if ϕ is parallel with respect to a vector field (X) on M̄, (∇Xϕ = 0), then (M̄, ϕ, ḡ)
is called a locally decomposable almost Norden golden semi-Riemannian manifold (in
short, Norden golden semi-Riemannian manifold).

2.6. Golden Warped-Product Riemannian Manifolds

Let n and m be the dimensions of two Riemannian manifolds ((M̄1, ḡ1) and (M̄2, ḡ2),
respectively). Projection maps P and Q from product manifolds M̄1 × M̄2 to M̄1 and M̄2
and the lift to M̄1 × M̄2 of a smooth function φ on M̄1 are indicated by φ̄e := φ ◦ P.

In this context, we call M̄1 the base and M̄2 the fiber of M̄1 × M̄2. The unique element
(X̄ of T(M̄1 × M̄2)) that is P-related to X ∈ T(M̄1) and to the zero vector field on M̄2
is the horizontal lift of X, and the unique element Ȳ of T(M̄1 × M̄2) that is Q-related to
Y ∈ T(M̄2) and to the zero vector field on M̄1 is called the vertical lift of Y. Furthermore,
L(M̄1) is the set of all horizontal lifts of vector fields on M̄1, and L(M̄2) is the set of all
vertical lifts of vector fields on M̄2.

Let f > 0 be a smooth function on M̄1 and

ḡ := P∗ ḡ1 + ( f ◦ P)2Q∗ ḡ2 (11)

be the Riemannian metric on M̄1 × M̄2 [20]. According to [14], the product manifold of M̄1
and M̄2, together with the Riemannian metric (ḡ) defined by (11) is called a warped product
of M̄1 and M̄2 by the warping function ( f ) and is denoted by M̄ := (M̄1 × f M̄2, ḡ).

The golden warped-product Riemannian manifold was defined by Blaga and Hretcanu
in [13] as follows.

Theorem 2 ([20]). Let
(

M̄ = M̄1 × f M̄2, ḡ, ϕ
)

be the warped product of two locally golden

Riemannian manifolds ((M̄1, ḡ1, ϕ1) and (M̄2, ḡ2, ϕ1)). Then, M̄ is locally golden if and only if{ (
d f 2 ◦ ϕ1

)
⊗ I = d f 2 ⊗ ϕ2

ḡ2(ϕ1·, ·) · grad
(

f 2) = ḡ2(·, ·) · ϕ1
(
grad

(
f 2)).

3. Submanifolds Immersed in Riemannian Manifolds with Golden Structure
3.1. Invariant Submanifolds with Golden Structure

Among all the submanifolds of an ambient manifold, invariant submanifolds are a
common class. It is commonly known that practically every property of an ambient mani-
fold is inherited by an invariant submanifold. As a result, invariant submanifolds represent
a dynamic and productive area of study that has greatly influenced the advancement of
modern differential geometry. Numerous articles concerning invariant submanifolds in
golden Riemannian manifolds have been published.

In [3], Hretcanu and Crasmareanu studied invariant submanifolds in golden Rieman-
nian manifolds and proved the following three propositions:

Proposition 2. Let N be an n-dimensional submanifold of a golden Riemannian manifold (M̄, ḡ, ϕ)
of codimension r and let (ϕ′, g, uα, εξα, (aαβ)r), α, β ∈ {1, 2, ..., r} be the structure on N induced
by structure (ḡ, ϕ), where uα is the 1 form, ξα represents tangent vector fields, and

(
aαβ

)
r is an

r × r matrix of a real function on N. Then, an essential and sufficient requirement for N to be
invariant is that the induced structure (ϕ′, g) on N be a golden Riemannian structure whenever ϕ′

is non-trivial.

Proposition 3. If (N, g, ϕ′) is an invariant submanifold of codimension r in a golden Riemannian
manifold (M̄, ḡ, ϕ) with ∇̄ϕ = 0 and (ϕ′, g, uα, ξα, (aαβ)r) is the structure on N induced by (ϕ, ḡ)
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(where ∇̄ is the Levi–Civita connection defined on N with respect to g), then the Nijenhuis torsion
tensor field of ϕ′ vanishes identically on N.

Proposition 4. Let N be an invariant submanifold of codimension r in a golden Riemannian
manifold (M̄, ḡ, ϕ) with ∇̄ϕ = 0 and let

(
ϕ′, g, uα, ξα,

(
aαβ

)
r

)
be the induced structure on N.

If normal connection ∇⊥ on normal bundle TN⊥ vanishes identically
(
lαβ = 0

)
, then compo-

nents N (1),N (2),N (3), and N (4) of the Nijenhuis torsion tensor field of ϕ′ for the structure(
ϕ′, g, ξα, uα,

(
aαβ

)
r

)
induced on N have the following forms:

(i) N (1)(X, Y) = N (4)
αβ (X) = 0,

(ii) N (2)
α (X, Y) = −∑β aαβg

((
ϕ′Aβ − Aβϕ′)(X), Y

)
(iii) N (3)

α (X) = ∑β aαβ

(
ϕ′Aβ − Aβϕ′)(X)− ϕ′(ϕ′Aα − Aαϕ′)(X),

for any X, Y ∈ Γ(TN).

Remark 3 ([3]). Under the conditions of Proposition 4, if ϕ′Aα = Aαϕ′, where A is the shape
operator for α ∈ {1, 2, . . . , r}, then components N (1),N (2),N (3), and N (4) vanish identically
on N.

Inspired by [3], in [12], Gök et al. demonstrated the local decomposability of any
invariant submanifold of a golden Riemannian manifold and came up with a definition of
invariance for submanifolds in a golden Riemannian manifold. They also determined the
prerequisites that must be met for any invariant submanifold to be totally geodesic.

Theorem 3 ([12]). Let N be an invariant submanifold of a locally decomposable golden Riemannian
manifold (M̄, ḡ, ϕ). Then, N is a locally decomposable golden Riemannian manifold whenever the
induced structure (ϕ′) on N is non-trivial.

Theorem 4 ([12]). Let N be a submanifold of a golden Riemannian manifold (M̄, ḡ, ϕ). Then, N is
an invariant submanifold if and only if there exists a local orthonormal frame of the normal bundle
(TN⊥) such that it consists of eigenvectors of the golden structure (ϕ).

Remark 4. The result of N as a totally geodesic invariant submanifold was also obtained in [12] by
Gök et al.

3.2. Anti-Invariant Submanifolds in Golden Riemannian Manifolds

Some properties of an anti-invariant submanifold of a golden Riemannian manifold
were studied in [54], and some necessary prerequisites for any submanifold in a locally
decomposable golden Riemannian manifold to be anti-invariant were obtained. Any anti-
invariant submanifold (N) of a golden Riemannian manifold (M̄, ḡ, ϕ) is a submanifold
such that the golden structure (ϕ) of the ambient manifold (M̄) carries each tangent vector
of the submanifold (N) into its corresponding normal space in the ambient manifold (M̄),
that is,

ϕ(Tx N) ⊆ Tx N⊥

for each point x ∈ N (see [54]).

Theorem 5 ([54]). Let N be an n-dimensional submanifold of a 2n-dimensional locally decom-
posable golden Riemannian manifold (M̄, ḡ, ϕ). Then, for any α, β ∈ {1, 2, . . . n}, N is an anti-
invariant submanifold whenever aαβ = δαβ. In addition, the submanifold (N) is totally geodesic.

Theorem 6 ([11]). Let N be an n-dimensional submanifold of a 2n-dimensional locally decompos-
able golden Riemannian manifold (M̄, ḡ, ϕ). If ϕ−1(ηα) ∈ Γ(TN) for any α ∈ {1, 2, . . . n}, then
N is an anti-invariant submanifold. Furthermore, the submanifold (N) is totally geodesic.
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Remark 5. In [54], M. Gök et al. also obtained results with respect to the existence of an orthonormal
frame of an anti-invariant submanifold of a locally decomposable golden Riemannian manifold.

Gök and Kılıç [55] studied a non-invariant submanifold of a locally decomposable
golden Riemannian manifold in a case in which the rank of the set of tangent vector fields of
the structure on the submanifold induced by the golden structure of the ambient manifold
is less than or equal to the co-dimension of the submanifold.

Theorem 7 ([55]). Let N be a submanifold of codimension r in a locally decomposable golden
Riemannian manifold (M̄, ḡ, ϕ). If the tangent vector fields (ξ1, . . . , ξr) are linearly independent
and ∇ϕ′ = 0, then N is a totally geodesic submanifold.

Theorem 8 ([55]). Let N be a submanifold of codimension r in a locally decomposable golden
Riemannian manifold (M̄, ḡ, ϕ), where λα is an eigenvalue of the matrix (aαβ)r×r. If aαβ =
λαδαβ, λα ∈ (1 − ψ, ψ) for any α, β ∈ {1, . . . , r}, and ∇ϕ′ = 0, then N is totally geodesic.

Theorem 9 ([55]). Let N be a submanifold of codimension r in a locally decomposable golden Rie-
mannian manifold (M̄, ḡ, ϕ). If aαβ = λαδαβ, λα ∈ (1 − ψ, ψ) for any α, β ∈ {1, . . . , r}, Trace ϕ′

is constant, and N is totally umbilical, then N is totally geodesic.

Remark 6. (i) Gök and Kılıç [55] also obtained some results on the non-invariant submanifold if
the tangent vector fields of the induced structure are linearly dependent.

(ii) The stability problem of certain anti-invariant submanifolds in golden Riemannian manifolds
was discussed by the same authors in [56].

(iii) Effective relations for certain induced structures on a submanifold of codimension 2 in golden
Riemannian manifolds were obtained in [57].

3.3. Slant Submanifolds of Golden Riemannian Manifolds

Given a golden Riemannian manifold (M̄, ḡ, ϕ), let (N, g) be one of its submanifolds
and g be the induced metric on N. Then, we can write

ϕX = PX + QX

for any X ∈ Γ(TN), where PX and QX are the tangent and transversal components of ϕX,
respectively.

A submanifold (N, g) of a golden Riemannian manifold (M̄, ḡ, ϕ) is referred to as a
slant submanifold if, at any point (x), each nonzero vector tangent to N and the angle
between TN and ϕ(X), as represented by θ(X), are independent of the selection of x ∈ N
and X ∈ Tx N. It can also be seen that N is a ϕ-invariant (resp. ϕ-anti-invariant) submanifold
if the slant angle is θ = 0 (resp. θ = π

2 ). The term proper slant (or θ-slant proper)
submanifold refers to a slant submanifold that is neither anti-invariant nor invariant.

Using a golden Riemannian manifold, Uddin and Bahadir [45] establish the following
characterization of slant submanifolds.

Theorem 10 ([45]). Assume that a golden Riemannian manifold (M̄, ḡ, ϕ) has a submanifold
(N, g). Consequently, N is a slant submanifold if and only if c ∈ [0, 1] is a constant such that

P2 = c(ϕ + I).

Additionally, if θ represents the slant angle of N, then c = cos2 θ.

Corollary 1 ([45]). Take a golden Riemannian manifold (M̄, ḡ, ϕ) and let (N, g) be a submanifold
of it. After that, N is a slant submanifold if and only if c ∈ [0, 1] exists and ensures

ϕ2 =
1
c

P2,
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where c = cos2 θ and θ are slant angles of N.

Remark 7. In [45] Uddin and Bahadir also derived some results of ϕ-invariant and ϕ-anti-invariant
submanifolds of a golden Riemannian manifold and provided some examples of such submanifolds.

3.4. Semi-Invariant Submanifolds of Golden Riemannian Manifolds

Definition 6 ([58]). Given a golden Riemannian manifold (M̄, ḡ, ϕ), consider N to be a real
submanifold of M̄. If N is equipped with a pair of orthogonal distributions (D, D⊥) that meet the
given conditions, it can be deemed a semi-invariant submanifold of M̄.

(i) TN = D ⊕ D⊥;

(ii) The distribution (D) is invariant, i.e., ϕDx = Dx for each x ∈ N;

(iii) The distribution (D⊥) is anti-invariant, i.e., ϕD⊥ ⊂ Tx N⊥ for each x ∈ N.
For any x ∈ N, a semi-invariant submanifold (N) is considered invariant and anti-invariant

if D⊥
x = 0 and Dx = 0, respectively.

The following results were obtained by Erdogan et al. for semi-invariant submanifolds
of the golden Riemannian manifold investigated in [58].

Theorem 11 ([58]). Assume that N is a semi-invariant submanifold of (M̄, ḡ, ϕ), the golden
Riemannian manifold. Consequently, the distribution (D) is integrable if and only if

h(X, ϕ′Y) = h(Y, ϕ′X)

where h is the second fundamental form and X, Y ∈ Γ(D) and Z ∈ Γ(D⊥).

Theorem 12 ([58]). Let N be a semi-invariant submanifold of the golden Riemannian manifold
(M̄, ḡ, ϕ). Then, distribution D is integrable if and only if

ϕ′Aϕ′XY = Aϕ′XY

has no components in D, where A is a shape operator and for every X, Y ∈ Γ(D⊥) and Z ∈ Γ(D).

Remark 8. The conditions for distributions D and D⊥ of semi-invariant submanifolds of golden
Riemannian manifolds to be a totally geodesic foliation were examined in [58]. The condition for a
semi-invariant submanifold (N) to be totally geodesic was also covered. Readers can also refer to [45]
for conclusions of a similar kind for semi-invariant submanifolds of a golden Riemannian manifold.

Remark 9. M. Gök et al. [59] proposed specific characterizations for every submanifold of a golden
Riemannian manifold to be semi-invariant in terms of canonical structures on the submanifold as a
consequence of the ambient manifold’s golden structure.

Totally umbilical, semi-invariant submanifolds of golden Riemannian manifolds were
studied in [11].

Theorem 13 ([11]). Let N be a totally umbilical submanifold of a golden Riemannian manifold
(M̄). Then, distribution D is always integrable.

Theorem 14 ([11]). Let N be a totally umbilical submanifold of a golden Riemannian manifold
(M̄, ϕ). Then, D⊥ is integrable.

Remark 10. Moreover, the properties of semi-invariant submanifolds and totally umbilical, semi-
invariant submanifolds of golden Riemannian manifolds with constant sectional curvatures were
studied by Sahin et al. in [60].
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3.5. Skew Semi-Invariant Submanifolds

In [61], Ahmad and Qayyoom studied skew semi-invariant submanifolds in a golden
Riemannian manifold and in the a locally golden Riemannian manifold.

Definition 7 ([61]). A submanifold (N) of a golden Riemannian manifold (M̄) is defined as a skew
semi-invariant submanifold if there exists an integer (k) and constant functions (αi, 1 ≤ i ≤ k)
defined on N with values in the range of (0, 1) such that

(i) Each αi, 1 ≤ i ≤ k is a distinct eigenvalue of ϕ2 with

Tx N = D0
x ⊕ D1

x ⊕ Dα1
x ⊕ · · · ⊕ Dαk

x

for x ∈ N, and (ii) The dimensions of D0
x, D1

x and D1
k , 1 ≤ i ≤ k are independent of x ∈ N.

Remark 11. The tangent bundle of N has the following decomposition:

TN = D0 ⊕ D1 ⊕ Dα1 ⊕ · · · ⊕ Dαk .

If k = 0, then N is a semi-invariant submanifold. Also, if k = 0 and D0
x (D1

x) are trivial, then
N is an invariant (or anti-invariant) submanifold of M̄.

Definition 8 ([61]). A submanifold (N) of a locally golden Riemannian manifold (M̄) is defined as
a skew semi-invariant submanifold of order 1 if N is a skew semi-invariant submanifold with k = 1.
In this case, we have

TN = D⊥ ⊕ DT ⊕ Dθ ,

where Dθ = Dα1 and α1 are constant. A skew semi-invariant submanifold of order 1 is proper if
D⊥ ̸= 0 and DT ̸= 0.

Remark 12. Some lemmas for proper skew semi-invariant submanifolds of a locally golden Rieman-
nian manifold were also discussed in [61].

3.6. Pointwise Slant Submanifolds in Golden Riemannian Manifolds

The notion of slant submanifolds in almost Hermitian manifolds was first introduced
by the first author in [62–64]. Later, the first author and Garay [65] extended the notion
of slant submanifolds to pointwise slant submanifolds in almost Hermitian manifolds.
Hretcanu and Blaga [13] defined the notion of pointwise slant submanifolds of golden
Riemannian manifolds as follows.

A submanifold N of a golden Riemannian manifold (M̄, ḡ, ϕ) is referred to as a point-
wise slant [13] if, at every point (x ∈ N), the angle (θx(X)) between ϕx and Tx N (called the
Wirtinger angle) is consistent, regardless of the nonzero tangent vector (X ∈ Tx N \ {0}),
but it depends on x ∈ N. The Wirtinger angle is a real-valued function (θ; called a Wirtinger
function) verifying

cos θx =
ḡ(ϕX, TX)

∥ϕX∥ · ∥TX∥ =
∥TX∥
∥ϕX∥ ,

for any x ∈ N and X ∈ Tx N\{0}. If the Wirtinger function (θ) of a pointwise slant
submanifold of a golden Riemannian manifold is globally constant, it is referred to as a
slant submanifold.

Proposition 5 ([13]). In a golden Riemannian manifold (M̄, ḡ, ϕ), if N is an isometrically im-
mersed submanifold and T is the map, then N is a pointwise slant submanifold if and only if

T2 =
(

cos2 θx

)
(T + I),

for some real-valued function (x 7→ θx) for x ∈ N.
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Proposition 6 ([13]). Let N be a submanifold of a golden Riemannian manifold (M̄, ḡ, ϕ) that
is isometrically immersed. Given N as a pointwise slant submanifold and θx as its Wirtinger
angle, then (

∇XT2
)

Y =
(

cos2 θx

)
(∇XT)Y − sin(2θx)X(θx)(TY + Y),

for any X, Y ∈ Tx N\{0} and any x ∈ N.

3.7. Pointwise Bi-Slant Submanifolds in Golden Riemannian Manifolds

Consider N as an immersed submanifold within a golden Riemannian manifold
(M̄, ḡ, ϕ). We define N as a pointwise bi-slant submanifold of M̄ if there exist two orthogonal
distributions (D and D⊥) on N such that

(i) TN = D ⊕ D⊥;
(ii) ϕ(D) ⊥ D⊥ and ϕ(D⊥) ⊥ D;
(iii) Distributions D and D⊥ are pointwise slant with slant functions of θ1x and θ2x,

respectively, for x ∈ N. The pair {θ1, θ2} of slant functions is referred to as the bi-slant function.

A pointwise bi-slant submanifold (N) is called proper if its bi-slant functions
(θ1, θ2 ̸= 0; π

2 ) and neither θ1 or θ2 are constant on N. Specifically, if θ1 = 0 and θ2 ̸= 0; π
2 ,

then N is called a pointwise semi-slant submanifold; if θ1 = π
2 and θ2 ̸= 0; π

2 , then N is
called a pointwise hemi-slant submanifold. T(D) ⊆ D and T

(
D⊥) ⊆ D⊥ are verified by

distributions D and D⊥ on N if N is a pointwise bi-slant submanifold of M̄ [13].

Remark 13. Some examples of pointwise bi-slant submanifolds in golden Riemannian manifolds
were given in [13], where Blaga and Hretcanu provided fundamental lemmas for pointwise bi-slant,
pointwise semi-slant, and pointwise hemi-slant submanifolds in locally golden Riemannian manifolds.

3.8. CR Submanifolds of a Golden Riemannian Manifold

A submanifold (N) within a golden Riemannian manifold (M̄) is called a CR submani-
fold if there exists a differentiable distribution (D : X → Dx ⊆ Tx N) on N that meets the
following criteria:

(i) D is holomorphic, meaning ϕDx = Dx for every x ∈ N; and
(ii) The orthogonal complementary distribution (D⊥ : x → D⊥ ⊆ Tx N) is completely

real, i.e., ϕD⊥ ⊂ Tx N⊥ for each x ∈ N. If dim D⊥
x = 0 (or dim Dx = 0), then the

CR submanifold (N) is a holomorphic submanifold (or a totally real submanifold). If
dim D⊥

x = dim Tx N⊥, then the CR submanifold is an anti-holomorphic submanifold (or a
generic submanifold). A submanifold is considered a proper CR submanifold if it is neither
holomorphic nor totally real [66].

The authors of [66] defined and studied CR submanifolds of a golden Riemannian
manifold.

Proposition 7 ([66]). Let N be a CR submanifold of a locally golden Riemannian manifold
(M̄). Then,

ḡ(ϕAϕYX, Z) + ḡ(∇XY, ϕZ) + ḡ(∇XY, Z) = 0,

Aϕξ ′Z = −A − ξ ′ϕZ,

AϕYW = AϕWY

for X ∈ TN, Z ∈ D, Y, W ∈ D⊥ and ξ ′ ∈ V , where V is the complementary orthogonal sub-bundle
of ϕ(D⊥) in TN⊥; ξ ′ is the unit normal vector field; and X, Y, Z, and W are vector fields.

Lemma 1 ([66]). Consider N a CR submanifold of M̄, a locally golden Riemannian manifold.
Given any Y, W ∈ D⊥, then

(∇⊥
WϕY −∇⊥

Y ϕW) ∈ ϕD⊥.
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Remark 14. The integral condition of the D of CR submanifolds of a golden Riemannian manifold
was also discussed in [66].

The following outcomes were attained by Ahmad and Qayyoom in [66] from their
study of totally umbilical CR submanifolds of golden Riemannian manifolds:

Lemma 2 ([66]). Assume that N is a totally umbilical CR submanifold of M̄, a locally golden
Riemannian manifold. Then, either H, the mean curvature vector, is perpendicular to ϕ(D⊥) or the
totally real distribution (D⊥) is one-dimensional.

Theorem 15 ([66]). For a locally golden Riemannian manifold (M̄), let N be a totally umbilical
CR submanifold. Therefore, K̄(π) = 0 for every CR-section π, i.e., the CR-sectional curvature of
M̄ vanishes.

4. Warped Product Manifolds in Golden Riemannian Manifolds

A golden warped product Riemannian manifold was defined by Blaga et al. in [20] as
mentioned in Theorem (2). The authors of [20] also studied its properties with a special
view towards its curvature and attained the following outcomes:

Theorem 16 ([20]). Let
(

M̄ = M̄1 × f M̄2, ḡ, ϕ
)
(with ḡ given by Equation (11)) be the warped

product of golden Riemannian manifolds (M̄1, ḡ1, ϕ1) and (M̄2, ḡ2, ϕ2). If M̄1 and M̄2 have ϕ1-
and ϕ2-invariant Ricci tensors, respectively (i.e., QM̄i

◦ ϕi = ϕi ◦ QM̄i
, i ∈ {1, 2} ), then M̄ has a

ϕ-invariant Ricci tensor if and only if we have

Hess( f )(ϕ1·, ·)− Hess( f )(·, ϕ1·) ∈ {0} × T(M̄2).

Remark 15. The authors of [20] also provided examples of a golden warped-product Rieman-
nian manifold.

In [13], Blaga and Hretcanu studied warped-product pointwise bi-slant submani-
folds and warped-product pointwise semi-slant or hemi-slant submanifolds in golden
Riemannian manifolds and derived the following results:

Definition 9 ([13]). The warped product (N1 × f N2) of two pointwise slant submanifolds (N1 and
N2) within a golden Riemannian manifold (M̄, ḡ, ϕ) is referred to as a warped-product pointwise
bi-slant submanifold. Furthermore, the pointwise bi-slant submanifold (N1 × f N2) is termed proper
if both submanifolds (N1 and N2) are proper pointwise slant in (M̄, ḡ, ϕ).

Definition 10 ([13]). Consider N := N1 × f N2 as a warped-product bi-slant submanifold within
a golden Riemannian manifold (M̄, ḡ, ϕ), where one of the components (Ni ; i ∈ {1, 2}) is either an
invariant submanifold or an anti-invariant submanifold in M̄ and the other component is a pointwise
slant submanifold in M̄ with a Wirtinger angle of θx ∈ [0, π

2 ]. In this context, the submanifold (N)
is referred to as a warped-product pointwise semi-slant submanifold or a warped-product pointwise
hemi-slant submanifold in the golden Riemannian manifold (M̄, ḡ, ϕ).

Theorem 17 ([13]). Consider N := NT × Nθ a warped-product pointwise semi-slant submanifold
within a locally golden Riemannian manifold (M̄, ḡ, ϕ) with a pointwise slant angle of θx ∈

(
0, π

2
)

for x ∈ Nθ ; then, the warping function ( f ) is constant on the connected components of NT .

Remark 16. Blaga and Hretcanu [13,67] gave examples of warped-product pointwise bi-slant
submanifolds, warped-product semi-slant submanifolds, and warped-product hemi-slant sub-
manifolds within a golden Riemannian manifold. Additionally, they discussed various results
related to warped-product pointwise semi-slant submanifolds and warped-product pointwise
hemi-slant submanifolds.
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In [61], Ahmad and Qayyoom introduced and examined warped-product skew semi-
invariant submanifolds within a locally golden Riemannian manifold. They also explored
the required and sufficient conditions for a skew semi-invariant submanifold in such a
manifold to be classified as a locally warped product.

Proposition 8 ([61]). For a locally golden Riemannian manifold (M̄), let N = N1 × f NT be
a
(

Dθ , DT)-mixed, totally geodesic, proper skew semi-invariant submanifold with an integrable
distribution (D⊥). Then, N is a locally warped product submanifold if

AϕVϕX = −V(ln f )(TX − X),

ḡ
(

AηTZX, Y
)
+ ḡ
(

AηZX, ϕZ
)
= sin2 θX(ln f )[ḡ(Y, Z) + ḡ(Y, TZ)]

for any η, V ∈ TN⊥.

Lemma 3 ([61]). Assume that N = N1 × f NT is a warped-product, proper skew semi-invariant
submanifold of a locally golden Riemannian manifold. Then, we have

ḡ(h(X, V), ϕW) = 0

ḡ(h(X, V), NZ) = 0.

Lemma 4 ([61]). Let N = N1 × f NT be a warped-product, proper skew semi-invariant submanifold
(N) of a locally golden Riemannian manifold. Then,

ḡ(h(X, ϕY), ϕV) = −V(ln f )[ḡ(ϕY, X) + ḡ(Y, X)].

Theorem 18 ([61]). Consider N = N1 × f NT as a (p + q + r)-dimensional warped-product,
proper skew semi-invariant submanifold within a (2p + 2q + r)-dimensional locally golden Rie-
mannian manifold (M̄). The following statements hold true:

(i) The squared norm of the second fundamental form of N meets the following condition:

∥h∥2 ≥ r
{

2
∥∥∥∇⊥(ln f )

∥∥∥2
+ 2 cos2 θ

∥∥∥∇θ(ln f )
∥∥∥2
}

,

where r = dim(NT), and ∇⊥(ln f ) and ∇θ(ln f ) are gradients of (ln f ) on D⊥ and Dθ , respec-
tively.

(ii) Assume that the equality sign remains unchanged. It follows that N is a mixed, entirely
geodesic submanifold and N1 is a totally geodesic submanifold of M̄. Furthermore, NT will never be
the minimal submanifold of M̄.

5. Lightlike Submanifolds of Golden Semi-Riemannian Manifolds

Research on the geometry of degenerate submanifolds shows significant differences
compared to non-degenerate submanifolds. This variation stems from the fact that the
tangent bundle of non-degenerate submanifolds intersects trivially with the normal vector
bundle, whereas this intersection is non-trivial in degenerate submanifolds. The work of
Duggal, Bejancu, and Kupeli on lightlike submanifolds within semi-Riemannian mani-
folds is documented in [21,68]. Furthermore, the study of lightlike submanifolds in semi-
Riemannian and specifically golden semi-Riemannian manifolds is a critical field in differ-
ential geometry, attracting the attention of numerous researchers.

For a lightlike submanifold (N) of a semi-Riemannian manifold (M̄, ḡ), Duggal and
Bejancu [21] defined the notion of radical distribution (Rad(TN)) and the notion of a normal
bundle (TN⊥) such that

Rad(TN) = TN ∩ TN⊥,
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where T⊥N = ∪x∈N
{

X ∈ Tx M | ḡ(X, Y) = 0, ∀Y ∈ Tx N
}

.

5.1. Lightlike Hypersurfaces

Poyraz and Yaşar introduced lightlike hypersurfaces of a golden semi-Riemannian
manifold in [22]. Let N be a lightlike hypersurface of a golden semi-Riemannian manifold
(M̄, ḡ, ϕ). For any X ∈ Γ(TN) and T ∈ Trace(TN),

ϕX = ϕ′X + u1(X)T , ϕT = U1 + u2(ξ
′)T ,

where ϕ′X ∈ Γ(TN) and u1 and u2 are 1-form defined by

u1(X) = g(X, ϕξ ′), u2(X) = g(X, ϕT ).

Definition 11 ([22]). Let N be a lightlike hypersurface of a golden semi-Riemannian manifold
(M̄, ḡ, ϕ). Then,

(i) N is called a screen semi-invariant lightlike hypersurface if ϕ(Rad(TN)) ⊂ S(TN). Here,
a screen distribution on N, as denoted by S(TN), is defined as a non-degenerate, complementary
vector bundle of TN⊥ in TN. Additionally, ϕ(ltr(TN)) ⊂ S(TN), where ltr(TN) denotes the
lightlike transversal bundle associated with hypersurface N;

(ii) N is known as a radical, anti-invariant lightlike hypersurface if ϕ(Rad(TN)) ⊂ ltr(TN).

Theorem 19 ([22]). Let N be a lightlike hypersurface of a golden semi-Riemannian manifold
(M̄, ḡ, ϕ) and consider the induced structure (g, ϕ′) on TN. Then, the next three statements
are equivalent.

(i) N is invariant;
(ii) u1 vanishes on N;
(iii) ϕ′ is a golden structure on N.

Theorem 20 ([22]). An anti-invariant lightlike hypersurface of a golden semi-Riemann manifold is
not radical.

In [22], Poyraz and Yaşar derived certain findings regarding screen semi-invariant
lightlike hypersurfaces in a golden semi-Riemannian manifold.

Theorem 21 ([22]). A golden semi-Riemannian manifold (M̄, ḡ, ϕ) has a screen semi-invariant
lightlike hypersurface denoted by (N, g, S(TN)). When N is totally geodesic in M̄ and u = 0,
where u is 1-form, then only the vector field (U = ϕξ ′) on N is parallel to ∇.

Both mixed geodesic lightlike hypersurfaces and totally geodesic lightlike hypersur-
faces were introduced in [22].

Theorem 22 ([22]). Let (N, g, S(TN)) be a screen semi-invariant lightlike hypersurface of a golden
semi-Riemannian manifold (M̄, ḡ, ϕ). Then, the following claims are equivalent:

(i) N is mixed geodesic;
(ii) There is no D2 component of AT ;
(iii) There is no D1 component of A∗

ξ ′ .

Theorem 23 ([22]). Let (N, g, S(TN)) be a screen semi-invariant lightlike hypersurface of a golden
semi-Riemannian manifold (M̄, ḡ, ϕ). It follows that N is totally geodesic if and only if, for any
X ∈ Γ(TN) and Y ∈ Γ(D), we have

(∇Xϕ′)Y = 0, (∇Xϕ′)U1 = AT X.
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Theorem 24 ([22]). Assume that the locally golden product space form is M̄ = Mp(cp)× Mq(cq)
and that the screen semi-invariant lightlike hypersurface of M̄ is N. If N is totally umbilical, then
cp = −(ψ + 1)cq.

Remark 17. Poyraz and Yaşar presented additional findings on a screen semi-invariant lightlike
hypersurface in the locally golden product space form as described in [22].

In [22], Poyraz and Yaşar also studied conformal screen semi-invariant lightlike hyper-
surfaces and obtained the following outcomes:

Theorem 25 ([22]). Assume that a golden semi-Riemannian manifold (M̄, ḡ, ϕ) has a conformal
screen semi-invariant lightlike hypersurface (N, g, S(TN)). The leaf (Nb) of S(TN) is totally
geodesic in both N and M̄, and N is totally geodesic in M̄ if N or S(TN) is totally umbilical.

Theorem 26 ([22]). Consider (N, g, S(TN)) as a conformal screen semi-invariant lightlike hyper-
surface within a locally golden product space with the form of M̄ = Mp(cp)× Mq(cq). Then, we
have cp = cq = 0.

Corollary 2 ([22]). There exists no conformal screen semi-invariant lightlike hypersurface within a
locally golden product space in the form of M̄ = Mp(cp)× Mq(cq) with cp, cq ̸= 0.

5.2. Invariant Lightlike Submanifolds

In [69], researchers explored invariant lightlike submanifolds within golden semi-
Riemannian manifolds and identified certain criteria for such submanifolds to qualify as
local product manifolds in the context of golden semi-Riemannian manifolds.

Theorem 27 ([69]). Assume that N is a lightlike submanifold of (M̄, ḡ, ϕ), a golden semi-
Riemannian manifold. For N to be invariant, the required and sufficient conditions are that
the induced structure (ϕ′, g) on N be a golden semi-Riemannian structure.

Theorem 28 ([69]). For a golden semi-Riemannian manifold (M̄, ḡ, ϕ), let N be an invariant
lightlike submanifold. The induced structure (ϕ′) on the submanifold (N) is parallel to the induced
connection (∇) if the golden structure (ϕ) is parallel to the Levi–Civita connection (∇̄) of M̄.

Theorem 29 ([69]). Assume that N is an invariant lightlike submanifold of (M̄, ḡ, ϕ), a golden
semi-Riemannian manifold. Then, for the induced golden structure (ϕ) on N, the Nijenhuis tensor
expression is given by

N ′
ϕ(X, Y) =

(
∇ϕ′Xϕ′

)
Y −

(
∇ϕ′Yϕ′

)
X +

(
∇Xϕ′)ϕ′Y −

(
∇Yϕ′)ϕ′ X

+
(
∇Yϕ′)X −

(
∇Xϕ′)Y,

for any X, Y ∈ Γ(TN).

Theorem 30 ([69]). For a golden semi-Riemannian manifold (M̄, ḡ, ϕ), let N be an invariant
lightlike submanifold. As a result, N is a totally geodesic, lightlike submanifold of M̄.

In [23], Poyraz and Yaşar explored various characteristics of semi-invariant light-
like submanifolds within golden semi-Riemannian manifolds, leading to the subsequent
findings.

Definition 12 ([23]). Consider a lightlike submanifold (N, g, S(TN)) of a golden semi-Riemannian
manifold (M̄, ḡ, ϕ).

(i) N is an invariant lightlike submanifold if ϕ(Rad(TN)) = Rad(TN) and ϕ(S(TN)) =
S(TN);
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(ii) N is a semi-invariant lightlike submanifold if

ϕ(Rad(TN)) ⊂ S(TN), ϕ(ltr(TN)) ⊂ S(TN) and S(TN⊥) ⊂ S(TN);

(iii) N is a radical anti-invariant lightlike submanifold if ϕ(Rad(TN)) = ltr(TN);

Let (N, g, S(TN)) be a semi-invariant lightlike submanifold of a golden semi-Riemannian
manifold (M̄, ḡ, ϕ). If we set D1 = ϕ(Rad(TN)), D2 = ϕ(Itr(TN)) and D3 = ϕ

(
S
(
TN⊥)),

then we have
S(TN) = D0 ⊥ {D1 ⊕ D2} ⊥ D3.

Therefore,

TN = D0 ⊥ {D1 ⊕ D2} ⊥ D3 ⊥ Rad(TN) and

TM̄ = D0 ⊥ {D1 ⊕ D2} ⊥ D3 ⊥ {Rad(TN)⊕ ltr(TN)} ⊥ S
(

TN⊥
)

.

According to this definition, one can write

D = D0 ⊥ D1 ⊥ Rad(TN) and D⊥ = D2 ⊥ D3.

Thus, we have TN = D ⊕ D⊥.

Proposition 9 ([23]). Regarding ϕ, we know that distributions D0 and D are invariant distributions.

Theorem 31 ([23]). A golden semi-Riemannian manifold (M̄, ḡ, ϕ) has a lightlike submanifold
denoted by N. Hence, the ensuing assertions are equivalent.

(i) N is invariant;
(ii) The 1-forms ui and wα vanish on TN ∀i and α;
(iii) ϕ′ is a golden structure on N.

Theorem 32 ([23]). Let N be a totally umbilical, semi-invariant lightlike submanifold of a golden
semi-Riemannian manifold (M̄, ḡ, ϕ).

Then, we have cp = cq = 0.

Remark 18. In [28], Poyraz and Doğan identified several criteria for the integrability of distri-
butions on semi-invariant lightlike submanifolds within golden semi-Riemannian manifolds and
explored both totally geodesic and mixed geodesic distributions of such submanifolds.

The authors explored the geometry of screen semi-invariant lightlike submanifolds
within a golden semi-Riemannian manifold in [29].

Definition 13 ([29]). Let N be a lightlike submanifold and (M̄, ḡ, ϕ) be a golden semi-Riemannian
manifold. Then, it is possible to define N as a screen semi-invariant lightlike submanifold of M̄ if
the following conditions are met:

ϕ(Rad(TN)) ⊆ S(TN), ϕ(ltr(TN)) ⊆ S(TN).

Using the description above, one may also define a non-degenerate distribution (D0) for a screen
semi-invariant lightlike submanifold of a golden semi-Riemannian manifold such that S(TN) is
decomposed as follows:

S(TN) = D0 ⊥ D1 ⊕ D2,

where D1 = ϕ(Rad(TN)) and D2 = ϕ(ltr(TN)).
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Theorem 33 ([29]). With a screen semi-invariant lightlike submanifold, let M̄ be a golden
semi-Riemannian manifold. The invariant distribution (D) is integrable for any vector fields
(U, V ∈ Γ(D)) if and only if we have

hl(ϕV, ϕU) = hl(U, ϕV) + hl(U, V),

where hl is the second fundamental form on Γ(ltr(TN)).

Theorem 34 ([29]). Let M̄ be a golden semi-Riemannian manifold with a screen semi-invariant
lightlike submanifold. The radical distribution (Rad(TN)) is integrable for any vector fields
(U, V ∈ Γ(Rad(TN))) if and only if

∇∗
UϕV −∇∗

VϕU = (A∗
U − A∗

V) or ϕ∇∗
UϕV − ϕ∇∗

VϕU = (∇∗
UϕV −∇∗

VϕU),

where ∇∗ is a linear connection on (S(TN)) and A∗ is a shape operator of distributions (S(TN))
and Rad(TN).

Theorem 35 ([29]). Let N be a screen semi-invariant lightlike submanifold of a golden semi-
Riemannian manifold (M̄). Then, for any U, V ∈ Γ(S(TN)), the screen distribution (S(TN)) is
integrable if and only if

∇∗
UϕV −∇∗

VϕU = (∇∗
UV −∇∗

VU) or ∇∗
UϕV = ∇∗

VϕU.

Theorem 36 ([29]). Let N be a screen semi-invariant lightlike submanifold of a golden semi-
Riemannian manifold (M̄). Then, for any U ∈ Γ(TN) and ξ ∈ Γ(Rad(TN)), an induced
connection (∇ on N) is a metric connection if and only if one of the following conditions is satisfied:

∇∗
Uϕξ ′ = −A∗

ξ ′U or A∗
ξ ′U = 0

Remark 19. The essential criteria for these distributions to form complete geodesic foliations are
also established in [29].

Remark 20. Poyraz also researched screen semi-invariant lightlike submanifolds within golden
semi-Riemannian manifolds, as documented in [70]. This study included a discussion on various
characteristics of these submanifolds and the verification of certain properties specific to totally
umbilical screen semi-invariant lightlike submanifolds of golden semi-Riemannian manifolds.

5.3. Transversal Lightlike Submanifolds

Research on the geometry of screen transversal lightlike submanifolds and their
anti-invariant counterparts in golden semi-Riemannian manifolds was conducted in [25].
The authors explored the geometry of distributions and established the essential and
adequate conditions for the induced connections in these manifolds to qualify as metric
connections. Furthermore, they provided a characterization of screen transversal, anti-
invariant lightlike submanifolds within golden semi-Riemannian manifolds.

Definition 14 ([25]). For a golden semi-Riemannian manifold (M̄), let N be a lightlike submanifold.
If

ϕ(Rad(TN)) ⊂ S(TN)⊥,

where S(TN)⊥ refers to the screen distribution of the normal bundle TN⊥, then N is a screen
transversal lightlike submanifold of a M̄ golden semi-Riemannian manifold.

Definition 15 ([25]). Let N be a screen transversal lightlike submanifold of a golden semi-
Riemannian manifold (M̄). Then, if ϕ(S(TN)) ⊂ S(TN)⊥, N is a screen transversal anti-invariant
submanifold of M̄.
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If N is a screen transversal anti-invariant submanifold of M̄, then

S(TN)⊥ = ϕ(Rad(TN))⊕ ϕ(ltr(TN))⊕ ϕ(S(TN)) ⊥ D⊥,

where D⊥ is the orthogonal non-degenerate distribution complementary to

ϕ(Rad(TN))⊕ ϕ(ltr(TN))⊕ ϕ(S(TN)).

Proposition 10 ([25]). Let N be a screen transversal, anti-invariant lightlike submanifold of a
golden semi-Riemannian manifold (M̄). In such a case, D⊥ is an invariant distribution about ϕ.

Theorem 37 ([25]). Let N be a screen transversal, anti-invariant lightlike submanifold within a
golden semi-Riemannian manifold (M̄). A radical distribution is integrable if and only if

∇s
UϕV = ∇s

VϕU

for U, V ∈ Γ(RadTN) and ∇s refers to the screen connection on the screen bundle (S(TN)).

Theorem 38 ([25]). Consider N a screen transversal, anti-invariant lightlike submanifold of a
golden semi-Riemannian manifold (M̄). In this instance, the screen distribution is integrable if and
only if

∇s
UϕV −∇s

VϕU = hs(U, V)− hs(V, U),

for U, V ∈ Γ(S(TN)) and hs is the screen’s second fundamental form.

Remark 21. Erdogan also explored the geometry of screen transversal lightlike submanifolds;
radical screen transversal lightlike submanifolds; and screen transversal, anti-invariant lightlike
submanifolds within golden semi-Riemannian manifolds in [71].

A study of the geometry of radical screen transversal lightlike submanifolds was
carried out in [25] by Erdoğan.

Definition 16 ([25]). Assume N is a screen transversal lightlike submanifold of a golden semi-
Riemannian manifold (M̄). If ϕ(S(TN)) = S(TN), then N is called a radical transversal lightlike
screen submanifold of M̄.

Theorem 39 ([25]). Let N be a radical screen transversal lightlike submanifold of a golden semi-
Riemannian manifold (M̄). In this case, the screen distribution is integrable if and only if

U, V ∈ Γ(S(TN)). hs(U, ϕV) = hs(V, ϕU).

Theorem 40 ([25]). Let N be a radical screen transversal lightlike submanifold of golden semi-
Riemannian manifold (M̄). The radical distribution is integrable if and only if

AϕVU − AϕUV = A∗
UV − A∗

VU

for U, V ∈ Γ(Rad(TN)).

Theorem 41 ([25]). Given a golden semi-Riemannian manifold (M̄), let N be a radical screen
transversal lightlike submanifold of it. The screen distribution defines totally geodesic foliation if
and only if there is no component of hs(U, ϕV)− hs(U, V) in ϕltr(TN) for U, V ∈ Γ(S(TN)).

Theorem 42 ([25]). Let N be a radical screen transversal lightlike submanifold of a golden semi-
Riemannian manifold (M̄). The radical distribution defines totally geodesic foliation if and only if
there is no component of AϕVU in S(TN) and A∗

VU = 0 for U, V ∈ Γ(RadTN)).
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Theorem 43 ([25]). Let N be a radical screen transversal lightlike submanifold of a golden semi-
Riemannian manifold (M̄). The connection induced on N is a metric connection if and only if there
is no component of hs(V, U) in ϕ(Rad(TN)) or of Aϕξ ′U in S(TN) for U, V ∈ S(TN).

A study of the geometry of radical transversal lightlike submanifolds of golden semi-
Riemannian manifolds was carried out in [26]. The authors also investigated the geometry
of the distributions and obtained the necessary and sufficient conditions for the induced
connection on the manifolds to be a metric connection in [26].

Definition 17 ([26]). Consider a lightlike submanifold of a golden semi-Riemannian manifold
as
(

N, g, S(TN), S(TN)⊥
)
. If ϕ(Rad(TN)) = ltr(TN) and ϕ(S(TN)) = S(TN) are satisfied,

then the lightlike submanifold is called a radical transversal lightlike submanifold.

Proposition 11 ([26]). Let M̄ be a a golden semi-Riemannian manifold. In this instance, the mani-
fold (M̄) does not have a 1-lightlike radical transversal lightlike submanifold.

Theorem 44 ([26]). For a locally golden semi-Riemannian manifold (M̄), let N be a radical
transversal lightlike submanifold. The induced connection (∇) on D is a metric connection if and
only if the following conditions are met: U ∈ Γ(TN) and ξ ′ ∈ Γ(Rad(TN))

Aϕξ ′U ∈ Γ(Rad(TN)).

Theorem 45 ([26]). For a locally golden semi-Riemannian manifold (M̄), let N be a radical transver-
sal lightlike submanifold. Here, the distribution (S(TN)) must meet the following requirements to
be integrable: for all U, V ∈ Γ(S(TN)),

hl(V, SU) = hl(U, SV).

Remark 22. The necessary and sufficient condition for the radical distribution definition of totally
geodesic foliation on N is also discussed in [26].

The geometry of transversal lightlike submanifolds of golden semi-Riemannian mani-
folds was studied in [26]. The authors also looked into the geometry of the distributions
and determined what is required for the induced connection on the manifold to be a
metric connection.

Definition 18 ([26]). Let
(

N, g, S(TN), S(TN)⊥
)

be a lightlike submanifold of a golden semi-
Riemannian manifold. If ϕ(Rad(TN)) = ltr(TN) and ϕ(S(TN)) ⊆ S(TN) are satisfied, then
the lightlike submanifold is referred to as a transversal lightlike submanifold.

Proposition 12 ([26]). Let N be a transversal lightlike submanifold of a golden semi-Riemannian
manifold. In this case, the sub-bundle (µ) is an orthogonal complement to the ϕ(S(TN)) in the
S(TN), and the distribution is invariant under ϕ.

Proposition 13 ([26]). Let M̄ be a golden semi-Riemannian manifold. In this case, there exists no
1-lightlike transversal submanifold of M̄.

Remark 23. It was also established in [26] that the screen distribution constitutes both a necessary
and sufficient condition for defining totally geodesic foliation on N.

5.4. CR Lightlike Submanifolds of Golden Semi-Riemannian Manifolds

CR lightlike submanifolds within a golden semi-Riemannian manifold were explored
and characterized by Ahmad and Qayyoom in [24]. They further examined various aspects
of geodesic CR submanifolds in a golden semi-Riemannian manifold.
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Additionally, they documented numerous significant findings regarding totally
geodesic and totally umbilical CR submanifolds in a golden Riemannian manifold.

Definition 19 ([24]). If both of the following two requirements are met, a submanifold N of a
golden semi-Riemannian manifold (M̄) is referred to as a CR lightlike submanifold:

(i) ϕ(Rad(TN)) is a distribution on N such that

Rad(TN) ∩ ϕ(Rad(TN)) = {0};

(ii) There exist vector bundles S(TN), S(TN⊥), ltr(TN), D0, and D′ over N such that

S(TN) = {ϕ(Rad(TN))⊕ D′} ⊥ D0, ϕD0 = D0, ϕD′ = Z1 ⊥ Z2,

where D0 is a non-degenerate distribution on N and Z1 and Z2 are vector bundles of ltr(TN) and
S(TN⊥), respectively.

Lemma 5 ([24]). Let the screen distribution be totally geodesic and N be a CR lightlike submanifold
of a golden semi-Riemannian manifold. Then, ∇XY ∈ Γ(S(TN)), where X, Y ∈ Γ(S(TN)).

Lemma 6 ([24]). Let N be a CR lightlike submanifold of a locally golden semi-Riemannian manifold
(M̄). Then, ∇XϕX = ϕ∇XX for any X ∈ Γ(D0).

5.4.1. Geodesic CR-Lightlike Submanifolds

Definition 20 ([24]). When the second fundamental form (h) of a CR lightlike submanifold of a
golden semi-Riemannian manifold satisfies certain conditions, it is referred to as a mixed geodesic
CR lightlike submanifold.

h(X, U) = 0, where X ∈ Γ(D) and U ∈ Γ(D′).

Definition 21 ([24]). A CR lightlike submanifold in a golden semi-Riemannian manifold is referred
to as a D-geodesic CR lightlike submanifold if its second fundamental form (h) satisfies h(X, Y) = 0
for X, Y ∈ Γ(D).

Definition 22 ([24]). A CR lightlike submanifold in a golden semi-Riemannian manifold is known
as a D′-geodesic CR lightlike submanifold if its second fundamental form (h) satisfies h(U, V) = 0
for U, V ∈ Γ(D′).

Theorem 46 ([24]). Given a golden semi-Riemannian manifold (M̄), the submanifold (N) of M̄
should be CR lightlike. In that case, N is totally geodesic if and only if (Zξ ′ g)(X, Y) = 0 and
(ZW g)(X, Y) = 0 for any X, Y ∈ Γ(TN), ξ ′ ∈ Γ(Rad(TN)) and W ∈ Γ(S(TN⊥)).

Theorem 47 ([24]). Let M̄ be a golden semi-Riemannian manifold and N be a CR lightlike
submanifold of it. Then, N is mixed geodesic if and only if we have

A∗
ξ ′X ∈ Γ(D0 ⊥ ϕZ1)

and
AW X ∈ Γ(D0 ⊥ Rad(TN) ⊥ ϕZ1),

for any X ∈ Γ(D), ξ ′ ∈ Γ(Rad(TN)) and W ∈ Γ(S(TN⊥)).

5.4.2. Totally Umbilical CR Lightlike Submanifolds

Definition 23 ([24]). A lightlike submanifold (N) within a semi-Riemannian manifold (M̄)
is termed totally umbilical within M̄ if it possesses a smooth transversal vector field (T ), be-
longing to Γ(Trace(TN)) on N, called the transversal curvature vector field of N, such that
h(X, Y) = T g(X, Y) for X, Y ∈ Γ(TN).
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Theorem 48 ([24]). Consider N as a totally umbilical CR lightlike submanifold of M̄, a golden
manifold. The CR lightlike sectional curvature of N then disappears, that is, K(π) = 0 for any CR
lightlike section (π).

Remark 24. Analogous findings for CR lightlike, totally geodesic lightlike, and totally umbilical
lightlike submanifolds of a golden semi-Riemannian manifold are discussed in [72].

5.5. Half Lightlike Submanifolds

Submanifolds of the lightlike type with a codimension 2 are termed either half lightlike
or coisotropic, depending on the rank of their radical distribution. These are further divided
into two subclasses [73]. A half lightlike submanifold represents a particular instance
of the broader r-lightlike submanifolds where r = 1. Its geometric structure is more
comprehensive than that of a coisotropic submanifold or a lightlike hypersurface [21].

Poyraz et al. examined half lightlike submanifolds within a golden semi-Riemannian
manifold in their work [74]. They demonstrated the absence of radical anti-invariant,
half lightlike submanifolds within such a context and provided findings regarding screen
semi-invariant, half lightlike submanifolds. Additionally, their study encompassed screen
conformal, half lightlike submanifolds within a golden semi-Riemannian manifold.

Definition 24 ([74]). Suppose N is a half lightlike submanifold of a golden semi-Riemannian
manifold (M̄).

(i) N is an invariant half lightlike submanifold if ϕ(TN) = TN;
(ii) N is a screen semi-invariant half lightlike submanifold if ϕ(Rad(TN)) ⊂ S(TN) and

ϕ(ltr(TN)) ⊂ S(TN).
(iii) N is a radical anti-invariant half lightlike submanifold if ϕ(Rad(TN)) = ltr(TN).

Theorem 49 ([74]). If N is a half lightlike submanifold of a golden semi-Riemannian manifold (M̄),
then the following three statements are equivalent.

(i) N is invariant;
(ii) u1 and u2 vanish on N, where u1 and u2 are 1-forms on N;
(iii) ϕ′ is a golden structure on N.

Theorem 50 ([74]). No radical, anti-invariant half lightlike submanifold exists within a golden
semi-Riemannian manifold.

Theorem 51 ([74]). Suppose N is a screen conformal, totally umbilical, screen semi-invariant half
lightlike submanifold of a golden semi-Riemannian manifold (M̄). Then, both N and the screen
distribution (S(TN)) are totally geodesic.

Corollary 3 ([74]). For a screen semi-invariant half lightlike submanifold N of a golden semi-
Riemannian manifold (M̄), the condition of

h1(X, Y) = 0,

holds, indicating that the vector field (V) results in the degeneration of the local second fundamental
form of N.

Theorem 52 ([74]). If N is a screen semi-invariant half lightlike submanifold of a golden semi-
Riemannian manifold (M̄), then the distribution (D) is integrable if and only if the following
condition is satisfied for any X, Y ∈ Γ(D):

h1(ϕX, ϕY) = h1(ϕX, Y) + h1(X, Y) and

h2(ϕX, ϕY) = h2(ϕX, Y) + h2(X, Y),

where h1 and h2 are the local second fundamental forms of N.
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Definition 25 ([74]). If N is a screen semi-invariant half-lightlike submanifold of a golden semi-
Riemannian manifold (M̄), then N is mixed totally geodesic if and only if

h1(X, Y) = h2(X, Y) = 0,

for any X ∈ Γ(D) and Y ∈ Γ(D⊥).

Remark 25. Results regarding a totally umbilical screen semi-invariant half-lightlike submanifold
of a golden semi-Riemannian manifold were also discussed in [74].

5.6. Generic Lightlike Submanifolds

If N is a real r lightlike submanifold of a semi-Riemannian manifold (M̄), it is called a
golden generic lightlike submanifold if the screen distribution (S(TN)) of N is characterized by

S(TN) = ϕ(S(TN)⊥) ⊥ D0

= ϕ(Rad(TN))⊕ ϕ(ltr(TN)) ⊥ ϕ(S(TN)⊥) ⊥ D0 (12)

where D0 is a non-degenerate almost complex distribution on N with respect to ϕ [75].

Theorem 53 ([75]). For a golden generic lightlike submanifold (N) of a golden semi-Riemannian
manifold (M̄), the Nijenhuis tensor field concerning the golden structure (ϕ) is null.

Theorem 54 ([75]). If N is a golden generic lightlike submanifold of a golden semi-Riemannian
manifold (M̄), then g serves as a golden structure on (D).

Definition 26 ([75]). A golden generic lightlike submanifold (N) is termed mixed geodesic if its
second fundamental form (h) fulfills the following condition:

h(Y, Z) = 0, for Y ∈ Γ(D) and Z ∈ Γ(D′).

Theorem 55 ([75]). If N is a totally umbilical golden generic lightlike submanifold of a golden
semi-Riemannian manifold (M̄), then the distribution (D) is inherently integrable.

Remark 26. Results of minimal golden generic lightlike submanifolds were also discussed in [75].

Yadav and Kumar researched screen generic lightlike submanifolds, as documented
in [76], yielding the following outcomes:

Definition 27 ([76]). If N is a real r lightlike submanifold of a golden semi-Riemannian manifold
(M̄), it is termed a screen generic lightlike submanifold of M̄ if the following conditions hold:

(i) Rad(TN) is invariant with respect to ϕ, that is,

ϕ(Rad(TN)) = Rad(TN);

(ii) There exist sub-bundles (D0) of S(TN) such that

D0 = ϕ(S(TN)) ∩ S(TN),

where D0 is a non-degenerate distribution on N.

Proposition 14 ([76]). A generic r lightlike submanifold is a screen generic lightlike submanifold
with µ = 0, where µ represents a non-degenerate invariant distribution.

Proposition 15 ([76]). No coisotropic, isotropic, or totally lightlike proper screen generic lightlike
submanifold exists within a golden semi-Riemannian manifold (M̄). Any screen generic isotropic,
coisotropic, or totally lightlike submanifold in M̄ is an invariant submanifold.
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Definition 28 ([76]). A screen generic lightlike submanifold of a golden semi-Riemannian manifold
is termed a D-geodesic screen generic lightlike submanifold if its second fundamental form (h)
satisfies the following condition: h(X, Y) = 0 for any X, Y ∈ Γ(D).

Definition 29 ([76]). A screen generic lightlike submanifold (N) of a golden semi-Riemannian man-
ifold is called a mixed geodesic screen generic lightlike submanifold if its second fundamental form
(h) satisfies the following condition: h(X, Y) = 0, for any X ∈ Γ(D) and Y ∈ Γ(D′). Thus, N is a
mixed geodesic screen generic lightlike submanifold if we have hl(X, Y) = 0 and hs(X, Y) = 0
for any X ∈ Γ(D) and Y ∈ Γ(D′).

Remark 27. In [76], the conditions for the induced connection to meet the criteria of a metric
connection were discussed, along with the classification of totally umbilical screen generic
lightlike submanifolds of golden semi-Riemannian manifolds as totally geodesic. Moreover,
the paper delved into the study of minimal screen generic lightlike submanifolds of golden
semi-Riemannian manifolds.

5.7. Golden GCR Lightlike Submanifolds

Definition 30 ([77]). A real lightlike submanifold (N, g, S(TN)) of a golden semi-Riemannian
manifold (M̄, ḡ, ϕ) is termed a golden generalized Cauchy–Riemann (GCR) lightlike submanifold if
the following conditions hold:

(i) There exist two sub-bundles (D1 and D2) of Rad(TN) such that

Rad(TN) = D1 ⊕ D2, ϕ(D1) = D1, ϕ(D2) ⊂ S(TN).

(ii) There exist two sub-bundles (D0 and D′ of S(TN)) such that

S(TN) = {ϕ(D2)⊕ D′} ⊥ D0, ϕ(D0) = D0, ϕ(Z1 ⊥ Z2) = D′,

where D0 is a non-degenerate distribution on N and Z1 and Z2 are vector sub-bundles of ltr(TN)
and S(TN⊥), respectively.

Let ϕ(Z1) = N1 and ϕ(Z2) = N2. Then, we have

D′ = ϕ(Z1) ⊥ ϕ(Z2) = N1 ⊥ N2.

Thus, the following decomposition is obtained:

TN = D ⊕ D′, D = Rad(TN) ⊥ D0 ⊥ ϕ(D2).

Thus, N is a proper golden GCR lightlike submanifold of a golden semi-Riemannian manifold
if D0 ̸= 0, D1 ̸= 0, D2 ̸= 0 and Z2 ̸= 0.

Theorem 56 ([77]). If N is a golden GCR lightlike submanifold of a golden semi-Riemannian
manifold, then ϕ′ serves as a golden structure on D.

Theorem 57 ([77]). If N is a golden GCR lightlike submanifold of a golden semi-Riemannian
manifold, then the distribution (D) is integrable if and only if we satisfy the following conditions:

(i) ḡ(hl(X, ϕY), ξ ′) = ḡ(hl(Y, ϕX), ξ ′) and
(ii) ḡ(hs(X, ϕY), W) = ḡ(hs(Y, ϕX), W)

for any X, Y ∈ Γ(D), ξ ′ ∈ Γ(D2) and W ∈ Γ(Z2).

Definition 31 ([77]). A golden GCR lightlike submanifold of a golden semi-Riemannian manifold
is termed a D-geodesic golden GCR-lightlike submanifold if its second fundamental form (h) satisfies
h(X, Y) = 0 for any X, Y ∈ Γ(D).

Discussions on minimal golden GCR lightlike submanifolds can also be found in [77].
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Definition 32 ([77]). A lightlike submanifold isometrically immersed in a semi-Riemannian
manifold is considered minimal if it meets the following two conditions:

(i) hs = 0 on Rad(TN) and
(ii) Trace h = 0, where Trace is written with respect to g restricted to S(TN).

Remark 28. In [77], Poyraz also provided examples and results of minimal golden GCR lightlike
submanifolds of golden semi-Riemannian manifolds.

Remark 29. Poyraz discussed comparable findings on the geometry of golden GCR lightlike
submanifolds in golden semi-Riemannian manifolds in [78].

5.8. Slant Lightlike Submanifolds

Acet explored screen pseudo-slant lightlike submanifolds in golden semi-Riemannian
manifolds in [79].

Definition 33 ([79]). If N is a lightlike submanifold of a golden semi-Riemannian manifold (M̄), it
is termed a screen pseudo-slant submanifold of M̄ if the following conditions are satisfied:

(i) The radical distribution (Rad(TN)) is an invariant distribution with respect to ϕ,
i.e., ϕ(Rad(TN)) = Rad(TN);

(ii) There exist non-degenerate orthogonal distributions (D0 and D⊥) on N such that
S(TN) = D0 ⊥ D⊥;

(iii) Distribution D0 is anti-invariant, i.e., ϕ(D0) ⊂ S(TN⊥);
(iv) Distribution D⊥ is a slant with an angle of θ( ̸= π

2 ), i.e., for each x ∈ N and each non-zero
vector (X ∈ (D⊥)x), the angle (θ) between ϕX and the vector subspace ((D⊥)x) is a constant
( ̸= π

2 ) that is independent of the choice of x ∈ N and X ∈ (D⊥)x.

Remark 30. Some non-trivial examples of a screen pseudo-slant lightlike submanifold in a golden
semi-Riemannian manifold were studied, and the conditions for the integrability of distributions of a
screen pseudo-slant lightlike submanifold of a golden semi-Riemannian manifold were also provided
in [79].

In [80], Yadav and Kumar explored characteristics of screen generic lightlike submani-
folds in golden semi-Riemannian manifolds.

Definition 34 ([80]). If N is a 2q-lightlike submanifold of a golden semi-Riemannian manifold
(M̄) with an index of 2q (where q is an integer indicating the dimension of the radical bundle of the
lightlike submanifold (N) within the golden semi-Riemannian manifold (M̄) and if 2q < dim(N),
then N is termed a screen semi-slant lightlike submanifold of M̄ if the following conditions are
satisfied:

(i) Rad(TN) is invariant with respect to ϕ, i.e., ϕ(Rad(TN)) = Rad(TN);
(ii) There exist non-degenerate orthogonal distributions (D0 and D⊥) on N such that

S(TN) = D0 ⊕orth D⊥;
(iii) Distribution D0 is an invariant distribution, i.e., ϕD0 = D0;
(iv) Distribution D⊥ is a slant with an angle of θ( ̸= 0), i.e., for each x ∈ N and each non-zero

vector (X ∈ (D⊥)x), the angle (θ) between ϕX and the vector subspace ((D⊥)x) is a non-zero
constant that is independent of the choice of x ∈ N and X ∈ (D⊥)x.

Theorem 58 ([80]). N is a 2q lightlike submanifold of a golden semi-Riemannian manifold (M̄); it
qualifies as a screen semi-slant lightlike submanifold of M̄ if and only if

(i) ltr(TN) and D0 are invariant with respect to ϕ;
(ii) There exists a constant (c ∈ [0, 1)) such that ϕ′2X = c(ϕX + X), for any X ∈ Γ(D⊥),

where D0 and D⊥ are non-degenerate orthogonal distributions and ϕ′ is a (1, 1)-tensor field on
N such that S(TN) = D0 ⊕orth D⊥. Moreover, in this case, c = cos2 θ , and θ is the slant angle
of D⊥.
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Corollary 4 ([80]). For N as a screen semi-slant lightlike submanifold of a golden semi-Riemannian
manifold (M̄) with a slant angle o of θ, for any X, Y ∈ Γ(D⊥), we have the following:

(i) g(ϕ′X, ϕ′Y) = cos2 θ(g(X, Y) + g(X, ϕ′Y)),
(ii) g(T X, T Y) = sin2 θ(g(X, Y) + g(ϕ′X, Y)).

Remark 31. Yadav and Kumar investigated the essential and adequate conditions for the integrabil-
ity and totally geodesic foliation of the distributions of Rad(TN), D0, and D⊥ of screen semi-slant
lightlike submanifolds of golden semi-Riemannian manifolds in [80].

Definition 35 ([81]). If N is a 2q lightlike submanifold of a golden semi-Riemannian manifold (M̄)
with an index of 2q and if 2q < dim(N), then N is termed a semi-slant lightlike submanifold of M̄
if the following conditions are satisfied:

(i) ϕRad(TN) is a distribution on N such that Rad(TN) ∩ ϕ(Rad(TN)) = {0};
(ii) There exist non-degenerate orthogonal complementary distributions (D0 and D⊥) on N

such that S(TN) = (ϕ(Rad(TN))⊕ ϕ(ltr(TN))⊕orth D0 ⊕orth D⊥;
(iii) Distribution D0 is an invariant distribution, i.e., ϕD0 = D0;
(iv) Distribution D⊥ is a slant with an angle of θ( ̸= 0), i.e., for each x ∈ N, and for each

non-zero vector (X ∈ (D⊥)x), the angle (θ) between ϕX and the vector subspace ((D⊥)x) is a
non-zero constant that is independent of the choice of x ∈ N and X ∈ (D⊥)x.

Proposition 16 ([81]). A golden semi-Riemannian manifold (M̄, ḡ, ϕ) does not have any isotropic
or totally lightlike proper semi-slant lightlike submanifolds.

Theorem 59 ([81]). A golden semi-Riemannian manifold (M̄) of index 2q has a q-lightlike sub-
manifold, as denoted by N. Then, N is a semi-slant lightlike submanifold of M̄ if and only if

(i) ϕRad(TN) is a distribution on N such that Rad(TN) ∩ ϕ(Rad(TN)) = 0;
(ii) The screen distribution (S(TN)) splits as

S(TN) = ϕ(Rad(TN))⊕ ϕ(ltr(TN))⊕orth D0 ⊕orth D⊥;

(iii) There exists a constant (c ∈ [0, 1)) such that ϕ′2X = c(ϕ′X + X) for any X ∈ Γ
(

D⊥).
Moreover, in this case, we have c = cos2 θ, where θ is the slant angle of D⊥.

Remark 32. Kumar and Yadav discussed the necessary and sufficient conditions for the integrability
of distributions and the geometry of the leaves of the foliation determined by the distributions in [81].

Remark 33. Kumar and Yadav [27] explored the concept of screen slant lightlike submanifolds
within golden semi-Riemannian manifolds, along with the essential conditions for the integrability
of distributions and the structural details of the foliation’s leaves governed by these distributions.

Definition 36 ([82]). A golden semi-Riemannian manifold (M̄) of index 2q such that 2q < dim(N)
has a q lightlike submanifold called N. Then, N is a bi-slant lightlike submanifold of M̄ if the follow-
ing conditions are satisfied:

(i) ϕRad(TN) is a distribution on N such that Rad(TN) ∩ ϕ(Rad(TN)) = {0};
(ii) There exist non-degenerate orthogonal distributions (D, D0, and D⊥) on N such that

S(TN) = ϕ(Rad(TN))⊕ ϕ(ltr(TN)) ⊥ D ⊥ D0 ⊥ D⊥;

(iii) Distribution D is an invariant distribution, i.e., ϕD = D;
(iv) Distribution D0 is a slant with ab angle of θ1( ̸= 0), i.e., for each x ∈ N and each non-zero

vector (X ∈ (D0)x), the angle (θ1) between ϕX and the vector space ((D0)x) is a non-zero constant
that is independent of the choice of x ∈ N and X ∈ (D0)x;

(v) Distribution D⊥ is a slant with an angle of θ2( ̸= 0), i.e., for each x ∈ N and each non-zero
vector X ∈ (D⊥)x, the angle (θ2) between ϕX and the vector space (

(
D⊥)

x) is a non-zero constant
that is independent of the choice of x ∈ N and X ∈ (D⊥)x.
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The θ1 and θ2 constant angles are referred to as the slant angles of distributions D0 and D⊥,
respectively. A bi-slant lightlike submanifold is said to be proper if D0 ̸= {0}, D⊥ ̸= {0} and
θ1 ̸= π

2 , θ2 ̸= π
2 .

Theorem 60 ([82]). If N is a q lightlike submanifold of a golden semi-Riemannian manifold (M̄)
with an index of 2q, then N is a bi-slant lightlike submanifold if and only if

(i) There exist a distribution (ϕ(Rad(TN))) on N such that

Rad(TN) ∩ ϕ(Rad(TN)) = {0};

(ii) There exists a screen distribution (S(TN)) which can be expressed as

S(TN) = ϕ(Rad(TN))⊕ ϕ(ltr(TN)) ⊥ D ⊥ D0 ⊥ D⊥

such that D is an invariant distribution on N, i.e., ϕ(D) = D;
(iii) There exists a constant (c1 ∈ [0, 1)) such that ϕ′2X = c1(ϕ

′ + I)X for any X ∈ Γ(D0);
(iv) There exists a constant (c2 ∈ [0, 1)) such that ϕ′2X = c2(ϕ

′ + I)X for any X ∈ Γ
(

D⊥).
In that case, c1 = cos2 θ1 and c2 = cos2 θ2, where θ1 and θ2 represents the slant angles of D0

and D⊥, respectively.

Remark 34. In [82], the integrability conditions of distributions on bi-slant lightlike submanifolds
and the necessary and sufficient conditions for foliations determined by distributions on bi-slant
lightlike submanifolds of golden semi-Riemannian manifolds to be geodesic were obtained.

Definition 37 ([83]). Given a golden semi-Riemannian manifold (M̄) of index 2q, let N be a q
lightlike submanifold such that 2q < dim(N). If the following criteria are met, then N is a slant
lightlike submanifold of M̄:

(i) ϕRad(TN) is a distribution on N such that Rad(TN) ∩ ϕ(Rad(TN)) = {0};
(ii) There exists a non-degenerate orthogonal complementary distribution (D) on N such that

S(TN) = ϕ(Rad(TN))⊕ ϕ(ltr(TN))⊕orth D;

(iii) Distribution D is a slant with an angle of θ( ̸= 0), i.e., for each x ∈ N and each non-zero
vector (X ∈ (D)x), the angle (θ) between ϕX and the vector subspace ((D)x) is a non-zero constant
that is independent of the choice of x ∈ N and X ∈ (D)x.

Theorem 61 ([83]). If N is a q lightlike submanifold of a golden semi-Riemannian manifold (M̄)
with an index of 2q, then N is a slant lightlike submanifold of M̄ if and only if the following
conditions hold:

(i) ϕ(Rad(TN)) is a distribution on N such that Rad(TN) ∩ ϕ(Rad(TN)) = 0;
(ii) The screen distribution (S(TN)) is split as

S(TN) = ϕ(Rad(TN))⊕ ϕ(ltr(TN))⊕orth D;

(iii) There exists a constant (c ∈ [0, 1)) such that ϕ′2X = c(ϕ′X + X) for any X ∈ Γ(D).
Moreover, in this case, c = cos2 θ, and θ is the slant angle of D.

Remark 35. The criteria for the integrability of distributions and the curvature characteristics of
slant lightlike submanifolds in golden semi-Riemannian manifolds are further explored in [83].

6. Lightlike Submanifolds of Meta-Golden Manifolds

F.E. Erdoğan et al. [30] proved the following results.
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Theorem 62 ([30]). Given an AMGsR manifold (M̄, ϕ, F, ḡ), let N be a lightlike hypersurface of
M̄. Here, the almost golden structure (ḡ) induces a structure (ϕ, g, u, X) on N that satisfies the
following equalities:

ϕ′2X = ϕ′X + X, u(ϕ′X) = 0, ϕ′U = 0,

u(W2)− u(W)− 1 = 0, g(ϕ′X, ϕ′Y) = g(ϕ′X, Y) + g(X, Y),

where for X, Y and U ∈ Γ(TN), W ∈ Γ(ltr(TN)).

Proposition 17 ([30]). Assume that the manifold (M̄, ϕ, F, ḡ) is an AMGsR manifold. Then,
∇ϕF = 0.

Definition 38 ([30]). Consider the AMGsR manifold (M̄, ϕ, F, ḡ, ) and the lightlike hypersurface
(N) of M̄. Then,

(i) If ϕF(TN) ⊂ TN, N is called invariant;
(ii) If ϕF(Rad(TN)) ⊂ S(TN) and ϕF(ltr(TN)) ⊂ S(TN), then N is called screen semi-

invariant;
(iii) If ϕF(Rad(TN)) ⊂ (ltr(TN)), then N is called a radical anti-invariant lightlike hyper-

surface.

Theorem 63 ([30]). Not every AMGsR manifold admits a radical anti-invariant lightlike hyper-
surface.

The screen semi-invariant lightlike hypersurface of almost meta-golden semi-
Riemannian manifolds was also studied in [30].

Corollary 5 ([30]). Given an AMGsR manifold (M̄, ϕ, F, ḡ) and a screen semi-invariant lightlike
hypersurface (N) of M̄, we have h(X, Z) = 0 for any X, Z ∈ Γ(TN).

Proposition 18 ([30]). Let N be a screen semi-invariant lightlike hypersurface of an AMGsR
manifold (M̄, ϕ, F, ḡ). Then, FD0 ⊂ S(TN) for distribution D0.

Corollary 6 ([30]). Let N be a screen semi-invariant lightlike hypersurface of an AMGsR manifold
(M̄, ϕ, F, ḡ). Then, distribution D0 is F-invariant.

Theorem 64 ([30]). Let N be a screen semi-invariant lightlike hypersurface of an AMGsR manifold
(M̄, ϕ, F, ḡ). Then, distribution D can be integrated if and only if we have

h(FY, FX) = h(X, FϕY)− h(X, FY) + h(X, Y)

for any X, Y ∈ Γ(D).

Theorem 65 ([30]). Consider an AMGsR manifold (M̄, ϕ, F, ḡ, ) where N is a totally umbili-
calscreen semi-invariant lightlike hypersurface of M̄. Then, N is totally geodesic.

Theorem 66 ([30]). In an AMGsR manifold (M̄, ϕ, F, ḡ), suppose N is a screen semi-invariant
lightlike hypersurface. If the screen distribution (S(TN)) is totally umbilical, then it is also
totally geodesic.

7. Lightlike Submanifolds of an Almost Norden Golden Semi-Riemannian Manifold

Investigations into certain classifications of lightlike hypersurfaces within almost
Norden golden semi-Riemannian manifolds, including invariant and screen semi-invariant
types, are discussed in [84].

Theorem 67 ([84]). In an almost Norden golden semi-Riemannian manifold (M̄, ḡ, ϕ) with (N, g)
as a lightlike hypersurface of M̄, the following three statements are equivalent:



Axioms 2024, 13, 724 29 of 54

(i) N is ϕ-invariant;
(ii) The 1-form u vanishes on N;
(iii) ϕ is an almost Norden golden structure on N.

Theorem 68 ([84]). The almost Norden golden semi-Riemannian has no radical anti-invariant
lightlike hypersurface.

Proposition 19 ([84]). Let N be a screen semi-invariant lightlike hypersurface and (M̄, ḡ, ϕ) be an
almost Norden golden semi-Riemannian manifold. A ϕ-invariant distribution is then D0.

Theorem 69 ([84]). Let (M̄, ḡ, ϕ) be an almost Norden golden semi-Riemannian manifold and N be
a screen semi-invariant lightlike hypersurface. Then, the following three statements are equivalent:

(i) D is a parallel distribution;
(ii) D is totally geodesic;
(iii) (∇Xϕ)Y = 0, where X, Y ∈ Γ(D).

Theorem 70 ([84]). In an almost Norden golden semi-Riemannian manifold (M̄, ḡ, ϕ), if N is a
screen semi-invariant lightlike hypersurface that is totally umbilical, then N is also totally geodesic
in M̄.

Remark 36. The authors of [84] presented illustrations of invariant and screen semi-invariant
lightlike hypersurfaces in almost Norden golden semi-Riemannian manifolds.

8. Warped Product of Screen-Real Lightlike Submanifolds of Golden
Semi-Riemannian Manifolds

The study on the warped product of screen-real lightlike submanifolds in a golden
semi-Riemannian manifold was discussed in [85].

Theorem 71 ([85]). Let N = N1 × f NT be a warped-product lightlike submanifold; then, for any
X ∈ Rad(TN), Y ∈ Γ(S(TM̄)), we have ∇XY ∈ Γ(S(TN)).

Theorem 72 ([85]). If (N, g, S(TN)) is an irrotational screen-real m lightlike submanifold of a
golden semi-Riemannian manifold, then the induced connection is metric.

Theorem 73 ([85]). There is no concept of an irrotational screen-real m lightlike submanifold that
can be expressed as warped-product lightlike submanifolds.

9. Chen Invariants and Inequalities

Let M̄n be a Riemannian n manifold. Let us choose a local field of an orthonormal
frame (e1, . . . , en) on M̄n. K(ei ∧ ej) denotes the sectional curvatures of M̄n of the plane
section spanned by ei and ej.

The scalar curvature (τ) of M̄n at p is defined by

τ(p) = ∑
1≤i<j≤n

K(ei ∧ ej). (13)

Similarly, if L is an ℓ-dimensional linear subspace of Tp M̄n with 2 < ℓ < n, then the scalar
curvature (ρ(L)) of L is defined as follows:

τ(L) = ∑
1≤i<j≤ℓ

K(ei ∧ ej), (14)

where e1, . . . , eℓ is an orthonormal basis of L.
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9.1. Chen Invariants

Let n be a positive integer (≥ 3). For a positive integer (k ≤ n
2 ), let S(n, k) denote the set

consisting of k tuples (n1, . . . , nk) of integers (≥ 2) such that n1 < n and n1 + · · ·+ nk ≤ n.
Furthermore, S(n) = ∪k≥1S(n, k).

For a given point (p) in a Riemannian n-manifold M̄n and each (n1, . . . , nk) ∈ S(n),
in [31,86,87], the first author introduced the following invariants:

δ(n1, . . . , nk)(p) = τ(x)− inf{τ(L1) + · · ·+ τ(Lk)},

where L1, . . . ,Lk run over all k mutually orthogonal subspaces of Tp M̄n such that
dimLj = nj and j = 1, . . . , k. In particular, we have

(a) δ(∅) = τ;

(b) δ(2) = τ − inf K, where K is the sectional curvature;

(c) δ(n − 1)(p) = max Ric(p).

Remark 37. δ(2) is known today as the first Chen invariant among all of the invariants
(δ(n1, . . . , nk)).

9.2. Chen Inequalities

For each (n1, . . . , nk) ∈ S(n, k), we set

a(n1, . . . , nk) =
1
2

n(n − 1)− 1
2

k

∑
j=1

nj(nj − 1),

b(n1, . . . , nk) =
n2(n + k − 1 − ∑j nj)

2(n + k − ∑j nj)
.

The first author proved the following optimal universal inequalities (see [32,86–88]).

Theorem 74. Let N be an n-dimensional submanifold of a Riemannian manifold (M̄m). Then,
for each point (p ∈ N) and each k-tuple ((n1, . . . , nk) ∈ S(n)), we have

δ(n1, . . . , nk)(p) ≤ b(n1, . . . , nk)∥H∥2(p) + a(n1, . . . , nk)max K̄(p), (15)

where ∥H∥2 is the squared mean curvature of N and max K̄(p) is the maximum of the sectional
curvature function of M̄m restricted to 2-plane sections of the tangent space (TpN) at p.

The equality case of inequality (15) holds at p ∈ N if and only if the following conditions hold:
(a) There is an orthonormal basis (e1, . . . , en, ξn+1, . . . , ξm) at p such that the shape operators

of N in M̄m at p take the following form:

Aer =


Ar

1 . . . 0
...

. . .
... 0

0 . . . Ar
k

0 µr I

, r = n + 1, . . . , m, (16)

where I is an identity matrix and Ar
j is a symmetric nj × nj submatrix such that

trace (Ar
1) = · · · = trace (Ar

k) = µr. (17)
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(b) For mutual orthogonal subspaces (L1, . . . ,Lk ⊂ TpN) satisfying δ(n1, . . . , nk) =

τ − ∑k
j=1 τ(Lj) at p, we have K̄(eαi , eαj) = max K̄(p) for αi ∈ Γi, αj ∈ Γj and 0 ≤ i ̸= j ≤ k,

where

Γ0 = {1, . . . , n1}, . . . , Γk−1 = {n1 + · · ·+ nk−1 + 1, . . . , n1 + · · ·+ nk},

Γk = {n1 + · · ·+ nk + 1, . . . , n}.

An important case of Theorem 74 is presented as follows.

Theorem 75 ([86,87]). For an n-dimensional submanifold (N) of a real-space form (Rm(c)) of
constant curvature (c), we have

δ(n1, . . . , nk) ≤ b(n1, . . . , nk)∥H∥2 + a(n1, . . . , nk)c. (18)

The equality case of inequality (18) holds at a point p ∈ N if and only if there is an orthonormal
basis (e1, . . . , en, ξn+1, . . . , ξm) such that the shape operators at p take the forms of (16) and (17).

10. Inequalities in Golden Riemannian Manifolds

Following Chen’s inequalities, many researchers have studied Chen-type inequalities
within golden Riemannian manifolds.

10.1. Chen-Type Inequality in Golden Riemannian Manifolds

The following findings about Chen-type inequalities for slant submanifolds in golden
Riemannian manifolds were discovered by Uddin and Choudhary in [35].

Theorem 76 ([35]). The following inequality holds for any proper θ-slant submanifold (Nn) that is
isometrically immersed in a locally golden product manifold (M̄m).

δN(p) ≤ (n − 2)
2

[
n2

(n − 1)
∥H∥2 +

1
10
(
cp + cq

)
{3(n + 1)− 2 Trace(ϕ)}

]
+

1
10
(
cp + cq

)[
(Trace(T) + (4 − n)) cos2 θ − Trace2(ϕ)

]
+

1
4
√

5

(
cp − cq

)
(n − 2)[2 Trace(ϕ)− (n + 1)], p ∈ Nn.

(19)

For the equality case, consider the following.

Theorem 77 ([35]). When all conditions of the above Theorem 76 are met, equality in Equation (19)
is achieved at p ∈ N if and only if {e1, . . . , en, en+1, . . . , em}, and the shape operator (A) has the
following form:

An+1 =



c 0 0 . . . 0
0 d 0 . . . 0
0 0 c + d . . . 0
...

...
...

. . .
...

0 0 0 . . . 0
0 0 0 . . . c + d


, As =



cs ds 0 . . . 0
ds −cs 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0
0 0 0 . . . 0


, (20)

for n + 2 ≤ s ≤ m.

Then, an inequality involving δ(n1, . . . , nk) is calculated as follows.
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Theorem 78 ([35]). In each proper θ-slant submanifold (Nn) immersed in M̄m, the following
inequality is true:

δ(n1, . . . , nk) ≤ T3 −
1

10
(
cp + cq

){
cos2 θ + Trace(ϕ)

}(
n −

k

∑
j=1

nj

)

− 1
4
√

5

(
cp − cq

){(
n +

k

∑
j=1

nj

)
− 2 Trace(ϕ)− 1

}(
n −

k

∑
j=1

nj

)
,

(21)

where
T3 = d

(
n1, . . . , nµ

)
∥H∥2 +

3
10
(
cp + cq

)
b(n1, . . . , nk).

Additionally, the equality sign in (21) holds at a point p ∈ N if and only if there exists an
orthonormal basis ({e1, . . . , en, en+1, . . . , em}) and A such that

An+1 =



a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a3 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0
0 0 0 . . . an


, As =



Bs
1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . Bs

k 0 . . . 0
0 . . . 0 cs . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . cs


,

for s ∈ {n + 2, . . . , m}, where a1, . . . , an satisfy

a1 + · · ·+ an1 = · · · = an1+...nk−1+1 + · · ·+ an1+...nk = an1+...nk+1 = · · · = an,

and Bs
i is a symmetric ni × ni submatrix satisfying

Trace(Bs
1) = · · · = Trace(Bs

k) = cs.

Remark 38. Additionally, in [35], Uddin and Choudhary deduced a special case of
Theorems 76 and 78 for ϕ-invariant submanifolds (Nn) immersed in a locally golden product mani-
fold (M̄m) and inequalities for a Ricci curvature tensor.

10.2. δ Casorati Curvature in Golden Riemannian Manifolds

In 1890, Casorati [37] introduced what is now termed Casorati curvature for surfaces
in a Euclidean 3-space E3. Casorati favored this curvature over Gaussian curvature because
the latter may vanish for surfaces that intuitively seem curved, whereas the former only
vanishes at planar points. The Casorati curvature (C) of a submanifold in a Riemannian
manifold is generally defined as the normalized squared norm of the second fundamental
form. Decu et al. introduced normalized Casorati curvatures δC(n − 1) and δ̂C(n − 1) in
2007 (refer to [89]), aligning with the essence of δ invariants. In 2008, they extended nor-
malized Casorati curvatures to generalized normalized δ Casorati curvatures (δC(r; n − 1)
and δ̂C(r; n − 1)) in [90]. Concurrently, they were able to ascertain the optimal inequality
concerning the (intrinsic) scalar curvature and the (extrinsic) δ Casorati curvature.

Let us recall the Weingarten and Gauss formulas in this context. For a Riemannian
manifold (M̄, ḡ) and a Riemannian submanifold (N) isometrically immersed in M̄, where
∇̄ and ∇ are the Levi–Civita connections on M̄ and N respectively, and h represents
the second fundamental form of N, the Weingarten and Gauss formulas are expressed
as follows:

∇̄XY = ∇XY + h(X, Y),

∇̄Xξ ′ = −Aξ ′X +∇⊥
X ξ ′,
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∀ X, Y ∈ Γ(TN) and ξ ′ ∈ Γ
(
T⊥N

)
, where Aξ ′ denotes the shape operator of N associated

with ξ ′ and ∇⊥ represents the connection in the normal bundle. The relationship between
Aξ ′ and h can then be recalled.

ḡ
(

Aξ ′X, Y
)
= ḡ(h(X, Y), ξ ′).

The Gaussian formula is written as

R̄(X, Y, Z, W) = R(X, Y, Z, W)− ḡ(h(X, W), h(Y, Z)) + ḡ(h(X, Z), h(Y, W))

for any vector fields tangent to N, such as X, Y, Z, and W. Assume that the local orthonor-
mal tangent frame is {e1, . . . , en} and the local orthonormal normal frame is {en+1, . . . , em}.
The definition of the scalar curvature is

τ = ∑
1≤i<j≤n

R
(
ei, ej, ej, ei

)
,

and the normalized scalar curvature (ρ) is defined as

ρ =
2τ

n(n − 1)
.

For N, the mean curvature vector (H) is

H =
1
n

n

∑
i=1

h(ei, ei).

The components of h are

hr
ij = ḡ

(
h
(
ei, ej

)
, er
)
, ∀i, j ∈ {1, . . . , n}, ∀r ∈ {n + 1, . . . , m}.

Then,

∥H∥2 =
1
n2

m

∑
r=n+1

(
n

∑
i=1

hr
ii

)2

and

∥h∥2 =
m

∑
r=n+1

n

∑
i,j=1

(
hr

ij

)2
.

The Casorati curvature (C) of N is defined by

C =
1
n
∥h∥2.

Let L be an l-dimensional subspace of TpN, l ≥ 2, and assume that p ∈ N. The scalar
curvature of L for an orthonormal basis {e1, . . . , el} can be expressed as

τ(L) = ∑
1≤i<j≤t

R
(
ei, ej, ej, ei

)
.

One defines

C(L) = 1
t

m

∑
r=n+1

t

∑
i,j=1

(
hr

ij

)2
.
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Assume that a hyperplane of TpN is L. Then, the normalized δ Casorati curvatures
δc(n − 1) and δ̂c(n − 1) are expressed by

[δC(n − 1)]p =
1
2

Cp +
n + 1

2n
inf{C(L)},[

δ̂C(n − 1)
]

p
= 2Cp −

2n − 1
2n

sup{C(L)}.

The generalized, normalized δ Casorati curvatures of N contain the following expres-
sion for any real number (r > 0).

If 0 < r < n(n − 1),

[δC(r; n − 1)]p = rCp +
1
rn

· A1 inf{C(L)},

and if r > n(n − 1),[
δ̂C(r; n − 1)

]
p
= rCp +

1
rn

· A1 sup{C(L)},

with A1 = (n − 1)(n + r)
(
n2 − n − r

)
[40].

In modern differential geometry, the study of δ Casorati curvatures is a highly ac-
tive research subject. Many researchers have obtained intriguing findings on δ Casorati
curvatures in golden Riemannian manifolds.

Choudhary and Park obtained the following results in [41] regarding δ Casorati
curvatures of slant submanifolds of locally golden space forms.

Theorem 79 ([41]). Given an (n + m)-dimensional locally golden product space of the form(
M̄n+m = Mp

(
cp
)
× Mq

(
cq
)
, g, ϕ

)
, let N be a n-dimensional θ-slant proper submanifold. Then,

we have the following:
(i) The curvature expressed by δC(r; n − 1), which is the generalized, normalized δ Casorati

curvature, satisfies

ρ ≤ δC(r; n − 1)
n(n − 1)

−
(
(1 − ψ)cp − ψcq

2
√

5

)
×{

1 +
1

n(n − 1)
Trace2 ϕ − cos2 θ

{
1

n − 1
+

1
n(n − 1)

Trace ϕ

}}
−
(
(1 − ψ)cp + ψcq

4

)
2
n

Trace ϕ

(22)

for any real number (r) such that 0 < r < n(n − 1).
(ii) The generalized, normalized δ Casorati curvature (δ̂C(r; n − 1)) satisfies

ρ ≤ δ̂C(r; n − 1)
n(n − 1)

−
(
(1 − ψ)cp − ψcq

2
√

5

)
×{

1 +
1

n(n − 1)
Trace2 ϕ − cos2 θ

{
1

n − 1
+

1
n(n − 1)

Trace ϕ

}}
−
(
(1 − ψ)cp + ψcq

4

)
2
n

Trace ϕ

(23)

for any real number (r > n(n − 1)).
Furthermore, if and only if N is an invariantly quasi-umbilical submanifold with a trivial

normal connection in (M̄), then the equalities in relations (22) and (23) hold such that the shape oper-
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ators (Ar, r ∈ {n + 1, . . . , n + m}), with respect to some orthonormal tangent frame ({e1, . . . , en})
and orthonormal normal frame ({en+1, . . . , en+m}), have the following forms:

An+1 =



d 0 0 . . . 0 0
0 d 0 . . . 0 0
0 0 d . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . d 0
0 0 0 . . . 0 n(n−1)

r d


, An+2 = · · · = An+m = 0. (24)

In golden Riemannian space forms, Choudhary and Park [48] also obtained sharp in-
equalities for ϕ-invariant and ϕ-anti-invariant submanifolds as a consequence of Theorem 79.

Theorem 80 ([41]). Consider N as an n-dimensional invariant submanifold of a locally golden
product space of the form

(
M̄n+m = Mp

(
cp
)
× Mq

(
cq
)
, g, ϕ

)
. Then, we have the following:

(i) The generalized, normalized δ Casorati curvature (δC(r; n − 1)) satisfies

ρ ≤ δC(r; n − 1)
n(n − 1)

−
(
(1 − ψ)cp − ψcq

2
√

5

){
1 +

1
n(n − 1)

Trace2 ϕ

}
+

(
(1 − ψ)cp − ψcq

2
√

5

){
1

n − 1
+

1
n(n − 1)

Trace ϕ

}
−
(
(1 − ψ)cp + ψcq

4

)
2
n

Trace ϕ

(25)

for any real number (r) such that 0 < r < n(n − 1).
(ii) The generalized normalized δ Casorati curvature δ̂C(r; n − 1) satisfies

ρ ≤ δ̂C(r; n − 1)
n(n − 1)

−
(
(1 − ψ)cp − ψcq

2
√

5

){
1 +

1
n(n − 1)

Trace2 ϕ

}
+

(
(1 − ψ)cp − ψcq

2
√

5

){
1

n − 1
+

1
n(n − 1)

Trace ϕ

}
−
(
(1 − ψ)cp + ψcq

4

)
2
n

Trace ϕ

(26)

for any real number (r > n(n − 1)).
Furthermore, the equalities in relations (25) and (26) hold if and only if N is an invariantly

quasi-umbilical submanifold with a trivial normal connection in M̄ such that the shape opera-
tors (Ar, r ∈ {n + 1, . . . , n + m}), take the following forms for some orthonormal tangent frame
({e1, . . . , en}) and orthonormal normal frame ({en+1, . . . , en+m}):

An+1 =



d 0 0 . . . 0 0
0 d 0 . . . 0 0
0 0 d . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . d 0
0 0 0 . . . 0 n(n−1)

r d


, An+2 = · · · = An+m = 0. (27)

Theorem 81 ([41]). Let N be an n-dimensional anti-invariant submanifold within (n + m)-
dimensional locally golden product space of the form

(
M̄ = Mp

(
cp
)
× Mq

(
cq
)
, g, ϕ

)
. Thus,

(i) The generalized normalized δ Casorati curvature (δC(r; n − 1)) satisfies

ρ ≤ δC(r; n − 1)
n(n − 1)

+

(
−
(1 − ψ)cp − ψcq

2
√

5

)
(28)
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for any real number (r) such that 0 < r < n(n − 1). Then, the following conditions hold:
(ii) The generalized normalized δ Casorati curvature (δ̂C(r; n − 1)) satisfies

ρ ≤ δ̂C(r; n − 1)
n(n − 1)

+

(
−
(1 − ψ)cp − ψcq

2
√

5

)
(29)

for any real number (r > n(n − 1)).
Additionally, the equalities hold in relations (28) and (29) if and only if N is an invariantly

quasi-umbilical submanifold with a trivial normal connection in M̄ such that the shape opera-
tors (Ar, r ∈ {n + 1, . . . , n + m}) take the following forms for some orthonormal tangent frame
({e1, . . . , en}) and orthonormal normal frame ({en+1, . . . , en+m}):

An+1 =



d 0 0 . . . 0 0
0 d 0 . . . 0 0
0 0 d . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . d 0
0 0 0 . . . 0 n(n−1)

r d


, An+2 = · · · = An+m = 0. (30)

Theorem 82 ([41]). Assume that the locally golden product space form of dimension (n + m) is(
M̄ = Mp

(
cp
)
× Mq

(
cq
)
, g, ϕ

)
. For any n-dimensional θ-slant proper submanifold (N) of M̄,

(i) The normalized δ-Casorati curvature (δC(n − 1)) satisfies

ρ ≤ δC(n − 1)−
(
(1 − ψ)cp − ψcq

2
√

5

){
1 +

1
n(n − 1)

Trace2 ϕ

}
+

(
(1 − ψ)cp − ψcq

2
√

5

)
cos2 θ

{
1

n − 1
+

1
n(n − 1)

Trace ϕ

}
−
(
(1 − ψ)cp + ψcq

4

)
2
n

Trace ϕ

(31)

(ii) The normalized δ Casorati curvature δ̂C(n − 1) satisfies

ρ ≤ δ̂C(n − 1)−
(
(1 − ψ)cp − ψcq

2
√

5

){
1 +

1
n(n − 1)

Trace2 ϕ

}
+

(
(1 − ψ)cp − ψcq

2
√

5

)
cos2 θ

{
1

n − 1
+

1
n(n − 1)

Trace ϕ

}
−
(
(1 − ψ)cp + ψcq

4

)
2
n

Trace ϕ

(32)

Regarding any invariant submanifold (N) of M̄, we have
(i) The normalized δ Casorati curvature (δC(n − 1)) satisfies

ρ ≤ δC(n − 1)−
(
(1 − ψ)cp − ψcq

2
√

5

){
1 +

1
n(n − 1)

Trace2 ϕ

}
+

(
(1 − ψ)cp − ψcq

2
√

5

){
1

n − 1
+

1
n(n − 1)

Trace ϕ

}
−
(
(1 − ψ)cp + ψcq

4

)
2
n

Trace ϕ

(33)
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(ii) The normalized δ Casorati curvature δ̂C(n − 1) satisfies

ρ ≤δ̂C(n − 1)−
(
(1 − ψ)cp − ψcq

2
√

5

){
1 +

1
n(n − 1)

t2ϕ

}
+

(
(1 − ψ)cp − ψcq

2
√

5

){
1

n − 1
+

1
n(n − 1)

Trace ϕ

}
−
(
(1 − ψ)cp + ψcq

4

)
2
n

Trace ϕ.

(34)

For any n-dimensional anti-invariant submanifold (N) of M̄,
(i) The normalized δ Casorati curvature (δC(n − 1)) satisfies

ρ ≤ δC(n − 1)−
(
(1 − ψ)cp − ψcq

2
√

5

)
(35)

(ii) The normalized δ Casorati curvature δ̂C(n − 1) satisfies

ρ ≤ δ̂C(n − 1)−
(
(1 − ψ)cp − ψcq

2
√

5

)
. (36)

Additionally, (31), (33), and (35) hold as equalities if and only if the submanifold (Nn) is
invariantly quasi-umbilical with a trivial normal connection in M̄. In this case, the shape operators
(Ar, r ∈ {n + 1, . . . , n + m}) with respect to some orthonormal tangent frame ({e1, . . . , en}) and
orthonormal normal frame ({en+1, . . . , en+m}) fulfill the following requirements:

An+1 =



d 0 0 . . . 0 0
0 d 0 . . . 0 0
0 0 d . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . d 0
0 0 0 . . . 0 2d


, An+2 = · · · = An+m = 0, (37)

Furthermore, (32), (34), and (36) hold as equalities if and only if the submanifold (Nn) is
invariantly quasi-umbilical with a trivial normal connection in M̄ such that the shape operators
(Ar, r ∈ {n + 1, . . . , n + m}) with respect to some orthonormal tangent frame ({e1, . . . , en}) and
orthonormal normal frame ({en+1, . . . , en+m}) satisfy the following:

An+1 =



2d 0 0 . . . 0 0
0 2d 0 . . . 0 0
0 0 2d . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2d 0
0 0 0 . . . 0 d


, An+2 = · · · = An+m = 0. (38)

Remark 39. Some sharp inequalities for slant submanifolds immersed in golden Riemannian space
forms with a semi-symmetric metric connection were deduced by Lee et al. in [91]. Furthermore, they
characterized submanifolds in the equality case. They concluded by talking about these inequalities
for a few special submanifolds.

Geometric inequalities for the Casorati curvatures on submanifolds on golden Rieman-
nian manifolds with constant golden sectional curvature were established by Choudhary
and Mihai in [40]. Let (M̄, ϕ, ḡ) be a locally decomposable golden Riemannian manifold
with a constant golden sectional curvature. Next, on a submanifold (N), the following are
the optimal inequalities for δC(r; n − 1) and δ̂C(r; n − 1):
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Theorem 83 ([40]). Considering M as an n-dimensional Riemannian manifold isometrically
immersed in (M̄, ϕ, ḡ) under the condition of A2 = n(n − 1), we have:

(i) δC(r; n − 1) satisfies

ρ ≤ δC(r; n − 1)
A2

+
c

3A2

{
n2 − 3n + 2∥ϕ∥2 − 2n∥ϕ∥

}
(39)

if 0 < r < A2;
(ii) δ̂C(r; n − 1) satisfies

ρ ≤ δ̂C(r; n − 1)
A2

+
c

3A2

{
n2 − 3n + 2∥ϕ∥2 − 2n∥ϕ∥

}
(40)

if r > A2.
Furthermore, if and only if N is invariantly quasi-umbilical does the equality holds in (39)

or (40). There exists an orthonormal tangent frame ({e1, . . . , en}) and an orthonormal normal
frame ({en+1, . . . , em}) such that Ar, r ∈ {n + 1, . . . , m} have the following forms and the normal
connection of N in M̄ is trivial.

An+1 =



d 0 0 . . . 0 0
0 d 0 . . . 0 0
0 0 d . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . d 0
0 0 0 . . . 0 1

r · A2 · d


, An+2 = · · · = Am = 0. (41)

Theorem 84 ([40]). Let N be an isometrically immersed n-dimensional submanifold in
(M̄, ϕ, ḡ). Then,

(i) δC(r; n − 1) satisfies

ρG ≤ δC(r; n − 1)
A2

+
c

3A2
{∥ϕ∥(3∥ϕ∥ − 3 − n)}, (42)

for 0 < r < A2.
(ii) δ̂C(r; n − 1) satisfies

ρG ≤ δ̂C(r; n − 1)
A2

+
c

3A2
{∥ϕ∥(3∥ϕ∥ − 3 − n)}, (43)

for r > A2.
Furthermore, Ar achieves the following forms, and the equality holds in (42) or (43) if and

only if N meets the equality’s criteria as stated in Theorem 83.

An+1 =



d 0 0 . . . 0 0
0 d 0 . . . 0 0
0 0 d . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . d 0
0 0 0 . . . 0 1

r A2d


, An+2 = · · · = Am = 0. (44)

Remark 40. In [40], Choudhary and Mihai established the consequences of
Theorems 83 and 84 and obtained inequality cases for Casorati curvature on an anti-invariant
submanifold in (M̄, ϕ, ḡ).

Remark 41. Regarding sharp inequalities concerning δ Casorati curvatures for slant submanifolds
of golden Riemannian space forms, we refer to [38].
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10.3. Wintgen-Type Inequality in Golden Riemannian Manifolds

In the context of four-dimensional Euclidean space, Wintgen inequality represents
a critical geometric inequality that incorporates Gaussian curvature, normal curvature,
and squared mean curvature, all of which are intrinsic invariants. In 1979, P. Wintgen [42]
formulated this inequality to show that for any surface (M2) in E4, the Gaussian curva-
ture (K), the normal curvature (K⊥), and the squared mean curvature (∥H∥2) meet the
following condition:

∥H∥2 ≥ K + |K⊥|

The equality is valid if and only if the ellipse of curvature of M2 in E4 is a circle. This
result was further generalized by I. V. Guadalupe et al. in [92] for an arbitrary codimension
of m in real-space forms (M̄m+2(c)) as follows:

∥H∥2 + c ≥ K + |K⊥|.

They also discussed the conditions under which equality is achieved.
De Smet, Dillen, Verstraelen, and Vrancken [93] proposed an inequality for subman-

ifolds in real-space forms, referred to as the generalized Wintgen inequality or DDVV
conjecture, which extends the Wintgen inequality. This conjecture was independently
proven by Ge and Tang in [94]. Different researchers have obtained DDVV inequality
for various classes of submanifolds in various ambient manifolds in recent years. For
slant, invariant, C-totally real, and Lagrangian submanifolds in golden Riemannian space
forms, researchers obtained generalized Wintgen-type inequalities in [44] and discussed
the equality cases.

For slant submanifolds, the generalized Wintgen inequality is outlined as follows:

Theorem 85 ([44]). Let N be an n-dimensional θ-slant proper submanifold of a locally golden
product space of the form

(
M̄ = Mp

(
cp
)
× Mq

(
cq
)
, g, ϕ

)
. Then, we have the following:

ρη ≤∥H∥2 − 2ρ − 2
(
(1 − ψ)cp − ψcq

2
√

5

){
1 +

1
n(n − 1)

Trace2 ϕ

}
+ 2
(
(1 − ψ)cp − ψcq

2
√

5

){
1

n − 1
+

1
n(n − 1)

Trace P
}

−
(
(1 − ψ)cp + ψcq

4

)
4
n

Trace ϕ.

(45)

For scalar normal curvature, ρη is used.

Choudhary et al. [44] established the generalized Wintgen inequality for an invariant
submanifold of golden Riemannian space forms with the aid of Theorem 85.

Theorem 86 ([44]). Consider N an n-dimensional invariant submanifold within a locally golden
product space of the form

(
M̄ = Mp

(
cp
)
× Mq

(
cq
)
, g, ϕ

)
. Then,

ρη ≤∥H∥2 − 2ρ − 2
(
(1 − ψ)cp − ψcq

2
√

5

){
1 +

1
n(n − 1)

Trace2 ϕ

}
+ 2
(
(1 − ψ)cp − ψcq

2
√

5

){
1

n − 1
+

1
n(n − 1)

Trace P
}

−
(
(1 − ψ)cp + ψcq

4

)
4
n

Trace ϕ.

(46)

The generalized Wintgen inequality of a locally golden product space form for a
Lagrangian submanifold is outlined as follows.
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Theorem 87 ([44]). Suppose N is a Lagrangian submanifold in a locally golden product space of
the form

(
M̄ = Mp

(
cp
)
× Mq

(
cq
)
, g, ϕ

)
. Then,

(
ρ⊥
)2

≥ ρ2
N − 2

n(n − 1)

(
(1 − ψ)cp − ψcq

2
√

5

)2

− 4
n(n − 1)

(
(1 − ψ)cp − ψcq

2
√

5

){(
(1 − ψ)cp − ψcq

2
√

5

)
+ ρ

} (47)

11. Inequalities in Golden-like Statistical Manifolds
11.1. Chen-Type Inequality in Golden-like Statistical Manifolds

Some fundamental inequalities for the curvature invariants of statistical submanifolds
in golden-like statistical manifolds were obtained by Bahadir et al. in [36].

Theorem 88 ([36]). Let a golden-like statistical manifold of dimension m be expressed by (M̄, ḡ, ϕ)
and N be its statistical submanifold of dimension n. Then,

(τ − K(π))− (τ0 − K0(π)) ≥

−
(
(1 − ψ)cp − ψcq

2
√

5

)[
n(n − 2) + Trace2(ϕ)− Trace(ϕ∗)

]
−
(
(1 − ψ)cp + ψcq

4

)
2(n − 1)Trace(ϕ)

+

(
(1 − ψ)cp − ψcq

2
√

5

)
[1 + Ψ(π) + Θ(π)]

− n2(n − 2)
4(n − 1)

[
∥H∥2 + ∥H∗∥2

]
+ 2K̂0(π)− 2τ̂0.

(48)

Corollary 7 ([36]). Let N be the totally real statistical submanifold of dimension n of a golden-like
statistical manifold (M̄, ḡ, ϕ) of dimension m. Then,

(τ − K(π))− (τ0 − K0(π)) ≥−
(
(1 − ψ)cp − ψcq

2
√

5

)
[n(n − 2)− 1]

− n2(n − 2)
4(n − 1)

[
∥H∥2 + ∥H∗∥2

]
+ 2K̂0(π)− 2τ̂0.

(49)

11.2. δ Casorati Curvature in Golden-like Statistical Manifolds

In [36], Bahadir et al. deduced optimal relationships for the generalized, normalized δ
Casorati curvature of a statistical submanifold in a golden-like statistical manifold.

Theorem 89 ([36]). Let Nn be a statistical submanifold in a golden-like statistical manifold (M̄m).
Then, we have the following optimal relationships for the generalized normalized δ
Casorati curvature:

(i) For any real number (r), such that 0 < r < n(n − 1),

ρ ≤
δ0

C(r; n − 1)
n(n − 1)

+
1

(n − 1)
C0 − n

(n − 1)
g(H, H∗)− 2n

n(n − 1)

∥∥∥H0
∥∥∥2

− 1
n(n − 1)

(
(1 − ψ)cp − ψcq

2
√

5

)[
n(n − 2) + Trace2(ϕ)− Trace(ϕ∗)

]
− 2

n

(
(1 − ψ)cp + ψcq

4

)
Trace(ϕ),

(50)

where δ0
C(r; n − 1) = 1

2
[
δC(r; n − 1) + δ∗C(r; n − 1)

]
.
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(ii) For any real number (r > n(n − 1)),

ρ ≤
δ̂0

C(r; n − 1)
n(n − 1)

+
1

(n − 1)
C0 − n

(n − 1)
g(H, H∗)− 2n

n(n − 1)

∥∥∥H0
∥∥∥2

− 1
n(n − 1)

(
(1 − ψ)cp − ψcq

2
√

5

)[
n(n − 2) + Trace2(ϕ)− Trace(ϕ∗)

]
− 2

n

(
(1 − ψ)cp + ψcq

4

)
Trace(ϕ),

(51)

where δ̂0
C(r; n − 1) = 1

2

[
δ̂C(r; n − 1) + δ̂∗C(r; n − 1)

]
.

Corollary 8 ([36]). Given a golden-like statistical manifold (M̄m), let Nn be a totally real statistical
submanifold of it. Then, for the generalized normalized δ Casorati curvature, we obtain the following
optimal relationships:

(i) For any real number (r), such that 0 < r < n(n − 1),

ρ ≤
δ0

C(r; n − 1)
n(n − 1)

+ C0 − n
(n − 1)

g(H, H∗)− 2n
n(n − 1)

∥∥∥H0
∥∥∥2

−
(
(1 − ψ)cp − ψcq

2
√

5

)(
n − 2
n − 1

)
,

(52)

where δ0
C(r; n − 1) = 1

2
[
δC(r; n − 1) + δ∗C(r; n − 1)

]
.

(ii) For any real number (r > n(n − 1)),

ρ ≤
δ̂0

C(r; n − 1)
n(n − 1)

+
1

(n − 1)
C0 − n

(n − 1)
g(H, H∗)− 2n

n(n − 1)

∥∥∥H0
∥∥∥2

−
(
(1 − ψ)cp − ψcq

2
√

5

)(
n − 2
n − 1

)
,

(53)

where δ̂0
C(r; n − 1) = 1

2

[
δ̂C(r; n − 1) + δ̂∗C(r; n − 1)

]
.

12. Inequalities in Golden Lorentzian Manifolds
δ Casorati Curvature in Golden Lorentzian Manifolds

In [50], Choudhary et al. deduced sharp geometric inequalities that involve gener-
alized, normalized δ Casorati curvatures concerning submanifolds of golden Lorentzian
manifolds equipped with a generalized symmetric metric U connection and obtained the
following results:

Theorem 90 ([50]). Below are the inequalities for the submanifold (Nn) of M̄m.
(i) For δC(r; n − 1), we have

ρ ≤ 1
(n2 − n)

[δC(r; n − 1)]

+
(∓

√
5 + 3)cp + (±

√
5 + 3)cq − 10α2

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq − 10αβ

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq − 5β2

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
,

(54)

where a real number (r) satisfies n2 − n > r > 0;
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(ii) For δ̂C(r; n − 1), we have

ρ ≤ 1
(n2 − n)

[
δ̂C(r; n − 1)

]
+

(∓
√

5 + 3)cp + (±
√

5 + 3)cq − 10α2

10(n − 1)
(n − ε)

+
(±

√
5 − 1)c1 + (∓

√
5 − 1)c2 − 10αβ

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq − 5β2

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
,

(55)

where n2 − n < r.
Furthermore, if the shape operator in an orthonormal frame ({e1, . . . , en, en+1, . . . , em}) can

be expressed as follows, then the relations in Equations (54) and (55) become equalities:

An+1 =



d 0 0 . . . 0 0
0 d 0 . . . 0 0
0 0 d . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . d 0
0 0 0 . . . 0 dn

r (n − 1)


, An+2 = · · · = Am = 0.

Corollary 9 ([50]). The following inequalities hold for any submanifold (Nn) immersed in a
locally golden product Lorentzian manifold (M̄m) equipped with a generalized symmetric metric
U connection.

(i) For δC(r; n − 1), we have

ρ ≤ δC(n − 1) +
(∓

√
5 + 3)cp + (±

√
5 + 3)cq − 10α2

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq − 10αβ

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq − 5β2

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(56)

where 0 ≤ r ≤ n2 − n;
(ii) For δ̂C(n − 1), we have

ρ ≤ δ̂C(n − 1)

+
(∓

√
5 + 3)cp + (±

√
5 + 3)cq − 10α2

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq − 10αβ

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq − 5β2

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
,

(57)

where n2 − n < r.
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In addition, Equations (56) and (57) hold for equality if, for an orthonormal frame
({e1, . . . , en, en+1, . . . , em}), operator A can be expressed as follows:

An+1 =



d 0 0 . . . 0 0
0 d 0 . . . 0 0
0 0 d . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . d 0
0 0 0 . . . 0 2d


, An+2 = · · · = Am = 0;

and

An+1 =



2d 0 0 . . . 0 0
0 2d 0 . . . 0 0
0 0 2d . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2d 0
0 0 0 . . . 0 d


, An+2 = · · · = Am = 0.

In [50], some consequences of Theorem 90 were also derived, which are expressed
as follows:

Corollary 10 ([50]). We have the following for a Riemannian manifold (Nn) isometrically immersed
in M̄m:
(I) For δC(r; n − 1) with r ∈ {0, . . . , n(n − 1)}, the following hold:

(a) M̄m is equipped with an α semi-symmetric metric U connection.

ρ ≤ 1
(n2 − n)

[δC(r; n − 1)]

+
(∓

√
5 + 3)cp + (±

√
5 + 3)cq − 10α2

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2mε − 2)Trace ϕ]

+
cp + cq

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(58)

(b) M̄m is equipped with a β quarter-symmetric metric U connection.

ρ ≤ 1
(n2 − n)

[δC(r; n − 1)]

+
(∓

√
5 + 3)cp + (±

√
5 + 3)cq

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq − 5β2

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(59)
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(c) M̄m is equipped with a semi-symmetric metric U connection.

ρ ≤ 1
(n2 − n)

[δC(r; n − 1)]

+
(∓

√
5 + 3)cp + (±

√
5 + 3)cq − 10

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(60)

(d) M̄m is equipped with a quarter-symmetric metric U connection.

ρ ≤ 1
(n2 − n)

[δC(r; n − 1)]

+
(∓

√
5 + 3)cp + (±

√
5 + 3)cq

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq − 5
5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
.

(61)

(II) For δ̂C(r; n − 1) with r > n(n − 1), the following hold:

(a) M̄m is equipped with an α semi-symmetric metric U connection.

ρ ≤ 1
(n2 − n)

[
δ̂C(r; n − 1)

]
+

(∓
√

5 + 3)cp + (±
√

5 + 3)cq − 10α2

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(62)

(b) M̄m is equipped with a β quarter-symmetric metric U connection.

ρ ≤ 1
(n2 − n)

[
δ̂C(r; n − 1)

]
+

(∓
√

5 + 3)cp + (±
√

5 + 3)cq

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq − 5β2

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(63)
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(c) M̄m is equipped with a semi-symmetric metric U connection.

ρ ≤ 1
(n2 − n)

[
δ̂C(r; n − 1)

]
+

(∓
√

5 + 3)cp + (±
√

5 + 3)cq − 10
10(n − 1)

(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(64)

(d) M̄m is equipped with a quarter-symmetric metric U connection.

ρ ≤ 1
(n2 − n)

[
δ̂C(r; n − 1)

]
+

(∓
√

5 + 3)cp + (±
√

5 + 3)cq

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq − 5
5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(65)

Moreover, the relations in the above results become equalities if, in some orthonormal frame
({e1, . . . , en, en+1, . . . , em}) operator A reduces to

Am+1 =



d 0 0 · · · 0 0
0 d 0 · · · 0 0
0 0 d · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · d 0

0 0 0 · · · 0 d(n2−n)
r


, An+2 = · · · = Am = 0.

Corollary 11 ([50]). When Nn represents a Riemannian manifold isometrically immersed in a
golden Lorentzian manifold (M̄m) equipped with a g.s.m. U connection, we have the
following relations.
(I) For δC(n − 1) with r ∈ {0, . . .

(
n2 − n

)
}, the following hold:

(a) M̄m is equipped with an α semi-symmetric metric U connection.

ρ ≤ 1
(n2 − n)

[δC(n − 1)]

+
(∓

√
5 + 3)cp + (±

√
5 + 3)cq − 10α2

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(66)
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(b) M̄m is equipped with a β quarter-symmetric metric U connection.

ρ ≤ 1
(n2 − n)

[δC(n − 1)]

+
(∓

√
5 + 3)cp + (±

√
5 + 3)cq

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq − 5β2

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(67)

(c) M̄m is equipped with a semi-symmetric metric U connection.

ρ ≤ 1
(n2 − n)

[δC(n − 1)]

+
(∓

√
5 + 3)cp + (±

√
5 + 3)cq − 10

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(68)

(d) M̄m is equipped with a quarter-symmetric metric U connection.

ρ ≤ 1
(n2 − n)

[δC(n − 1)]

+
(∓

√
5 + 3)cp + (±

√
5 + 3)cq

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq − 5
5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(69)

(II) For δ̂C(n − 1) with
(
n2 − n

)
< r, the following hold:

(a) M̄m is equipped with an α semi-symmetric metric U connection.

ρ ≤ 1
(n2 − n)

[
δ̂C(n − 1)

]
+

(∓
√

5 + 3)cp + (±
√

5 + 3)cq − 10α2

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(70)
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(b) M̄m is equipped with a β quarter-symmetric metric U connection.

ρ ≤ 1
(n2 − n)

[
δ̂C(n − 1)

]
+

(∓
√

5 + 3)cp + (±
√

5 + 3)cq

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq − 5β2

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(71)

(c) M̄m is equipped with a semi-symmetric metric U-connection.

ρ ≤ 1
(n2 − n)

[
δ̂C(n − 1)

]
+

(∓
√

5 + 3)cp + (±
√

5 + 3)cq − 10
10(n − 1)

(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq

5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(72)

(d) M̄m is equipped with a quarter-symmetric metric U connection.

ρ ≤ 1
(n2 − n)

[
δ̂C(n − 1)

]
+

(∓
√

5 + 3)cp + (±
√

5 + 3)cq

10(n − 1)
(n − ε)

+
(±

√
5 − 1)cp + (∓

√
5 − 1)cq

10(n2 − n)
[(2nε − 2)Trace ϕ]

+
cp + cq − 5
5(n2 − n)

[
(Trace ϕ)2 − Trace ϕ − nε

]
(73)

Furthermore, the relations in the above results become equalities if, in some orthonormal frame
({e1, . . . , en, en+1, . . . , em}), operator A reduces to

Am+1 =



d 0 0 · · · 0 0
0 d 0 · · · 0 0
0 0 d · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · d 0

0 0 0 · · · 0 d(n2−n)
r


, An+2 = · · · = Am = 0.

13. Further Structures on Golden Riemannian Manifolds
13.1. Integrability of Golden Riemannian Structure

The significance of the golden structure on a Riemannian manifold stems from its
association with pure Riemannian metrics. Given the connection between Riemannian
golden structures and almost product structures, the φ− operator technique from the
theory of almost product structures applies to golden structures. Consequently, the authors
of [6] established a new sufficient condition for the integrability of golden Riemannian
structures while also detailing certain characteristics of twin golden Riemannian metrics
and the curvature features of locally decomposable golden Riemannian manifolds.
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Consider a golden manifold denoted by M̄ equipped with a golden structure (ϕ).
For ϕ to be integrable, it is both necessary and sufficient to establish a torsion-free affine
connection (∇) such that the structure tensor (ϕ) remains covariantly constant under this
connection. Furthermore, the integrability of ϕ correlates directly with the absence of the
Nijenhuis tensor (N≺) [4]. Recent studies [6] have investigated an additional potentially
sufficient condition for the integrability of golden structures within the framework of
Riemannian manifolds.

Theorem 91 ([6]). A golden Riemannian manifold is denoted by (M̄, ϕ, ḡ). If φϕ ḡ = 0., then ϕ
is integrable.

Corollary 12 ([6]). Consider a golden Riemannian manifold (M̄, ϕ, ḡ). φϕ ḡ = 0 is the same as
∇ϕ = 0, where ∇ is ḡ’s Levi–Civita connection.

Proposition 20 ([6]). Given a golden Riemannian manifold (M̄, ϕ, ḡ), let F be the corresponding
almost product structure. If φF ḡ = 0, then the golden structure (ϕ) is integrable.

Proposition 21 ([6]). Let M̄, ϕ, ḡ be a golden Riemannian manifold. If and only if φF ḡ = 0, where
F is the corresponding almost product structure, is the manifold (M̄) a locally decomposable golden
Riemannian manifold.

Twin Golden Riemannian Metrics

A golden Riemannian manifold is denoted by (M̄, ϕ, ḡ). The definition of the twin
golden Riemannian metric is

G(X, Y) = (ḡ ◦ ϕ)(X, Y) = ḡ(ϕX, Y) = ḡ(X, ϕY)

for any vector field (X and Y in M̄). It is simple to demonstrate that G is a novel pure
Riemannian metric as follows:

G(ϕX, Y) = (ḡ ◦ ϕ)(ϕX, Y) = ḡ(ϕ(ϕX), Y) = ḡ(ϕ2X, Y)

= ḡ(ϕX, Y) + ḡ(X, Y) = ḡ(X, ϕY) + ḡ(X, Y)

= ḡ(X, (ϕ + I)Y) = ḡ(X, ϕ2Y)

= (ḡ ◦ ϕ)(X, ϕY) = G(X, ϕY)

which is called the twin metric of ḡ.

Theorem 92 ([6]). In a golden Riemannian manifold (M̄, ϕ, ḡ), the following holds:

φϕG = (φϕ ḡ) ◦ ϕ + ḡ ◦ (N≺).

Corollary 13 ([6]). The criteria listed below are equivalent in a locally golden Riemannian manifold
(M̄, ϕ, ḡ):

(i) φϕ ḡ = 0;
(ii) φϕG = 0.

Theorem 93 ([6]). Assume that a golden Riemannian manifold (M̄, ϕ, ḡ) is locally decomposable.
Thus, the Levi–Civita connection of the twin golden Riemannian metric (G) and the Levi–Civita
connection of the golden Riemannian metric (ḡ) coincide.

Theorem 94 ([6]). The Riemannian curvature tensor field in a locally decomposable golden Rie-
mannian manifold is a φ tensor field.
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13.2. s-Golden Manifolds

s-golden manifolds represent a fascinating category within almost golden Riemannian
manifolds, as explored by Gherici in [9].

Let (M̄, ϕ, ḡ) be an almost golden Riemannian manifold of dimension n. The tangent
vector space (Tp M̄) splits as follows for each p ∈ M̄: Tp M̄ = (Dψ∗)p ⊕ (Dψ)p, where

ψ = 1+
√

5
2 , ψ∗ = 1−

√
5

2 = 1 − ψ and(
Dψ

)
p =

{
ξ ′ ∈ TpM̄ : ϕpξ ′ = ψξ ′

}
(

Dψ∗
)

p =
{

Φ ∈ TpM̄ : ϕpΦ = ψ∗Φ
}

.

Definition 39 ([9]). Let M̄ be a differentiable manifold of dimension (n + s). An almost s-golden
structure on M̄ is

(
ϕ, (ξα, ρα)

s
α=1, ḡ

)
, where ξα represents global vector fields (called golden vector

fields); ρβ is a differential 1-form on M̄ such that ρβ(ξα) = δαβ, where α, β ∈ {1, . . . , s}; ḡ is a
Riemannian metric such that ḡ(X, ξα) = ρα(X); and ϕ is a tensor field of type (1, 1) satisfying

ϕ = ψ∗ I +
√

5
s

∑
α=1

ρα ⊗ ξα,

∀ vector fields X on M̄. In addition, if ϕ is integrable, then
(
ϕ, (ξα, ρα)

s
α=1, ḡ

)
is an s-golden

structure, and
(

M̄, ϕ, (ξα, ρα)
s
α=1, ḡ

)
is called an s-golden manifold.

Corollary 14 ([9]). Any almost golden Riemannian structure (ϕ) that admits s global unit eigen-
vectors associated with Φ is an almost s-golden structure.

Proposition 22 ([9]). Let
(

M̄, ϕ, (ξα, ρα)
s
α=1, ḡ

)
be an s-golden manifold, U be a coordinate

neighborhood on M̄, and Φi be any unit vector field on U such that ϕΦi = ψ∗Φi, where
i ∈ {1, . . . , n}. Then, we may easily check that the set {ξα, Φi} is a local orthonormal basis
on M̄.

Now, a new sufficient condition of integrability for this class of structures is intro-
duced as follows.

Theorem 95 ([9]). Let
(

M̄, Φ, (ξα, ρα)
s
α=1, ḡ

)
be an almost s-golden structure. Then, ϕ is inte-

grable if ηα is closed and
[
ξα, ξβ

]
= 0 ∀α, β ∈ {1, . . . , s}.

The author of [9] also defined two more special types of manifold, namely C-golden
manifolds and G-golden manifolds.

Definition 40 ([9]). A C-golden manifold is an almost trans-1-golden manifold (M̄n+1, ϕ, ξ, ρ, ḡ)
(or an almost trans-s-golden manifold of type (1, 0)) that satisfies

∇ϕ = 0.

Definition 41 ([9]). A G-golden manifold is an almost trans-1-golden manifold (M̄n+1, ϕ, ξ, ρ, ḡ)
(or an almost trans-s-golden manifold of type (1, 1)) that satisfies

(∇Xϕ)Y =
√

5(ḡ(X, Y)ξ + ρ(Y)X − 2ρ(X)ρ(Y)ξ),

∀X, Y vector fields in M̄.

Remark 42. The geometric properties and examples of C-golden manifolds and G-golden manifolds
are also discussed in [9].
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13.3. Golden∗ Manifold

The concept of a golden∗ manifold was introduced in [9] under the name “G-golden
manifold" for a manifold of any dimension. But here, the dimension is odd.

Definition 42 ([8]). A golden∗ manifold is an almost golden Riemannian contact manifold
(M̄n+1, ϕ, ξ, ρ, ḡ) that satisfies

(∇Xϕ)Y =
√

5(ḡ(X, Y)ξ + ρ(Y)X − 2ρ(X)ρ(Y)ξ), ∀X, Y ∈ Γ(TM̄).

Lemma 7 ([8]). Any golden∗ manifold is a golden Riemannian manifold.

Proposition 23 ([8]). On golden∗ manifolds, the sectional curvature of all plane sections contain-
ing ξ is 1.

Proposition 24 ([8]). If the sectional curvature of any golden∗ manifold is a constant (c), then
c = −1.

Proposition 25 ([8]). On a golden∗ manifold, the golden sectional curvature is 2.

13.4. The (α, p)-Golden Metric Manifolds

Consider an even-dimensional manifold (M̄) that has an α structure (Fα). A Rieman-
nian metric ḡ is fixed such that

ḡ(FαX, Y) = αḡ(X, FαY), (74)

which is equivalent to
ḡ(FαX, FαY) = ḡ(X, Y) (75)

for any vector fields (X, Y ∈ Γ(TM̄), where Γ(TM̄) is the set of smooth sections of TM̄) [10].

Definition 43 ([10]). The Riemannian metric( ḡ) defined on an even-dimensional manifold (M̄)
endowed with an α structure (Fα) that verifies equivalent identities (74) and (75) is called an (α, Fα)-
compatible metric. Thus, one can conclude that the Riemannian metric (ḡ) verifies the following
identity for any X, Y ∈ Γ(TM̄).:

ḡ
(
ϕα,pX, Y

)
− αḡ

(
X, ϕα,pY

)
=

p
2
(1 − α)ḡ(X, Y), (76)

Moreover, ḡ and
(
ϕα,p

)
are related by

ḡ
(
ϕα,pX, Φα,pY

)
=

p
2
(

ḡ
(
ϕα,pX, Y

)
+ ḡ
(
X, ϕα,pY

))
+ p2 ḡ(X, Y) (77)

for any X, Y ∈ Γ(TM̄).

Definition 44 ([10]). An almost (α, p)-golden Riemannian manifold is a triple
(

M̄, ϕα,p, ḡ
)
,

where M̄ is an even-dimensional manifold, ϕα,p is an almost (α, p)-golden structure, and ḡ is a
Riemannian metric that verifies identities (76) and (77).

Proposition 26 ([10]). If
(

M̄, ϕα,p, ḡ
)

is an almost (α, p)-golden Riemannian manifold of dimen-
sion 2m, then the Trace of the ϕα,p structure satisfies

Trace
(

ϕ2
α,p

)
= p · Trace

(
ϕα,p

)
+

5α − 1
2

mp2.
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Definition 45 ([10]). If ∇ is the Levi–Civita connection on (M̄, ḡ), then the covariant derivative
(∇Fα) is a tensor field of type (1, 2) defined by

(∇X Fα)Y := ∇X FαY − Fα∇XY,

for any X, Y ∈ Γ(TM̄).

Remark 43. The necessary and sufficient criteria for a submanifold in an almost (α, p)-golden Rie-
mannian manifold to be an invariant submanifold were also determined by Hretcanu and Crasmareanu
in [10]. For further results on golden Riemannian manifolds, we refer readers to [95–98].
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Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 2007, 53, 199–211.
4. Crasmareanu, M.; Hretcanu, C. Golden differential geometry. Chaos Solitons Fractals 2008, 38, 1229–1238. [CrossRef]
5. Hretcanu, C.E.; Crasmareanu, M. Applications of the golden ratio on Riemannian manifolds. Turkish J. Math. 2009, 33, 179–191.

[CrossRef]
6. Gezer, A.; Cengiz, N.; Salimov, A. On integrability of golden Riemannian structures. Turkish J. Math. 2013, 37, 693–703. [CrossRef]
7. Özkan, M. Prolongations of golden structures to tangent bundles. Differ. Geom. Dyn. Syst. 2014, 16, 227–238.
8. Beldjilali, G. A new class of golden Riemannian manifold. Int. Electron. J. Geom. 2020, 13, 1–8. [CrossRef]
9. Gherici, B. s-golden manifolds. Mediter. J. Math. 2019, 16, 56. [CrossRef]
10. Hretcanu, C.E.; Crasmareanu, M. The (α, p)-golden metric manifolds and their submanifolds. Mathematics 2023, 11, 3046. [CrossRef]
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60. Şahin, F.; Şahin, B.; Erdoğan, F.E. Golden Riemannian manifolds having constant sectional curvatures and their submanifolds.

Mediterr. J. Math. 2022, 19, 171. [CrossRef]

http://dx.doi.org/10.30755/NSJOM.12656
http://dx.doi.org/10.25092/baunfbed.679537
http://dx.doi.org/10.3390/math11234798
http://dx.doi.org/10.1007/BF01236084
http://dx.doi.org/10.2298/FIL1503465A
http://dx.doi.org/10.3390/sym15040877
http://dx.doi.org/10.2298/FIL2304155C
http://dx.doi.org/10.1515/math-2022-0017
http://dx.doi.org/10.1007/BF02413317
http://dx.doi.org/10.3906/mat-2009-8
http://dx.doi.org/10.3390/axioms12100952
http://dx.doi.org/10.1007/s00022-020-00544-5
http://dx.doi.org/10.36890/iejg.838446
http://dx.doi.org/10.1016/j.laa.2016.02.021
http://dx.doi.org/10.1007/s10455-015-9475-z
http://dx.doi.org/10.1007/s00022-021-00590-7
http://dx.doi.org/10.3390/math9192430
http://dx.doi.org/10.1002/mma.8380
http://dx.doi.org/10.1007/s40840-020-00905-y
http://dx.doi.org/10.1007/s40065-020-00307-9
http://dx.doi.org/10.36890/iejg.1240437
http://dx.doi.org/10.3390/math7121209
http://dx.doi.org/10.1007/s00009-022-02094-3


Axioms 2024, 13, 724 53 of 54

61. Ahmad, M.; Qayyoom, M.A. Warped product skew semi-invariant submanifolds of locally golden Riemannian manifolds. Honam
Math. J. 2022, 44, 1–16.

62. Chen, B.-Y. Slant immersions. Bull. Austral. Math. Soc. 1990, 41, 135–147. [CrossRef]
63. Chen, B.-Y. Geometry of Slant Submanifolds; Katholieke Universiteit Leuven: Leuven, Belgium, 1990.
64. Chen, B.-Y.; Tazawa, Y. Slant surfaces with codimension two. Ann. Fac. Sci. Toulouse Math. 1990, 11, 29–43. [CrossRef]
65. Chen, B.-Y.; Garay, O.J. Pointwise slant submanifolds in almost Hermitian manifolds. Turkish J. Math. 2012, 36, 630–640. [CrossRef]
66. Ahmad, M.; Qayyoom, M.A. CR-submanifolds of a golden Riemannian manifold. Palest. J. Math. 2023, 12, 689–696.
67. Hretcanu, C.E.; Blaga, A.M. Warped product submanifolds in metallic Riemannian manifolds. Tamkang J. Math. 2020, 51, 161–186.

[CrossRef]
68. Kupeli, D.N. Singular Semi-Riemannian Geometry; Kluwer Academic Publishers: Dordrecht, The Netherland, 1996.
69. Gupta, G.; Kumar, R.; Sachdeva, R. Geometry of lightlike submanifolds of golden semi-Riemannian manifolds. J. Int. Acad. Phys.

Sci. 2019, 23, 211–227.
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71. Erdoğan, F.E. On some types of lightlike submanifolds of golden semi-Riemannian manifolds. Filomat 2019, 33, 3231–3242.

[CrossRef]
72. Qayyoom, M.A.; Bossly, R.; Ahmad, M. On CR-lightlike submanifolds in a golden semi-Riemannian manifold. AIMS Math. 2024, 9,

13043–13057. [CrossRef]
73. Duggal, K.L.; Jin, D.H. Half lightlike submanifolds of codimension 2. Math. J. Toyama Univ. 1999, 22, 121–161.
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77. Poyraz, N.Ġolden GCR-lightlike submanifolds of golden semi-Riemannian manifolds. Mediterr. J. Math. 2020, 17, 1–16. [CrossRef]
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