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Abstract: The lifetime performance index (LPI) is an important metric for evaluating product quality,
and research on the statistical inference of the LPI is of great significance. This paper discusses both
the classical and Bayesian estimations of the LPI under an adaptive progressive type-II censored
lifetime test, assuming that the product’s lifetime follows a generalized inverse Lindley distribution.
At first, the maximum likelihood estimator of the LPI is derived, and the Newton–Raphson iterative
method is adopted to solve the numerical solution due to the log-likelihood equations having no
analytical solutions. If the exact distribution of the LPI is not available, then the asymptotic confidence
interval and bootstrap confidence interval of the LPI are constructed. For the Bayesian estimation, the
Bayesian estimators of the LPI are derived under three different loss functions. Due to the complex
multiple integrals involved in these estimators, the MCMC method is used to draw samples and
further construct the HPD credible interval of the LPI. Finally, Monte Carlo simulations are used to
observe the performance of these estimators in terms of the average bias and mean squared error,
and two practical examples are used to illustrate the application of the proposed estimation method.

Keywords: generalized inverse Lindley distribution; lifetime performance index; adaptive
progressive type-II censored lifetime test; Bayesian estimation
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1. Introduction

Process capability analysis is a key component of quality management and a core
aspect of statistical process control. This analytical method effectively assesses the po-
tential performance and capability of a process, making it widely applicable in quality
improvement initiatives within production processes [1]. The process capability index, as
the evaluation result of the process capability analysis, measures a process’ ability to meet
specification requirements for product quality characteristics. It provides management
with an intuitive basis for judgment, helping to determine whether the process capability
meets the standards of technical specifications and customer demands [2]. Therefore, the
process capability index holds a crucial position in the science of quality management and
is of significant importance in reducing waste, enhancing product quality, and improving
management levels. Quality management experts and statisticians have proposed various
process capability indices, including Cp, Cpm, Cpk, and Cpmk [3,4]. Each of these indices
has its unique calculation method and application scenarios, offering diverse choices for
process capability assessments across different industries and domains.

With the continuous advancement of manufacturing technologies, consumers are
increasingly concerned about the lifetime of products when making purchasing decisions.
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To enhance their market competitiveness, manufacturers must prioritize the assessment
and improvement of product quality and reliability. Although process capability indices
hold a significant position in quality management, they are not suitable for measuring
product lifetime. Typically, the quality of a product can be assessed by its lifetime, as a
longer lifetime often indicates a higher product quality and reliability. Therefore, there is a
need for a “bigger is better” metric to evaluate product lifetime.

Montgomery [5] proposed a process capability index suitable for one-sided specifica-
tions, named the lifetime performance index δ, which is used to measure the performance
of a product’s lifetime. The mathematical expression of δ is defined as follows:

δ =
µ − L

σ
, (1)

where L is the given lower specification limit, µ is the process mean, and σ is the process
standard deviation. This lifetime performance index (LPI) is particularly applicable to
products where a longer lifetime represents better performance. It provides a quantitative
tool to assist manufacturers in evaluating and improving the lifetime characteristics of
their products. Manufacturers can use the value of this index to determine whether the
lifetime of a product meets specific quality requirements and take appropriate measures to
enhance product reliability and market competitiveness. Shaabani and Jafari [6] conducted
a classical estimation on the LPI, assuming that the product lifetime followed a gamma
distribution, based on a complete sample. İklim [7] constructed bootstrap confidence
intervals of process capability indices for a generalized inverse Lindley distribution, based
on a complete sample. However, due to various constraints such as time costs, material
costs, and the tools for data collection, it is often not feasible to obtain the lifetimes of all
products in a life test. Therefore, scholars have proposed the censored life test as a more
efficient method of data collection, which has been widely applied.

The type-I censored life test, type-II censored life test, and hybrid censored life test
have been extensively studied by researchers. These censored tests, however, lack flexibility
as they do not allow for the removal of test products during the test, which hinders the
implementation of related studies. To address these issues, Cohen and Clifford [8] proposed
the progressive censored test, which can reduce the testing time and material costs to some
extent. Kilany and Lobna [9] considered the maximum likelihood (ML) estimation and
Bayesian estimation of the LPI based on the three-parameter Omega distribution, using a
progressive type-II censored sample. Mohammad and Mahdi [10] assumed that the product
lifetime followed a Weibull distribution and discussed the Bayesian estimation of the LPI
based on progressive censored data. Hanan et al. [11] assumed that the sample followed an
Ishita distribution and considered the estimation of the LPI based on a progressive type-II
censored scheme.

However, with the continuous advancement of science and technology, product life-
times are becoming longer. Even when using a progressive censored life test, there may still
be cases where the testing duration becomes excessively long or no failures are observed
during the test. To address these issues, Kundu and Joarder [12] proposed the progressive
type-II hybrid censored life test, which combines the progressive type-II censored test with
the hybrid censored test. This test ensures that the experiment ends within a predetermined
time frame. However, this test may not guarantee that a sufficient number of failures are
collected, and there may even be no failures observed. As a result, the statistical inference
results and efficiency may be unsatisfactory. Building upon this, Ng et al. [13] proposed
the adaptive progressive type-II censored life test. In this test, the censored scheme can be
adjusted in a timely manner based on the actual situation to ensure a sufficient number of
failure data are collected. This approach can flexibly handle potential changes during the
test, improving the statistical inference results and efficiency.

In a censored life test, n products are put into the test. Only m failed products need to be
observed. The censored scheme R = (R1, R2, . . . , Rm) satisfies R1 + R2 + . . . + Rm = n − m.
When the first failed product occurs, the failure time is recorded as X1:m:n, and then R1



Axioms 2024, 13, 727 3 of 22

non-failed products are arbitrarily removed. When the second failed product occurs, the
failure time is recorded as X2:m:n, and then R2 non-failed products are arbitrarily removed.
The process continues until the m-th failure occurs. In the meantime, the remaining
Rm non-failed products are removed, bringing the test to a close. The recorded failure
times X1:m:n, X2:m:n, . . . , Xm:m:n are termed progressive type-II censored samples, and the
arbitrarily removed non-failed products R1, R2, . . . , Rm are termed the progressive type-II
censored scheme.

The adaptive progressive type-II censored test can be seen as a combination of the
type-I censored test and the progressive type-II censored test. Before the test begins, a time
T is set to represent the ideal duration of the test. In fact, the actual duration of the test is
allowed to exceed T. If the number of failures observed before the time T reaches m, the
test ends before T. However, if the test time exceeds T and m failures have not yet been
observed, the test should end as soon as possible. The experimenters should make some
adjustments to ensure the rapid occurrence of m failures. Therefore, it is necessary to retain
as many non-failed products as possible throughout the test period. The two cases of the
adaptive progressive type-II censored test are as follows:

Case 1. If m failure times have been recorded before the time T, then the censored
scheme R = (R1, R2, . . . , Rm) remains consistent with the predetermined one.

Case 2. If only k (k < m) failure times have been recorded before the time T, that is,

Xk:m:n < T < Xk+1:m:n.

In order to retain as many non-failed products as possible in the experiment, the experimenter
stops removing non-failed products once the (k + 1)-th failure time is recorded. All remaining
non-failed products are removed only after the m-th failure time has been recorded. Therefore,
R1, R2, . . . , Rk remain consistent with the predetermined censored scheme. But there are
Rk+1 = Rk+2 = . . . = Rm−1 = 0 and Rm = n − m − R1 − R2 − . . . − Rk. In other words, the
censored scheme is adjusted to R = (R1, . . . , Rk, 0, . . . , 0, Rm).

The specific experimental process can be seen in Figure 1.
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Figure 1. Schematic representation of the adaptive progressive type-II censored test.

The process capability index allows for the continuous monitoring of process quality,
ensuring that the produced products meet specification requirements and providing a basis
for reducing product failure costs. Typically, the process capability index is calculated based
on the lifetime of products; thus, a longer lifetime is generally associated with a higher
product quality. Considering this, this paper chooses to use the LPI to evaluate product
quality. The lifetime of many products may not follow a normal distribution and may
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instead exhibit characteristics such as an exponential distribution, Weibull distribution, or
Burr distribution. Consequently, extensive research has been conducted on the inference of
the LPI. Table 1 provides a review of more references on the LPI.

Table 1. The review of references on the LPI.

References Sample Type Lifetime Model Focus

Kilany and Lobna [9] Progressive type-II censored
sample

Omega distribution ML and Bayesian estimation
Mohammad and Mahdi [10] Weibull distribution Bayesian estimation

Hanan et al. [11] Ishita distribution ML and Bayesian estimation
Hassan et al. [14] Generalized order statistics Pareto distribution ML and Bayesian estimation

Wu et al. [15] Progressive type-I interval
censored sample

Burr XII distribution Sampling design
Wu and Song [16] Chen distribution Sampling design

Zhang and Gui [17] General progressive type-II
censored sample Pareto distribution ML and Bayesian estimation

Rady et al. [18] First failure progressive censored
sample

Topp Leone Alpha power
Exponential distribution ML estimation

Alharthi and Fatimah [19] Generalized type-I hybrid
censored sample

Generalized half-logistic
distribution ML and Bayesian estimation

The generalized versions of statistical models offer greater flexibility for modeling
and analyzing real-world data. Among these, the generalized inverse Lindley distribu-
tion (GILD) is a novel statistical model suitable for analyzing inverted bathtub survival
information. More details about the GILD can be found in Section 2. To our knowledge,
the inference of the LPI has not been addressed in the case where the shape and scale
parameters of the GILD are unknown. Therefore, this paper assumes that the lifetimes of
the products follow the GILD and considers the estimation of the LPI under the adaptive
progressive type-II censored sample.

The remaining sections are organized as follows: In Section 2, a brief overview of the
GILD is provided, and the expressions of the LPI for the GILD are derived. In Section 3, the
maximum likelihood (ML) estimator of the LPI is obtained, and the asymptotic confidence
interval (ACI) is constructed. The bootstrap confidence interval (BCI) is discussed in
Section 4. In Section 5, using the symmetric entropy loss function (SELF), LINEX loss
function (LLF), and general entropy loss function (GELF), the Bayesian estimators of the
LPI are derived based on the gamma priors, and the highest posterior density (HPD)
credible intervals are constructed. In Section 6, the performance of these estimators and
confidence intervals are compared through Monte Carlo simulations. In Section 7, two
sets of real data are used to illustrate the feasibility of these estimation methods. Finally,
Section 8 presents the conclusions of this paper.

2. Generalized Inverse Lindley Distribution

In real life, there is a type of data whose hazard function often exhibits a distinctive
shape known as the “upside-down bathtub” shape. This type of data includes, but is not
limited to, the failure rates of electronic products or mechanical devices, the mortality rates
of biological individuals, the occurrence rates of natural disasters, and product demand
rates. Specifically, this “upside-down bathtub”-shaped hazard function provides a more
accurate depiction of the entire process from the occurrence and development to the
eventual decline of certain phenomena. A profound understanding of this pattern holds
significant importance for the prediction and management of risks in relevant domains.
Addressing this characteristic, Sharma et al. [20] proposed a statistical model called the
generalized inverse Lindley distribution. This distribution is an extension of the inverse
Lindley distribution and is particularly suitable for modeling survival information with
an “upside-down bathtub” shape. By introducing a new parameter, the GILD can more
accurately capture and describe the true characteristics of the data, thus providing a more
powerful tool for risk prediction and management.

Some research on the GILD has been conducted. Basu et al. [21] considered the
classical estimation and Bayesian estimation for the GILD under the progressive type-I
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hybrid censoring with binomial removal. Vikas [22] assumed that X and Y represented the
survival times of two groups of cancer patients under different treatment plans, respectively,
and that they were independent and followed the GILD. Under this premise, the Bayesian
estimator of P(X > Y) was proposed. Devendra et al. [23] used generalized order statistics
to obtain two types of estimators for the parameters of the GILD. Fatma et al. [24] considered
the generalized inverse Lindley stress–strength reliability model under different sampling
designs and obtained the maximum likelihood estimator of stress–strength reliability. More
related literature can be found in the references [25–29].

Let X be a random variable that follows the GILD with the shape parameter λ > 0
and scale parameter β > 0, denoted by GILD(λ, β). The probability density function
(PDF), cumulative distribution function (CDF), and hazard function (HF) are given as
(Sharma et al. [20])

f (x|λ, β) =
λβ2(1 + xλ)

x2λ+1(1 + β)
exp(−βx−λ), x > 0, (2)

F(x|λ, β ) = [1 +
β

xλ(1 + β)
] exp(−βx−λ), x > 0, (3)

and

h(x|λ, β ) =
λβ2(1 + xλ)

xλ+1[xλ(1 + β)(eβx−λ − 1)− β]
, x > 0. (4)

Figure 2 presents the diagrams of the PDF and HF for the GILD with different combi-
nations of the parameters λ and β, respectively.
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In the following discussion, we always suppose that λ > 2. Let the product lifetime X
follow the GILD with the PDF (2) and CDF (3); the LPI δ can be derived as

δ =
g1(λ, β)− λ(1 + β)L

g2(λ, β)
, (5)

where
g1(λ, β) = β

1
λ [λ(1 + β)− 1]Γ(1 − 1

λ
), (6)

g2(λ, β) = β
1
λ

{
λ(1 + β)[λ(1 + β)− 2][Γ(1 − 2

λ
)− Γ2(1 − 1

λ
)]− Γ2(1 − 1

λ
)

}1/2
. (7)

If the product lifetime X exceeds the lower specification limit L (i.e., X > L), then
the product is marked as a conforming product. Otherwise, the product is marked as an
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unconforming product. The probability P(X > L) is referred to as the conforming rate of
the product, denoted as Pcr. Therefore, Pcr can be defined as

Pcr = P(X > L)

= 1 −
{

1 + λλ β(1+β)λ−1

[g1(λ,β)−δg2(λ,β)]λ

}
exp

{
−λλ β(1+β)λ

[g1(λ,β)−δg2(λ,β)]λ

}
.

. (8)

From Equation (8), it is evident that, for the given values of λ and β, the conforming
rate Pcr and δ exhibit a strict positive correlation relationship. To show this relationship,
Table 2 lists the values of the LPI δ and the corresponding conforming rate Pcr under
λ = 3.1956 and β = 7.3937.

Table 2. The values of δ and Pcr with (λ, β) = (3.1956, 7.3937).

δ Pcr δ Pcr δ Pcr

∞ 0.0000 0.20 0.4633 0.60 0.8259
−3.00 0.0150 0.25 0.5015 0.65 0.8706
−2.50 0.0215 0.30 0.5425 0.70 0.9103
−2.00 0.0322 0.35 0.5862 0.75 0.9432
−1.50 0.0511 0.40 0.6322 0.80 0.9682
−1.00 0.0869 0.45 0.6801 0.85 0.9849
0.00 0.3377 0.50 0.7291 0.90 0.9943
0.10 0.3953 0.55 0.7782 0.95 0.9984

3. Maximum Likelihood Estimation

Let X = (X1:m:n, X2:m:n, . . . , Xm:m:n) be an adaptive progressive type-II censored sam-
ple from GILD(λ, β); the relative censored scheme is R = (R1, . . . , Rk, 0, . . . , 0, Rm), where
Rm = n − m − R1 − . . . − Rk. Denote x = (x1:m:n, x2:m:n, . . . , xm:m:n) as the observation of X.
The likelihood function of λ and β is

l(λ, β|x ) = A[1 − F(xm|λ, β )]Rm [
m
∏
i=1

f (xi|λ, β )]
k

∏
i=1

[1 − F(xi|λ, β )]Ri

= A
λmβ2m

(1 + β)m [1 − e−βx−λ
m − βe−βx−λ

m

xλ
m(1 + β)

]

Rm

[
m
∏
i=1

(1 + xλ
i )e

−βx−λ
i

x2λ+1
i

]

×
k

∏
i=1

[1 − e−βx−λ
i − βe−βx−λ

i

xλ
i (1 + β)

]Ri

, (9)

where A =
m
∏
i=1

(n − i + 1 −
i−1
∑

j=1
Rj) is a constant and xi is used instead of xi:m:n for simplicity.

Then, the log-likelihood function is given by

L(λ, β|x ) = ln A + m ln
λβ2

1 + β
− β

m
∑

i=1
x−λ

i + Rm ln[1 − e−βx−λ
m − βe−βx−λ

m

xλ
m(1 + β)

]

+
m
∑

i=1
[ln(1 + xλ

i )− (2λ + 1) ln xi] +
k
∑

i=1
Ri ln[1 − e−βx−λ

i − βe−βx−λ
i

xλ
i (1 + β)

]

. (10)
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The partial derivatives of the log-likelihood function with respect to λ and β are
as follows:

∂L(λ, β|x )
∂λ

= β
k
∑

i=1

Rix−λ
i e−βx−λ

i (ln xi)[1 − (β + 1)−1 + β(β + 1)−1x−λ
i ]

e−βx−λ
i + β(β + 1)−1e−βx−λ

i x−λ
i − 1

+β
Rmx−λ

m e−βx−λ
m (ln xm)[1 − (β + 1)−1 + β(β + 1)−1x−λ

m ]

e−βx−λ
m + β(β + 1)−1e−βx−λ

m x−λ
m − 1

+
m
λ
− 2

m
∑

i=1
ln xi +

m
∑

i=1
(βx−λ

i ln xi +
x−λ

i ln xi

x−λ
i + 1

)

. (11)

∂L(λ, β|x )
∂β

= − β

β + 1

k
∑

i=1

Ri(β + βxλ
i + 2xλ

i + 1)

xλ
i (β + βxλ

i + xλ
i − xλ

i eβx−λ
i − βxλ

i eβx−λ
i )

− βRm(β + βxλ
m + 2xλ

m + 1)

xλ
m(β + 1)(β + βxλ

m + xλ
m − xλ

meβx−λ
m − βxλ

meβx−λ
m )

+
m(β + 2)
β(β + 1)

−
m
∑

i=1
x−λ

i

. (12)

Therefore, the ML estimators of λ and β, say, λ̂ and β̂, are the solutions of Equation (13).{
∂L(λ,β|x )

∂λ = 0
∂L(λ,β|x )

∂β = 0
. (13)

Due to the invariance of the maximum likelihood estimation, the ML estimator δ̂ML
can be obtained by putting λ̂ and β̂ into Equation (5), that is,

δ̂ML =
g1(λ̂, β̂)− λ̂(1 + β̂)L

g2(λ̂, β̂)
. (14)

Equation (13) is nonlinear and does not admit an analytical solution. Therefore, we
employ a numerical iterative method to solve it. In this paper, we utilize the Newton–
Raphson iteration approach, and the iteration process is provided in Algorithm 1.

Algorithm 1. Newton–Raphson iteration approach using calculate ML estimate of δ

(1) Initial Guess: Start with an initial guess (λ(0), β(0)) for the root of Equation (13).
(2) Calculate the Derivative: Find the first partial derivatives of the Equations (11) and (12).
(3) Iteration: For each iteration j, calculate the next approximation (λ(j+1), β(j+1)) by using the
following equation:

(λ(j+1), β(j+1))
T
= (λ(j), β(j))

T
− [I2(λ

(j), β(j))]
−1

I1(λ
(j), β(j)). (15)

(4) Convergence Check: Check if the absolute or relative error between (λ(j+1), β(j+1)) and
(λ(j), β(j)) is less than a predetermined tolerance level. If it is, then (λ(j+1), β(j+1)) is considered a
root of the Equation (13), and set λ̂ = λ(j+1) and β̂ = β(j+1).
(5) Repeat: If the convergence criterion is not met, repeat the process from the step (3) with
(λ(j+1), β(j+1)) as the new approximation.
(6) Termination: The process is terminated when the accuracy level is achieved or after a
maximum number J of iterations is reached.
(7) the ML estimator δ̂ML can be obtained according to Equation (14).
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In the above algorithm, there are

I1(λ, β) =

[
∂L(λ,β|x )

∂λ
∂L(λ,β|x )

∂β

]
, (16)

I2(λ, β) =

 ∂2L(λ,β|x )
∂λ2

∂2L(λ,β|x )
∂λ∂β

∂2L(λ,β|x )
∂β∂λ

∂2L(λ,β|x )
∂β2

, (17)

and

∂2L(λ, β|x )
∂λ2 = β2

k
∑

i=1

Rix−2λ
i (ln xi)

2(β + βxλ
i − 2xλ

i − x2λ
i )

β + βxλ
i + xλ

i − xλ
i eβx−λ

i − βxλ
i eβx−λ

i
− β

m
∑

i=1

(ln xi)
2

xλ
i

− β4

(β + 1)2

k
∑

i=1

Rix4λ
i (ln xi)

2e−2βx−λ
i (xλ

i + 1)2

[e−βx−λ
i + β(β + 1)x−λ

i e−βx−λ
i − 1]

2 − m
λ2

+
β2Rmx−2λ

m (ln xm)
2(β + βxλ

m − 2xλ
m − x2λ

m )

β + βxλ
m + xλ

m − xλ
meβx−λ

m − βxλ
meβx−λ

m
+

m
∑

i=1

xλ
i (ln xi)

2

xλ
i + 1

− β4

(β + 1)2
Rmx4λ

m (ln xm)
2e−2βx−λ

m (xλ
m + 1)2

[e−βx−λ
m + β(β + 1)x−λ

m e−βx−λ
m − 1]

2 −
m
∑

i=1

x2λ
i (ln xi)

2

(xλ
i + 1)2

, (18)

∂2L(λ, β|x )
∂β2 =

1

(β + 1)3

k
∑

i=1

Rix−3λ
i e−βx−λ

i (β + 2β2 + β3 + βxλ
i − xλ

i )

e−βx−λ
i + β(β + 1)−1x−λ

i e−βx−λ
i − 1

+
2m

β2(β + 1)2

+
1

(β + 1)3

k
∑

i=1

Rix−3λ
i e−βx−λ

i (3β2xλ
i + β3xλ

i − 2x2λ
i )

e−βx−λ
i + β(β + 1)−1x−λ

i e−βx−λ
i − 1

− 2m(β + 2)
β2(β + 1)

− β2

(β + 1)4

k
∑

i=1

Rix−4λ
i e−2βx−λ

i (β + βxλ
i + 2xλ

i + 1)2

[e−βx−λ
i + β(β + 1)−1x−λ

i e−βx−λ
i − 1]

2 +
m(β + 2)

β(β + 1)2

+
1

(β + 1)3
Rmx−3λ

m e−βx−λ
m (β + 2β2 + β3 + βxλ

m − xλ
m)

e−βx−λ
m + β(β + 1)−1x−λ

m e−βx−λ
m − 1

+
1

(β + 1)3
Rmx−3λ

m e−βx−λ
m (3β2xλ

m + β3xλ
m − 2x2λ

m )

e−βx−λ
m + β(β + 1)−1x−λ

m e−βx−λ
m − 1

− β2

(β + 1)4
Rmx−4λ

m e−2βx−λ
m (β + βxλ

m + 2xλ
m + 1)2

[e−βx−λ
m + β(β + 1)−1x−λ

m e−βx−λ
m − 1]

2

,

(19)

∂2L(λ, β|x )
∂λ∂β

= − β

(β + 1)

k
∑

i=1

Rix−2λ
i (ln xi)(xλ

i + 1)(β + β2 − βxλ
i − 2xλ

i )
2

β + βxλ
i + xλ

i − xλ
i eβx−λ

i − βxλ
i eβx−λ

i

+
β3

(β + 1)3

k
∑

i=1

Rix−4λ
i e−2βx−λ

i (ln xi)(xλ
i + 1)(β + βxλ

i + 2xλ
i + 1)

[e−βx−λ
i + β(β + 1)−1x−λ

i e−βx−λ
i − 1]

2

− β

(β + 1)
Rmx−2λ

m (ln xm)(xλ
m + 1)(β + β2 − βxλ

m − 2xλ
m)

2

β + βxλ
m + xλ

m − xλ
meβx−λ

m − βxλ
meβx−λ

m

+
β3Rmx−4λ

m e−2βx−λ
m (ln xm)(xλ

m + 1)(β + βxλ
m + 2xλ

m + 1)

(β + 1)3[e−βx−λ
m + β(β + 1)−1x−λ

m e−βx−λ
m − 1]

2 +
m
∑

i=1
x−λ

i ln xi

. (20)
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∂2L(λ, β|x )
∂β∂λ

= − β

(β + 1)

k
∑

i=1

Rix−2λ
i (ln xi)(xλ

i + 1)(β + β2 − βxλ
i − 2xλ

i )
2

β + βxλ
i + xλ

i − xλ
i eβx−λ

i − βxλ
i eβx−λ

i

+
β3

(β + 1)3

k
∑

i=1

Rix−4λ
i e−2βx−λ

i (ln xi)(xλ
i + 1)(β + βxλ

i + 2xλ
i + 1)

[e−βx−λ
i + β(β + 1)−1x−λ

i e−βx−λ
i − 1]

2

− β

(β + 1)
Rmx−2λ

m (ln xm)(xλ
m + 1)(β + β2 − βxλ

m − 2xλ
m)

2

β + βxλ
m + xλ

m − xλ
meβx−λ

m − βxλ
meβx−λ

m

+
β3Rmx−4λ

m e−2βx−λ
m (ln xm)(xλ

m + 1)(β + βxλ
m + 2xλ

m + 1)

(β + 1)3[e−βx−λ
m + β(β + 1)−1x−λ

m e−βx−λ
m − 1]

2 +
m
∑

i=1
x−λ

i ln xi

. (21)

The preceding discussion has made it evident that Equation (13) is complex, precluding
the derivation of an exact expression for the ML estimators of λ and β. Consequently, it is
impractical to ascertain precise confidence intervals. Considering the above, we construct
an ACI for δ using the delta method in this paper. An ACI is constructed using the principles
of asymptotic theory, which deals with the behavior of estimators and statistical tests as
the sample size grows indefinitely. The primary idea is that, as the sample size increases,
the distribution of the estimator tends to a normal distribution due to the central limit
theorem. This allows for the approximation of the sampling distribution of the estimator
with a normal distribution, even if the underlying population distribution is not normal.

The Fisher information matrix is

H(λ, β) = −I2(λ, β). (22)

Let Ψ(λ, β) = ( ∂δ
∂λ , ∂δ

∂β ),

∂δ

∂λ
= g−1

2 (λ, β)
∂g1(λ, β)

∂λ
− (1 + β)L

g2(λ, β)
− [g1(λ, β)− λ(1 + β)L]

g2
2(λ, β)

∂g2(λ, β)

∂λ
, (23)

∂δ

∂β
= g−1

2 (λ, β)
∂g1(λ, β)

∂β
− λL

g2(λ, β)
− [g1(λ, β)− λ(1 + β)L]

g2
2(λ, β)

∂g2(λ, β)

∂β
. (24)

Let H−1(λ, β) be the inverse matrix of H(λ, β); then, according to the delta method,
the estimate of the variance r is obtained as follows:

r̂ = Ψ(λ̂, β̂)H−1(λ̂, β̂)[Ψ(λ̂, β̂)]
T

. (25)

The 100(1 − γ)% ACI of the LPI δ is

(δ̂ML − zγ/2
√

r̂, δ̂ML + zγ/2
√

r̂), (26)

where zγ/2 is the upper γ/2 quantile of the standardized normal distribution.

4. Bootstrap Confidence Interval

The bootstrap method is a resampling-based statistical inference approach that is
widely used for constructing confidence intervals for unknown parameters. The core aim
of this method is to generate some bootstrap samples through repeated sampling from
the original sample and then calculate the required statistics for each bootstrap sample to
obtain the empirical distribution of the statistic. Compared to the ACI, the BCI has the
following advantages:

(i) The BCI does not require assumptions such as the population following a normal
distribution, and it is applicable to complex statistical models and non-normal data.

(ii) The BCI can more accurately reflect the actual distribution characteristics of the
parameters, especially when the sample size is small or the distribution is skewed.
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(iii) The computation process is relatively flexible and can be applied to various sta-
tistical inference problems, such as parameter estimation, hypothesis testing, and
model evaluation.

Therefore, the bootstrap method has received widespread attention and been widely
applied in contemporary statistical research, and it has become an important statistical
inference tool. Under various distributional assumptions, Ouyang et al. [30] constructed
three bootstrap confidence intervals for the process capability index Cpc and compared
their performance. Saha et al. [31] employed five bootstrap methods to construct the BCIs
of the process capability index Cpc for an exponentiated exponential distribution. Based on
a progressive type-II right censored sample, Tolba et al. [32] constructed the BCI unknown
parameter for a one-parameter Akshaya distribution. For more research about the bootstrap
method, please refer to [33–36].

In this section, we use the bootstrap-t method (Hall [37]) to construct the BCI of the
LPI δ. The steps are presented in the following Algorithm 2.

Algorithm 2. The calculation process of the bootstrap-t method to construct the BCI of δ

(1) According to Algorithm 1, compute the ML estimates λ̂ and β̂ under the censored sample
(x1, x2, . . . , xm) and censored scheme (R1, R2, . . . , Rm). Furthermore, the ML estimate of δ,
denoted as δ̂, is obtained.
(2) Generate adaptive progressive type-II censored samples from GILD(λ̂, β̂) with
(R1, R2, . . . , Rm), and denote as (x∗1 , x∗2 , . . . , x∗m).
(3) As in step (1), calculate the ML estimates of λ and β based on (x∗1 , x∗2 , . . . , x∗m), say λ̂∗ and β̂∗.
Then, obtain the Bootstrap sample estimates δ̂∗ by putting λ̂∗ and β̂∗ into Equation (5).

(4) Compute the statistic τ =
√

J(δ̂ ∗ −δ̂)[var(δ̂∗)]−1/2, where var(δ̂∗) is estimated by Equation
(22).
(5) Repeat steps (2) to (4) for J times and obtain (τ1, τ2, . . . , τJ), where τ1 < τ2 < . . . < τJ .
(6) Let Fτ(t) = P(τ ≤ t) be the CDF of τ. For a given γ, define

δ̂Boot−t(γ) = δ̂ + J−1/2F−1
τ (γ)

√
var(δ̂). Thus, the BCI of δ is

(δ̂Boot−t(γ/2), δ̂Boot−t(1 − γ/2)). (27)

5. Bayesian Estimation

Bayesian statistics is a branch of statistics that applies the Bayesian theorem to update
the probability of a hypothesis as more evidence or information becomes available. It
provides a powerful framework for making inferences based on prior knowledge com-
bined with new data. Bayesian statistics allows the incorporation of prior knowledge or
expert opinions into the analysis, which can be particularly useful when data are scarce or
expensive to obtain.

The gamma prior is a commonly used prior distribution in Bayesian statistics, often
employed in establishing Bayesian inference models for parameters, and it is particularly
suitable for parameters in the positive domain. The gamma distribution itself is concise
in form, allowing for flexible modeling of various prior information, and does not lead to
overly complex inference and computational issues. Additionally, the use of a gamma prior
can yield a more explicit form of the posterior distribution. Thus, we suppose that λ and β
are independent and follow the gamma prior Γ(a, b) and Γ(c, d), respectively, that is,

π(λ) =
ba

Γ(a)
λa−1e−bλ, λ > 0 , a, b > 0, (28)

π(β) =
dc

Γ(c)
βc−1e−dβ, β > 0, c, d > 0. (29)
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The joint prior distribution of λ and β is

π(λ, β) =
badc

Γ(a)Γ(c)
λa−1βc−1e−bλ−dβ, λ, β > 0. (30)

According to the Bayesian theorem, the joint posterior distribution of λ and β under
the adaptive progressive type-II censored samples is given by

π(λ, β|x ) =
l(λ, β|x )π(λ, β)∫ +∞

0

∫ +∞
0 l(λ, β|x )π(λ, β)dλdβ

=
λm+a−1β2m+c−1e−bλ−dβ

B(1 + β)m [1 − e−βx−λ
m − βe−βx−λ

m

xλ
m(1 + β)

]Rm

×[
m
∏
i=1

(1 + xλ
i )e

−βx−λ
i

x2λ+1
i

]
k

∏
i=1

[1 − e−βx−λ
i − βe−βx−λ

i

xλ
i (1 + β)

]Ri

. (31)

where B =
∫ +∞

0

∫ +∞
0 l(λ, β|x )π(λ, β)dλdβ is a constant.

In this section, we select the symmetric entropy loss function, LINEX loss function,
and general entropy loss function to derive the Bayesian estimators of the LPI δ.

Let α̂ be the estimator of a parameter α; then, the three loss functions are defined
as follows:

(i) SELF (Xu et al. [38]):

SSE(α̂, α) =
α̂

α
+

α

α̂
− 2. (32)

(ii) LLF (Varian [39]):

SLL(α̂, α) = eρ1(α̂−α) − ρ1(α̂ − α)− 1, ρ1 ̸= 0 (33)

(iii) GELF (Calabria and Pulcini [40]):

SGE(α̂, α) = (
α̂

α
)

ρ2

− ρ2 ln(
α̂

α
)− 1, ρ2 ̸= 0. (34)

Given the observation x, the Bayesian estimators of parameter α under the SELF, LLF,
and GELF are expressed by Equation (35), Equation (36), and Equation (37), respectively. In
the expressions below, E(·|x ) denotes the posterior expectation.

α̂SE[
E(α|x )

E(α−1|x )
]1/2, (35)

α̂LL −
1
ρ1

ln[E(e−ρ1α|x )], (36)

α̂GE = E(α−ρ2 |x )−
1

ρ2 . (37)

Thus, based on adaptive progressive type-II censored samples, the Bayesian estimator
δ̂SE of δ under the SELF is presented by

δ̂SE = [ E(δ|x )
E(δ−1|x ) ]

1/2

= [
∫ +∞

0
∫ +∞

0 δπ(λ,β|x )dλdβ∫ +∞
0

∫ +∞
0 δ−1π(λ,β|x )dλdβ

]
1/2 . (38)

The Bayesian estimator δ̂LL of δ under the LLF is

δ̂LL = − 1
ρ1

ln[E(e−ρ1δ|x )]
= − 1

ρ1
ln[

∫ +∞
0

∫ +∞
0 e−ρ1δπ(λ, β|x )dλdβ]

. (39)
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The Bayesian estimator δ̂GE of δ under the GELF is

δ̂GE = E(δ−ρ2 |x )
−

1
ρ2

= [
∫ +∞

0

∫ +∞
0 δ−ρ2 π(λ, β|x )dλdβ]

−
1
ρ2

. (40)

However, the inherent complexity of δ results in these expressions involving numer-
ous complex integrals, making analytical solutions difficult to obtain. Commonly used
methods for obtaining approximate solutions include the Lindley approximation and the
Tierney–Kadane (TK) approximation. The Lindley approximation is relatively convenient
as it does not involve complex integrals or iterative processes; it only requires the calcu-
lation of the partial derivatives of the posterior density of the parameters. However, its
drawbacks include the inability to construct credible intervals for the parameters, and the
final approximation depends on the maximum likelihood estimates. In contrast, the TK
approximation is less complex in terms of computation but involves solving nonlinear
equations. After considering various factors, this paper employs the Markov chain Monte
Carlo (MCMC) method to perform iterative computations.

Gibbs sampling and the Metropolis–Hastings (MH) algorithm are two of the most
commonly used methods in the MCMC method. Gibbs sampling is designed to draw
samples from a multidimensional probability distribution, while the MH algorithm is used
to sample from complex probability distributions. The key to Gibbs sampling is identifying
the conditional distribution for each variable. Typically, this requires us to compute the
conditional probability distribution of each variable given the values of the other variables.
If the conditional distribution cannot be directly computed, the MH algorithm can be
utilized for sampling. The MH algorithm works by setting acceptance–rejection criteria for
different candidate values, ensuring that the final set of generated samples adheres to the
target distribution.

According to Equation (31), the full condition distributions of λ and β are given below.

π(λ|x, β ) ∝ λm+a−1e−bλ[1 − e−βx−λ
m − βe−βx−λ

m

xλ
m(1 + β)

]

Rm

[
m
∏
i=1

(1 + xλ
i )e

−βx−λ
i

x2λ+1
i

]

×
k

∏
i=1

[1 − e−βx−λ
i − βe−βx−λ

i

xλ
i (1 + β)

]

Ri
, (41)

π(β|x, λ ) ∝
β2m+c−1e−dβ

(1 + β)m (
m
∏
i=1

e−βx−λ
i )[1 − e−βx−λ

m − βe−βx−λ
m

xλ
m(1 + β)

]

Rm

×
k

∏
i=1

[1 − e−βx−λ
i − βe−βx−λ

i

xλ
i (1 + β)

]

Ri . (42)

From a formal perspective, both the aforementioned full conditional distributions
cannot be expressed as any known distribution. Therefore, this paper combines Gibbs
sampling with the MH algorithm to draw samples from Equations (41) and (42). Assuming
that the proposal distributions for λ and β are both normal distributions, the calculation
steps are as follows:

Step 1. Set the initial values (λ(0), β(0)) and start with j = 1.
Step 2. Generate the candidate values λ∗ and β∗ from the proposal distributions

N(λ(j−1), var(λ)) and N(β(j−1), var(β)), respectively.
Step 3. Generate u1 from the uniform distribution U(0, 1), and calculate v1 from the

formula below.

v1 = min

1,
π(λ ∗

∣∣∣x, β(j−1) )

π(λ(j−1)
∣∣x, β(j−1) )

.
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Step 4. Determine λ(j) based on the following acceptance rules.

λ(j) =

{
λ∗ , u1 ≤ v1
λ(j−1) , u1 > v1

.

Step 5. Generate u2 from the uniform distribution U(0, 1), and calculate v2 from the
formula below.

v2 = min

1,
π(β ∗

∣∣∣x, λ(j) )

π(β(j−1)
∣∣x, λ(j) )

.

Step 6. Determine β(j) based on the following acceptance rules.

β(j) =

{
β∗ , u2 ≤ v2
β(j−1) , u2 > v2

.

Step 7. Set j = j + 1.
Step 8. Repeat steps 2 to 7 for J times. We can obtain a sequence of samples

(λ(1), β(1)), (λ(2), β(2)), . . . , (λ(J), β(J)). By substituting these parameter samples into Equa-
tion (5), a sequence of samples for δ can be obtained, that is, δ(1), δ(2), . . . , δ(J). After
discarding the first J0 samples before the Markov chain reaches a stationary state, the
Bayesian estimators of δ under the SELF, LLF and GELF are given by

δ̂SE =

[
(

J

∑
i=J0+1

δ(i))/
J

∑
i=J0+1

(δ(i))
−1

]1/2

, (43)

δ̂LL = − 1
ρ1

ln[
1

J − J0

J

∑
i=J0+1

exp(−ρ1δ(i))], (44)

and

δ̂GE = [
1

J − J0

J

∑
i=J0+1

(δ(i))
−ρ2

]

−
1
ρ2

. (45)

Chen and Shao [41] mentioned that after sorting the sample sequence obtained by
the MCMC method in ascending order, the corresponding HPD credible interval can be
constructed. Let the sorted sequence be denoted as δ1, δ2, . . . , δJ . The 100(1 − γ)% HPD
credible interval for the life performance index δ is

(δi∗, δi∗+[J(1−γ)]), (46)

where i∗ satisfies the condition below, and [s] represents the largest integer not exceeding s.

δi∗+[J(1−γ)] − δi∗ = min
1≤i≤J−[J(1−γ)]

(δi+[J(1−γ)] − δi). (47)

6. Monte Carlo Simulation

The purpose of this section is to compare the performance of the ML estimator and
Bayesian estimators under different censoring schemes (as shown in Table 3) using the
mean squared error (MSE) and average bias (AB) for evaluation, which are defined as

MSE =
1
N

N

∑
i=1

(δ̂i − δreal)
2

and AB =
1
N

N

∑
i=1

(δ̂i − δreal).
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Table 3. The predetermined censored schemes.

Serial Number Censored Scheme (CS)

I R1 = R2 = . . . = Rm−1 = 0, Rm = n − m
II R1 = n − m/2, R2 = R3 = . . . = Rm−1 = 0, Rm = 3m/2
III R1 = Rm = (n − m)/2, R2 = R3 = . . . = Rm−1 = 0

Additionally, this section compares the estimation effectiveness of the ACI, BCI, and
HPD credible interval in terms of the coverage probability (CP) and average width (AW),

which is defined by AW = 1
N

N
∑

i=1
(δ̂i,up − δ̂i,low). In the Monte Carlo simulation, the number

of repetitions is set to N = 1000, with the true parameter values (λreal , βreal) = (2.5, 1.0).
The lower specification limit is set to L = 0.5, and then the true LPI value is δreal = 0.5983.
Then, ρ1 = 2.0 and ρ2 = 0.5 are set, respectively. Without loss generality, T = xm/2 is
set. Next, MATLAB R2021a simulations are used to perform the adaptive progressive
type-II censored test to obtain adaptive progressive type-II censored samples. Three priors
are considered, namely, Prior 1, Prior 2, and Prior 3. Prior 1 is a non-informative prior,
that is, a = b = c = d = 0. The hype-parameters of Prior 2 are (a, b) = (2.0, 3.0) and
(c, d) = (4.0, 1.0). The hype-parameters of Prior 3 are (a, b) = (0.5, 0.25) and (c, d) =
(0.5, 0.5). The algorithm mentioned in reference [20] is used to generate complete samples
from GILD(λreal , βreal), with specific steps detailed as follows:

Step 1. Generate p1 and p2 from the standard uniform distribution U(0, 1).
Step 2. Generate w from the gamma distribution Γ(2, βreal).

Step 3. Transform w as in y = (w−1)
λ−1

real , and calculate z by z = (− βreal
ln p1

)
λ−1

real .

Step 4. If p2 ≤ βreal(1 + βreal)
−1, accept z as a sample from GILD(λreal , βreal), that is,

x = z otherwise x = y.
Step 5. Repeat steps 1 to 5 for n times to obtain some samples of size n from

GILD(λreal , βreal).
All calculation results are listed in Tables 4–6.

Table 4. The estimates (in brackets) and MSEs of δ.

n m CS δ̂ML

Prior 1 Prior 2 Prior 3

δ̂SE δ̂LL δ̂GE δ̂SE δ̂LL δ̂GE δ̂SE δ̂LL δ̂GE

30 20

I 0.0737
(0.4210)

0.0718
(0.3504)

0.0556
(0.3831)

0.0797
(0.3347)

0.0916
(0.3021)

0.0717
(0.3372)

0.1008
(0.2871)

0.0654
(0.3394)

0.0577
(0.3745)

0.0732
(0.3246)

II 0.0799
(0.3228)

0.0720
(0.3710)

0.0555
(0.4017)

0.0797
(0.3560)

0.1052
(0.3878)

0.0631
(0.3797)

0.0628
(0.3674)

0.0591
(0.3589)

0.0452
(0.4375)

0.0603
(0.3277)

III 0.0620
(0.6865)

0.0463
(0.4616)

0.0348
(0.4898)

0.0495
(0.4485)

0.0816
(0.3216)

0.0634
(0.3564)

0.0898
(0.3069)

0.0402
(0.4496)

0.0300
(0.4778)

0.0447
(0.4351)

70

30

I 0.0813
(0.3541)

0.1181
(0.2603)

0.0959
(0.2945)

0.1278
(0.2464)

0.1216
(0.2542)

0.0982
(0.2894)

0.1323
(0.2391)

0.0767
(0.2928)

0.0658
(0.3287)

0.0804
(0.2773)

II 0.0998
(0.2485)

0.0961
(0.2962)

0.0755
(0.3311)

0.1053
(0.2815)

0.0876
(0.3123)

0.0667
(0.3510)

0.0978
(0.2955)

0.0679
(0.3919)

0.0566
(0.3281)

0.0782
(0.2770)

III 0.0380
(0.6546)

0.0645
(0.3725)

0.0508
(0.4003)

0.0698
(0.3615)

0.0975
(0.2952)

0.0788
(0.3270)

0.1050
(0.2831)

0.0555
(0.3894)

0.0425
(0.4192)

0.0610
(0.3767)

50

I 0.0639
(0.3987)

0.0966
(0.2939)

0.0753
(0.3304)

0.1059
(0.2790)

0.0957
(0.2985)

0.0751
(0.3334)

0.1057
(0.2826)

0.0501
(0.3572)

0.0475
(0.3915)

0.0596
(0.3426)

II 0.0677
(0.3865)

0.0617
(0.4249)

0.0511
(0.4420)

0.0665
(0.4138)

0.0524
(0.4082)

0.1029
(0.2087)

0.0710
(0.4047)

0.0235
(0.4042)

0.0359
(0.4203)

0.0355
(0.3906)

III 0.0237
(0.6261)

0.0588
(0.3814)

0.0451
(0.4121)

0.0645
(0.3687)

0.1005
(0.2864)

0.0802
(0.3209)

0.1090
(0.2731)

0.0318
(0.3746)

0.0286
(0.4023)

0.0370
(0.3635)
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Table 4. Cont.

n m CS δ̂ML

Prior 1 Prior 2 Prior 3

δ̂SE δ̂LL δ̂GE δ̂SE δ̂LL δ̂GE δ̂SE δ̂LL δ̂GE

100

30

I 0.0782
(0.3328)

0.1391
(0.2283)

0.1143
(0.2673)

0.1492
(0.2150)

0.1332
(0.2388)

0.1098
(0.2719)

0.1443
(0.2238)

0.0617
(0.3021)

0.0506
(0.3393)

0.0651
(0.2867)

II 0.0798
(0.3159)

0.0802
(0.3293)

0.0618
(0.3643)

0.0874
(0.3163)

0.1050
(0.2785)

0.0831
(0.3143)

0.1140
(0.2646)

0.0619
(0.3249)

0.0464
(0.3576)

0.0793
(0.3117)

III 0.0426
(0.6654)

0.0766
(0.3373)

0.0616
(0.3656)

0.0819
(0.3273)

0.1078
(0.2765)

0.0880
(0.3082)

0.1149
(0.2656)

0.0478
(0.3570)

0.0327
(0.3882)

0.0540
(0.3443)

50

I 0.0708
(0.3587)

0.1145
(0.2653)

0.0920
(0.3009)

0.1250
(0.2500)

0.1033
(0.2892)

0.0829
(0.3218)

0.1140
(0.2732)

0.0616
(0.2631)

0.0535
(0.2980)

0.0663
(0.2482)

II 0.0846
(0.3100)

0.0819
(0.3311)

0.0629
(0.3649)

0.0919
(0.3142)

0.0639
(0.3658)

0.0486
(0.3963)

0.0726
(0.3496)

0.0623
(0.3287)

0.0431
(0.3651)

0.0726
(0.3121)

III 0.0238
(0.6186)

0.0734
(0.3467)

0.0588
(0.3748)

0.0795
(0.3349)

0.1074
(0.2765)

0.0871
(0.3095)

0.1153
(0.2644)

0.0222
(0.4469)

0.0172
(0.4765)

0.0280
(0.4359)

70

I 0.0601
(0.4114)

0.0902
(0.3052)

0.0706
(0.3401)

0.1004
(0.2886)

0.0787
(0.3309)

0.0599
(0.3660)

0.0873
(0.3156)

0.0601
(0.3420)

0.0570
(0.3757)

0.0644
(0.3278)

II 0.0381
(0.6054)

0.0459
(0.3981)

0.0382
(0.4145)

0.0513
(0.3866)

0.0432
(0.4043)

0.0359
(0.4207)

0.0486
(0.3926)

0.0266
(0.4766)

0.0194
(0.5061)

0.0311
(0.4769)

III 0.0187
(0.6110)

0.0643
(0.3598)

0.0492
(0.3919)

0.0705
(0.3469)

0.1076
(0.2739)

0.0861
(0.3087)

0.1161
(0.2609)

0.0171
(0.4374)

0.0113
(0.5062)

0.0126
(0.4723)

150

40

I 0.0791
(0.3281)

0.1237
(0.2494)

0.1034
(0.2847)

0.1393
(0.2328)

0.1033
(0.2896)

0.0829
(0.3224)

0.1150
(0.2720)

0.0691
(0.2905)

0.0577
(0.3263)

0.0614
(0.2727)

II 0.0867
(0.3040)

0.0861
(0.3178)

0.0687
(0.3495)

0.0931
(0.3056)

0.1132
(0.2685)

0.0919
(0.2992)

0.1223
(0.2523)

0.0624
(0.3259)

0.0457
(0.3567)

0.0691
(0.3139)

III 0.0269
(0.6490)

0.0890
(0.3104)

0.0730
(0.3385)

0.0951
(0.3001)

0.1176
(0.2594)

0.0973
(0.2909)

0.1252
(0.2486)

0.0338
(0.5191)

0.0260
(0.5519)

0.0303
(0.5076)

60

I 0.0716
(0.3486)

0.1108
(0.2725)

0.0884
(0.3083)

0.1224
(0.2553)

0.0932
(0.3072)

0.0724
(0.3428)

0.1044
(0.2895)

0.0613
(0.3479)

0.0508
(0.3106)

0.0619
(0.3577)

II 0.0639
(0.3736)

0.1184
(0.2621)

0.0959
(0.2968)

0.1298
(0.2458)

0.1003
(0.2949)

0.0792
(0.3302)

0.1117
(0.2774)

0.0482
(0.4600)

0.0392
(0.4955)

0.0437
(0.4439)

III 0.0204
(0.6388)

0.0890
(0.3084)

0.0713
(0.3397)

0.0955
(0.2974)

0.1199
(0.2549)

0.0993
(0.2865)

0.1283
(0.2430)

0.0283
(0.4097)

0.0120
(0.4401)

0.0355
(0.3989)

80

I 0.0616
(0.3925)

0.0939
(0.3013)

0.0728
(0.3377)

0.1040
(0.2848)

0.0772
(0.3355)

0.0584
(0.3704)

0.0867
(0.3186)

0.0526
(0.3565)

0.0493
(0.3912)

0.0541
(0.3403)

II 0.0306
(0.6394)

0.0508
(0.3966)

0.0372
(0.4261)

0.0579
(0.3819)

0.0408
(0.4190)

0.0308
(0.4421)

0.0469
(0.4053)

0.0262
(0.4895)

0.0137
(0.5075)

0.0329
(0.4953)

III 0.0144
(0.6250)

0.0823
(0.3225)

0.0652
(0.3545)

0.0891
(0.3106)

0.1135
(0.2651)

0.0915
(0.2988)

0.1223
(0.2512)

0.0188
(0.5133)

0.0124
(0.5417)

0.0245
(0.4636)

200

40

I 0.0828
(0.3181)

0.1207
(0.2607)

0.0962
(0.2977)

0.1335
(0.2426)

0.0986
(0.3018)

0.0759
(0.3394)

0.1096
(0.2847)

0.0741
(0.3013)

0.0524
(0.3394)

0.0746
(0.2842)

II 0.0880
(0.3019)

0.0588
(0.3894)

0.0461
(0.4162)

0.0637
(0.3783)

0.0995
(0.2904)

0.0804
(0.3226)

0.1070
(0.2784)

0.0541
(0.3936)

0.0420
(0.4204)

0.0585
(0.3832)

III 0.0259
(0.6509)

0.1010
(0.2895)

0.0832
(0.3183)

0.1070
(0.2799)

0.1265
(0.2469)

0.1059
(0.2772)

0.1336
(0.2370)

0.0280
(0.4123)

0.0194
(0.4459)

0.0348
(0.4006)

80

I 0.0764
(0.3343)

0.1076
(0.2854)

0.0839
(0.3230)

0.1194
(0.2676)

0.0768
(0.3452)

0.0588
(0.3755)

0.0870
(0.3250)

0.0679
(0.3789)

0.0466
(0.3460)

0.0622
(0.3604)

II 0.0678
(0.3574)

0.1147
(0.2379)

0.0924
(0.3081)

0.1268
(0.2564)

0.0936
(0.3089)

0.0725
(0.3450)

0.1054
(0.2903)

0.0443
(0.3517)

0.0286
(0.4077)

0.0367
(0.3537)

III 0.0144
(0.6182)

0.0997
(0.2913)

0.0817
(0.3212)

0.1062
(0.2811)

0.1280
(0.2441)

0.1063
(0.2760)

0.1356
(0.2335)

0.0160
(0.4906)

0.0097
(0.5201)

0.0170
(0.4804)

100

I 0.0578
(0.4088)

0.0857
(0.3170)

0.0660
(0.3530)

0.0960
(0.2996)

0.0661
(0.3637)

0.0495
(0.3965)

0.0752
(0.3464)

0.0413
(0.3758)

0.0399
(0.3616)

0.0425
(0.3591)

II 0.0464
(0.7406)

0.0462
(0.4079)

0.0328
(0.4363)

0.0536
(0.3922)

0.0340
(0.4377)

0.0255
(0.4589)

0.0396
(0.4239)

0.0351
(0.4107)

0.0202
(0.4397)

0.0394
(0.3958)

III 0.0117
(0.6192)

0.0941
(0.3004)

0.0747
(0.3339)

0.1017
(0.2879)

0.1215
(0.2526)

0.0977
(0.2886)

0.1308
(0.2392)

0.0107
(0.5289)

0.0082
(0.5524)

0.0127
(0.4885)
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Comparing the data in the above tables, the following conclusions can be drawn.

(1) As can be seen from Table 4, when the effective samples proportion m/n increases, the
MSE of each estimator decreases. In comparing the ML estimation with the Bayesian
estimation under a non-informative prior, the results indicate that the MSEs for both
the CS-I and CS-II are significantly higher than that of the CS-III. Furthermore, when
comparing the Bayesian estimations under Prior 2 and Prior 3, it was found that, for
Prior 2, the Bayesian estimate under the CS-II exhibits the lowest MSE; conversely,
under Prior 3, the Bayesian estimate under the CS-III demonstrates the lowest MSE.
These findings highlight the critical role that the choice of censored scheme and prior
distribution plays in the accuracy of the estimations.

(2) When using Prior 1 and Prior 2, the ML estimation demonstrates superior performance
compared to the Bayesian estimation under the CS-III. In contrast, when using Prior 3,
the Bayesian estimation outperforms the ML estimation under the CS-I and CS-II.
Additionally, under different loss functions, there is no significant difference in the
performance of the Bayesian estimators under Prior 1 and Prior 2; however, the
Bayesian estimators under Prior 3 exhibit smaller MSEs compared to those under
Prior 1 and Prior 2.

(3) When the effective samples proportion m/n is large, the MSEs of the different Bayesian
estimates are relatively close under the same censored scheme. If we fix the values of
n and m then, for a given censored scheme, the Bayesian estimates under the SELF
and the GELF have larger MSEs compared to those under the LLF.

(4) Based on Table 5, we observe that the ABs of all the Bayesian estimators are negative.
In contrast, the ABs of the ML estimator exhibit both positive and negative signs. This
result indicates that, under the various conditions simulated in this study, the Bayesian
estimation tends to underestimate the true LPI values, while the ML estimation
exhibits a mixture of overestimation and underestimation across different scenarios.

(5) From Table 6, as the proportion m/n increases, the CPs of two confidence intervals
and one credible interval increase. Regardless of whether a non-informative prior
or gamma priors are used, the coverage performance of the HPD credible intervals
is better than that of the ACI and BCI under the CS-II. For a small proportion m/n,
the coverage performance of the BCI outperforms the other two interval types in
comparison to under the CS-I and CS-III.

(6) From Table 6, when m/n is small, the AW of the ACI is relatively large. For example,
when n = 100 and m = 30, the AW of the ACI under the CS-II is 1.2137. Under the
CS-II, the CPs of the HPD credible intervals consistently exceed 95%. However, under
the CS-I, the CPs of the HPD credible intervals are smaller than 95%.

Table 5. The ABs of δ.

n m CS δ̂ML

Prior 1 Prior 2 Prior 3

δ̂SE δ̂LL δ̂GE δ̂SE δ̂LL δ̂GE δ̂SE δ̂LL δ̂GE

30 20
I −0.1773 −0.2408 −0.2453 −0.2636 −0.2962 −0.2611 −0.3112 −0.2589 −0.2238 −0.2737
II −0.2775 −0.2273 −0.1966 −0.2433 −0.2105 −0.2186 −0.2309 −0.2394 −0.2608 −0.2711
III 0.0882 −0.1367 −0.1085 −0.1458 −0.2767 −0.2419 −0.2419 −0.1478 −0.1205 −0.1632

70

30
I −0.2443 −0.3380 −0.3038 −0.3519 −0.3441 −0.3089 −0.3593 −0.3055 −0.2969 −0.3210
II −0.3118 −0.3021 −0.2672 −0.3168 −0.2860 −0.2473 −0.3028 −0.3064 −0.2702 −0.3213
III 0.0563 −0.2258 −0.1980 −0.2368 −0.3031 −0.2713 −0.3152 −0.2089 −0.1792 −0.2216

50
I −0.1996 −0.3044 −0.2679 −0.3193 −0.2998 −0.2625 −0.3157 −0.2411 −0.2068 −0.2547
II −0.2118 −0.1734 −0.1563 −0.1845 −0.1951 −0.3117 −0.1936 −0.1942 −0.2951 −0.2077
III 0.0278 −0.2169 −0.1862 −0.2296 −0.3119 −0.2775 −0.3252 −0.2237 −0.1660 −0.2048
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Table 5. Cont.

n m CS δ̂ML

Prior 1 Prior 2 Prior 3

δ̂SE δ̂LL δ̂GE δ̂SE δ̂LL δ̂GE δ̂SE δ̂LL δ̂GE

100

30
I −0.2655 −0.3700 −0.3347 −0.3833 −0.3595 −0.3264 −0.3746 −0.2962 −0.2590 −0.3116
II −0.2824 −0.2690 −0.2340 −0.2820 −0.3198 −0.2840 −0.3337 −0.2734 −0.2407 −0.2866
III 0.0671 −0.2610 −0.2327 −0.2710 −0.3218 −0.2901 −0.3327 −0.2414 −0.2101 −0.2540

50
I −0.2397 −0.3330 −0.2974 −0.3483 −0.3091 −0.2765 −0.3251 −0.3352 −0.3003 −0.3501
II −0.2884 −0.2672 −0.2334 −0.2841 −0.2325 −0.2020 −0.2488 −0.2696 −0.2348 −0.2862
III 0.0203 −0.2516 −0.2235 −0.2634 −0.3218 −0.2889 −0.3339 −0.1514 −0.1218 −0.1628

70
I −0.1870 −0.2931 −0.2582 −0.3098 −0.2672 −0.2323 −0.2827 −0.3563 −0.3226 −0.3705
II 0.0071 −0.2002 −0.1838 −0.2117 −0.1940 −0.1776 −0.2057 −0.2017 −0.2922 −0.2215
III 0.0126 −0.2385 −0.2064 −0.2514 −0.3244 −0.2869 −0.3374 −0.1609 −0.1332 −0.1709

150

40
I −0.2702 −0.3489 −0.3136 −0.3655 −0.3087 −0.2759 −0.3263 −0.3078 −0.2720 −0.3256
II −0.2943 −0.2806 −0.2488 −0.2927 −0.3325 −0.2991 −0.3460 −0.2724 −0.2461 −0.2844
III 0.0507 −0.2879 −0.2598 −0.2982 −0.3389 −0.3074 −0.3497 −0.2192 −0.1464 −0.1907

60
I −0.2497 −0.3259 −0.2900 −0.3431 −0.2911 −0.2555 −0.3089 −0.3234 −0.2877 −0.3406
II −0.2248 −0.3362 −0.3015 −0.3525 −0.3034 −0.2681 −0.3210 −0.2383 −0.2028 −0.2544
III 0.0405 −0.2899 −0.2586 −0.3009 −0.3434 −0.3118 −0.3553 −0.1886 −0.1582 −0.1994

80
I −0.2058 −0.2971 −0.2606 −0.3135 −0.2628 −0.2279 −0.2797 −0.3418 −0.3072 −0.3580
II 0.0411 −0.2018 −0.1722 −0.2164 −0.1794 −0.1562 −0.1960 −0.1845 −0.1608 −0.1031
III 0.0267 −0.2758 −0.2438 −0.2877 −0.3343 −0.2995 −0.3471 −0.1580 −0.1566 −0.1948

200

40
I −0.2802 −0.3376 −0.3006 −0.3557 −0.2965 −0.2589 −0.3136 −0.2970 −0.2589 −0.3141
II −0.2964 −0.2090 −0.1821 −0.2200 −0.3080 −0.2758 −0.3199 −0.2047 −0.1779 −0.2151
III 0.0525 −0.3088 −0.2800 −0.3184 −0.3515 −0.3212 −0.3613 −0.2860 −0.2524 −0.2977

80
I −0.2640 −0.3129 −0.2573 −0.3308 −0.2558 −0.2228 −0.2733 −0.2194 −0.1823 −0.2379
II −0.2409 −0.3244 −0.2902 −0.3419 −0.2894 −0.2533 −0.3080 −0.1266 −0.1906 −0.1446
III 0.0199 −0.3070 −0.2771 −0.3173 −0.3542 −0.3223 −0.3648 −0.1077 −0.1781 −0.1179

100
I −0.1895 −0.2813 −0.2453 −0.2987 −0.2347 −0.2021 −0.2519 −0.2225 −0.1867 −0.2392
II 0.1423 −0.1904 −0.1620 −0.2061 −0.1606 −0.1394 −0.1744 −0.1876 −0.1586 −0.2025
III 0.0209 −0.2979 −0.2644 −0.3104 −0.3457 −0.3097 −0.3592 −0.1005 −0.0729 −0.1098

Table 6. The CPs and AWs of δ with γ = 0.05.

n m CS
ACI BCI

HPD

Prior 1 Prior 2 Prior 3

CP AW CP AW CP AW CP AW CP AW

30 20
I 0.8321 0.6013 0.8445 0.6906 0.8940 0.1635 0.8660 0.1540 0.8667 0.6529
II 0.8474 0.6552 0.8134 0.2487 0.9920 0.4038 0.9960 0.3528 0.9564 0.3156
III 0.8744 0.4385 0.8564 0.8160 0.9560 0.2294 0.9280 0.1996 0.9800 0.7481

70

30
I 0.8117 0.2247 0.9011 0.4620 0.8140 0.1303 0.8280 0.1227 0.8767 0.5936
II 0.8267 0.8257 0.8654 0.3161 0.9900 0.3490 0.9960 0.3305 0.9270 0.3964
III 0.8217 0.7948 0.8973 0.2450 0.8740 0.1334 0.8520 0.1327 0.9267 0.6505

50
I 0.8623 0.5887 0.8376 0.5036 0.8560 0.1327 0.8600 0.1321 0.9033 0.4311
II 0.9000 0.3739 0.8021 0.1274 0.9980 0.3435 1.0000 0.3064 0.9677 0.3967
III 0.9100 0.3099 0.8480 1.1489 0.9220 0.1708 0.8920 0.1597 0.9320 0.5949

100

30
I 0.7993 0.3831 0.9338 0.5442 0.8360 0.1195 0.8680 0.1224 0.8233 0.5062
II 0.8278 1.2137 0.8966 0.1809 0.9960 0.3579 1.0000 0.3400 0.9088 0.4951
III 0.8200 0.2649 0.9201 0.5107 0.8280 0.1276 0.8000 0.1264 0.8167 0.6223

50
I 0.8181 0.2554 0.8694 0.4747 0.8340 0.1264 0.8020 0.1225 0.8300 0.5383
II 0.8500 0.4492 0.8541 2.3060 0.9940 0.3193 0.9980 0.3140 0.9154 0.4446
III 0.8300 0.5740 0.8896 0.1546 0.8540 0.1297 0.8340 0.1304 0.8470 0.5760

70
I 0.8268 0.5072 0.8521 0.4480 0.8500 0.1289 0.8620 0.1296 0.8933 0.5039
II 0.9108 0.3361 0.8247 0.5436 0.9900 0.3020 1.0000 0.2956 0.9490 0.3036
III 0.8933 0.3486 0.8642 0.5161 0.8920 0.1441 0.8720 0.1406 0.8765 0.5381
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Table 6. Cont.

n m CS
ACI BCI

HPD

Prior 1 Prior 2 Prior 3

CP AW CP AW CP AW CP AW CP AW

150

40
I 0.7882 0.3657 0.9425 0.7191 0.7900 0.1257 0.7900 0.0485 0.8533 0.4955
II 0.8110 1.3912 0.9077 0.4710 0.9840 0.3299 0.9940 0.3240 0.9153 0.3727
III 0.8012 0.2883 0.9267 0.5642 0.8080 1.2255 0.8280 0.1281 0.8268 0.5742

60
I 0.8117 0.2986 0.9247 0.4427 0.8220 0.4337 0.8340 0.0322 0.8650 0.5605
II 0.8438 0.4730 0.8771 0.7233 0.9960 0.3113 0.9980 0.3068 0.9400 0.3554
III 0.8201 0.3532 0.9045 0.2224 0.8280 0.1245 0.7680 0.1202 0.8767 0.5389

80
I 0.8335 0.3612 0.8803 0.4375 0.8340 0.1237 0.8280 0.1214 0.8760 0.5210
II 0.8551 0.2738 0.8456 0.9327 0.9960 0.2978 1.0000 0.2934 0.9467 0.3366
III 0.8321 0.4967 0.8815 0.1676 0.8420 0.1286 0.8380 0.1254 0.8947 0.5161

200

40
I 0.7735 0.2248 0.9488 1.3135 0.7820 0.6273 0.7840 0.5999 0.8467 0.5919
II 0.8143 1.6440 0.9192 0.7622 0.9840 0.3390 0.9900 0.3732 0.9633 0.2906
III 0.8117 0.2801 0.9329 0.8906 0.8300 0.1232 0.8080 0.0969 0.8377 0.5707

80
I 0.7993 0.2860 0.9102 0.4652 0.7740 0.5723 0.7860 0.6247 0.8333 0.5644
II 0.8400 0.3048 0.8879 0.5705 0.9940 0.3004 0.9960 0.2951 0.9867 0.2553
III 0.8255 0.2656 0.9133 0.2379 0.8160 0.1206 0.8260 0.1241 0.8967 0.5059

100
I 0.8119 0.2970 0.8924 0.4143 0.8060 0.1353 0.8260 0.2840 0.8430 0.5283
II 0.8900 0.2355 0.8359 1.0363 0.9980 0.2908 1.0000 0.2878 0.9933 0.2066
III 0.8281 0.4396 0.8729 0.1190 0.8160 0.1242 0.8180 0.1212 0.9004 0.4892

7. Real Data Analysis

In this section, we provide two sets of real data in Table 7 to illustrate some methods
proposed in this paper. Wu and Wu [42] provided data on the duration of the remission
achieved by four drugs for the treatment of leukemia in a clinical trial. This study selects the
duration of the remission for drug 1 as Data 1. Data 2, provided by Blischke and Murthy [43],
represents the failure times of aircraft windshields, with the measurement unit expressed
in 1000 h. Based on the ML estimates, we employ the Kolmogorov–Smirnov (K–S) test to
evaluate the suitability of the GILD for fitting with the two datasets. The specific values are
also presented in Table 7. According to the K–S statistic and the corresponding p-values, we
conclude that the GILD is an appropriate model for fitting with the two datasets. To visually
represent the fitness of the GILD for these two datasets, we choose the Bayesian estimators of
the parameters under the complete sample and plot the corresponding CDFs. The graphs,
along with the empirical distribution functions of the two datasets, are presented in Figure 3.
The red lines represent the CDF of GILD, and the blue lines represent the empirical CDF.

Table 7. Two sets of real data and K–S test.

Data
K-S

Statistic p-Values

Data 1
1.013 1.034 1.169 1.266 1.509 1.533 1.563 1.716 1.929 1.965

0.1669 0.34682.061 2.344 2.546 2.626 2.778 2.951 3.413 4.118 5.136

Data 2

0.301 0.309 0.557 0.943 1.070 1.124 1.248 1.281 1.281 1.303

0.1029 0.1587

1.432 1.480 1.505 1.506 1.568 1.615 1.619 0.652 0.652 1.757
1.795 1.866 1.876 1.899 1.911 1.912 1.914 1.981 2.010 2.038
2.085 2.089 2.097 2.135 2.154 2.190 2.194 2.223 2.224 2.229
2.300 2.324 2.349 2.385 2.481 2.610 2.625 2.632 2.646 2.661
2.688 2.823 2.890 2.902 2.934 2.962 2.964 3.000 3.103 3.114
3.117 3.166 3.344 3.376 3.385 3.443 3.467 3.478 3.578 3.595
3.699 3.779 3.924 4.035 4.121 4.167 4.240 4.255 4.278 4.305
4.376 4.449 4.485 4.570 4.602 4.663 4.694
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Figure 3. (a) Fitting of GILD on duration of remission. (b) Fitting of GILD on failure time.

Before calculating the estimates and intervals, we need to explain the existence and
uniqueness of the ML estimates. Due to the nonlinear nature of the problem, proving
this directly through Equations (11) and (12) would be quite difficult. We utilize visual
representations to illustrate the existence and uniqueness of the ML estimates. Without the
loss of generality, we choose Data 1 with the censored scheme (8 × 1, 0 × 10) from Table 8
to plot, as shown in Figure 4.

Table 8. The predetermined censored schemes and censored samples.

Serial Number Censored Scheme Censored Sample

Data 1
I (8 × 1, 0 × 10)

1.013 1.965 2.061 2.344 2.546 2.626 2.778 2.951 3.413
4.118 5.136

II (4 × 1, 0 × 9, 4 × 1)
1.013 1.533 1.563 1.716 1.929 1.965 2.061 2.344 2.546
2.626 2.778

Data 2

I (47 × 1, 0 × 39)

0.301 2.646 2.661 2.688 2.823 2.890 2.902 2.934 2.962
2.964 3.000 3.103 3.114 3.117 3.166 3.344 3.376 3.385
3.443 3.467 3.478 3.578 3.595 3.699 3.779 3.924 4.035
4.121 4.167 4.240 4.255 4.278 4.305 4.376 4.449 4.485
4.570 4.602 4.663 4.694

II (20 × 1, 0 × 38, 27 × 1)

0.301 1.866 1.876 1.899 1.911 1.912 1.914 1.981 2.010
2.038 2.085 2.089 2.097 2.135 2.154 2.190 2.194 2.223
2.224 2.229 2.300 2.324 2.349 2.385 2.481 2.610 2.625
2.632 2.646 2.661 2.688 2.823 2.890 2.902 2.934 2.962
2.964 3.000 3.103 3.114
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Let the ideal duration of the test with Data 1 be T1 = 3 and the ideal duration of
the test with Data 2 be T2 = 4. Since there is no prior information, we take the hyper-
parameters as a = b = c = d = 0. Under the censored schemes listed in Table 8, the
point estimates and confidence intervals for the LPI are presented in Table 9. The censored
scheme (8 × 1, 0 × 10) denotes R1 = 8 and R2 = R3 = . . . = R11 = 0. Other symbols have
similar meanings to the aforementioned symbols and will not be elaborated on here.

Table 9. The point and interval estimation of δ with γ = 0.05.

CS δ̂ML δ̂SE δ̂LL δ̂GE ACI BCI HPD

Data 1
I 0.3788 0.5689 0.5733 0.5595 (0.2770, 1.2346) (0.1437, 0.7382) (0.1139, 0.8767)
II 0.5571 0.7969 0.7909 0.7905 (0.1106,1.4642) (0.4201, 1.6411) (0.3229,1.0561)

Data 2
I 0.5217 0.4222 0.4237 0.4219 (0.2591, 0.6148) (0.3114, 0.5995) (0.2739, 0.4948)
II 0.2639 0.3786 0.3819 0.3790 (0.1816, 0.4095) (0.1004, 0.4150) (0.1840, 0.4732)

8. Conclusions

This paper assumed that the product’s lifetime follows a generalized inverse Lindley
distribution and discussed the maximum likelihood estimation and Bayesian estimation
of the LPI δ under an adaptive progressive type-II censored sample. By applying the
Newton–Raphson iteration algorithm, we obtained the ML estimator of δ. Based on this,
we constructed the ACI using the delta method, as well as the BCI using the bootstrap-t
method. In the Bayesian estimation part, the MCMC method was used to draw samples
and further obtain the Bayesian estimators and the HPD credible interval of δ based on
the SELF, LLF and GELF. Finally, we conducted Monte Carlo simulations under the three
censored schemes. The simulation results show that, in terms of the MSE, under a fixed
censored scheme, the ML estimation outperforms the Bayesian estimation under Prior 1
and Prior 2; conversely, the Bayesian estimation under Prior 3 outperforms ML estimation.
There is no significant difference in the performance of the Bayesian estimators under the
three loss functions. Additionally, under the CS-II, the CP of the HPD credible interval
is generally higher. Meanwhile, under the CS-I and CS-III, the coverage performance of
the BCI outperforms that of the ACI and HPD credible interval, and it exhibits the best
performance when the sample size is relatively small. However, the ABs of all the Bayesian
estimators are negative. In contrast, the ABs of the ML estimator exhibit both positive and
negative signs.

In future research, we will study the estimations of the entropy, failure rate, and
stress–strength reliability of the GILD. Similar estimation methods can also be used to
study other lifetime distributions, such as the generalized exponential distribution and
compound Rayleigh distribution.
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