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1. Introduction and Preliminaries

The Stieltjes transform is represented by the equation

f (x) =
∫
R+

dα(t)
x + t

= lim
T→+∞

∫ T

0

dα(t)
x + t

, (1)

where x > 0 and R+ = (0, ∞). We consider that the function α(t) is a bounded variation of
(0, T) for any positive value of T and the limit (1) exists. If α(t) is the integral of a function
ϕ(t), we arrive at the special case

f (x) =
∫
R+

ϕ(t)
x + t

dt, x > 0. (2)

The Stieltjes transform, as discussed in prior works [1–3], results from iterating two Laplace
transforms [4]. The characteristics of the integral (2) are intimately connected to those of
the Laplace integral, as highlighted in the aforementioned studies. The Stieltjes transform
was initially proposed in reference to the semi-infinite interval moment problem by T. S.
Stieltjes [5]. Since then, it has been investigated and found to be useful in a number of areas,
including operator theory, probability, continuous fractions, engineering, mathematical
physics, image processing and signal processing, to name a few. On the other hand, several
aspects of the generalized Stieltjes transform were investigated in [6–8] and in other relevant
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publications on the topic. The Stieltjes transform and its generalization have been applied to
transforms of distributions in addition to classical functions [9,10]. The Stieltjes transform
analysis for Boehmians over specific generalized function spaces was extensively studied
in [11]. Recent research on the generalized Stieltjes transform’s properties over weighted
Lebesgue spaces and compact support distributions may be found in [12]. A case dealing
with exchange formulae for the generalized Stieltjes transform was analyzed by the authors
of [13].

Widder [14] offered a comprehensive explanation of the integral transform

f (x) =
∫
R+

tϕ(t)
x2 + t2 dt, x > 0, (3)

where, through an exponential change in the variable, the expression transforms into a
convolution transform with a kernel belonging to the general class discussed by Hirschman
and Widder [15]. Notably, the kernel in the transform (3) is identical to the one found in the
Poisson integral, which represents a harmonic function in a half-plane, as noted by Widder.
He derived several inversion formulas for (3) based on this connection and subsequently
applied his results to the study of harmonic functions.

Definition 1. Let α, β ∈ R with α ̸= 0. For the function f ∈ L1(R+, tβ−αdt), the Stieltjes–Poisson
transform of f is defined as follows:

((SP)α,β f )(x) =
∫
R+

tβ

xα + tα
f (t)dt, x > 0. (4)

When α = 1 and β = 0, the result is the Stieltjes transform

((SP)1,0 f )(x) =
∫
R+

1
x + t

f (t)dt, x > 0,

studied by Widder [3] and Goldberg [16] (amongst others).
Additionally, when α = 2 and β = 1, the result is the Poisson transform

((SP)2,1 f )(x) =
∫
R+

t
x2 + t2 f (t)dt, x > 0,

studied in [14,16–18] (amongst others).
In this paper, we explore the Stieltjes–Poisson transform applied to the space

L1(R+, tβ−αdt) focusing on the weighted integrable functions defined on R+.
Standard norms and notations:

• The norm defined as ∥ f ∥∞ = ess supx∈R+ | f (x)| characterizes the space L∞(R+),
which consists of measurable functions that are essentially bounded on the positive
real numbers R+.

• The expression ∥ f ∥1,tδdt =
∫
R+ | f (t)|tδdt defines a norm on the space L1(R+, tδdt).

This space consists of functions that are integrable with respect to the weight tδ on the
positive real numbers R+, where δ ∈ R.

• The notation Cc(R+) represents the vector space of all continuous complex-valued
functions on R+ that have compact support.

• The notation C0(R+) represents the vector space of all continuous complex-valued
functions on R+ vanishing at infinity, provided with the norm ∥ f ∥∞ = supx∈R+ | f (x)|.

Definition 2. For a fixed γ ∈ R, we consider the next products

( f ∨γ ψ)(t) =
∫
R+

f
(

t
s

)
ψ(s)sγds, t > 0,
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and

( f ∧γ ψ)(t) =
∫
R+

f (s)ψ(ts)sγds, t > 0,

provided that these integrals are well defined.

We note that ∨−1 = ∨ represents the standard Mellin convolution [19], while ∧0 = ∧
corresponds to the second kind of Mellin-type convolution [7] [(7.4.4), p. 218].

This paper is organized into three sections. Section 1 introduces the Stieltjes–Poisson
transform, starting with several definitions and notations that will be referenced later.
Section 2 examines the properties of the product ∨γ over the space of weighted L1 functions
and the space of continuous functions vanishing at infinity and an exchange formula for
the Stieltjes–Poisson transform using ∨γ. Finally, Section 3 addresses the properties of the
product ∧γ over the space of weighted L1 functions and the space of continuous functions
vanishing at infinity and exchange formulae for the Stieltjes–Poisson transform via ∧γ.

2. Properties of the Mellin-Type Convolution ∨γ and Exchange Formula

This section investigates the properties of the product ∨γ within the space of weighted
L1 functions and continuous functions that vanish at infinity, along with an exchange
formula for the Stieltjes–Poisson transform using ∨γ.

Lemma 1. Let δ ∈ R. For a function f ∈ L1(R+, tδdt) and a function ψ ∈ Cc(R+), it follows
that f ∨γ ψ ∈ L1(R+, tδdt) and

∥ f ∨γ ψ∥1,tδdt ≤ ∥ f ∥1,tδdt

∫
R+

|ψ(s)|sγ+δ+1ds < ∞.

Proof. We initially note that the integral mentioned above is valid for the given func-
tions f and ψ. Additionally, we observe that if C =

∫
R+ |ψ(s)|sγ+δ+1ds, then C < ∞,

as ψ ∈ Cc(R+). Therefore,

∥ f ∨γ ψ∥1,tδdt =
∫
R+

|( f ∨γ ψ)(t)|tδdt

≤
∫
R+

∫
R+

∣∣∣∣ f
(

t
s

)
ψ(s)

∣∣∣∣sγds tδdt

≤
∫
R+

∫
R+

∣∣∣∣ f
(

t
s

)∣∣∣∣tδdt |ψ(s)|sγds

(according to Fubini’s theorem)

=
∫
R+

∫
R+

| f (u)|uδdu |ψ(s)|sγ+δ+1ds

(by making a substitution of variables u = t
s )

= ∥ f ∥1,tδdt

∫
R+

|ψ(s)|sγ+δ+1ds

= C∥ f ∥1,tδdt < ∞.

This concludes the proof of Lemma 1.

Remark 1. Lemma 1 yielding to the Mellin-type convolution ∨γ is a continuous operation in a
specific sense. In fact, let δ ∈ R. If the sequence ( fn) converges to f in L1(R+, tδdt) as n → ∞
and ψ ∈ Cc(R+), it follows that the sequence ( fn ∨γ ψ) converges to f ∨γ ψ in L1(R+, tδdt) as
n → ∞.
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The Mellin-type convolution ∨γ is a bilinear operation in the following sense:
if f , g ∈ L1(R+, tδdt), ϕ, ψ ∈ Cc(R+) and α, β ∈ C, then

(α f + βg) ∨γ ϕ = α( f ∨γ ϕ) + β(g ∨γ ϕ)

and

f ∨γ (αϕ + βψ) = α( f ∨γ ϕ) + β( f ∨γ ψ).

Also, one obtains the following:

Proposition 1. Let δ ∈ R. For a function f ∈ L1(R+, tδdt), and for functions ϕ, ψ ∈ Cc(R+),
we have
(i)

( f ∨γ ϕ) ∨γ ψ = f ∨γ (ϕ ∨ ψ), (5)

(ii)

f ∨γ (ϕ ∨γ ψ) = ( f ∨γ ϕ) ∨2γ+1 ψ. (6)

Proof. (i) Note that the left-hand side of Equation (5) is valid according to Lemma 1.
Similarly, the right-hand side of (5) is also valid, as established by Lemma 1, and because
ϕ ∨ ψ ∈ Cc(R+).

Now, for t > 0,

(( f ∨γ ϕ) ∨γ ψ)(t) =
∫
R+

( f ∨γ ϕ)

(
t
s

)
ψ(s)sγds

=
∫
R+

∫
R+

f
(

t
su

)
ϕ(u)uγdu ψ(s)sγds

=
∫
R+

∫
R+

f
(

t
v

)
ϕ
(v

s

)vγ

sγ

dv
s

ψ(s)sγds

(by making a substitution of variables v = us)

=
∫
R+

f
(

t
v

) ∫
R+

ϕ
(v

s

)
ψ(s)

ds
s

vγdv

(according to Fubini’s theorem)

=
∫
R+

f
(

t
v

)
(ϕ ∨ ψ)(v)vγdv

= ( f ∨γ (ϕ ∨ ψ))(t).

(ii) Note that, based on Lemma 1, and given that ϕ ∨γ ψ ∈ Cc(R+), the left-hand side of
Equation (6) is well-defined. Similarly, from Lemma 1, we can confirm that the right-hand
side of Equation (6) is also well-defined. Now, for t > 0,

( f ∨γ (ϕ ∨γ ψ))(t) =
∫
R+

f
(

t
s

)
(ϕ ∨γ ψ)(s)sγds

=
∫
R+

f
(

t
s

) ∫
R+

ϕ
( s

u

)
ψ(u)uγdu sγds

=
∫
R+

ψ(u)
∫
R+

f
(

t
s

)
ϕ
( s

u

)
sγds uγdu

(according to Fubini’s theorem)

=
∫
R+

ψ(u)
∫
R+

f
(

t
vu

)
ϕ(v)vγuγudv uγdu

(by making a substitution of variables v = s
u )
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=
∫
R+

ψ(u)( f ∨γ ϕ)

(
t
u

)
u2γ+1du

= (( f ∨γ ϕ) ∨2γ+1 ψ)(t).

This concludes the proof of Proposition 1.

The exchange formula for the Stieltjes–Poisson transform using ∨γ is given as follows

Theorem 1. (Exchange formula). Let α, β ∈ R, α ̸= 0. If f ∈ L1(R+, tβ−αdt), ψ ∈ Cc(R+) then

(SP)α,β( f ∨γ ψ) = ((SP)α,β f ) ∨γ+β−α+1 ψ. (7)

Proof. First, based on Lemma 1, it follows that f ∨γ ψ ∈ L1(R+, tβ−αdt). Therefore, the left-
hand side of (7) is well defined. Additionally, referencing [20] (Theorem 2.2), we obtain the
inequality ∥(SP)α,β f ∥∞ ≤ ∥ f ∥1,tβ−αdt . Furthermore, for every x > 0

∣∣((SP)α,β f ) ∨γ+β−α+1 ψ(x)
∣∣ =

∣∣∣∣∫R+
((SP)α,β f )

( x
s

)
ψ(s)sγ+β−α+1ds

∣∣∣∣
≤ ∥(SP)α,β f ∥∞

∫
R+

|ψ(s)|sγ+β−α+1ds

≤ ∥ f ∥1,tβ−αdt

∫
R+

|ψ(s)|sγ+β−α+1ds < ∞,

then the right-hand side of (7) makes sense.
Now, for x > 0, we have(

(SP)α,β( f ∨γ ψ)
)
(x) =

∫
R+

tβ

xα + tα
( f ∨γ ψ)(t)dt

=
∫
R+

tβ

xα + tα

∫ ∞

0
f
(

t
s

)
ψ(s)sγdsdt

=
∫
R+

∫
R+

tβ

xα + tα
f
(

t
s

)
dt ψ(s)sγds

(according to Fubini’s theorem)

=
∫
R+

∫
R+

(us)β

xα + (us)α
f (u)sdu ψ(s)sγds

(by making a substitution of variables u = t
s )

=
∫
R+

∫
R+

(u)β(( x
s
)α

+ uα
) f (u)du ψ(s)sγ+β−α+1ds

=
∫
R+

((SP)α,β f )
( x

s

)
ψ(s)sγ+β−α+1ds

=
(
((SP)α,β f ) ∨γ+β−α+1 ψ

)
(x).

This concludes the proof of Theorem 1.

From this Theorem and taking β = α − 1, α ̸= 0, one obtains

Corollary 1. Let α ̸= 0. If f ∈ L1(R+, t−1dt) and ψ ∈ Cc(R+), then
(i)

(SP)α,α−1( f ∨γ ψ) = ((SP)α,α−1 f ) ∨γ ψ,

(ii)

(SP)α,α−1( f ∨ ψ) = ((SP)α,α−1 f ) ∨ ψ.
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Remark 2. Observe that the Stieltjes transform (SP)1,0 and the Poisson transform (SP)2,1 are
particular cases of the transform (SP)α,α−1 considered in Corollary 1.

The next result holds as follows:

Lemma 2. If f ∈ C0(R+) and ψ ∈ Cc(R+) then f ∨γ ψ ∈ C0(R+) and ∥ f ∨γ ψ∥∞ ≤
∥ f ∥∞

∫
R+ |ψ(s)|sγds < ∞.

Proof. We find a closed and bounded interval [a, b] ⊆ R+ such that the support of ψ ⊆ [a, b].
Let tn → t as n → ∞ in R+. As f is a continuous function on R+, we have

f (
tn

s
)ψ(s)sγ −→ f (

t
s
)ψ(s)sγ for each s ∈ R+.

Since ∣∣∣∣ f (
tn

s
)ψ(s)sγ

∣∣∣∣ ≤ ∥ f ∥∞|ψ(s)sγ|

and |ψ(s)sγ| is an integrable function on R+, we can apply the dominated convergence
theorem, and hence

lim
n→∞

( f ∨γ ψ)(tn) = lim
n→∞

∫
R+

f (
tn

s
)ψ(s)sγds

=
∫
R+

f (
t
s
)ψ(s)sγds

= ( f ∨γ ψ)(t).

Thus, f ∨γ ψ is a continuous function on R+.
Let ϵ > 0 be arbitrary. Since f vanishes at infinity, we can find a closed and bounded

interval [c, d] ⊆ R+ such that

| f (u)| ≤ ϵ

C + 1
, for all u /∈ [c, d],

where C =
∫
R+ |ψ(s)|sγds.

Since t
s ∈ [c, d], s ∈ [a, b] then t ∈ [ac, bd], we find that if t /∈ [ac, bd] and s ∈ [a, b] then

t
s /∈ [c, d]. Then, | f ( t

s )| ≤
ϵ

C+1 , for t /∈ [ac, bd]. Thus, for t /∈ [ac, bd], we obtain

|( f ∨γ ψ)(t)| ≤
∫
R+

∣∣∣∣ f (
t
s
)

∣∣∣∣|ψ(s)|sγds

≤ ϵ

C + 1
· C ≤ ϵ.

Thus, f ∨γ ψ ∈ C0(R+).
By direct computation, we obtain

∥ f ∨γ ψ∥∞ ≤
∫
R+

∣∣∣∣ f (
t
s
)

∣∣∣∣|ψ(s)|sγds

≤ ∥ f ∥∞

∫
R+

|ψ(s)|sγds < ∞.

This concludes the proof of Lemma 2.

Remark 3. From this Lemma, it can be seen that the Mellin-type convolution ∨γ is a continuous
operation in other specific senses different to that obtained in Remark 1. In fact, if the sequence
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( fn) converges to f in C0(R+) as n → ∞ and ψ ∈ Cc(R+), it follows that the sequence ( fn ∨γ ψ)
converges to f ∨γ ψ in C0(R+) as n → ∞.

Observe that from Lemma 2, the Mellin-type convolution ∨γ is a bilinear operation in
the following sense:

If f , g ∈ C0(R+), ϕ, ψ ∈ Cc(R+) and α, β ∈ C, then

(α f + βg) ∨γ ϕ = α( f ∨γ ϕ) + β(g ∨γ ϕ)

and

f ∨γ (αϕ + βψ) = α( f ∨γ ϕ) + β( f ∨γ ψ).

Again using Lemma 2, one can obtain a corresponding result to Proposition 1.
Indeed:

Proposition 2. For a function f ∈ C0(R+), and for functions ϕ, ψ ∈ Cc(R+), we have
(i)

( f ∨γ ϕ) ∨γ ψ = f ∨γ (ϕ ∨ ψ),

(ii)

f ∨γ (ϕ ∨γ ψ) = ( f ∨γ ϕ) ∨2γ+1 ψ.

3. Properties of the Mellin-Type Convolution ∧γ and Exchange Formulae

This section explores the properties of the product ∧γ in the context of weighted
L1 functions and continuous functions that vanish at infinity, along with the exchange
formulae for the Stieltjes–Poisson transform using ∧γ.

Lemma 3. Let δ ∈ R. For a function f ∈ L1(R+, tδdt) and a function ψ ∈ Cc(R+), then

(i) f ∧1+2δ ψ ∈ L1(R+, tδdt) and ∥ f ∧1+2δ ψ∥1,tδdt ≤ ∥ f ∥1,tδdt
∫
R+ |ψ(s)|sδds < ∞,

(ii) ψ ∧γ f ∈ L1(R+, tδdt) and ∥ψ ∧γ f ∥1,tδdt ≤ ∥ f ∥1,tδdt
∫
R+ |ψ(s)|sγ−δ−1ds < ∞.

Proof. (i) We initially note that the integral mentioned above is valid for the given functions
f and ψ. Also,

∥ f ∧1+2δ ψ∥1,tδdt =
∫
R+

|( f ∧1+2δ ψ)(t)|tδdt

≤
∫
R+

∫
R+

| f (s)ψ(ts)|s1+2δds tδdt

≤
∫
R+

∫
R+

|ψ(ts)|tδdt| f (s)| s1+2δds

(according to Fubini’s theorem)

=
∫
R+

∫
R+

|ψ(u)|
(u

s

)δ 1
s

du | f (s)|s1+2δds

(by making a substitution of variables u = ts)

=
∫
R+

|ψ(u)|uδdu
∫
R+

| f (s)|sδds

= C∥ f ∥1,tδdt < ∞, where C =
∫
R+

|ψ(u)|uδdu < ∞.
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(ii) To ensure the integrity of the integral for the functions f and ψ, we start by noting that the
integral is defined under these conditions. Additionally, let C =

∫
R+ |ψ(s)|sγ−δ−1ds. Given

that ψ ∈ Cc(R+), we can conclude that C < ∞. This leads us to the following observations:

∥ψ ∧γ f ∥1,tδdt =
∫
R+

|(ψ ∧γ f )(t)|tδdt

≤
∫
R+

∫
R+

|ψ(s) f (ts)|sγds tδdt

≤
∫
R+

∫
R+

| f (ts)|tδdt |ψ(s)|sγds

(according to Fubini’s theorem)

=
∫
R+

∫
R+

| f (u)|
(u

s

)δ 1
s

du |ψ(s)|sγds

(by making a substitution of variables u = ts)

= ∥ f ∥1,tδdt

∫
R+

|ψ(s)|sγ−δ−1ds

= C∥ f ∥1,tδdt < ∞.

This concludes the proof of Lemma 3.

Remark 4. Lemma 3 yielding to the Mellin-type convolution ∧γ is a continuous operation in a
specific sense. In fact, let δ ∈ R. If a sequence ( fn) converges to f in L1(R+, tδdt) as n → ∞ and
ψ ∈ Cc(R+), then:

(i) the sequence ( fn ∧1+2δ ψ) converges to f ∧1+2δ ψ in L1(R+, tδdt) as n → ∞,
(ii) the sequence (ψ ∧γ fn) converges to ψ ∧γ f in L1(R+, tδdt) as n → ∞.

The Mellin-type convolution ∧γ is a bilinear operation in the following sense:
If f , g ∈ L1(R+, tδdt), ϕ, ψ ∈ Cc(R+) and α, β ∈ C, then

(α f + βg) ∧1+2δ ϕ = α( f ∧1+2δ ϕ) + β(g ∧1+2δ ϕ)

and

f ∧1+2δ (αϕ + βψ) = α( f ∧1+2δ ϕ) + β( f ∧1+2δ ψ).

Also,

(αϕ + βψ) ∧γ f = α(ϕ ∧γ f ) + β(ψ ∧γ f )

and

ϕ ∧γ (α f + βg) = α(ϕ ∧γ f ) + β(ϕ ∧γ g).

Proposition 3. Let δ ∈ R. For a function f ∈ L1(R+, tδdt), and for functions ϕ, ψ ∈ Cc(R+),
we have
(i)

( f ∧1+2δ ϕ) ∧1+2δ ψ = f ∨ (ϕ ∧1+2δ ψ), (8)

(ii)

f ∧1+2δ (ϕ ∧1+2δ ψ) = ϕ ∧1+2δ ( f ∧1+2δ ψ), (9)

(iii)

(ψ ∧γ ϕ) ∧γ f = ψ ∨ (ϕ ∧γ f ), (10)
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(iv)

ψ ∧γ (ϕ ∧γ f ) = (ϕ ∨ ψ) ∧γ f . (11)

Proof. (i) Note that, according to Lemma 3(i), the left side of (8) is well defined. Similarly,
the right side of (8) is well defined based on Lemma 1 and the fact that ϕ ∧1+2δ ψ ∈ Cc(R+).
Now, for t > 0

(( f ∧1+2δ ϕ) ∧1+2δ ψ)(t) =
∫
R+

( f ∧1+2δ ϕ)(s)ψ(ts)s1+2δds

=
∫
R+

∫
R+

f (u)ϕ(us)u1+2δdu ψ(ts)s1+2δds

=
∫
R+

f (u)
∫
R+

ϕ(us)ψ(ts)s1+2δdsu1+2δdu

(according to Fubini’s theorem)

=
∫
R+

f (u)
∫
R+

ϕ(v) ψ(
t
u

v)
( v

u

)1+2δ 1
u

dvu1+2δdu

(by making a substitution of variables v = us)

=
∫
R+

(ϕ ∧1+2δ ψ)

(
t
u

)
f (u)

du
u

= ( f ∨ (ϕ ∧1+2δ ψ))(t).

(ii) Note that, based on Lemma 3(i), and given that ϕ ∧1+2δ ψ ∈ Cc(R+), the left-hand side
of Equation (9) is well defined. Furthermore, referring to Lemma 3(i) and (ii), we see that
the right-hand side of (9) is also well defined. Now, for t > 0

( f ∧1+2δ (ϕ ∧1+2δ ψ))(t) =
∫
R+

f (s)(ϕ ∧1+2δ ψ)(ts)s1+2δds

=
∫
R+

f (s)
∫
R+

ϕ(u)ψ(tsu)u1+2δdus1+2δds

=
∫
R+

ϕ(u)
∫
R+

f (s)ψ(tsu)s1+2δdsu1+2δdu

(according to Fubini’s theorem)

=
∫
R+

ϕ(u)( f ∧1+2δ ψ)(tu)u1+2δdu

= (ϕ ∧1+2δ ( f ∧1+2δ ψ))(t).

(iii) Note that based on Lemma 3(ii) and the fact that ψ ∧γ ϕ ∈ Cc(R+), the left-hand side
of (10) is well defined. Additionally, using Lemma 3(ii) in conjunction with Lemma 1, we
can conclude that the right-hand side of (10) is also well defined. Now, consider t > 0

((ψ ∧γ ϕ) ∧γ f )(t) =
∫
R+

(ψ ∧γ ϕ)(s) f (st)sγds

=
∫
R+

∫
R+

ψ(u)ϕ(us)uγdu f (st)sγds

=
∫
R+

ψ(u)
∫
R+

ϕ(us) f (st)sγdsuγdu

(according to Fubini’s theorem)

=
∫
R+

ψ(u)
∫
R+

ϕ(v) f
( v

u
t
) vγ

uγ

1
u

dvuγdu

(by making a substitution of variables v = us)

=
∫
R+

ψ(u)(ϕ ∧γ f )
(

t
u

)
1
u

du

= (ψ ∨ (ϕ ∧γ f ))(t).
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(iv) Note that according to Lemma 3(ii), the left-hand side of Equation (11) is well defined.
Similarly, the right-hand side of (11) is also well defined, as indicated by Lemma 3(ii) and
the fact that ϕ ∨ ψ ∈ Cc(R+). Now, let us consider t > 0

(ψ ∧γ (ϕ ∧γ f ))(t) =
∫
R+

ψ(s)(ϕ ∧γ f )(ts)sγds

=
∫
R+

∫
R+

ϕ(u) f (uts)uγdu ψ(s)sγds

=
∫
R+

∫
R+

f (tv)ϕ
(v

s

)vγ

sγ

dv
s

ψ(s)sγds

(by making a substitution of variables v = us)

=
∫
R+

f (tv)
∫
R+

ϕ
(v

s

)
ψ(s)

ds
s

vγdv

(according to Fubini’s theorem)

=
∫
R+

f (tv)(ϕ ∨ ψ)(v)vγdv

= ((ϕ ∨ ψ) ∧γ f )(t).

This concludes the proof of Proposition 3.

The exchange formulae for the Stieltjes–Poisson transform using ∧γ are given as follows:

Theorem 2. (Exchange formulae). Let α, β ∈ R, α ̸= 0. If f ∈ L1(R+, tβ−αdt) and ψ ∈ Cc(R+),
then we have the following result:
(i)

(SP)α,β( f ∧1+2(β−α) ψ) = f ∧β−α ((SP)α,βψ), (12)

(ii)

(SP)α,β(ψ ∧γ f ) = ψ ∧γ+α−β−1 ((SP)α,β f ). (13)

Proof. (i) Consider f ∈ L1(R+, tβ−αdt) and ψ ∈ Cc(R+). By applying Lemma 3(i), we can
deduce that f ∧1+2(β−α) ψ ∈ L1(R+, tβ−αdt). This confirms the existence of the left-hand
side of Equation (12). Furthermore, the right-hand side of (12) also exists, as it holds true
for every x > 0

∣∣( f ∧β−α ((SP)α,βψ)
)
(x)

∣∣ =

∣∣∣∣∫R+
f (s)((SP)α,β f )(xs)sβ−αds

∣∣∣∣
≤ ∥(SP)α,β f ∥∞

∫
R+

| f (s)|sβ−αds

≤ ∥ f ∥2
1,tβ−αdt,

using ∥(SP)α,β f ∥∞ ≤ ∥ f ∥1,tβ−αdt [20] (Theorem 2.2).
Now, for x > 0, we have(
(SP)α,β( f ∧1+2(β−α) ψ)

)
(x) =

∫
R+

tβ

xα + tα
( f ∧1+2(β−α) ψ)(t)dt

=
∫
R+

tβ

xα + tα

∫
R+

f (s)ψ(ts)s1+2(β−α)dsdt

=
∫
R+

∫
R+

tβ

xα + tα
ψ(ts)dt f (s)s1+2(β−α)ds

(according to Fubini’s theorem)

=
∫
R+

∫
R+

( u
s
)β

xα +
( u

s
)α ψ(u)

1
s

du f (s)s1+2(β−α)ds
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(by making a substitution of variables u = ts)

=
∫
R+

∫
R+

uβ

(xs)α + uα
ψ(u)du f (s)sβ−αds

=
∫
R+

((SP)α,βψ)(xs) f (s)sβ−αds

=
(

f ∧β−α ((SP)α,βψ)
)
(x).

(ii) Initially, based on Lemma 3(ii), it can be concluded that ψ ∧γ f ∈ L1(R+, tδdt). This
implies that the left-hand side of (13) is well defined. Additionally, as stated in [20]
(Theorem 2.2), we find that ∥(SP)α,β f ∥∞ ≤ ∥ f ∥1,tβ−αdt. Thus, for every x > 0

∣∣(ψ ∧γ+α−β−1 ((SP)α,β f )
)
(x)

∣∣ =

∣∣∣∣∫R+
ψ(s)((SP)α,β f )(xs)sγ+α−β−1ds

∣∣∣∣
≤ ∥(SP)α,β f ∥∞

∫
R+

|ψ(s)|sγ+α−β−1ds

≤ ∥ f ∥1,tβ−αdt

∫
R+

|ψ(s)|sγ+α−β−1ds < ∞,

then the right-hand side of (13) makes sense.
Now, for x > 0, we have(

(SP)α,β(ψ ∧γ f )
)
(x) =

∫
R+

tβ

xα + tα
(ψ ∧γ f )(t)dt

=
∫
R+

tβ

xα + tα

∫
R+

ψ(s) f (ts)sγdsdt

=
∫
R+

∫
R+

tβ

xα + tα
f (ts)dt ψ(s)sγds

(according to Fubini’s theorem)

=
∫
R+

∫
R+

( u
s
)β

xα +
( u

s
)α f (u)

1
s

du ψ(s)sγds

(by making a substitution of variables u = ts)

=
∫
R+

∫
R+

uβ

(xs)α + uα
f (u)du ψ(s)sγ+α−β−1ds

=
∫
R+

ψ(s)((SP)α,β f )(xs)sγ+α−β−1ds

=
(
ψ ∧γ+α−β−1 ((SP)α,β f )

)
(x).

This concludes the proof of Theorem 2.

From this Theorem and taking β = α − 1, α ̸= 0, one obtains

Corollary 2. Let α ̸= 0. If f ∈ L1(R+, t−1dt) and ψ ∈ Cc(R+), then
(i)

(SP)α,α−1( f ∧−1 ψ) = f ∧−1 ((SP)α,α−1ψ),

(ii)

(SP)α,α−1(ψ ∧γ f ) = ψ ∧γ ((SP)α,α−1 f ),

(iii)

(SP)α,α−1(ψ ∧ f ) = ψ ∧ ((SP)α,α−1 f ),
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Remark 5. Observe that the Stieltjes transform (SP)1,0 and the Poisson transform (SP)2,1 are
particular cases of the transform (SP)α,α−1 considered in Corollary 2.

The next result holds as follows:

Lemma 4. If f ∈ C0(R+) and ψ ∈ Cc(R+), then
(i)

f ∧−1 ψ ∈ C0(R+) and ∥ f ∧−1 ψ∥∞ ≤ ∥ f ∥∞

∫
R+

|ψ(s)|s−1ds < ∞,

(ii)

ψ ∧γ f ∈ C0(R+) and ∥ψ ∧γ f ∥∞ ≤ ∥ f ∥∞

∫
R+

|ψ(s)|sγds < ∞.

Proof. (i) We find a closed and bounded interval [a, b] ⊆ R+ such that the support of
ψ ⊆ [a, b]. Let tn → t as n → ∞ in R+. As f is a continuous function on R+, we have

f (
s
tn
)ψ(s)s−1 −→ f (

s
t
)ψ(s)s−1 for each s ∈ R+.

Since ∣∣∣∣ f (
s
tn
)ψ(s)s−1

∣∣∣∣ ≤ ∥ f ∥∞

∣∣∣ψ(s)s−1
∣∣∣

and
∣∣ψ(s)s−1

∣∣ is an integrable function on R+, we can apply the dominated convergence
theorem, and hence

lim
n→∞

( f ∧−1 ψ)(tn) = lim
n→∞

∫
R+

f (s)ψ(tns)s−1ds

=
∫
R+

f (
s
tn
)ψ(s)s−1ds

=
∫
R+

f (
s
t
)ψ(s)s−1ds

=
∫
R+

f (s)ψ(st)s−1ds

= ( f ∧−1 ψ)(t).

Thus, f ∧−1 ψ is a continuous function on R+.
Let ϵ > 0 be arbitrary. Since f vanishes at infinity, we can find a closed and bounded

interval [c, d] ⊆ R+ such that

| f (u)| ≤ ϵ

C + 1
, for all u /∈ [c, d],

where C =
∫
R+ |ψ(s)|s−1ds.

Since s
t ∈ [c, d], s ∈ [a, b] then t ∈ [ a

d , b
c ]; we find that if t /∈ [ a

d , b
c ] and s ∈ [a, b] then

s
t /∈ [c, d]. Then, | f ( s

t )| ≤
ϵ

C+1 , for t /∈ [ a
d , b

c ]. Thus, for t /∈ [ a
d , b

c ] one obtains

|( f ∧−1 ψ)(t)| ≤
∫
R+

∣∣∣ f (
s
t
)
∣∣∣|ψ(s)|s−1ds

≤ ϵ

C + 1
· C ≤ ϵ.

Thus, f ∧−1 ψ ∈ C0(R+).
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By direct computation, we obtain

∥ f ∧−1 ψ∥∞ ≤
∫
R+

∣∣∣ f (
s
t
)
∣∣∣|ψ(s)|s−1ds

≤ ∥ f ∥∞

∫
R+

|ψ(s)|s−1ds < ∞.

Therefore, (i) holds.
(ii) We find a closed and bounded interval [a, b] ⊆ R+ such that the support of

ψ ⊆ [a, b]. Let tn → t as n → ∞ in R+. As f is a continuous function on R+, we have

f (tns)ψ(s)sγ −→ f (ts)ψ(s)sγ for each s ∈ R+.

Since

| f (tns)ψ(s)sγ| ≤ ∥ f ∥∞|ψ(s)sγ|

and |ψ(s)sγ| is an integrable function on R+, we can apply the dominated convergence
theorem, and hence

lim
n→∞

(ψ ∧γ f )(tn) = lim
n→∞

∫
R+

ψ(s) f (tns)sγds

=
∫
R+

ψ(s) f (st)sγds

= (ψ ∧γ f )(t).

Thus, ψ ∧γ f is a continuous function on R+.
Let ϵ > 0 be arbitrary. Since f vanishes at infinity, we can find a closed and bounded

interval [c, d] ⊆ R+ such that

| f (u)| ≤ ϵ

C + 1
, for all u /∈ [c, d],

where C =
∫
R+ |ψ(s)|sγds.

Since ts ∈ [c, d], s ∈ [a, b] then t ∈ [ c
b , d

a ], we find that if t /∈ [ c
b , d

a ] and s ∈ [a, b] then
ts /∈ [c, d]. Then, | f ( s

t )| ≤
ϵ

C+1 , for t /∈ [ c
b , d

a ]. Thus, for t /∈ [ c
b , d

a ] we obtain

|(ψ ∧γ f )(t)| ≤
∫
R+

|ψ(s)|| f (ts)|sγds

≤ ϵ

C + 1
· C ≤ ϵ.

Thus, ψ ∧γ f ∈ C0(R+).
By direct computation, we obtain

∥ψ ∧γ f ∥∞ ≤
∫
R+

|ψ(s)|| f (ts)|sγds

≤ ∥ f ∥∞

∫
R+

|ψ(s)|sγds < ∞.

Therefore, (ii) holds.
This concludes the proof of Lemma 4.

Remark 6. From this Lemma, one can see that the Mellin-type convolution ∧γ is a continuous
operation in another specific sense different to that obtained in Remark 4. In fact, if the sequence
( fn) converges to f in C0(R+) as n → ∞ and ψ ∈ Cc(R+), then:

(i) the sequence ( fn ∧−1 ψ) converges to f ∧−1 ψ in C0(R+) as n → ∞,
(ii) the sequence (ψ ∧γ fn) converges to ψ ∧γ f in C0(R+) as n → ∞.
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Observe that from Lemma 4, the Mellin-type convolution denoted as ∧γ represents a
bilinear operation characterized by the following properties:

If f , g ∈ C0(R+), ϕ, ψ ∈ Cc(R+) and α, β ∈ C, then

(α f + βg) ∧−1 ϕ = α( f ∧−1 ϕ) + β(g ∧−1 ϕ)

and

f ∧−1 (αϕ + βψ) = α( f ∧−1 ϕ) + β( f ∧−1 ψ).

Also,

(αϕ + βψ) ∧γ f = α(ϕ ∧γ f ) + β(ψ ∧γ f )

and

ϕ ∧γ (α f + βg) = α(ϕ ∧γ f ) + β(ϕ ∧γ g).

Also, again using Lemma 4, one obtains a corresponding result to Proposition 3.
Indeed

Proposition 4. For a function f ∈ C0(R+), and for functions ϕ, ψ ∈ Cc(R+), we have
(i)

( f ∧−1 ϕ) ∧−1 ψ = f ∨ (ϕ ∧−1 ψ),

(ii)

f ∧−1 (ϕ ∧−1 ψ) = ϕ ∧−1 ( f ∧−1 ψ),

(iii)

(ψ ∧γ ϕ) ∧γ f = ψ ∨ (ϕ ∧γ f ),

(iv)

ψ ∧γ (ϕ ∧γ f ) = (ϕ ∨ ψ) ∧γ f .

4. Final Observations and Conclusions

This paper develops exchange formulae for the Stieltjes–Poisson transform using
Mellin-type convolutions in weighted Lebesgue spaces. A key contribution of this paper
is the inclusion of a more general Mellin-type convolution product, which is bilinear and
continuous. While a broader exchange formula was proven in [21], this paper provides
novel insights, particularly with the incorporation of the space of continuous functions
vanishing at infinity. This inclusion enlarges the applicability of the results, offering a more
versatile framework for understanding the Stieltjes-Poisson transform.

In conclusion, this research expands upon existing work by providing new exchange
formulae for the Stieltjes–Poisson transform and extending the function spaces consid-
ered, thereby opening new avenues for further exploration and application in the field of
harmonic analysis and related areas. The results obtained in this paper can be used as a
foundation for future studies on the interaction between Mellin-type convolutions and
other integral transforms in weighted function spaces.
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