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Abstract: Given an autonomous second-order ordinary differential equation (ODE), we define a
Riemannian metric on an open subset of the first-order jet bundle. A relationship is established
between the solutions of the ODE and the geodesic curves with respect to the defined metric. We
introduce the notion of energy foliation for autonomous ODEs and highlight its connection to the
classical energy concept. Additionally, we explore the geometry of the leaves of the foliation. Finally,
the results are applied to the analysis of Lagrangian mechanical systems. In particular, we provide an
autonomous Lagrangian for a damped harmonic oscillator.
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1. Introduction

Second-order ordinary differential equations (ODEs) are an essential tool for modeling a
wide range of nonlinear evolutionary phenomena, especially in systems with one-dimensional
dynamics. These equations arise in various fields, including physics, engineering, and biology,
where they are employed to describe processes as diverse as mechanical vibrations, chemical
reactions, and population dynamics. However, the study of second-order ODEs is often
challenging, as no universal algorithm exists to determine their solutions. Over the past few
decades, significant research has been dedicated to finding solutions and first integrals for
such ODEs [1–6]. Additionally, extensive research has investigated qualitative analysis and
numerical methods for solving second-order ODEs [7–9].

In most cases, researchers have explored specific families of second-order ODEs to gain
meaningful insights. In this paper, we focus on autonomous second-order ODEs, the study
of which remains an active area of research; see [10] and references therein. These equations
are particularly interesting because many of them arise from dynamical systems governed
by (not necessarily autonomous) Lagrangians. In particular, understanding the behavior
of these equations can lead to deeper insights into the underlying mechanics of physical
systems, making them an important topic in both theoretical and applied mathematics.

On the other hand, recent research has shown increasing interest in associating Rie-
mannian metrics with differential equations [11–18], as this approach provides valuable
insights into their behavior. Following this approach, after introducing some preliminaries
in Section 2, we show in Section 3 that autonomous second-order ODEs induce a Rieman-
nian metric on an open subset of the first-order jet bundle J1(R,R). We then explore the
geometry of the resulting Riemannian manifold and relate it to the integrability of the
ODE. Specifically, we link solutions of the ODE to geodesics of the manifold. We also
introduce a minimal foliation in the manifold (Section 4) for which the leaves correspond
to constant-energy surfaces in the context of mechanical systems, then study the geometry
of these leaves. In Section 5, we shift our focus to ODEs derived from Lagrangian systems;
in particular, we illustrate how the damped harmonic oscillator can be framed within an
autonomous Lagrangian formulation.
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2. Preliminaries
2.1. Jet Bundles and Second-Order ODEs

A central tool in the study of ODEs is the use of jet bundles, which provide a natural
geometric context for understanding the structure and solutions of these equations. In this
work, we use the first-order jet bundle J1(R,R) to study autonomous second-order ODEs
that can be written in the form

u2 = ϕ(u, u1), (1)

where (x, u, u1) stand for the standard coordinates of J1(R,R), with x and u representing
the independent and dependent variables, respectively, u1 denoting the first derivative
of u with respect to x, and ϕ denoting a smooth function defined on an open subset
U ⊆ J1(R,R). The contact form on J1(R,R) is defined as

θ = −u1dx + du, (2)

and captures the first-order differential relations between u, x, and u1 [19,20].
Recall that the vector field associated with Equation (1) is

∂x + u1∂u + ϕ∂u1 , (3)

which is defined on U and encodes all the relevant information about the equation, in the
following sense. Given a smooth function f : I ⊆ R → R, its first-order prolongation [19]
is the curve j1 f : I → J1(R,R), defined by the expression

(j1 f )(x) = (x, f (x), f ′(x)).

It turns out that a smooth function f is a solution to Equation (1) if and only if its first-order
prolongation j1 f is an integral curve of the vector field (3); see [20,21] for details.

2.2. Riemannian Geometry

Recall that a Riemannian manifold is a smooth manifold M equipped with a Rieman-
nian metric g, i.e., a two-times covariant symmetric tensor field that is positive definite,
and consequently non-degenerate. Every Riemannian metric gives rise to a uniquely
determined torsionless metric connection ∇, called the Levi-Civita connection.

Consider a three-dimensional Riemannian manifold (M, g) with an orthonormal frame
(e1, e2, e3) along with its corresponding dual co-frame (ω1, ω2, ω3). The connected form of
the Levi-Civita connection is defined as the matrix of 1-forms Θ = (Θi

j) satisfying

∇ei ej =
3

∑
k=1

ei ⌟Θk
jek, 1 ≤ i, j ≤ 3, (4)

where ⌟ denotes the interior product.
These 1-forms can be obtained from Cartan’s first structural equation

dωi =
3

∑
k=1

ωk ∧ Θi
k, 1 ≤ i ≤ 3 (5)

and the condition Θi
j = −Θj

i, which is derived from the orthonormality of the frame;
details can be found in, e.g., [22–24].

On the other hand, recall that the notion of a geodesic is used in differential geometry
to extend the idea of a straight line in flat spaces to arbitrary spaces. A curve γ : I ⊆ R → M
is called a geodesic if

∇γ̇(t)γ̇(t) = 0

for every t ∈ I. It turns out that if a vector field X satisfies ∇XX = 0, then its integral
curves are geodesics of the manifold [25–27].
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Moreover, the behavior of geodesics is influenced by the curvature of the manifold.
In Riemannian geometry, the curvature plays a crucial role in determining how geodesics
diverge or converge, giving insight into the local and global geometry of the space. The
curvature of the manifold is encoded in the Levi-Civita connection, and can be described
through the curvature 2-forms Ωi

j, as defined by Cartan’s second structure equation:

Ωi
j = dΘi

j +
3

∑
k=1

Θi
k ∧ Θk

j. (6)

The components of the Riemann curvature tensor in the given frame are related to the
curvature 2-forms by the expression [23,25]

Ri
jab = Ωi

j(ea, eb). (7)

The sectional curvature along specific planes within the tangent space can be computed
from the components of the Riemann curvature tensor; for instance, the sectional curvatures
along the planes spanned by the pairs {e1, e2}, {e1, e3}, and {e2, e3} are provided by the
components R1

212, R1
313, and R2

323, respectively. These components provide essential
geometric information about the curvature of the manifold along the chosen planes.

Now, consider a two-dimensional manifold Σ embedded into M in such a way that the
given frame (e1, e2, e3) is adapted to Σ, i.e., ω3|TΣ = 0. The surface Σ inherits a Riemannian
metric from the ambient manifold, along with its corresponding Levi-Civita connection.
We denote the restrictions of ω1, ω2 to TΣ by ω̃1, ω̃2, and denote the connection forms and
the curvature forms of the inherited connection by Θ̃ and Ω̃, respectively.

By restricting the first Cartan Equation (5) to TΣ, we have

Θ̃i
j = Θi

j|TΣ, i, j = 1, 2.

In addition, there must exist smooth functions sij defined on Σ such that

Θ3
1|TΣ = s11ω̃1 + s12ω̃2,

Θ3
2|TΣ = s21ω̃1 + s22ω̃2,

(8)

with s12 = s21. Observe that we can express the functions sij in terms of the connection
forms, as follows:

sij = ẽj ⌟Θ3
i|TΣ, i, j = 1, 2 (9)

where ẽj = ej|TΣ. The reader may refer to [28] for further details.
The shape operator S is defined as

S =
2

∑
i,j=1

sijω̃
i ⊗ ẽj,

and has two independent invariants, namely, the extrinsic Gaussian curvature

Kext = s11s22 − s12s21, (10)

and the mean curvature
H =

1
2
(s11 + s22). (11)

Regarding the intrinsic geometry of Σ,we denote by R̃ the Riemann curvature tensor
of Σ with respect to the inherited metric. By definition, the curvature 2-form Ω̃ satisfies

Ω̃i
j = Ωi

j|TΣ + Θ3
1|TΣ ∧ Θ3

2|TΣ

= Ωi
j|TΣ + Kextω̃

1 ∧ ω̃2.
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From here, and according to Equation (7), we obtain Gauss’ equation

Kint = R1
212 + Kext, (12)

where Kint = R̃1
212 is the intrinsic Gaussian curvature of Σ.

3. Riemannian Metric Associated with Autonomous Second-Order ODEs

Several recent works [11,16,17] have studied how the Riemann metric

g = (1 + ϕ2)dx2 − 2ϕdxdu + du2

provides geometric information about the first-order ODE u1 = ϕ(x, u). Here, we explore
how this approach can be extended to autonomous second-order ODEs by means of the
following definition.

Definition 1. Consider a second-order ODE in the form from (1). We define the associated
three-dimensional Riemannian manifold as the open submanifold provided by

M = {(x, u, u1) ∈ U : u1 ̸= 0} ⊆ J1(R,R)

endowed with the Riemannian metric

g = (1 + u2
1)dx2 − 2u1dxdu +

(
1 +

ϕ2

u2
1

)
du2 − 2

ϕ

u1
dudu1 + du2

1. (13)

Interestingly, the vector field from (3) associated with Equation (1) has constant unit
length, as can easily be verified. Moreover, the vector field ∂u1 also has unit length, and is
orthogonal to the associated vector field. By standard procedures, we can complete this
pair of vector fields to obtain the orthonormal frame (e1, e2, e3) defined by

e1 = ∂x + u1∂u + ϕ∂u1 ,

e2 = ∂u +
ϕ

u1
∂u1 ,

e3 = ∂u1 .

(14)

The corresponding dual co-frame (ω1, ω2, ω3) is provided by the 1-forms

ω1 = dx,

ω2 = −u1dx + du,

ω3 = − ϕ

u1
du + du1,

(15)

with ω2 being the contact form θ of J1(R,R) provided in Equation (2). Observe that

dω1 = 0,

dω2 =
ϕ

u1
ω1 ∧ ω2 + ω1 ∧ ω3,

dω3 =

(
ϕu1 −

ϕ

u1

)
ω1 ∧ ω3 +

u1ϕu1 − ϕ

u2
1

ω2 ∧ ω3,

(16)
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where the subscripts denote partial derivatives (this notation is used throughout the paper).
From (16), using Cartan’s first structural Equation (5), we obtain the connection form

Θ =


0 − ϕ

u1
ω2 − 1

2 ω3 − 1
2 ω2 −

(
ϕu1 −

ϕ
u1

)
ω3

ϕ
u1

ω2 + 1
2 ω3 0 − 1

2 ω1 − u1ϕu1−ϕ

u2
1

ω3

1
2 ω2 +

(
ϕu1 −

ϕ
u1

)
ω3 1

2 ω1 +
u1ϕu1−ϕ

u2
1

ω3 0

. (17)

We are now in a position to discuss the link between the geodesic curves of the
Riemannian manifold (M, g) and the solutions to Equation (1). Recall that the integral
curves of e1 are precisely the first-order prolongation of solutions of Equation (1). On the
other hand, a straightforward calculation yields

∇e1 e1 = e1 ⌟Θk
1ek = 0, (18)

meaning that the integral curves of e1 are geodesic curves. Therefore, given a smooth
function f which is a solution to Equation (1), the curve j1 f is a geodesic of the manifold.
The converse is not true; however, we can establish the following weaker version.

Proposition 1. Suppose that Equation (1) satisfies
( ϕ

u1

)
u1

̸= 0. If a smooth function f is such that

the curve j1 f is a geodesic, then f is a solution of (1).

Proof. Assume that j1 f is a geodesic curve. We can express the vector field tangent to the
curve j1 f in the frame (e1, e2, e3) as

(j1 f )′(x) = e1 + ( f ′′(x)− ϕ)e3.

If j1 f is a geodesic curve, then

∇
(j1 f )′(x)

(j1 f )′(x) = ( f ′′(x)− ϕ)2 ϕ − u1ϕu1

u1
e1

+ ( f ′′(x)− ϕ)2 ϕ − u1ϕu1

u2
1

e2

+

(
f ′′′(x)− e1(ϕ)−

ϕ

u1
( f ′′(x)− ϕ)

)
e3 = 0.

(19)

Then, because
( ϕ

u1

)
u1

̸= 0, we have ϕ − u1ϕu1 ̸= 0; therefore,

f ′′(x)− ϕ = 0,

completing the proof.

Remark 1. Proposition 1 does not apply to equations satisfying
( ϕ

u1

)
u1

= 0. For example, if we
consider the equation u2 = u1, we can check that the function f (x) = x + ex is not a solution;
however, the prolongation j1 f is a geodesic curve, as it verifies (19).

Nevertheless, this family of equations takes the form

u2 = K(u)u1, (20)

meaning that they can be fully integrated by quadratures. Indeed, we can observe that u1 −∫
K(u) du is a first integral of Equation (20):

e1

(
u1 −

∫
K(u) du

)
= ϕ − u1K(u) = 0.
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Now, the family of first-order ODEs

u1 −
∫

K(u) du = C,

where C ∈ R, can always be solved by another quadrature, and their solutions correspond to
solutions of (20).

To continue our analysis of the geometry of the manifold (M, g), we can compute the
curvature of the connection, i.e., the matrix of 2-forms Ω = (Ωi

j) provided by Equation
(6), the explicit expression of which is too involved to be included here. Nevertheless, by
using Equation (7), a straightforward computation yields the following components of the
Riemann curvature tensor with respect to the frame (e1, e2, e3):

R1
212 = Ω1

2(e1, e2) =
1
4
− e1(ϕ)

u1
, (21a)

R1
313 = Ω1

3(e1, e3) = −3
4
+ ϕu − ϕ2

u1
− ϕϕu1u1 − ϕuu1 u1 +

3ϕϕu1

u1
− 2ϕ2

u2
1

, (21b)

R2
323 = Ω2

3(e2, e3) =

=
1
4
− ϕϕu1 + ϕuu1

u1
−

ϕϕu1u1 − ϕ2 − ϕu + ϕ2
u1

u2
1

+
4ϕϕu1

u3
1

− 3ϕ2

u4
1

. (21c)

Recall that these components correspond to the sectional curvatures along the planes
generated by the pairs {e1, e2}, {e1, e3}, and {e2, e3}, respectively.

Example 1. Consider the second-order ODE

u2 =
√

1 − κu2
1, (22)

where κ is a nonzero real constant. In this case, the associated Riemannian manifold consists of
M = {(x, u, u1) ∈ J1(R,R) : u1 ̸= 0} together with the Riemannian metric

g = (1 + u2
1)dx2 − 2u1dxdu +

(
1 − κ +

1
u2

1

)
du2 − 2

√
1 − κu2

1

u1
dudu1 + du2

1.

According to the above results, we have the following sectional curvatures:

R1
212 =

1
4
+ κ, (23a)

R1
313 = −3

4
− 2

u2
1

, (23b)

R2
323 =

1
4
+

1
u2

1
− 3

u4
1

. (23c)

To illustrate, some solutions of Equation (22), which correspond to geodesics of the associated
Riemannian manifold are visualized in Figure 1a,b for κ = 1 and κ = −1, respectively.
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(a) κ = 1. (b) κ = −1.
Figure 1. Visualization of the jet bundle J1(R,R) with the energy foliation of Equation (22) for two
cases: (a) κ = 1 and (b) κ = −1. The profiles of the leaves are ellipses and hyperbolas, respectively.
The prolongations of several solutions, which are geodesics, are shown.

Example 2. The autonomous second-order ODE

u2 =
4u2

1 + u2 + u
2u + 1

(24)

gives rise to a Riemannian manifold which has zero sectional curvature along the planes generated
by {e1, e2}. Indeed, from (21a), we have

R1
212 =

1
4
−

e1

(
4u2

1+u2+u
2u+1

)
u1

= 0.

The sectional curvature R1
212 plays a significant role in understanding the geometric

structure of the manifold. In particular, it is closely tied to the foliation introduced in the
following section.

4. Energy Foliation

We now turn our attention to a key geometric feature of the manifold (M, g), namely,
the existence of a foliation, referred to here as the energy foliation, that is related to the
integrability of the differential equation in (1).

Consider the distribution provided by

Dp := {v ∈ Tp M : v ⌟ (ω3)p = 0}

for each p ∈ M. This distribution is spanned by the vector fields {e1, e2}. Thus, it is
involutive, as

[e1, e2] = − ϕ

u1
e2.

By Frobenius’ theorem [29], there exists a foliation E on M such that the tangent space
to the leaf at p ∈ M is Dp. The leaves are provided locally by the level sets of a certain
smooth function E : M → R, i.e., in a neighborhood V of p, the leaves are described by

ΣC = {p ∈ V : E(p) = C}, C ∈ R.

Because TpΣC = Dp, such a function E must satisfy

dE = µω3 (25)
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for a non-vanishing smooth function µ defined on V. Equivalently, E must be a solution to
the following homogeneous linear partial differential equation (PDE):

Eu +
ϕ

u1
Eu1 = 0. (26)

Definition 2. We call the foliation E on M the energy foliation of Equation (1), or simply the
energy of the equation.

Remark 2. Note that while the energy foliation E of an autonomous second-order ODE can
be locally defined by a function E, it can be described equally well by any other function that is
functionally dependent on E. As we will see in Theorem 1, in classical examples arising in mechanics,
one of these functions is precisely the classical notion of energy of the system, thereby justifying the
terminology; however, for a general autonomous second-order ODE it is important to clarify that
we cannot refer to any specific function E as the energy, as there are many such functions and no
single one is a natural or preferred choice.

Remark 3. Given any function E satisfying (26), we can solve the differential equation

u1Lu1 − L = E (27)

to determine a Lagrangian L = L(u, u1) suitable for Equation (1). This Lagrangian may be
considered nonstandard; see [30] and references therein. Indeed, a particular solution to (27) is
provided by

L(u, u1) = u1

∫ E(u, u1)

u2
1

du1. (28)

We can check that the corresponding Euler–Lagrange equation for this Lagrangian is

−Eu −
u2

u1
Eu1 = 0,

which by virtue of (25) is equivalent to Equation (1). This establishes the existence of local solutions
to the inverse problem of the calculus of variations for autonomous second-order ODEs, which is a
topic of ongoing relevance in mathematical physics [30–33]. Importantly, the obtained Lagrangians
are themselves autonomous.

Example 3. In the case of Equation (22) in Example 1, we can find a function for determining its
corresponding energy foliation by solving the following PDE (26):

u1Eu +
√

1 − κu2
1Eu1 = 0. (29)

We can check that a solution to Equation (29) is the smooth function

E = u +
1
κ

√
1 − κu2

1.

Thus, the leaves of the energy foliation E of Equation (22) are the surfaces in M provided by

ΣC =

{
(x, u, u1) ∈ M : u +

1
κ

√
1 − κu2

1 = C
}

, C ∈ R.

Figure 1a,b illustrates these energy foliation leaves for the cases of κ = +1 and κ = −1, respectively.
According to Remark 3 and taking into account (28), either the smooth function

L(u, u1) = −u − 1
κ

(√
1 − κu2

1 +
√

κu1 arcsin(
√

κu1)

)
(30)
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in case κ > 0 or the smooth function

L(u, u1) = −u − 1
κ

(√
1 − κu2

1 +
√
−κu1arcsinh(

√
−κu1)

)
(31)

for κ < 0 is a solution to Equation (27), meaning that it is a nonstandard autonomous Lagrangian
for which the Euler–Lagrange equation is (22).

Example 4. To find the energy foliation for the second-order ODE (24) in Example 2, we solve
the following PDE:

4(2u + 1)u1Eu + (4u2
1 + u2 + u)Eu1 = 0. (32)

We can check that the smooth function

E =
1

2u + 1
u2

1 −
4u2 + 2u + 1

32u + 16

is a particular solution to (32) and that its level sets define the energy foliation of (24).
On the other hand, we can use the expression (28) in Remark 3 to obtain

L =
1

2u + 1
u2

1 +
4u2 + 2u + 1

32u + 16
,

which is an autonomous Lagrangian for which the corresponding Euler–Lagrange equation is (24).
In this case, the Lagrangian takes the form of a kinetic energy term plus a potential energy term, and
the function E can be considered as a mechanical energy term.

In the rest of this section, we are explore the geometry of the leaves of the energy
foliation E . The metric provided by (13) can be written as

g = ω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3,

as the co-frame (15) is orthonormal. Because ω3|ΣC ≡ 0, the induced metric on the surface ΣC
is

g̃ = ω̃1 ⊗ ω̃1 + ω̃2 ⊗ ω̃2, (33)

where ω̃i denotes the restriction of ωi to ΣC for i = 1, 2.
Correspondingly, the shape operator of ΣC is provided by

S =
1
2

ω̃1 ⊗ ẽ2 +
1
2

ω̃2 ⊗ ẽ1,

as from Equation (9) together with (17) we have

s11 = 0, s12 = s21 =
1
2

, s22 = 0.

Then, we have the following result regarding the extrinsic geometry of ΣC within M.

Proposition 2. The leaves of the energy foliation are minimal surfaces with constant
extrinsic curvature.

Proof. The mean curvature for each of these surfaces is provided by

H =
1
2
(s11 + s22) = 0,

meaning that they are minimal surfaces.
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On the other hand, the extrinsic Gauss curvature is

Kext = s11s22 − s12s21 = −1
4

.

Remark 4. According to this result, the energy of an autonomous second-order ODE forms a
minimal foliation of the associated manifold (M, g). The study of this kind of foliation is an area of
significant interest in differential geometry [34–38].

On the other hand, with respect to the intrinsic geometry of ΣC, we have the following
immediate consequence of Equations (12) and (21a).

Corollary 1. The intrinsic Gauss curvature of ΣC is

Kint = − e1(ϕ)

u1
. (34)

Example 5. We now return to Example 3. The Riemannian metric (33) induced on the surfaces
ΣC obtained by means of the local parameterization of ΣC is provided by

ι(x, u) =

(
x, u,

√
1
κ
− κ(C − u)2

)
,

is

g̃ =

(
κ + 1

κ
− κ(C − u)2

)
dx2 − 2

√
1
κ
− κ(C − u)2dxdu + du2.

According to (34), the intrinsic Gauss curvature is,

Kint = −
e1(
√

1 − κu2
1)

u1
= κ. (35)

On the other hand, the shape operator of ΣC can be represented in coordinate frame by
the matrix

S =

− 1
2

√
1
κ − κ(C − u)2 1

2 − 1
2κ + κ

2 (C − u)2

1
2

1
2

√
1
κ − κ(C − u)2

.

We can check that the extrinsic Gauss curvature of leaf ΣC is

Kext = det(S) = −1
4

,

while the mean curvature is H = 1
2 tr(S) = 0; thus, it is a minimal surface, as stated in

Proposition 2.

Example 6. In the case of Equation (24) of Example 2, similar computations show that the leaves of
its energy foliation satisfy

Kint = Kext = −1
4

.

5. Lagrangian Mechanical Systems

In this section, we focus on second-order ODEs arising as the Euler–Lagrange equa-
tions of one-dimensional mechanical systems defined by a Lagrangian function. The
variable x represents time, u denotes the generalized coordinate, and u1 represents the
generalized velocity.
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We begin by providing a justification for the terminology introduced in Definition 2.
Consider a mechanical system governed by a Lagrangian L = L(x, u, u1). For such a system,
recall that the function

h(u, u1) := u1Lu1 − L (36)

is known as the energy function. Under standard assumptions for L, this function co-
incides with the total mechanical energy of the system, which is typically expressed as
h(u, u1) = T(u, u1) + V(u), where T and V represent the kinetic and potential
energies, respectively.

In the case of an autonomous Lagrangian system, where L = L(u, u1), the energy
function (36) remains conserved along the solutions of the equation of motion of the system.
For further details regarding the energy function and its conservation in autonomous
systems, the reader is referred to [39] (Section 2.7).

Having established these preliminaries, we now state the following result.

Theorem 1. Given an autonomous one-dimensional Lagrangian system, its energy function (36)
defines the energy foliation of the corresponding equation of motion.

Proof. The Euler–Lagrange equation for a mechanical system defined by the autonomous
Lagrangian L = L(u, u1) is

d
dx

Lu1 − Lu = 0,

which can be expanded as
u1Luu1 + u2Lu1u1 − Lu = 0.

This is an autonomous second-order ODE, for which the corresponding ω3 (see
Equation (15)) is provided by

ω3 = − Lu − u1Luu1

u1Lu1u1

du + du1.

In order to check whether the energy function (36) satisfies condition (25), we compute
the exterior derivative

dh = (u1Luu1 − Lu)du + u1Lu1u1 du1.

As we observe that dh = u1Lu1u1 ω3, the result is proven.

In the following subsections, we analyze the applicability of the results presented in
this paper to specific examples of Lagrangian mechanical systems.

5.1. Lagrangian for a Particle in a Gravitational Field

A classical problem in the context of Newtonian gravity involves understanding the
behavior of a particle under the influence of the gravitational field created by a mass
distribution. Consider a one-dimensional universe with spatial coordinate u and a mass
distribution defined by the smooth function ρ(u). This distribution generates a gravitational
field that exerts a force on a test particle of mass m located at position u. The gravitational
potential at position u due to the mass distribution, denoted by Φ(u), is derived from the
Poisson equation [40], which in one dimension is provided by

Φuu = 4πGρ(u),

where G is the gravitational constant.
The Lagrangian for the test particle moving in this gravitational field is then provided

by

L =
1
2

mu2
1 − mΦ(u),
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while the corresponding equation of motion is

u2 = −Φu. (37)

Within our framework, according to Equation (13), the metric for the ODE (37) is

g = (1 + u2
1)dx2 − 2u1dxdu +

(
1 +

Φ2
u

u2
1

)
du2 + 2

Φu

u1
dudu1 + du2

1, (38)

while the orthonormal co-frame determined in (15) is

ω1 = dx,

ω2 = −u1dx + du,

ω3 =
Φu

u1
du + du1.

(39)

To find the energy foliation, we do not need to identify smooth functions E and µ
satisfying dE = µω3. According to Theorem 1, the energy foliation is described by the energy
function of the system, which in this case coincides with the total mechanical energy:

h =
1
2

mu2
1 + mΦ(u).

According to Proposition 2, the surfaces of constant energy defined by h(u, u1) = C, C ∈ R
are minimal. Their intrinsic Gauss curvature is provided by Equation (34) in Corollary 1:

Kint = − e1(−Φu)

u1
= Φuu = 4πGρ(u). (40)

Thus, it can be seen that the intrinsic Gauss curvature of the leaves of the energy
foliation is directly tied to the mass density generating the gravitational field. Equation (40)
reflects the fact that the curvature is proportional to the amount of matter present in the
system.

Two distinct examples corresponding to the mass distributions ρ(u) = 3
πu5 and

ρ(u) = 2u2−1
2π e−u2

are shown in Figure 2a and Figure 2b, respectively.

(a) ρ(u) = 3
πu5 (b) ρ(u) = 2u2−1

2π e−u2

Figure 2. Energy foliations induced by Equation (37) in the jet bundle J1(R,R) along with the
prolongations of several solutions.

5.2. Damped Harmonic Oscillator

In this subsection, we examine the well studied damped harmonic oscillator, a fun-
damental system in classical mechanics that is central to understanding a wide variety of
physical systems from mechanical vibrations to electrical circuits. It describes the motion
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of an oscillating object subject to a restoring force proportional to its displacement along
with a damping force that opposes its velocity.

This system is governed by the following second-order differential equation:

u2 = −αu1 − λu (41)

where u = u(x) represents the displacement as a function of time, u1 = u1(x) is the velocity,
and u2 = u2(x) is the acceleration. The parameter α represents the damping coefficient,
which quantifies the resistance to motion (such as friction or air resistance), while λ is the
spring constant, which characterizes the strength of the restoring force.

It is well known that this system does not present energy conservation in the classical
sense; indeed, this system is typically described using the time-dependent Lagrangian [39]:

L =
eαx

2

(
u2

1 − λu2
)

meaning that the corresponding energy function (36) is

h =
eαx

2

(
u2

1 + λu2
)

, (42)

which is clearly not conserved over time.
However, as Equation (41) does not explicitly depend on time, we can apply the

ideas introduced in the previous sections. First, we can consider the Riemannian metric
associated with Equation (41), which is provided by

g = (1 + u2
1)dx2 − 2u1dxdu +

(
1 +

(
α + λ

u
u1

)2
)

du2 − 2
(

α + λ
u
u1

)
dudu1 + du2

1.

The orthonormal co-frame introduced in (15) is

ω1 = dx,

ω2 = −u1dx + du,

ω3 =

(
α + λ

u
u1

)
du + du1.

(43)

To find the energy foliation E , we take condition (26), which in this case corresponds to the
following PDE:

u1Eu − (αu1 + λu)Eu1 = 0. (44)

In what follows, we focus on the underdamped case, i.e., α2 < 4λ; however, the
remaining cases can be developed in an analogous manner. We can check whether a
particular solution for Equation (44) in this case is provided by

E =
e

α
ω arctan

(
αu1+2λu

2ωu1

)
2

(αuu1 + u2
1 + λu2), (45)

where ω := 1
2

√
4λ − α2. The level sets of this function define the energy foliation E of the

second-order ODE (41).
It is interesting to highlight that the function E defined in (45) exhibits a structural

resemblance to the energy function presented in Equation (42). Moreover, by setting α = 0
in Equation (45), which corresponds to the undamped harmonic oscillator, we recover the
classical expression for the mechanical energy of the harmonic oscillator:

E =
1
2
(u2

1 + λu2).
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Consequently, (45) can be regarded as a non-mechanical form of energy that remains
conserved along the solutions.

On the other hand, according to Proposition 2 the leaves of the foliation E are minimal
surfaces with Kext = − 1

4 . Moreover, by Corollary 1, their intrinsic curvature is

Kint = λ − α2 − αλ
u
u1

.

It is worth noting that the intrinsic curvature of this system is closely related to the
damping coefficient and the spring constant. In particular, for a harmonic oscillator without
damping, the intrinsic curvature simplifies to the spring constant: Kint = λ.

Finally, observe that the energy foliation of the second-order ODE (41) can also be
expressed as the level sets of the smooth function

Ẽ := ln(2E) =
α

ω
arctan

(
αu1 + 2λu

2ωu1

)
+ ln

(
αuu1 + u2

1 + λu2
)

. (46)

By solving the differential equation in (27) using Ẽ, we find the following nonstandard
autonomous Lagrangian:

L =
2u1

ωu
arctan

(
αu + 2u1

2uω

)
− α

ω
arctan

(
αu1 + 2λu

2ωu1

)
− ln

(
αuu1 + λu2 + u2

1

)
(47)

which has previously appeared in the literature [41], though derived through a different
methodology.

6. Concluding Remarks

In this work, we introduce a Riemannian metric on an open subset of the first-order
jet bundle J1(R,R) via an autonomous second-order ODE. We study the geometry of the
resulting Riemannian manifold in relation to the integrability of the second-order ODE.
Moreover, the notion of energy foliation for autonomous second-order ODEs is defined, and
we show its connection to the classical notion of energy in the case of ODEs arising from
mechanical systems. Furthermore, we explore the geometric properties of this foliation,
proving that it constitutes a minimal foliation.

We apply our framework to ODEs derived from Lagrangian mechanics, providing a
conservative approach to certain systems that may initially seem to lack conserved energy.
In particular, we examine the damped harmonic oscillator as a key example to illustrate the
applicability of our results.

This research not only highlights a link between mathematical analysis, differential
geometry, and physics, but also opens interesting directions for further investigation. Future
work could explore higher-order ODEs or extend the analysis to Lagrangian systems in
higher dimensions. These extensions hold significant potential for a better understanding
of both the geometric structure of differential equations and their physical interpretations.
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