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Abstract: The paper considers the generalized hypergeometric function 3F,, which is important in
various fields of mathematics, physics, and economics. The method is used, according to which the
domains of the analytical continuation of the special functions are the domains of convergence of their
expansions into a special family of functions, namely branched continued fractions. These expansions
have wide domains of convergence and better computational properties, particularly compared with
series, making them effective tools for representing special functions. New domains of the analytical
continuation of the generalized hypergeometric function 3F, with real and complex parameters
have been established. The paper also includes examples of the presentation and extension of some
special functions.
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1. Introduction

Special functions are among the most intriguing functions pervasive in all fields of
science and industry. Research on them has been ongoing for the past two centuries,
and due to their importance, several books (see, particularly, refs. [1-4]) and websites
(see, for instance, http://functions.wolfram.com) and a huge collection of papers have
been devoted to these functions. Despite significant achievements in the study of special
functions and their properties, this topic remains one of the most important and has many
open problems.

The paper considers a generalized hypergeometric function 3 F, defined as follows ([5],

p- 8):
k

JBy(ay, 00, 3; B, B 2) i (oq(?Bk()‘Xz)k(tm)kZ

= Dr(B2)x K

where a1, 42,03, 81,62 € C, B1,B2 & {0,—1,-2,...}, (-)x is the Pochhammer symbol,
zeC

The generalized hypergeometric function 3F, appears, in particular, in mathematical
analysis, in the problem of the asymptotic expansion of the Lauricella—Saran hypergeo-
metric function Fg [6], and in algebra, in the problem of the quantum unique ergodicity
of Eisenstein series [7]. In probability theory, this function is used to describe the hyper-
geometric distributions and their moments [8]. In theoretical physics, the generalized
hypergeometric function 3F, is the solution, in particular, to the Picard-Fuchs differential
equation [9,10] and Laplace’s equation [11]. In string theory, it arises in the context of
computing the amplitudes associated with the vibrational modes of strings, as well as
in the study of interactions between strings or the analysis of gauge theories [12-14].
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In quantum mechanics, the generalized hypergeometric function 3F; is used to describe
the wave functions of quantum harmonic oscillators [15,16] and the Coulomb interaction
of a system of spinless fermions [17]. In the modeling of financial processes, this function
appears in financial options pricing models to compute analytical solutions [18], and in
game theory, to count the number of totally mixed Nash equilibria in games of several
players [19].

The paper continues to conduct research [20,21] on the representation of special
functions, in particular generalized hypergeometric function 3F,, by a special family of
functions, namely branched continued fractions [22,23]. The good approximating properties
of branched continued fractions (wide region of convergence, faster rate of convergence
under certain conditions compared with series, and numerical stability) allow them to be
an effective tool for representing special functions (see [24-28]).

Let (if)o = (io, jo), I = {(1,1); (1,2); (2,1); (2,2)}, and
300 = {(if)e s (i) = (i jrs i for s ji), 14 0% < ik <2, ji € {12}, ik — jil # lik—1 — jkal, k> 1},
where 5}’; is the Kronecker symbol. In [20], it is established that, for (ij)o € J,

3F2(061,0C2,0C3,’ﬁ1,ﬁ2,’— )
3F (g + 51 81 +(5252 ay + 6152 + 6261, oc3+(5 ; B + 6L 5} +52 Ba + 6152 +52 z)

o Jo o Jo io”jo” o Jo o~ Jo
z i
=1+ )y o ’ @
i1= 1+¢>10 2 d(ij)zz
i 2l —jol. he1zy 1+ )3 i -

ip=1+4 - 2 4o

o . (i) ?

lip—ja|#li1—j1 1, {12} + Z 1)k

P 1
i =il #lik—1 =11 jk€{1.2}

where for (ij); € 3o, (ij)g € Tand k > 1,

ag + Z (51 51 +53p5]2p) 201

k=2
1 51
[ﬁl - 0(3 + p;oglpéjp

a2+2 (6] 67 +676; )]

(if)o __
4y, =

, (3

k—2
151 2
51 +1+ pg‘b((sipéjp + Jip)

1 51 2
B+ p;)(éip(sjp +47)

12 <2
B2+ p;)(‘sip‘;jp +47)

it 1 =2, k1 =ik=jk=1,

k=2
1 52
[ﬁz - 0(3 + p;o 51}05]}0

k-2
ap+ Y (é}p(s}p + 5%5}}7)
p=0

k-2
ay + Z (5}p5fp + 5@5}”1

(if)o
d(if)k k—2 k2 , (@)
Prt1+ ) (8,07 +67)| B+ X (6,0, +6)| B2+ Z (8162 +42)
p=0 p=0
fix 1=jk1=K=2ik=1
& o a a0 2 & o
.. Pr—m+ 2 5iP5fn “y + 2 (5ip5fp + (5"115]?) a3 + 2 (51'11
(if)o _ p=0 p=0 =
d;’. . 5
(ix

B2+ Z (61,67 +07)

k-2
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:Bl +1+ F;_O((Sip(sjp + 51';7)
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k—2
2 <1
[[31 —a + p;o(sipajp

k-2
a3 +1+ 36
p=0

k-2
ap + 2 (5}p5fp + (51.2’75]117)]

(if)o
d(l) =2 g 5 =2 1o 2) 151 2) , ©
ﬁ1+1+2 5,6;, + ;) /32+1+Z 5,67 +;) ﬂ1+2 8;,9j, + ;)
p=0 p=0
ifir 1=jk1=k=2,jkr=1,
k=2 k=2 k=2
By —ar + 251.2’75]2’7 2(5151 +6207)| s+ Zéfp
(if)o - —
d(if)k - =2 5 o1 sl 2) 152 2) ’ ?
52+1+p2 5,67 + 07 ) /51+pz 5.,0;, +3;) ﬁ2+z 5,87 +47)
fix 1=Lj 1=k =j=2
k-2 [ k=2 k=2
Pr—r+ ) 0707 | las+14 ) 6 | |aa+ ) (8] 5) +06767)
(if)o p=0 L p=0 p=0
Uiy = ' @

k-2
1 51 2
B1+1+ p;o((sipz;jp +67)

k=2 k=2
Br+1+ l;)(é}pa‘fp +67)| B2+ r;)(zs}péfp +67)

if jy_1 =1, ix_1 = ik = jx = 2 (see Section 5 or a description of the process of obtaining
Formulas (3)—(8)), and it is shown that

‘Yg:{ze(C: z%(—oo;—lle)}, O<e<l,

is the domain of the analytical continuation of the function on the left side of (2) under the
condition that

Br>wa >0, Br>a3>0, Br#0, k=12

Note that for the pair (1,1) (or the similar (1,2)), the ratio of generalized hypergeomet-
ric functions 3 F, was considered in [21], where explicit formulas for the coefficients of the
formal branched continued fraction expansion through the coefficients of the generalized
hypergeometric function 3F, without the expansion itself are given.

The paper is organized as follows. Section 2 guarantees the union of the circular
and cardioid domains as the domain of the analytic extension of the functions on the left
side of (2), with complex parameters, through their branched continued fraction expan-
sions, and, in the case of real parameters that ensure the positivity of the elements of the
expansions, the domain of the analytic extension is a plane with a cut. The last result is
a generalization of the corresponding result in [20]. Section 3 presents examples of the
representation of special functions by their branched continued fraction expansions, while
Section 4 collects important conclusions.

2. Domains of Analytical Extension

The method will be used here, according to which the domains of the analytical
continuation of the special functions are the domains of convergence of their branched
continued fraction expansions (see, ref. [29]).

The following is true:
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Theorem 1. Let (ij)g be an arbitrary pair in 3. Let (1) be a generalized hypergeometric function
with parameters such that

(if)o (if)o
2 d )| —Re(d :)) i
)3 i D <k (i) €30, k> 2, ®
. + (if)o ( B (1])0) /
1k:1+oik—l g(ij)k,1 g(l])k

[t =ikl #lig—1—fk—11 ir {12}

where dEZ;i, (i)x € 3o, k > 2 are defined by (3)~(8) herewith By, Bo & {0,—1,-2,...},

k>0 and 0< gEZ;g <1, (i) eaio, k>1. (10)

Then,
(A) The branched continued fraction (2) converges uniformly on every compact subset of the domain

QK,T = QK U QT/ (11)

where
0, = {z €C: |z < 1reostars(z) +C°Sf{arg(z)) } (12)

and
1

QT—{ZGC: |z|<8T}, (13)

where
T= sup |d8;§2 |, (14)

(i)k€T i)y, k=1

to the function f(z), holomorphic in the domain Q. «;
(B) The function f(z) is an analytic continuation of the function on the left side of (2) in the
domain (11).

In our proof, we need the following:

Theorem 2. Let (if)o be an arbitrary pair in J and let qEZ;i, (ij)x € 3o, k > 1 be the real

numbers, such that

0< qggg <1, (ij)e € 3%, k> 1. (15)
Then,
(A) The branched continued fraction
(io,(if)o
3 OISO 16)
e ) (if)o (1 _ (i]')O)Z(ii)o
iy e\~ ~ T %G
liv-lAlio—jol. et2y L ¥ )y I ) ) ;
ip=1+6} : ’ q({z)O(l _ q({z)o )Z({z)o
lin—ia | £lir i1 |, ;p€{12} 4 y (i) (if)k—1""(ij)x
= 1+.
lk:l+éik .

i =l #lik—1 = f—11 gk €{1.2}
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converges absolutely and uniformly for
200 < L, (i) € 30, k> 1; a7)
(B) The values of the branched continued fraction (16) and of its approximants are in the closed disk
lw—1 <1 (18)

Proof. In the same way as in ([30], Theorem 2), we show that the majorant of the branched
continued fraction (16) is

(if)o
- y I(ij /10 19)
1 2 q(l]) ( ])0)/1
= 1+60 1— Z (if)2 1]) 1
li1=j11#lio—jol. 1 €412} ) 1_ ) @)
o=1vs] 2 (1 g0 /g
\"2—]'2\7&\1'1—]'1\:1126{172} _ Z q(l])k( q(l])k—l) k-1
1k:1+5ik71
i =il #lik—1 —fk—1 jr€{1.2}
Let (ij)o be an arbitrary pair in J. We set
F = E =1, (if)n € 300, n > 1,
and
(if)o (i)oy ., (if)o
nplilo _ 1 4 5 Ui~ Ui i
(i et} 1+, ) 200 (1 _ g0 )60
lik 1 = kg1 1A i =ikl g1 €412} + Z (i) ({f)n1""(if)n
, ) 1
1n:1+5in7
[in—jnl#lip—1—in—1l ine{1,2}
(i)o _
nplio _ q _ i q(ij)kJrl( q 1] )/lk
(e 1— . . ’
i =1 2 (o (1 _glido /i,
\ik+1*ik+1\#\ik*ik\,k/kﬂE{l,z} _ Z q(ll)n( q(l])n—1> n—1
in=1+4} -
[in—jnl#lip—1—in—1l ine{1,2}
where (ij); € 3o, 1 <k <n—1,n > 2. Then,
(if)o (if)oy,(if)o
. 2 i, (1= i )7
np(if)o _ i)k ()i
Fijpe =1+ L e ‘ 20)
lk+1=1+5ik ({41
lik 1 =ik 11#lik =ikl g1 €{12}
(ifo (if)o
. 2 iy, 1= a7,/ ik
np(ilo _ 1 (i)k+1 (iNk
F(ij)k =1 ) Z 4 2o ! (21)
1 =140 (i]')k+1

lik 1 =Jk+11 1k =ikl g1 €{1.2}

where (if); € 3o, 1 <k <n—1,n > 2, and, thus, for n > 1, the nth approximants of
branched continued fractions (16) and (19) are written as
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(if)o  (if)
. 2 Gy Zoi
(if)o _ (i1~ i)
foh =14 L o1 oo
1 2 1—
=140 90, X~ 96,26,
liy—jp | lig—jol {12y 1 Y.
1 oo 2 g0 (1 — gl )z
lia =l #li1 =l € {12} + y (i) 1(11)n_1 (i)
in:1+¢51.17
lin—jnl#lin—1—jn—1l, jn€{12}
(i1)o (if)o
2 g0z
_ (i1~ ()
=1+ Z (i)o
S| nErs
1171+oi (l])l
liy—j11#lig—jol, i1 €{1.2}
and
(if)o /-
fio _ 2 9(ij, /10
" ) 1 nl/:‘\(l])
=1 (i
liy=j1l#lio—jol. 1 €{1.2}
respectively.

Let n be an arbitrary natural number. Using relations (15), (17), (20), and (21), by in-
ductiononk, 1 < k < n, for (ij); € 3o, we show that

ZJ)o o ~ (o
"Fipe | 2 "Fipe 2 96, (22)

For k = nand (i), € 3, the inequalities (22) are obvious. By the induction hypothesis
that (22) holds for k = r + 1 and (ij),+q € 3%, where r +1 < n, we prove (22) for k = r.

Indeed,
(ij)o __(i)oy, (i)
g _ |7 4 5 Ui 1~ 96, 2
(i) o wg @0
= (lJ)r+1
iy 1 =frsr1|#lir=jrl jry1€{12}
(if)o (i)oy ., (io
>1— i q(ij)r+l(1 q(l])r)|z(ij)r+l|
- o] e |
1=l (i1
lip 1 =ip g1 |#lir=jrl jrp1 €412}
(if)o _ oy /;
>1- i D) (1~ 903, )i
- . 1 ﬂﬁ(l])o
) ) l’“_:l{ro"r, (i)r+1
iy 1 =T |Flir—jrl, jry1€{12}
_ np(ifo
="Fij,

It follows from (15) and (22) that ”F( ;é 0. Then, replacing qg ;°+ with ”1?(%) 0+1 , the
inequalities (22) are obtained for k = r.
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fn+k

From (15) and (22), it also follows that ”F(Z]]) # 0and ”F((l])) > 0forn > 1, (i), € 30,
and 1 < k < n. Applying ([23], p. 28), (20) and (21), we have, forn > 1and k > 1,

(if)o, (if)o ( o (if)o
fio _ gl _ 3 T n |4 y T, (i
n+k " ) 1 n+kF(l]) ) 1 (1 o
A=Yy ()1 R "Fijy
liy—=j11#lio—jol j1 €{1.2} liy=j11#lig—jol, j1 €412}
2 TinnZ, (if)o _ np(i)
=— Yy AR (ntkpilo _mpti)o)
n+kp(ionr(iio (if) (if)
n=ttol i "Fi, 1 1

li=i11#lio—jol j1€{1.2}

~ Letr be an arbitrary natural number such that 1 <r <n—1andn > 2. Let (i), €
3(ii)o. Then, we obtain, for n > 2 and k > 1,

(if)o _ oy, (if)o
kg0 _np(io _ q 4 3 Tipra (1~ 96 2rs
(if)r (i) ] 1 n+k1:(1])0
S (if)r+1
lip 1 =fpp1|#lir—irl, jrp1 €412}
(i)o _ 4(i)oy,(io
_ 2 Ui L~ 960 e
1+ Y
S np(io
1 =1, ({f)r41
lip 41 —ips1|#lir=jrl jr41€{12}
(ifo (i)oy, (if)o
_ 5 Uipees U = 160 20 mipilo _ gt | )
. 1 n+k1:( 7o ( 7)o ({f)r+1 ({f)r+17"
1= ()r+1 (1])r+1
iy 1=Trs1|Flir=jrl jry1€{12}
Since
(ifo _ 4oy, (o
wekp(io _ np(io _ 5 T (U 96020
(i) i ) 1 n+k1:(1])0 ’
41 =140, (i)n+1
lin1=Jns11#lin=jnl, jp41€{12}
after the (n — 1)th application of the recurrence relation (23), we get
n+1 . ..
(o, (o
1] il 2 2 2 H q( ] rfl)z(ij)r
£ = (-1) > Yo Y L ,
ip=1+0] iy=1+s} ipy1=1+0L Hn+k1:(l])0 ng(ifo
0 1 . . Lo
iy —j11#lig—jol. i1 €412} lip—jal#li1—j11, jp€{12} lig41—ing11#lin—jnl, jy+1€{12} (l])r 1 (i)
where q(”) =0.

0
Using (17) and (22), we get the following:
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(i)
(ilo _ (i) - : 2 qu G
0 0
T A Yo Y L :
ip=1+0} ip=1+4} iy y1=1+0} n+k1: if)o "F Z] 0
0 1 , , o
liy—j11#lig—jol. 1€{12} lip—jol#liy—j1 1, p€{1.2} li+1—in+1|#lin—inl, ju+1€{1.2} E | (i)r | H| ‘
n+l .. ..
(o _ 4oy /5
2 2 2 q q(l])r (1 q(i]')r—l)/lr71
r=
< )3 DI X TSI
i1:1+61.10 i2:1+(5}1 ing1=1+0}, 1—[ n+kl?(}])0 nﬁ(f{)o
-l #lio-iol i€ (12} lip—al#li~l 212} ws1 st Elin—jnbjuprctrzy 23 (e L3 ()

= (fn+k fnl] )/

wheren > 1,k > 1, and q(l:]:)o = 0. Thus,

(if)o
o _ (i ~ 26 _ Fij)o
|fn+ f?’l |<f fn+k1 ”lekzl, (24)
that is, the sequence {ﬁ(lij )0} is monotonically decreasing. In addition, from (22), we have,
forn > 1,
(if)o s;
J?(l'f)o —1-— : 9ip, /1o
" S nP(Z])O
=1, (i)
liy—i1#lio—jol, j €{1,2}
z 1
>1- —
> | Zl o
i1=1+0;
lip—i1l#lio—jol {12}
= 0.

Thus, there exists a limit
jﬂ” 0 = lim ]?( if)o

n—oo

Now, by relation (24), we obtain, for k > 1,

k k
Z n+l fnl]0| < Z(fm-l fnl] )

n=1
(ifo
2 q,: iy
- L An

ij=1+o)
liy—i1[#lio—jol, j €{1,2}
It follows that as k — oo, the branched continued fraction (16) converges absolutely

and uniformly for |ZEZ;2\ < 1/ix_q, (ij)x € 3o, k > 1. This proves (A).
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Finally, by the inequalities (17) and (22), we get, for n > 1 (see (ref. [31], Theorem 1)),

(i1o ., (i)o

; 2 Qi 1200 |

()1 ()1

gy SO
n i1:1+51-1 ’n+k1:((i]]>)10|

iy =1 |#lio—jol, j1€{1,2}
i 1
)
i 1agl
o,
liy=j11#lig—jol, j1 €{1.2}
:1,

IN

which proves (B). O

Note that the assumption that déZ%Z, (ij)x € 310, k > 1 in Theorem 1 involves x and

that the domain of the analytic continuation also depends on this x; and the smaller is x,
the larger the domain.

Proof Theorem 1. Let (ij)o be an arbitrary pair in J. We set

nF((zlJ]))0 (z) =1, (ij)a €3, n>1, (25)
and
2 dgij;[] z
. !
nF((l,l]Z)); (Z) =1+ Z k+1 7 ’
ipqp1=1+01 2 d(“ vz
i ; ok 1+ Z i)kt2
ligp1 =1 | A=l kg1 €{02} 1+ -
ifpp=1+0} . (if)o
esriesa it e 12} ' 2 i) 2
Ut 2 "Ik 21 F e 1 Tk 1 b T2 €11 + 1
+2 Jk+ 1Tk b et ]_nHZ&il :

lin—jnl#liy—1=in—1l in€{1,2}

where (i), € 3o, 1 <k<n-—1,n>2 Then,

(if)o
g 2 a0z .
"F0(z) =1+ Y e (i) e 90, 1<k <1, n>2 (26)
ka1 Fin @

lik 11 —iks 11 #li—ikl g1 €{12}
and, therefore, forn > 1,
e =14y e
n=1+o] (i (&)

li1—j1 1#lio—jol, j1 €{1,2}

where f,gij Jo (z) denotes the nth approximant of the branched continued fraction (2).
We set

z=pe? p=lzl. (27)

Let n be an arbitrary natural number and z be an arbitrary fixed point in (12). By in-
ductionon k, 1 < k < n, for (ij)x € 3o, we prove that

i

Re("F(°(z)e /%) > (1-g[10) cos(p/2) > ¢ > 0. (28)
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Note that from an arbitrary fixed point z, z € (), it follows that for anywhere in its
neighborhood, there exists a positive number J such that 0 < § < 71/2, |<p/ 2| <7m/2-,
and, therefore,

(1— ggzgz) cos(¢/2) > (1— g%i) cos(7t/2 —6)
= (1-g(])sin(4)
> 0.

From (25), it is clear that for k = 1 and for (ij); € I\, the inequalities (28) hold.
By the induction hypothesis that (28) holds for k = r + 1 and (ij),11 € 3o such that
r+1 < n, we show (28) for k = r and (ij), € 3. The use of (26) and (27) for (ij), € J(Wo

leads to
(i)o
nF((fj))o(Z)e—fP/z —e ¥/2 4 i (”‘)i(i]‘)rﬂp '
if)r ij _
irp1 =14, " ij)r(]+l (2)e=¢/2

[ip1 =1 #lir—irl, jrp1 €412}

Then, for an arbitrary i,.1, 1 + (5}7 <idpp1 <2, lipe1 — jpral| # ir — jil, jre1 € {1,2}, it
follows from (9) that

G oy (o
14 i), | ~ Re(@i ) < K8 (1= 845, )-

From this inequality, it is easy to show that

o v)? ()0
(1m(dgy p))" < 4Re(de p) +4,

since from (10) and (12), it follows that
(io (1 _ oMo 2
P8, (1= 8(ij) <

Now, using ([32], Corollary 2), (9), (10), (12), and the induction hypothesis, we obtain

(o | _ (o
Re(nl:((iij))o(Z)e_i"’/2 > cos(p/2) — L i |d(if)r+l(|”) Re(d(ij)r+1)
N P Sy RCR (@)
lip1 =iy |FElir=jrl, jryp1€{12}
2 140 | _Re(d )
> cos(¢/2) — cos(¢/2) y (i)r 1 i)
. | 1— gl
R 8l

[iy 1 =ip 11 #lir—jrl, jrp1€{1.2}

> cos(p/2) — g%f cos(¢/2)

- (1- ggjﬁgg) cos(¢/2).

It follows from (28) that ”F(lj))lo(z) # 0 for (ij); € 3o, n > 1, and z € Q. Thus,

(if
the approximants f,gl] Jo (z),n > 1, of (2) form a sequence of holomorphic functions in Q).
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Using (28), we obtain, for z € Q) and n > 1,

FETESE. (L?EZS?IZI ,
— Re("F ;)0 (z)e~¢/2)
lin—j1|1#lio—jol, j1€{1,2}
2 240
<it 2 (o o

n=1+} (1- g(ij)l)KCOS((P/z)
liy—i1#lio—jol 1 €{1.2}

= C(QK)r

i.e., the sequence { f,gij )O(z)} is uniformly bounded on the domain (12) and, at the same
time, is uniformly bounded on every compact subset of this domain.

Let 11
L =min{ —, =~ 5,
mm{ZT’K}

Er={z€eR: 0<z<R<L}

and assume that the domain

is contained in () for each 0 < R < 1/L, in particular 5y /57y C Q. Using (12)—(14), it is
easily shown that for arbitrary z € Eg, Eg C (), the inequalities

(ij)x € 3o, k > 1,

o, = % (i) €30, k> 1,
2y =2d(z (if)r €90,
Z%Z = 4d8§;22, (i) € 30, k> 2

It follows from Theorem 2 that the branched continued fraction (2) converges in Eg,
Er C Q. Thus, by ([33], Theorem 24.2), the convergence of this branched continued
fraction is uniform on compact subsets of ().

By Theorem 2, with

Go _ 1 o ~(i)
=5 (ij) € 30, k>1,

the branched continued fraction (2) converges for z € ()¢, where (); is defined by (13), and
all its approximants lie in the closed disk (18) if z € Q.. It follows from ([33], Theorem 24.2)
that the convergence is uniform on compact subsets of (13). Thus, this and the above
prove (A).

The proof of (B) is similar to the proof of ([20], Theorem 2), hence it is omitted. [

Corollary 1. Let iy = jo = 1. Suppose that ap, a3, B1, and By are complex numbers that satisfy
the inequality

(if)o (if)o
) 40| _ Re(d": y
B Fond “R@u) G, e, k21,
‘ - (l])o (1 _ (l])(l)
lk:1+oik71 g(ij)k,1 g(l])k

[t =ikl #lig—1 —fg—11 ik €{1.2}
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where dgzgz, (i) € 3o, k > 1 are defined by (3)~(8), where &y = 0, By is replaced by py — 1
and By & {1,0,—1,-2,...}, B2 € {0,—1,-2,...}, and « is a positive number, and gEZ;g, g%i,
(ij)x € 3o, k > 1 are the real numbers, such that

0<g <1, 0<glll <1, (ifrert, k>1.

Then, the branched continued fraction

1
@) (29)
3 i,
1+ L (if)o
. - 4(ij),”
- |£lig—jol he(12y LT )3 1 »

2 a0,

lig=fal#liy =l {12} + y (i)

= 1+.

]k:1+5ik— .

i =il #lik—1 =T —1 jp€{1.2}

converges uniformly on every compact subset of (11) to the function f(z), holomorphic in (11);
in addition, f(z) is an analytic continuation of the function 3F,(1, ap, a3; B1, B2; —z) in (11).

Note that the similar consequences are valid if

(i) io=1,jo=2, & = 0and B is replaced by S — 1;

(i) io=2,jo =1, a2 = 0 (orag = 0) and «a3 (or «2), B1, B2 are replaced by a3 — 1 (or
ay — 1), B1 — 1, B2 — 1, respectively;

(iii) ip = 2, jo = 2, &1 = 0 (or a3 = 0) and «a; (or a3), B1, B2 are replaced by a3 — 1 (or
a3 — 1), B1 — 1, B2 — 1, respectively.
The following result is a generalization of ([20], Theorem 2):

Theorem 3. Let (ij)g be an arbitrary pair in 3. Let (1) be a generalized hypergeometric function
with parameters such that

0< d%g <1, (if)eai, k>2,

where dEZ;g, (ij)x € 3o, k > 2 are defined by (3)—(8), B1, B2 € {0,—1,—2,...}, T is a positive
number. Then,

(A) The branched continued fraction (2) converges uniformly on every compact subset of the domain

HT:{ZE(C: Z§é(—oo,—811_]} (30)

to the function f(z) holomorphic in I1;
(B) The function f(z) is an analytic continuation of the function on the left side of (2) in (30).

Proof. If ) ,

=3 Geeaeo
and - B

d%i >0, (ij)e €3, k>2,

then the condition (9) holds for all ¥ > 0. Let Y be an arbitrary compact subset of (30).
Then, Y C O ¢ C I1; for some sufficiently small x whose () r is the domain (11). Thus,
Theorem 3 is a direct consequence of Theorem 2. [J
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Corollary 2. Let ig = jo = 1. Suppose that ay, a3, B1, and By are complex numbers that

0< d%i <1, (i) eai, k>1,

where dgzgi, (ij)e € 30, k > 1 are defined by (3)~(8), where a; = 0, By is replaced by
B1—1,and 1 ¢ {1,0,—1,-2,...}, B & {0,—1,—-2,...}, T is a positive number. Then,
the branched continued fraction (29) converges uniformly on every compact subset of (30) to the

function f(z) holomorphic in (30); in addition, f(z) is an analytic continuation of the function
3B (1, a0, 3; B1, Bo; —z) in (30).

Note that similar consequences also hold for cases (i)—(iii).

3. Examples

Consider the dilogarithm function (see, for example, ref. [34]):

LiQ(Z) = Z3F2(1, 1, 1,'2,2,‘2)

It follows from Corollary 2 that the branched continued fraction

V4
11 ’
1= 11 B 11
1_ C21111,12 B - €2,1,22% -
1 2111217 ©212212% 9122217

1-— 1-— 1-—

where d%l’.})k,
B1 is replaced by B1 — 1, is an analytic continuation of the dilogarithm function Li(z) in

the domain .
B = {zEC: z ¢ [8T,+00>},

where T is defined by (14).
In ([35], Formula 7.4.3.17a), it is given that

(ij)k € J1,1, defined by Formulas (3)-(8), where ip = jo = 1, a1 = 0, and

arcsinh? \/z = z3F(1,1,1;3/2,2; —z)
o (D)"((1)n) 2
= L G0,

(here, the principal branch of the square root is assumed). Thus, by Corollary 2, the branched
continued fraction

zZ
z/3
1+1+ 2/15 8z/21
LB/ TR 5T

1+ 1+ 1+

is an analytic continuation of function arcsinh? /z in the domain

[I={zeC: |arg(z)| < m}.
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4. Discussion and Conclusions

The article considers the generalized hypergeometric functions in C, which include the
Gaussian hypergeometric function [36] and its confluent cases, which in turn have many
special functions such as elementary functions, Bessel functions, and classical orthogonal
polynomials. The main examples are the ratios of generalized hypergeometric functions 3 F,,
which have a representation in the form of the branched continued fractions [22]. We proved
that these ratios in the case of complex parameters have analytical extensions in the domain
that is the union of the circular and cardioid domains, and in the case of real parameters, it is
a plane with a cut. In the real case, the result is a generalization ([20], Theorem 2). However,
we cannot extend the ratios of generalized hypergeometric functions 3F, to wider domains
in the case of complex parameters, while numerical experiments indicate their existence.

Further investigations can be continued in several directions. First, we can try to re-
place branched continued fractions with equivalent branched continued fractions with par-
tial numerators equal to 1 and study their convergence. Note that there are other parabolic
and angular domains of convergence [37-39]. However, we know almost nothing about
the behavior of the partial denominators of such equivalent branched continued fractions.
Another direction is the truncation error analysis. It was proved in ([20], Theorem 1) that
branched continued fraction expansions converge for z < 0 at least as fast as geometric
series with a ratio of 4,0 < g < 1. Note that the obtained estimates of the rate of conver-
gence in [40—43] can be applied to branched continued fraction expansions in which ratios
of generalized hypergeometric functions 3F, are expanded. In [44], a new approach to
the study of the numerical stability of branched continued fractions is proposed, which is
an important direction in the aspect of computations. We can also study other functions,
including discrete matrix hypergeometric functions [45]. In [17], possible applications
of the generalized hypergeometric function 3F, in the Coulomb interaction of the system
of spinless fermions were considered. Our further investigation will be devoted to the
development of this approach for the above-mentioned expansions.

5. Formulas of the Coefficients of the Branched Continued Fraction Expansions

The process of obtaining the explicit Formulas (2)—(8) begins with with four three-term
recurrence relations (for details, see refs. [20,21]),

3By (a1, a0, a3; B1, Bo;z) = 3Fa(ag + 1,00, 003, B1 + 1, B2; 2)
(B1 — m) a3
— = z3bh(a +Lay+1a3+1,81+2,B2+1;2),
ESE 3b (g 2 3 B1 B2 )
sb (a1, ap,a3; B1, B2;2) = 3Fa(ag, a0 +1,a3; B1, B2 + 1;2)
(B2 — )13
— 7Z3F2 o1 +1,062+1,0(3 +1; 1 +1, 2-|—2,‘Z ,
(Ba T Dprfa 22 Pralpat22)
sb (a1, ap,a3; B1, B2;2) = 3Fa(ag, a0, a3 +1; B1 + 1, B2; 2)
(B1 — az)aqan
— 7231:2 o1 +1,0¢2+1,0¢3 +1; 1 +2, 2-|—1,‘Z ,
BrrDpips 22 Pr+2p2+1:2)
sb (a1, ap,a3; B1, B2;2) = 3Fa(ay, a0, a3 +1; B9, B2 + 1;2)
(B2 — az)aqan

— = = Zrabh(ar+1Lar+1,a5+1;81+1,8+2;2),
ES 3b (g 2 3 B1 B2 )

and two four-term recurrence relations,
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sba(ay, ap,a3; B1, B2 z) = 3ha (g, 00 + 1,03+ 1; 81 + 1,82 + 1, 2)
(B —az)aan
(B1+1)B1B2
(B2 ) (az +1)m
(B1+1)(B2+1)B2
sba(ay, a0, 03; B1, B2;2) = 3Fa(a1 + 1, 42,03 +1; 81 + 1,82 + 1;2)
(B2 —a3)man
(B2 +1)B1B2
(B —a1)(as + Day
(B1+1)(B2+1)B2

Further, using these formulas, one obtains the following four relations:

Z3F2(0(1 +1/0‘2+1r“3+1/‘,31 +21,BZ+1/Z)

Ly sh(ag+1,a0+1,a3+2;,81+2,B2+2;2),

zsb(vp+1Lax+1,a3+ 1,61+ 1, B2 +2;2)

z3F(ap + 1,00+ 1,03 +2;81+2,B2+2;2).

(B1— “1)062“3
sha(a, ao, 03,1, P2;2) 4 (BL+ Dpifa
sh(a +1,a0,a3; 81 + 1, B2;2) sba(ag +1,a0,a3; 81 + 1, B2; 2) ’
sbh(avp+1La+1,a3+1;81+2,62+1;2)
(B2 — a2)aqa3
sba(ay, a0, a3; B1, B2; z) _ (B2 +1)B1B2
sba(ay, a2 +1,a3; 81, B2 + 1, 2) sba(ay, ap +1,a3; B1, B2 + 1, 2)
3F2(CK1 +1,a0+1,a35+ 1;ﬁ1 + 1,ﬂ2 -|—2,‘Z)

and

(B1— 063)“1062
sFo (a1, ap, a3; B1, B2; 2) (B1+ 1)[3152

sh(a, 00 +1a3+1;81+1,p+1;2) ! sh(ag, a0 +1,a3+ 1,81 +1,82+1;2)
sh(vr+1Lap+1 a3+ 181 +2,2+1;2)
(B2 — a2) (a3 + Doy
(B1+1)(B2+1)B>
3F2(061,1Xz +lLas+1,B61+1,B2+ 1,'2) !
shh(ag +1 a0+ 1,03 +2; 81 +2,82+2;2)
(B2 — 063)“1“2Z
sba(w, @, a3 B1, Bo; 2) , (B2 +1)B1B2

sh(ag+1ag,a3+ 11 +1,B2+1;z) sbh(ag +1,a0,03+1; 81+ 1,8+ 1;2)
shap+1,a0+ 1,03+ 181+ 1,B2+2;2)
(B1—a1)(az +1)as
(B1+1)(B2+1)B
sbh(ar+1a0,034+1; 81+ 1,8 +1;2)
sbh(ag +1Lao+1,a3+2;81+2,82+2;2)

Let, for (ij)o € J, (ij)x € I(ij), and k > 1,
(i)o Ll 4 5242 k712 251 =
a(ll) - (“1 + 2 (51,}(5],7 T 51;«5] 2+ pZ: 51;:(5];7 + 51;15] 03+ r;)(sip ’
and

k—1
= (,81+ Y. (610} +61), B2+ 2 (6],67 +07) )
p=
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Then, these relations can be written as follows:

sba(ar, w03, f1, o;2) _ o Y

sBa(afl;6(002) i ah(a

liy=i1|#lio—jol, j1€{1.2}

where (if)o € 3,d)°, (if)1 € Z(5,, (if)o € T are defined by Formulas (3)~(8) for k = 1.
By analogy, it is clear that for k > 2 and (ij)x—1 € L), (if)o € Z, the following

recurrence relation holds:

(if)o . (o (if)o
P25 O ?) 3 i)
o o . | o . (o "
sba(ag, 70, 72) e sBa(ag) 70, 22)
eIkl Flik—1 =kl k{12 (if)o. v.(if)o.
sEa(ag 70 52)

where dEZ%i, (i1)k € L), (if)o € Z, k > 2 are defined by Formulas (3)—(8).
. (if) (i) . g
Note that the explicit forlrlnulas for the vectors a(ij)i,l’ b(ij)i,l’ (i1)o € T, (if)x € Liij),
k > 1 and the coefficients déZ;i, (if)o € Z, (if)x € Z(jj),, k = 1 of the branched contin-
ued fraction expansions (2) are obtained by selecting Kronecker symbols without using
computer algebra or artificial intelligence.
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