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Abstract: Poisson regression is a statistical method specifically designed for analyzing count data.
Considering the case where the functional and vector-valued covariates exhibit a linear relationship
with the log-transformed Poisson mean, while the covariates in complex domains act as nonlinear ran-
dom effects, an intrinsic functional partially linear Poisson regression model is proposed. This model
flexibly integrates predictors from different spaces, including functional covariates, vector-valued
covariates, and other non-Euclidean covariates taking values in complex domains. A truncation
scheme is applied to approximate the functional covariates, and the random effects related to non-
Euclidean covariates are modeled based on the reproducing kernel method. A quasi-Newton iterative
algorithm is employed to optimize the parameters of the proposed model. Furthermore, to capture
the intrinsic geometric structure of the covariates in complex domains, the heat kernel is employed as
the kernel function, estimated via Brownian motion simulations. Both simulation studies and real
data analysis demonstrate that the proposed method offers significant advantages over the classical
Poisson regression model.

Keywords: Poisson regression; Karhunen–Loève expansion; random effects; heat kernel; quasi-
Newton algorithm

MSC: 46E22; 62J05; 62M99; 62R10; 90C53

1. Introduction

Count data are widely encountered across various fields, including biomedicine, in-
dustry, agriculture, and economics. Poisson regression is a common and effective statistical
model for handling such data, particularly when modeling the frequency or count of events.
It is used to explore the underlying relationships between count data, as the response vari-
able, and a set of covariates. The application of Poisson regression has shown significant
results across multiple domains. For instance, Getaneh et al. [1] utilized Poisson regression
to investigate the significant determinants of neonatal mortality rates in Ethiopia. Loukas
et al. [2] employed the model to analyze the number of goals scored in football matches.
Nzuma and Mzera [3] applied Poisson regression to assess the control measures chosen
by smallholder farmers in Kilifi County, Kenya, in response to aflatoxin contamination.
Additionally, Sakane et al. [4] found that Poisson regression analysis revealed the rela-
tionship between the ability of type 1 diabetes patients to manage hypoglycemia and the
occurrence of severe hypoglycemic episodes. These practical applications demonstrate that
Poisson regression effectively captures the discreteness of data by modeling the probability
distribution of event occurrences, leading to more accurate predictions and interpretations.
This makes Poisson regression an extremely effective tool for analyzing count data.
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With the rapid advancement of data collection and storage technologies, traditional
Poisson regression models may no longer adequately address emerging data scenarios [5].
For instance, Weaver et al. [6] uncovered potential limitations of Poisson regression in their
analysis of hospitalization data, highlighting that real-world datasets frequently fail to
meet the underlying assumptions of the model. In the presence of multicollinearity among
covariates, maximum likelihood estimation (MLE) can become unreliable. To mitigate
this issue, Amin et al. [7] proposed the Poisson James–Stein estimator, which aims to
reduce the inflated variance and standard errors associated with MLE under conditions
of multicollinearity. Abdelwahab et al. [8] proposed the two-parameter Liu estimator
that can effectively address multicollinearity issues. In contexts where the dimensionality
of covariates is high, Fei Jiang and Yanyuan Ma [9] developed an estimator for Poisson
regression that accommodates high-dimensional characteristics and additive measurement
errors. Under the assumption of robust variance, Hagiwara et al. introduced a goodness-
of-fit test specifically designed for modified Poisson regression. Additionally, Qiang Fu
et al. [10] proposed an enhanced Poisson regression estimator tailored for grouped and right-
censored count data, deriving their asymptotic properties. Furthermore, Wang and Yu [11]
presented a nonparametric Poisson regression model informed by Euclidean covariates,
along with corresponding estimation tools. Minggen Lu and Dana Loomis [12] introduced
a spline-based partially linear Poisson single-index model to investigate the relationship
between multidimensional air pollution exposure and mortality, utilizing B-splines to
approximate the unknown regression function.

The methods mentioned above were proposed in the context of vector-valued co-
variates. However, with the diversification of data types, covariates may originate from
different sample spaces, such as function spaces [13], Riemannian manifolds [14], Euclidean
spaces with complex spatial constraints [15], and certain metric spaces [16]. For instance,
the population density of a particular species in different regions is influenced not only by
local factors such as forest coverage and lake area but also by time-varying environmental
factors. Due to their rapid fluctuations, these environmental factors can be regarded as
functional data. Moreover, population density is also related to the geographical coordi-
nates of the regions, and these spherical coordinates are clearly not Euclidean data. Based
on this, it is of significant importance and value to develop Poisson regression models that
can integrate covariate information from diverse spatial sources [17].

For functional data, Wang et al. [13] first proposed the concept of functional data
analysis (FDA), making a pioneering contribution to research in this field. Subsequently,
research on FDA has mainly focused on the technique of functional principal component
analysis (FPCA). For data over complex domains, Wood et al. [18] pointed out that tradi-
tional smoothing or modeling methods that do not take into account the intrinsic geometry
of the space, especially boundary constraints, can yield poor results when used on data
in complex domains. It is therefore important to take into account the intrinsic geometry
of the region and its complex boundaries. In recent years, Gaussian processes (GPs) have
been widely used for modeling unknown functions or surfaces, and it has been proposed
to regress unknown manifolds with Intrinsic Gaussian Processes (IGPs) [19,20]. This clearly
facilitates the construction of high-dimensional data in low-dimensional manifolds and
fully respects the non-Euclidean properties of the data structure.

When the canonical parameter exhibits linearity, utilizing a generalized linear model
with a Poisson likelihood is advantageous for analyzing count data. However, in many
scenarios, this linear assumption may not hold, necessitating the appropriate handling of
nonlinear dependencies. Nonparametric Poisson regression emerges as a preferred method
for characterizing nonlinear relationships, offering increased flexibility in modeling count
data. A critical consideration arises when predictor variables originate from disparate
spaces, which can complicate the application of nonparametric Poisson regression. For
instance, in spatial data analysis [21,22], it is often necessary to model predictive variables
belonging to Euclidean space while also parameterizing non-specific random spatial effects.
Spatial data, such as longitude and latitude, are distributed across irregular spatial domains
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characterized by complex boundaries. Notably, pairs of locations that are close in terms
of Euclidean distance may be intrinsically far apart if separated by geographical barriers.
Some studies treat spatial effects as identical and independent Gaussian distributions.
While this assumption is acceptable for unstructured spatial effects that can be approxi-
mated by independent random effects, it often fails to hold in practice, making it essential
to address spatial dependence appropriately. Several nonparametric estimators, such as
spline techniques [23–27], provide commendable methods for approximating functions on
complex constrained domains. However, spline methodologies come with certain limita-
tions. Many spline approaches rely on predetermined basis functions, such as polynomials
or cubic splines. These methods can also face challenges related to dimensional complex-
ities and increased computational demands, particularly in high-dimensional scenarios.
Additionally, splines may struggle to effectively accommodate predictive variables from
distinct spaces simultaneously. While nonparametric Poisson regression offers greater
flexibility, it often suffers from poor convergence rates and a lack of interpretability. In
classical regression analysis, semi-parametric regression models have garnered significant
attention from the scientific community due to their advantages over linear and nonpara-
metric models. These models combine the interpretability of linear slope functions with the
flexibility of nonparametric link functions, making them widely applicable across various
scientific fields [28–34].

The objective of this paper is to develop a Poisson regression model capable of han-
dling predictor variables that include functional covariates, vector-valued covariates, and
covariates defined in non-Euclidean spaces, with the response variable being count data.
To balance the flexibility and interpretability of the regression model, we assume a linear
relationship between the functional covariates and vector-valued covariates and the log-
transformed Poisson mean response, and we posit a nonlinear relationship between the
non-Euclidean covariates and the log-transformed Poisson mean response, represented
through individual random effects. For the functional covariates, we employ the Karhunen–
Loève expansion for approximation. In the case of the non-Euclidean covariates, we
assume that the corresponding random effects function resides in a reproducing kernel
Hilbert space, which can be effectively modeled using the reproducing kernel representa-
tion theorem. For the selection of non-Euclidean kernel functions, we utilize heat kernels
based on the heat equation, which can be estimated through the transition probabilities
of Brownian motion. The Karhunen–Loève expansion and heat kernel enable our model
to handle complex functional and spatial data. The KL expansion reduces functional
data into main components, similar to principal component analysis, making it easier to
manage time-dependent covariates. The heat kernel captures the spatial dependencies
in non-Euclidean domains by modeling local geometric relationships, which is essential
for spatially structured data. The parameter estimation for the proposed method will be
optimized using a Newton iteration algorithm. Furthermore, we extend the theoretical
framework of our method to encompass the two-component mixture Poisson distribution.
Analysis of both simulated and real data indicates that the proposed method demonstrates
significant advantages over classical Poisson regression models.

The remainder of this article is structured as follows. Section 2 introduces the intrinsic
functional partially linear Poisson regression model, providing details on the model for-
mulation and parameter estimation procedures. Section 3 presents simulation studies and
empirical data analyses to evaluate the efficacy of the proposed methodology. Section 4
offers a comprehensive summary of the key findings.

2. Methodology
2.1. Model Setting

In classic Poisson regression, it is assumed that the response variable Y = y ∈ {0, 1,⋯},
and the number of occurrences of an event, given the Euclidean predictor variable X = x ∈ RD,
follows a Poisson distribution
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p(Y = y ∣ X = x) =
λ(x)y

y!
e−λ(x), (1)

where ln(λ(x)) = x⊺β and β is a D-dimensional vector of canonical parameters. It is the
most natural idea that links the linear predictor x⊺β and the parameter λ(x) with the
logarithm. Then, the MLEs of β can be found numerically using the quasi-Newton method
or iterative weighted least squares method.

With the increasing diversity of data types, covariates are considered from various
feature spaces, including square-integrable function spaces, Euclidean spaces, and non-
Euclidean spaces. Functional and vector-valued covariates are assumed to exhibit a linear
relationship with ln(λ), while covariates from non-Euclidean spaces are treated as random
effects with a nonlinear relationship. Under these assumptions, the intrinsic functional
partially linear Poisson regression model is defined as follows:

ln(λ) =
J

∑
j=1
∫

t∈T
Xj(t)β j(t)dt + Z⊺η+ δ(s) (2)

where X ∶= (X1, X2,⋯, XJ) are multivariate functional covariates, T is a compact set, and
β ∶= {β1, β2,⋯, β J} are slope functions. Z ∈ RD are vector-valued covariates, and η is their
corresponding coefficient vector. δ(s) is a nonlinear random effect related to non-Euclidean
covariates s ∈ M, andM is a complex domain (such as a sphere, an ellipse, or hyperbolic
space). In this paper, we assume the complex domain is a non-Euclidean manifold.

In the above assumption, each covariate type distinctly impacts the parameter λ,
leveraging either linear or nonlinear interactions based on its characteristics. The functional
covariates Xj(t), which capture time-dependent data over a domain T , influence λ linearly
through the term ∫T Xj(t)β j(t) dt. This structure effectively captures gradual, continuous
variations. The vector-valued covariates Z, residing in Euclidean space RD, impact λ
via a simpler linear association Z⊺η, allowing the model to include fixed or categorical
effects efficiently. The non-Euclidean covariates s ∈ M, from non-Euclidean spaces (e.g., a
manifold), contribute nonlinearly through a random effect δ(s), modeled by the heat kernel.
This approach adapts to the intrinsic geometry of M and captures local dependencies,
enabling the model to represent complex spatial relationships that indirectly but crucially
affect λ.

For the functional covariates, if J = 1, a common method in functional data analysis
is to use the Karhunen–Loève expansion to approximate the random function [35], which
approximates each functional covariate as a sum of key principal components. This enables
the model to handle continuous predictors in a compact, computationally feasible manner.
Specifically, the random function X(t) can be written as follows:

X(t) = µ(t) +
∞
∑
l=1

alψl(t), l ≥ 1, (3)

where µ(t) is the mean function of X(t), al = ∫t∈T (X(t) − µ(t))ψl(t)dt, l ≥ 1 are principal
components, and ψl(t)s form an orthonormal system of eigenfunctions of the covariance
operator of X(t):

∫
t∈T

Cov(X(t), X(s))ψj(s)ds = λlψl(t),∀t ∈ [0,T ] (4)

Without loss of generality, we assume that X(t) is a zero-mean stochastic process, i.e.,
µ(t) = 0. Arranging the principal components in descending order according to their
corresponding eigenvalues (λ1 ≥ λ2 ≥ ⋯), we define X(Q)(t) as the approximation of X(t)
obtained by truncating the expansion (3) after the first Q terms, where Q ≥ 1:
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X(Q)(t) =
Q

∑
l=1

Zlψl(t), Q ≥ 1. (5)

For the multivariate functional covariates (i.e., J > 1), the multivariate Karhunen–Loève
expansion can be applied, as outlined in [36].

For the random effects associated with the non-Euclidean covariates s ∈ M, we employ
a reproducing kernel-based method [37] to capture the nonlinear structure, i.e.,

δ(s) =
∞
∑
j=1

µjk(s, sj), (6)

where k is a kernel function and {µj}
∞
j=1 are expansion coefficients. Non-Euclidean covari-

ates often represent spatial information on complex domains. By using the heat kernel, we
can capture spatial dependencies on these domains, integrating local geometric structures
and supporting accurate predictions on spatially structured data. Given the flexibility of the
heat kernel in adapting to irregular and complex data, we choose it as the kernel function
for our modeling approach. To be more specific, consider M to be an H-dimensional
complete and compact Riemannian manifold with a Riemannian metric g. Its boundary,
∂M, is continuous and differentiable almost everywhere. Based on this metric tensor g,
the heat kernel k onM is a smooth function defined onM×M×R+ that satisfies the heat
equation [38]:

∂

∂θ
k(s1, s2, θ) =

1
2

∆sk(s1, s2, θ), s1, s2 ∈ M, θ ≥ 0. (7)

where ∆s is associated with a Laplace–Beltrami operator. The heat kernel is a symmetric
and positive semidefinite kernel on M. We use the Neumann boundary condition as
the boundary condition of the heat equation, which ensures the uniqueness of the heat
kernel. In the special case whereM in (7) is a Euclidean space, the heat kernel has a closed
form corresponding to a Gaussian function. WhenM in (7) is a non-Euclidean manifold,
constructing the heat kernel linked to the Laplace–Beltrami operator becomes a complex
task, falling under the domain of partial differential equations and differential geometry.
Rather than directly solving the heat equation, we can take advantage of the fact that heat
kernels correspond to the transition density of Brownian motion (BM) onM. Our approach
involves simulating Brownian motion onM, calculating the transition density numerically,
and then using these results to approximate the heat kernel.

To make the connection between the heat kernel and the transition density of BM clear,
consider F(θ) as a BM onM starting from s1 at time θ = 0. The probability that F(θ) lies
in any Borel set A ⊂M is given by

P[F(θ) ∈ A ∣ F(0) = s1] = ∫A
k(s1, s, θ)ds (8)

where the integral is defined in terms of the volume form of a Riemannian manifoldM.
Under this framework, the Neumann boundary conditions imposed on the heat kernel will
approximate the heat kernel by stopping the Brownian motion process at the boundary
and reflecting it, resampling the next step until the stopping time is reached.

In summary, we term the above method intrinsic functional partially linear Poisson
regression (iFPLPR), which accounts for the potentially complex boundary or interior
conditions, as well as the intrinsic geometry of the spaces. The model can be simplified
depending on the data characteristics. When there are no random effects or vector-valued
covariates, it reduces to a functional Poisson regression, focusing solely on the functional
covariates and their linear relationship with the log-transformed Poisson mean. If there are
no functional covariates, the model becomes a Poisson regression with random effects in
complex domains, using kernel methods to capture the nonlinear relationship between the
non-Euclidean covariates and the response variable. In the simplest case, when there are
neither functional covariates nor random effects, the model simplifies to the classical Pois-
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son regression, where only the vector-valued covariates are linearly linked to the Poisson
mean. This flexibility allows the iFPLPR model to accommodate various data types, ranging
from purely functional data to complex spatial data or basic Poisson regression scenarios.

2.2. Parameter Estimation

In this part, we use the information from the sample for parameter estimation. First,
for the functional covariates X, we use the same orthogonal basis that was used to expand
both Xj(t) and β j, namely the functional principal components basis, which is widely used
in functional data analysis [13]. Then, assume we have independent and identically dis-
tributed observations in our sample, denoted as {Xij, i = 1, 2, . . . , n, j = 1, 2, 3,⋯, J}, where
Xij is assumed to be fully observed. The mean function is denoted by µj(t) = EXj(t), and
the covariance function is Σj(s, t) = E[(Xj(s) − µj(s)) ⊗ (Xj(t) − µj(t))], where the tensor
product, denoted by ⊗, is a mathematical operation that takes two vectors or matrices
and produces a new tensor. It expands the dimensions of the input objects by creating all
possible combinations of their elements. For finite samples, the estimates of the mean and
the covariance functions can be computed as follows:

µ̂j(t) = X j(t) =
1
n

n
∑
i=1

Xij(t), Σ̂j(s, t) =
1
n

n
∑
i=1
(Xij(s) −X j(s))(Xij(t) −X j(t)), (9)

and by Mercer’s theorem [39–41], we have

Σj(s, t) =
∞
∑
q=1

λqjζqj(s)ζqj(t), Σ̂j(s, t) =
∞
∑
q=1

λ̂qj ζ̂qj(s)ζ̂qj(t), (10)

where the eigenvalues and eigenvectors of the operator Σj are denoted byλqj and ζqj. The
eigenvalues and eigenvectors of the operator Σ̂j are denoted by λ̂qj and ζ̂qj. Then, we use
these to approximateXqj(t) and β j(t):

Xij(t) = µj(t) +
∞
∑
q=1
⟨Xij(t) − µ(t), ζ̂qj(t)⟩ζ̂qj(t),

β j(t) =
∞
∑
q=1
⟨β j(t), ζ̂qj(t)⟩ζ̂qj(t), j = 1,⋯, J.

(11)

For a suitably chosen truncation number Qj, we set aiqj = ⟨Xij(t) − µj(t), ζ̂qj(t)⟩ and
bqj = ⟨β j(t), ζ̂qj(t)⟩, q = 1, 2,⋯, Qj. Then, we use these to approximate Xij(t) and β j(t):

X
Qj
ij (t) = µj(t) +

Qj

∑
q=1

aiqj ζ̂qj(t) = µ̂j(t) + a⊺ij ζ̂Qj j(t),

β
Qj
j (t) =

Qj

∑
q=1

bqj ζ̂qj(t) = b⊺j ζ̂Qj j(t), j = 1,⋯, J.

(12)

where aij = (ai1j, . . . , aiQj j)
⊺

, bj = (b1j, . . . , bQj j)
⊺

, and ζ̂Qj j(t) = (ζ̂1j(t), . . . , ζ̂Qj j(t))
⊺

. In
practice, the number of terms Qj can be determined using criteria such as the fraction of
variance explained or through cross-validation.

Second, for the random effects associated with the non-Euclidean covariates s ∈ M,
we employ a kernel-based method to capture the nonlinear structure, with the heat kernel
being an appropriate choice. However, in most cases, the heat kernel lacks an analytical
expression, requiring us to estimate it. This estimation is performed by simulating BM
sample paths and numerically evaluating the transition probability to approximate the
integral in Equation (8). We simulate N paths, {F(θ) ∶ θ > 0} onM, starting from F(0) = s1.
For any θ > 0 and s ∈ M, we estimate the probability of F(θ) falling within a small
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neighborhoodA of s by counting how many BM sample paths reachA, with the assumption
that the BM has a higher probability of reaching the neighborhood of the target point. The
transition probability is approximated as

P[F(θ) ∈ A ∣ F(0) = s1] ≈
C
N

, (13)

where N is the total number of simulated BM sample paths and C is the number of paths A
at time θ. The transition density of S(θ) at s is then approximated by

k(s1, s2, θ) ≈
1

V(A)
⋅

C
N

, (14)

where V(A) is the Riemannian volume of the neighborhood A, which is parameterized by
the radius of A. The Riemannian volume refers to the volume of a set in Euclidean space
computed using Riemann integration, which partitions the space into small sub-regions
(often rectangles) and sums their volumes.

Then, we simulate the BM paths onM to estimate the transition density of BM on
M. Let a(l0) ∈ Rde be such that ϕ(a(l0)) = s0, and let ϕ ∶ Rde → M be a smooth local
parameterization ofM around s1 ∈ M, where de is the dimension of a potential Euclidean
space. In this paper, we consider the local parameterization ϕ to be known. If ϕ is unknown,
it can be learned through latent variable models using nonlinear dimension reduction
techniques. Under this assumption, simulating a sample path of BM onMwith starting
point s0 is equivalent to simulating a stochastic process in Rde with starting point a(l0). The
BM on a Riemannian manifold in the local coordinate system follows a system of stochastic
differential equations (SDEs) in Ito form. The Riemannian metric g is used to construct
the SDEs:

daq1(l) =
1
2

G−1/2
de

∑
q2=1

∂

∂xj (g
q1q2 G1/2

)dl + (g−1/2dB(l))
q1

; q1, q2 = 1, 2,⋯, de, (15)

where aq1 represents the q1-th dimension of the latent space. G is the determinant of g, and
B(l) represents an independent BM in Euclidean space. The discrete form of the SDE is
defined using Euler’s formula:

q(a(l) ∣ a(l − 1)) = N(a(l) ∣ µ(a(l − 1), ∆l), ∆lG−1). (16)

where

µ(aq1(l − 1), ∆l)q1 = aq1(l − 1) +
1
2

de

∑
q2=1
(−g−1 ∂g

∂aq2
g−1
)

q1q2

∆l +
1
4

de

∑
q2=1
(g−1)q1q2

tr(g−1 ∂g
∂aq2
)∆l.

The error of the heat kernel estimator, as defined in (14), is O(w2) +O(w−de N−1
z ), where

w is a window size. When Nz → +∞, w → 0, and w−de

Nz
→ 0, the error converges to 0. The

estimation algorithm for the heat kernel is shown in Algorithm 1, where the parameter
selection criteria are based on [38]. In [38], the authors also discussed the details of the
convergence criteria and the optimal number of simulations. However, these are not the
focus of this paper; instead, we concentrate on using the kernel functions. In Algorithm 1,
the input part of the algorithm requires Xij(t) and β j(t), which represent the functional
covariates and their corresponding coefficient functions, where t is in the domain T , and Z
is a vector of Euclidean covariates. s represents the non-Euclidean covariates in the domain
M. A is the radius of the neighborhood around the point of interest on the manifoldM.
Finally, the algorithm outputs kθ

heat(s1, s2), which is the estimated transition probability
density for the heat kernel between two points s1 and s2 onM calculated using simulated
BM paths.
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Algorithm 1 The estimation algorithm for the heat kernel

Input: {Xij(t), β j(t), Z ∈ RD, s ∈ M, N (number of BM sample paths), radius of neighbor-
hood A}.

Output: Estimated heat kernel kθ
heat(s1, s2).

1: Initialize parameters: n, N (number of simulated BM paths)
2: for all random effect s ∈ M do
3: Simulate N Brownian motion (BM) sample paths {S(θ) ∶ θ > 0} onM starting at s1.
4: for all θ > 0 do
5: Track the probability of each BM path reaching the neighborhood A of s;
6: Count C, the number of paths that reach A at time θ;
7: Estimate the transition probability using Formula (13).
8: end for
9: Approximate the transition density using Formula (14).

10: end for
11: return Estimated heat kernel kθ

heat(s1, s2).

Third, by combining (12) and (14), the sample version of (2) is as follows:

ln λi =
J

∑
j=1

a⊺ijbj + Z⊺i η+ µ⊺ki, i = 1, 2,⋯, n (17)

where µ = (µ1,⋯, µn)
⊺ and ki = (kθ

heat(si, s1),⋯, kθ
heat(si, sn))

⊺. Next, we need to estimate
the parameters bj, η, µ . Let S⊺i b̃ = ∑J

j=1 a⊺ijbj + Z⊺i η. Then, we have

ln λi = S⊺i b̃ + µ⊺ki. (18)

Let Ψ = ( b̃⊺, µ⊺)⊺. The logarithmic likelihood function is as follows:

L(Ψ) = ln [
n
∏
i=1

P(Yi = yi∣X i, Zi, si, Ψ)] (19)

To make the model recognizable, we use the penalty logarithm maximum likelihood
function as follows:

Lp(Ψ) =
n
∑
i=1
(yi(S

⊺
i b̃ + µ⊺ki) − eS⊺i b̃+µ⊺ki + ln yi!) −

1
2

c1b̃⊺b̃ −
1
2

c2µ⊺Kµ (20)

where c1and c2 are penalty parameters and K = (kθ
heat(si, sj))1≤i,j≤n, with the penalty param-

eters regulating the trade-off between model fit and complexity, thus preventing overfitting.
We note that a detailed analysis of the asymptotic properties of the estimators (including
a preliminary discussion of the consistency and asymptotic normality of the estimators,
as well as the role of penalization terms in convergence) would strengthen the article’s
theoretical foundation and address concerns regarding the robustness of the model. Many
papers have conducted research in these areas, such as [42–45]. Although this is not the
focus of this paper, we point out that a more systematic and comprehensive study of the
asymptotic properties of the estimators we have presented is possible in the future.

Next, to ensure an optimal fit to the data, we use the quasi-Newton iterative algo-
rithm [46] to solve for the parameters Ψ, which iteratively refines the parameter estimates
while balancing model complexity and data fit. Specifically, we take the derivative of the
log-likelihood function. The following are the first-order and second-order derivatives:

∂Lp(Ψ)

∂b̃
=

n
∑
i=1
(yiSi − Sie

S⊺i b̃+µ⊺ki) −
1
2

c1b̃ (21)
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∂Lp(Ψ)
∂µ

=
n
∑
i=1
(yiki − kie

S⊺i b̃+µ⊺ki) −
1
2

c2Kµ (22)

∂2Lp(Ψ)

∂b̃∂b̃⊺
=

n
∑
i=1
(−Sie

S⊺i b̃+µ⊺ki S⊺i ) −
1
2

c1 I (23)

∂2Lp(Ψ)

∂b̃∂µ⊺
=

n
∑
i=1
(−Sie

S⊺i b̃+µ⊺ki k⊺i ) (24)

∂2Lp(Ψ)
∂µ∂µ⊺

=
n
∑
i=1
(−kie

S⊺i b̃+k⊺i µk⊺i ) −
1
2

c2K (25)

where I is an identity matrix. The following parameter estimation is performed using the
quasi-Newton method:

b̃(k+1)
= b̃(k) −

⎛

⎝

∂2Lp(Ψ)

∂b̃∂b̃⊺
∣
b̃(k)

⎞

⎠

−1
∂Lp(Ψ)

∂b̃
∣
b̃(k)

(26)

Based on the DFP method, let ∂Lp(Ψ)
∂̃b
∣
b̃(k)
= gk and ( ∂2Lp(Ψ)

∂̃b∂̃b⊺
∣
b̃(k)
)

−1

= H−1
k . Then,

H−1
k+1 −H−1

k =
∆b̃(k)∆(b̃(k))

⊺

∆g⊺k ∆b̃(k)
−

H−1
k ∆gk∆g⊺k H−1

k

∆g⊺k H−1
k ∆gk

. (27)

By setting a constant ε, we stop the iteration when gk+1 < ε. The same criterion is applied to
the other two parameters. The iteration continues until convergence, and the final result

is denoted as Ψ̂ = (̂̃b⊺, µ̂⊺)⊺. All regularization parameters and kernel parameters can be
selected using the Generalized Cross-Validation (GCV) method. The estimation algorithm
for the proposed method is shown in Algorithm 2. The significance of the parameters in the
input section is the same as the explanation provided in Algorithm 1. The result Ψ̂ contains
the estimated values of the functional coefficients, random effect terms, and other model
parameters after the optimization process converges. The result is used to make further
inferences based on the data.

Algorithm 2 The estimation algorithm for the proposed method

Input: {Xij(t), β j(t), t ∈ T , i = 1, 2, . . . , n, j = 1, 2, 3,⋯, J}, Z ∈ RD, s ∈ M
Output: Ψ̂.

1: for all Xij(t), β j(t), t ∈ T , j = 1, 2, ..., J do
2: Calculate the eigenvalues λ̂qj and eigenvectors ζ̂qj of the sample covariance Σ̂j.

Expand Xqj(t) and β j(t) using Formula (11);
3: Choose the truncation number Qj using the fraction of variance explained criterion

or cross-validation method;
4: Approximate Xij(t) and β j(t) using Formula (12). Then, we have aij,bj.
5: end for
6: for all s ∈ M do
7: Simulate the BM sample paths and evaluate the transition probability using For-

mula (13);
8: Approximate the transition density of S(θ) at s using Formula (14).
9: end for

10: Submit the data, obtain Formula (17), iterate Formulas (26) and (27) continuously until

they converge, and obtain the final result Ψ̂ = (̂̃b⊺, µ̂⊺)⊺.
11: return Ψ̂ .
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2.3. Two-Component Poisson Mixture Regression with Random Effects

The intrinsic functional two-component partially linear Poisson mixture regression
with bivariate random effects for the modeling of count data characterized by functional
covariates, vector-valued covariates, and non-Euclidean covariates is defined as follows:

P(Yi = yi) = p
e−λ1i λ

yi
1i

yi!
+ (1− p)

e−λ2i λ
yi
2i

yi!
(28)

where i = 1, 2,⋯, n, and

ln(λ1i) =
J1

∑
j1=1
∫

t∈T
X1ij1(t)β1j1(t)dt + Z⊺1iη1 + δ1i(s1i) (29)

and

ln(λ2i) =
J2

∑
j2=1
∫

t∈T
X2ij2(t)β2j2(t)dt + Z⊺2iη2 + δ2i(s2i) (30)

where p is a weight parameter and i = 1, 2,⋯, n, ln( p
1−p) = ε. λ1i and λ2i denote the mean of

the two components. For any i = 1,⋯, n, j1 = 1,⋯, J1, and j2 = 1,⋯, J2, X1ij1(t), X2ij2(t), β1j1(t),
β2j2(t) ∈ L2(T ), Z1i ∈ RD1 and Z2i ∈ RD2 , s1i ∈ M1 and s1i ∈ M2. We model the functional
covariates and random effects using techniques similar to those in the previous section,
resulting in the following version of the estimate

ln(λ1i) = S⊺1i b̃1 + µ⊺1 k1i, ln(λ2i) = S⊺2i b̃2 + µ⊺2 k2i (31)

where S⊺1i b̃1 = ∑
J1
j=1 a⊺1ijb1j + Z⊺1iη1 and S⊺2i b̃2 = ∑

J2
j=1 a⊺2ijb2j + Z⊺2iη2 . µ1 = (µ11,⋯, µ1n)

⊺ and

µ2 = (µ21,⋯, µ2n)
⊺. k1i = (kθ

heat(s1i, s11),⋯, kθ
heat(s1i, s1n))

⊺ and k2i = (kθ
heat(s2i, s21),⋯, kθ

heat
(s2i, s2n))

⊺. Thus, we obtain the parameters to be estimated: Ψ = {b̃⊺1 , b̃⊺2 , µ⊺1 , µ⊺2 , ε}⊺. The
corresponding penalty logarithm maximum likelihood function is

L(Ψ) = ln [
n
∏
i=1

P(Yi = yi)] −
1
2

c1b̃⊺1 b̃1 −
1
2

c2µ⊺1 K1µ1 −
1
2

c3b̃⊺2 b̃2 −
1
2

c4µ⊺2 K2µ2

where c1, c2, c3, and c4 are penalty parameters. In the following, we use the EM algorithm
for parameter estimation. First, we introduce the latent variables zi, that is,

zi = {
1, yi is from Poisson(λ1i),
0, yi is from Poisson(λ2i).

We treat {zi, i = 1, 2, ..., n} as missing data, denoted as Ym, and then record the observable
data {(X1ij1(t), X2ij2(t), Z1i, Z2i, δ1i, δ2i, yi) ∣ i = 1, 2, ..., n; j1 = 1, 2,⋯, J1; j2 = 1, 2,⋯, J2} as Y0.
Record the complete data as Yc = (Y0, Ym). Then, the penalized log-likelihood function
based on the complete data Yc can be expressed as

Lc
p = ln [

n
∏
i=1

P(Yi = yi)] −
1
2

c1b̃⊺1 b̃1 −
1
2

c2µ⊺1 K1µ1 −
1
2

c3b̃⊺2 b̃2 −
1
2

c4µ⊺2 K2µ2

= −n ln(1+ eε
) +

n
∑
i=1
[ziε + zi ln f1i − ln(yi!) + (1− zi) ln f2i]

−
1
2

c1b̃⊺1 b̃1 −
1
2

c2µ⊺1 K1µ1 −
1
2

c3b̃⊺2 b̃2 −
1
2

c4µ⊺2 K2µ2

where f1i = e−λ1i λ
yi
1i and f2i = e−λ2i λ

yi
2i . Then, the model parameters can be estimated using

the Expectation Maximization (EM) algorithm [47]. Concretely, the r + 1 step of the EM
algorithm that maximizes the above equation consists of the two steps described below.
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For the E-step, assuming that the parameter estimates at step r are known to be Ψ(r),
we have the following mathematical expectation:

Q(Ψ∣Ψ(r)) = E[Lc
p(Ψ∣Yc)∣Y0, Ψ(r)]

= −n ln(1+ eε
) +

n
∑
i=1
[z(r)i ε + z(r)i ln f1i − ln(yi!) + (1− z(r)i ) ln f2i]

−
1
2

c1b̃(r)⊺1 b̃(r)1 −
1
2

c2µ
(r)⊺
1 K1µ

(r)
1 −

1
2

c3b̃(r)⊺2 b̃(r)2 −
1
2

c4µ
(r)⊺
2 K2µ

(r)
2

(32)

where

z(r)i = E(zi∣Y0, Ψ(r)) =
p f1i

p f1i + (1− p) f2i
∣
Ψ(r)

(33)

For the M-step, the maximum value of the objective function is solved as follows:

Ψ(r+1)
= argmax

Ψ
Q(Ψ∣Ψ(r)) (34)

It is sufficient to continue iterating until convergence using the quasi-Newton method, and

then the final estimate is Ψ̂ = { ̂̃b⊺1 ,̂̃b⊺2 , µ̂⊺1 , µ̂⊺2 , ε̂}⊺. The estimation algorithm for the proposed
method is shown in Algorithm 3.

Algorithm 3 Two-component Poisson mixture regression with random effects

Input: Functional covariates {X1ij(t), X2ij(t)}, vector-valued covariates {Z1i, Z2i}, non-
Euclidean covariates {s1i, s2i}, count data {yi}, initial parameters {b̃⊺1 , b̃⊺2 , µ⊺1 , µ⊺2 , ε}.

Output: Estimated parameters ̂̃b⊺1 ,̂̃b⊺2 , µ̂⊺1 , µ̂⊺2 , ε̂.
1: Initialize parameters b̃⊺1 , b̃⊺2 , µ⊺1 , µ⊺2 , ε.
2: Set convergence tolerance ξ.
3: while ∣Ψ(r+1) −Ψ(r)∣ ≥ ξ do
4: E-step:
5: for all i = 1, 2, . . . , n do
6: Calculate the expected value of the latent variable using Formula (32).
7: end for
8: M-step:
9: Maximize the penalized log-likelihood Formula (34);

10: Update parameters using the quasi-Newton method.
11: end while
12: return Estimated parameters ̂̃b⊺1 ,̂̃b⊺2 , µ̂⊺1 , µ̂⊺2 , ε̂.

3. Data Analysis
3.1. Simulation Studies

In this section, a Monte Carlo simulation study is conducted to assess the performance
of the proposed model. Let yi be the i-th response variable of the i-th subject corresponding
to the covariates, including the functional covariates, vector-valued covariates, and non-
Euclidean covariates.

Assuming a Poisson process for yi, we have a Poisson distribution with mean λi given
the predictors Xi(t), Zi, and si. We fit a Poisson regression model of the form

ln(λi) = ∫
t∈[0,1]

Xi(t)β(t)dt + Z⊺i η+ δ(si) (35)

where Xi(t) = ∑
100
k=1 akk−3/4ϕk(t) and {ϕk(t)}100

k=1 are Fourier basis functions, the ak values are
generated from a normal distribution N(0, 1), and β(t) = ∑100

k=1 k−2ϕk(t). Each curve Xi(t) is
observed at 100 regular design points. The Zi values are generated from a five-dimensional
normal distribution N(0, Σ), with Σ = diag(0.5). η is generated from a five-dimensional
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normal distribution N(0, Σ), with Σ = diag(1). For the non-Euclidean covariates si, we
consider the classical U-shaped region data, i.e., si = (s1i.s2i). The U-shaped structured
domain is defined as a subset of R2, as shown in Figure 1(left). The values of the finite-
area test function δ (i.e., the colors of the mappings) vary smoothly from the bottom-
right to the top-right corner of the domain, ranging from −6 to 6. The black crosses
represent 100 observations. The goal is to estimate the test function and make predictions
at 450 equally spaced grid points in the domain.

−1 0 1 2 3 4
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0
−
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5
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0
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5
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0

True Function

x

y

Figure 1. Sample points on U-shaped (left) and Bitten Torus domains (right).

The heat kernel is utilized to estimate the random effect of the regression function
in this study. We choose the penalty parameters using the GCV method. To evaluate
the performance improvement of the proposed method compared to the classical Poisson
regression model, we use the ratio of the difference in absolute and relative prediction
errors between the two models to the prediction errors of the Poisson regression as the
evaluation criterion. We are also concerned with the accuracy of model parameter estima-
tion. Therefore, we also present the estimation errors for the parameters Ψ. Furthermore,
in order to comprehensively test the applicability and robustness of the model, we set
different model parameters as follows:

(1) n = 50, 100, 150, 200, and the other parameters remain unchanged.
(2) ak values are generated from a normal distribution N(0, σ2), where σ = 0.01, 0.1, 0.5, 1,

and the other parameters remain unchanged.
(3) δ1(si) = sin(s1i + s2i), δ2(si) = sin(s1i) + s2

2i , δ3(si) = sin(s1i) + e1/2s2i , δ4(si) = e1/2s1i +

cos(s2i), and the other parameters remain unchanged.
(4) Let X(t) be a standard Brownian motion, β(t) = sin(3π/4t) or β(t) = cos(π/2t) or

β(t) = t2 or β(t) = π/2 arcsin(t), and the other parameters remain unchanged.
(5) LetM be a U-shaped region or Bitten Torus, and the other parameters remain unchanged.

As n increases, the relative error first decreases and then gradually converges. The four
U-shaped structured domains, where δ(si) takes different forms while the other parameters
remain unchanged, are shown in Figure 2. The percentage reduction in the absolute and
relative errors, compared to the traditional Poisson regression model, for different forms of
n, σ, δ(si), and β(t), is shown in Table 1.
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Figure 2. U-shaped domains with varying δ(s) functions. (a) δ1(si) = sin(s1i + s2i); (b) δ2(si) =

sin(s1i) + s2
2i; (c) δ3(si) = sin(s1i) + e−

1
2 s2i ; (d) δ4(si) = e1/2s1i

+ cos(s2i).

Table 1. The percentage reduction in absolute and relative errors.

Definite Form Absolute Error (std) Relative Error (std)

n

n = 50 67.93% (8.69%) 80.30% (10.13%)
n = 100 61.92% (9.46%) 81.61% (7.49%)
n = 150 55.02% (12.10%) 82.71% (8.46%)
n = 200 56.33% (8.30%) 85.38% (4.98%)

σ

σ = 0.01 58.61% (8.99%) 71.77% (9.11%)
σ = 0.1 58.15% (9.52%) 71.77% (8.12%)
σ = 0.5 61.56% (8.23%) 80.32% (7.80%)
σ = 1 60.28% (8.87%) 81.42% (6.27%)

δ(si)

δ(si) = sin(s1i + s2i) 57.09% (8.62%) 79.97% (5.93%)
δ(si) = sin(s1i) + s2

2i 55.98% (8.47%) 73.74% (11.03%)
δ(si) = sin(s1i) + e1/2s2i 54.65% (6.85%) 70.58% (8.93%)
δ(si) = e1/2s1i + cos(s2i) 52.64% (6.35%) 69.82% (9.15%)

β(t)

β(t) = sin(3π/4t) 58.96% (9.23%) 74.50% (10.21%)
β(t) = cos(π/2t) 58.96% (9.39%) 74.11% (7.49%)
β(t) = t2 57.67% (7.71%) 70.20% (8.47%)
β(t) = π/2 arcsin(t) 57.15% (15.21%) 73.80% (7.04%)

When M is a U-shaped region and the other parameters remain unchanged, the
absolute error and the relative error are reduced by 55.88% and 81.82%, respectively,
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compared to the traditional Poisson regression model. The structured domain whenM is a
Bitten Torus and the other parameters remain unchanged is shown in Figure 1(right), with
the absolute error and the relative error are reduced by 58.39% and 71.91%, respectively,
compared to the traditional Poisson regression model.

Compared to classical Poisson regression, the distributions of the absolute error reduc-
tion percentage and the relative error reduction percentage are shown in Figures 3 and 4.
The horizontal axis represents the variations in the four experimental settings (n, αk, δ(s),
and β(t)), while the vertical axis indicates the corresponding error reduction percentages.
Figure 3a shows that as the sample size increases, the distribution range of the absolute
error reduction percentage slightly widens but remains relatively stable overall, with a
median around 0.6 and an interquartile range between 0.4 and 0.8. However, larger sample
sizes may lead to the appearance of outliers. Figure 4a demonstrates that the median of
the relative error reduction percentage shows an upward trend, while the distribution
range changes minimally, indicating the stability of our estimates. As σ increases, the
percentage of error reduction generally rises, suggesting that the value of αk significantly
impacts error reduction. The results show that setting the distribution characteristic σ of
αk around 0.5 yields the best error reduction effect and more stable data. Figures 3 and 4
also show that as δ(s) changes, the median gradually decreases, and outliers appear with
certain δ(s) values, indicating that δ(s) has a considerable influence on error reduction. The
figures demonstrate that with variations in β(t), the absolute error reduction percentage
concentrates around 0.6, while the relative error reduction percentage centers around 0.7.
The shorter box length and similar width of absolute error indicate that changes in β(t)
have little impact on absolute error reduction.
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Figure 3. Absolute error reduction by sample size and settings. (a) Variation in n; (b) Variation in σ;
(c) Variation in δ; (d) Variation in β(t).
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Figure 4. Relative error reduction across experimental settings. (a) Variation in n; (b) Variation in σ;
(c) Variation in δ; (d) Variation in β(t).

We should note that our simulation study can also be applied to more complex
situations, such as multicollinearity of covariates or varying heterogeneity. In this paper,
we consider sensitivity analysis, which is similar to the approach in [37]. This approach is
more amenable to analytical treatment and allows for direct comparisons with previous
literature in the field. Expanding the simulation to include more challenging scenarios, such
as those involving highly correlated covariates or different types of non-Euclidean data,
would provide a better understanding of the model’s robustness and adaptability, offering
a more comprehensive assessment, which we will explore in subsequent work. Extension
to case studies involving more complex data, such as geospatial data or sensor data with
temporal variables, is possible and will better illustrate the effectiveness of the proposed
model in dealing with challenging real-world datasets. Although collecting real-world data
is time-consuming, this will also be considered in future work.

3.2. Real Data Analysis

Taking the prediction of forest coverage for the 50 U.S. states as an example, we
evaluate the performance of the proposed method in real-world data applications. A
visualization of the original data is shown in Figure 5. In this paper, the forest cover
percentage for the 50 U.S. states in 2023 is used as the response variable. For the predictor
variables, we use the GDP time series (from 1997 to 2023, in millions of dollars, sourced
from the BEA Interactive Data Application) for the 50 U.S. states as a functional covariate.
We include total population and population density (people per square mile, sourced
from worldpopulationreview.com), precipitation (in inches), and average temperature (in
degrees Fahrenheit, sourced from the National Centers for Environmental Information) for
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the 50 U.S. states in 2023 as the Euclidean covariates. For the non-Euclidean covariates,
we select the latitude and longitude coordinates of the 50 U.S. states, which are then
transformed into 3D coordinates on the unit sphere.

20

40

60

80

Forest Co−
 verage (%)

Forest Coverage in 50 States of the US (Before Prediction)

Figure 5. Observed forest coverage in U.S. states.

Next, we randomly split the dataset into a training set and a prediction set in a
16:9 ratio. For the functional data, we use B-spline basis functions for smoothing and apply
functional principal component analysis (FPCA) based on cumulative contribution rate
criteria for approximation. This approximation utilizes the Karhunen—Loève expansion,
where each functional covariate Xi(t) is expressed as

Xi(t) = µ(t) +
Q

∑
l=1

ailψl(t),

where µ(t) is the mean function, ail are the principal component scores, and ψl(t) are the
eigenfunctions obtained from the covariance operator of Xi(t). For the random effects, we
employ a heat kernel function and optimize the regularization parameter using General-
ized Cross-Validation (GCV). Parameter estimation in the iFPLPR model is performed by
maximizing the penalized log-likelihood function:

Lp(Ψ) =
n
∑
i=1
(yi(S

⊺
i b + µ⊺ki) − eS⊺i b+µ⊺ki + ln(yi!)) −

1
2

c1b⊺b −
1
2

c2µ⊺Kµ,

where S⊺i b represents the linear effects and µ⊺ki captures the nonlinear random effects.
Regularization parameters c1 and c2 are selected through Generalized Cross-Validation
(GCV), and parameter optimization is achieved using the quasi-Newton method.

The performance metrics—mean squared error, absolute error, and relative error re-
duction percentages—indicate the proposed model’s accuracy in predicting forest coverage
across U.S. states compared to classical Poisson regression models. Specifically, achieving a
mean squared error reduction of 53.26%, along with reductions in the absolute and relative
errors of 22.74% and 10.02%, respectively, reflects substantial improvements in predictive
reliability. These error reductions are significant in practical terms, as they indicate that the
iFPLPR model can more accurately capture the multifaceted relationships between forest
coverage and its predictors, even when those predictors involve nonlinear, spatial, and
functional data interactions. For environmental and regional planning applications, this
improvement translates to better predictions of ecological outcomes, allowing for more
informed decision making regarding resource allocation, conservation efforts, and urban
planning in forested regions. By minimizing prediction errors, the iFPLPR model aligns
closely with the study’s objective to provide a flexible yet precise tool for analyzing count
data within complex domains. This adaptability is particularly valuable in contexts where
traditional regression models may struggle with multi-type covariates or non-Euclidean
data, as often encountered in ecological, geographical, and public health studies. Addi-
tionally, Figure 6 presents a visualization of the predicted average forest cover values.
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Compared to Figure 5, the results indicate that the model effectively fits the real forest
cover data for the 50 U.S. states in 2023, demonstrating the method’s strong performance
and accuracy.
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Forest Co−
 verage (%)

Predicted Forest Coverage in 50 States of the US

Figure 6. Predicted forest coverage using iFPLPR model.

The prediction of forest coverage across U.S. states exemplifies the versatility and
robustness of the iFPLPR model, especially when dealing with count data influenced by
diverse covariate types. Forest coverage is not only a critical metric for assessing ecological
health but also for evaluating the effectiveness of conservation policies, urban planning, and
climate resilience efforts. Accurate modeling of forest coverage can inform policymakers
about sustainable development goals, help identify at-risk regions for deforestation, and
support climate change mitigation strategies.

4. Conclusions

Poisson regression is a statistical method tailored for analyzing count data. In this
article, we propose an intrinsic functional partially linear Poisson regression model, which
applies when the functional covariates and vector-valued covariates have a linear relation-
ship with the log-transformed Poisson mean, while nonlinear random effects exist between
the non-Euclidean covariates and the Poisson mean. Compared to classical Poisson regres-
sion models, this model incorporates the intrinsic functional structure of time-series data
as well as the inherent geometric information of non-Euclidean data. In the estimation
process, we use a truncation method to approximate the functional covariates and apply
kernel methods to model the random effects associated with the non-Euclidean covariates.
The model parameters are estimated using the quasi-Newton iterative algorithm. Addi-
tionally, for the selection of the kernel function, we employ the heat kernel and estimate
it using the transition probabilities of Brownian motion. Simulation studies and real data
analysis show that this method demonstrates significant advantages over classical Poisson
regression models.

Specifically, the iFPLPR model achieves significant reductions in absolute and relative
errors, with absolute error reductions ranging from 55.88% to 67.93% and relative error
improvements up to 85.38%. For instance, in scenarios with a U-shaped structured do-
main, the iFPLPR model reduced the absolute and relative errors by 55.88% and 81.82%,
respectively, compared to the classical Poisson regression model. These enhancements
illustrate the robustness of the iFPLPR model in minimizing prediction errors across di-
verse experimental settings, including variations in sample size (n), variance (σ), and the
functional forms of δ(s) and β(t). Such improvements underscore the iFPLPR model’s
utility in applications where count data exhibit complex spatial or functional structures.
By effectively capturing intrinsic geometric dependencies through the use of heat kernels
and smoothing techniques for functional covariates, the iFPLPR model offers more precise
and dependable parameter estimates, providing substantial advantages for data analyses
involving non-Euclidean or high-dimensional covariates.
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For future research, on the one hand, we could explore cases where the relationship
between the functional covariates, Euclidean covariates, and log-transformed Poisson mean
is nonlinear. In such cases, modeling can be performed using reproducing kernel methods,
particularly through multi-kernel learning to integrate data from different spaces. On the
other hand, since many longitudinal datasets involve sparse functional covariates, sparse
functional principal component analysis (sparse FPCA) is needed to handle such cases. As for
the multi-component mixed Poisson regression model, we have only conducted theoretical
derivations, and its practical performance still requires extensive simulation experiments and
real data analysis for validation. Finally, the asymptotic statistical theory for model parameter
estimation needs to be developed, and this work will be addressed in the future.
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