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Abstract: Uncertain differential equations with a time delay, called uncertain-delay differential
equations, have been successfully applied in feedback control systems. In fact, many systems have
multiple delays, which can be described by uncertain differential equations with multiple delays.
This paper defines uncertain differential equations with multiple delays, which are called uncertain
multiple-delay differential equations (UMDDEs). Based on the linear growth condition and the
Lipschitz condition, the existence and uniqueness theorem of the solutions to the UMDDEs is proven.
In order to judge the stability of the solutions to the UMDDEs, the concept of the stability in measure
for UMDDEs is presented. Moreover, two theorems sufficient for use as tools to identify the stability
in measure for UMDDEs are proved, and some examples are also discussed in this paper.

Keywords: existence and uniqueness theorem; stability in measure; uncertain multiple-delay
differential equations; uncertain theory

MSC: 34D20; 93D15

1. Introduction

The application of multiple-delay differential equations has been observed in various
feedback control systems, such as a neural network [1], an antigen-driven T-cell infection
system [2], and an epidemiological system [3]. However, these feedback control systems
are often influenced by “noise”. When the “noise” is modeled using the Wiener process,
the multiple-delay differential equations involving the Wiener process, called stochastic
multiple-delay differential equations, are employed to describe a range of systems including
finance [4], energy control systems [5], and neutral-type systems [6]. Nonetheless, as Liu [7]
demonstrated, the Wiener process-based representation of “noise” is untenable, and the Liu
process has been successfully proposed as an alternative model for “noise” descriptions.

Differential equations within the Liu process, called uncertain differential equations
(UDEs), have been employed in finance [8], game theory [9], ecology [10], and heat con-
duction [11]. Moreover, the theoretical research on UDEs has been fruitful and includes
the existence and uniqueness theorem [12], stability [13], the analytic solution [12], and
the numerical solution [14]. However, some feedback control systems have a delay time,
such as population ecology, chemical reaction processes, and pharmacokinetics. In these
circumstances, a UDE is unsuitable for modeling a feedback control system with a time
delay. Therefore, UDEs with a time delay, called uncertain-delay differential equations
(UDDEs), were pioneered by Barbacioru [15] and applied to an ecology system [16]. In
addition, theoretical research on UDDEs has been successful in areas such as the existence
and uniqueness theorem [17], stability theorems [18–21], and parameter estimation [16].
However, some feedback control systems contain multiple delays, and uncertain differential
equations with multiple delays can be used to model these systems. Therefore, uncertain
differential equations with multiple delays, called uncertain multiple-delay differential
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equations (UMDDEs), are defined, and the existence and uniqueness theorem of the so-
lutions for these UMDDEs is proven. In addition, the stability in measure for UMDDEs
is defined. Based on different Lipschitz conditions, two sufficient theorems for UMDDEs
being stable in measure are proven.

The structure of this paper is organized as follows. Section 2 gives the definition and
the concept of stabling in measure for UMDDEs and proves the existence and uniqueness
theorem, as well as two sufficient theorems of stabling in measure, for the solution of the
UMDDEs. The conclusion is given in Section 3.

2. Uncertain Multiple-Delay Differential Equations

In this section, uncertain multiple-delay differential equations (UMDDEs) are defined,
and the existence and uniqueness theorem of their solutions is proven. Moreover, the
definition of stabling in measure and two sufficient theorems of stabling in measure for
UMDDEs are established. In order to describe the environmental noise, Liu [22] introduced
the Liu process Lt. Additionally, some correlative theorems are also demonstrated.

Theorem 1 (Yao et al. [13]). Assume that M is the character of an uncertain measure [22] and
Lt(ζ) is the sample path of the Liu process Lt for each ζ. Then,

lim
x→+∞

M{Lt ≤ x} = 1,

where L(ζ) stands for the Lipschitz constant of Lt(ζ).

Theorem 2 (Chen and Liu [12]). As L(ζ) stands for the Lipschitz constant of the sample path
Lt(ζ) of the Liu process Lt, and the integrable uncertain process Vt is defined over the interval
[l1, l2], then we have ∣∣∣∣∫ l2

l1
Vt(ζ)dLt(ζ)

∣∣∣∣ ≤ L(ζ)
∫ l2

l1
|Vt(ζ)|dt.

Based on the Liu process, uncertain multiple-delay differential equations (UMDDEs)
are defined as below.

Definition 1. Assume that Lt is a Liu process and h1 and h2 are two measurable and continuous
functions; then,

dAt = h1(t, At, At−d1 , At−d2 , . . . , At−dm)dt + h2(t, At, At−d1 , At−d2 , . . . , At−dm)dLt (1)

is called an uncertain multiple-delay differential equation (UMDDE), where d1, d2, . . . , dn stands
for the delay time and 0 < d1 < d2 < · · · < dm.

2.1. Existence and Uniqueness Theorem

This section proves the existence and uniqueness theorem of the solutions to the
UMDDE (1).

Theorem 3. If the coefficients h1(t, a0, a1, . . . , am) and h2(t, a0, a1, . . . , am) of the UMDDE (1)
with the initial states Kt in the interval −dm ≤ t ≤ 0 satisfy the linear growth condition

|h1(t, a1)|+ |h2(t, a1)| ≤ N(1 +
m

∑
i=0

|ai1|)

and the Lipschitz condition

|h1(t, a1)− h1(t, a2)|+ |h2(t, a1)− h2(t, a2)| ≤ N
m

∑
i=0

|ai1 − ai2|,
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∀ai1, ai2 ∈ R (i = 0, 1, . . . , m), t ≥ 0, and there is a positive constant N, where a1 = (a01, a11, . . . , am1)
and a2 = (a02, a12, . . . , am2), then the UMDDE (1) has a solution. Moreover, the solution is
sample-continuous.

Proof. Assume that UMDDE (1) is in [0, T], where T is any given real number. For each ζ ∈
Θ, we set Ht(ζ) = (At(ζ), At−d1(ζ), At−d2(ζ), . . . , At−dm(ζ)), Hn

t (ζ) = (An
t (ζ), An

t−d1
(ζ),

and An
t−d2

(ζ), . . . , An
t−dm

(ζ)), and have

A(n+1)
t (ζ) = A0 +

∫ t

0
h1(s, H(n)

s (ζ))ds +
∫ t

0
h2(s, H(n)

s (ζ))dLs(ζ)

and
B(n)

t (ζ) = sup
0≤s≤t

∣∣∣A(n+1)
s (ζ)− An

s (ζ)
∣∣∣.

Let us use mathematical induction to prove the following formulas for any n ∈ N:

B(n)
t ≤

(
1 + (m + 1) sup

u∈[−dm ,0]
|Au|

)
Nn+1(1 + L(ζ))n+1(m + 1)n

(n + 1)!
tn+1. (2)

L(ζ) is the Lipschitz constant of Lt(ζ) for all ζ ∈ Θ and n. Due to Formula (2), we know
that it satisfies the following inequality:

∞

∑
n=0

(
1 + (m + 1) sup

u∈[−dm ,0]
|Au|

)
Nn+1(1 + L(ζ))n+1(m + 1)n

(n + 1)!
tn+1 < +∞, ∀t ∈ [0, T].

In other words, it satisfies the Weierstrass criterion. Thus, A(n)
t (ζ) converges uniformly at

the given time interval [0, T] and the limit represents At(ζ). Then, we know that

At(ζ) = A0 +
∫ t

0
h1(s, Hs(ζ))ds +

∫ t

0
h2(s, Hs(ζ))dLs(ζ).

The uncertain process At is the only solution to the UMDDEs (1). Inequality (2) is proven
as below. For any n = 0 and set d0 = 0, we know that

B(0)
t = sup

0≤s≤t

{∣∣∣∣∫ s

0
h1(u, H0)du +

∫ s

0
h2(u, H0)dLu(ζ)

∣∣∣∣}
≤ sup

0≤s≤t

{∫ s

0
|h1(u, H0)|du

}
+ L(ζ) sup

0≤s≤t

{∫ s

0
|h2(u, H0)|du

}
≤
∫ t

0
|h1(u, H0)|du + L(ζ)

∫ t

0
|h2(u, H0)|du

≤
(

1 + (m + 1) sup
u∈[−dm ,0]

|Au|
)

N(1 + L(ζ))t.

Assuming Inequality (2) with n, we know that

B(n)
t (ζ) = sup

0≤s≤t

∣∣∣A(n+1)
s (ζ)− A(n)

s (ζ)
∣∣∣

≤
(

1 + (m + 1) sup
u∈[−dm ,0]

|Au|
)

Nn+1(1 + L(ζ))n+1(m + 1)n

(n + 1)!
tn+1.

and
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B(n+1)
t (ζ) = sup

0≤s≤t

∣∣∣A(n+2)
s − A(n+1)

s (ζ)
∣∣∣

= sup
0≤s≤t

∣∣∣∣∫ s

0
h1

(
u, H(n+1)

u (ζ)
)
− h1

(
u, H(n)

u (ζ)
)

du +
∫ s

0
h2

(
u, H(n+1)

u (ζ)
)
− h2

(
u, H(n)

u (ζ)
)

dLu(ζ)

∣∣∣∣
≤
∫ t

0

∣∣∣h1

(
u, H(n+1)

u (ζ)
)
− h1

(
u, H(n)

u (ζ)
)∣∣∣du + L(ζ)

∫ t

0

∣∣∣h2

(
u, H(n+1)

u (ζ)
)
− h2

(
u, H(n)

u (ζ)
)∣∣∣du

≤
∫ t

0
N

m

∑
i=0

∣∣∣An+1
u−di

− An
u−τi

∣∣∣du + L(ζ)
∫ t

0
N

m

∑
i=0

∣∣∣An+1
u−di

− An
u−τi

∣∣∣du

≤ (1 + L(ζ))N(m + 1)
∫ t

−dm
|A(n+1)

u − An
u|du

≤ (1 + L(ζ))N(m + 1)
∫ t

0

(
1 + (m + 1) sup

u∈[−dm ,0]
|Au|

)
Nn+1(1 + L(ζ))n+1(m + 1)n

(n + 1)!
un+1du

=

(
1 + (m + 1) sup

u∈[−dm ,0]
|Au|

)
Nn+2(1 + L(ζ))n+2(m + 1)n+1

(n + 2)!
tn+2.

Therefore, for any ζ ∈ Θ and n ∈ N, the sample path A(n)
t (ζ) is converges uniformly in

[0, T]. If we set the limit as At(ζ), then

At(ζ) = A0 +
∫ t

0
h1(s, Hs(ζ))ds +

∫ t

0
h2(s, Hs(ζ))dLs(ζ).

2.2. Stability in Measure

This section gives the definition of the stabling in measure and two sufficient theorems
for UMDDE (1) by means of the Gronwall inequality [23].

Definition 2. For the different states A1s (s ∈ [−dm, 0]) and A2s (s ∈ [−dm, 0]), UMDDE (1)
has the corresponding solutions A1t and A2t. For any ε > 0, if

lim
sup

s∈[−dm ,0]
|A1s−A2s |→0

M{|A1t − A2t| < ε, ∀t ≥ 0} = 1, (3)

then UMDDE (1) is stable in measure.

Theorem 4. As for its initial state, UMDDE (1) has a unique solution. Let a1 =(a01, a11, . . . , am1)
and a2 = (a02, a12, . . . , am2); the coefficients of UMDDE (1) satisfy the condition

|h1(t, a1)− h1(t, a2)| ∨ |h2(t, a1)− h2(t, a2)| ≤
m

∑
i=0

Nit|ai1 − ai2|, (4)

where ai, bi ∈ ℜ, i = 0, 1, . . . , m, and the symbol ∨ stands for taking the minimum, and∫ +∞

0
Nitdt < +∞, i = 0, 1, . . . , m,

then UMDDE (1) is stable in measure.
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Proof. For the different initial states âs1 and âs2, −τm ≤ s ≤ 0, the corresponding solutions
to UMDDE (1) are At and Bt. Let At1 = (At1, A(t−d1)1, . . . , A(t−dm)1) and
At2 = (At2, A(t−d1)2, . . . , A(t−dm)2); we know that{

dAt1 = h1(t, At1)dt + h2(t, At1)dLt, t ∈ (0,+∞)
At1 = ât1, t ∈ [−dm, 0]

and {
dAt2 = h1(t, At2)dt + h2(t, At2)dLt, t ∈ (0,+∞)
At2 = ât2, t ∈ [−dm, 0].

Assuming that Lt(ζ) represents the Lipschitz continuous sample of Lt, we know that

At1(ζ) = A01 +
∫ t

0
h1(u, Au1(ζ))du +

∫ t

0
h2(u, Au1(ζ))dLu(ζ)

and

At2(ζ) = A02 +
∫ t

0
h1(u, Au2(ζ))du +

∫ t

0
h2(u, Au2(ζ))dLu(ζ).

According to the Lipschitz condition (4) and Theorem 2, L(ζ) is the Lipschitz constant
Lt(ζ) and

|At1(ζ)− At2(ζ)| =
∣∣∣∣{A01 +

∫ t

0
h1(u, Au1(ζ))du +

∫ t

0
h2(u, Au1(ζ))dLu(ζ)

}
−
{

A02 +
∫ t

0
h1(u, Au2(ζ))du +

∫ t

0
h2(u, Au2(ζ))dLu(ζ)

}∣∣∣∣
≤|A01 − A02|+

∫ t

0

{
m

∑
i=0

Niu|A(u−di)1(ζ)− A(u−di)2(ζ)|
}

du

+
∫ t

0
L(ζ)

{
m

∑
i=0

Niu|A(u−di)1(ζ)− A(u−di)2(ζ)|
}

du

=|A01 − A02|+ (1 + L(ζ))

{
m

∑
i=0

∫ t

0
Niu|A(u−di)1(ζ)− A(u−di)2(ζ)|du

}
.

Based on Condition (4), ∫ +∞

0
Njtdt < +∞, j = 0, 1, . . . , m.

So, M1 > 0 exists and we know that∫ +∞

0
Njtdt < M1, j = 0, 1, . . . , m.

By setting η = u − τi, we know that∫ t

0
Niu|A(u−di)1(ζ)− A(u−di)2(ζ)|du

=
∫ t−di

−di

Ni(η+di)
|Aη1(ζ)− Aη2(ζ)|dη

≤ sup
s∈[−di ,0]

{|As1(ζ)− As2(ζ)|}
∫ τi

0
Niηdη +

∫ t

0
Ni(η+di)

|Aη1(ζ)− Aη2(ζ)|dη

≤ M1 sup
s∈[−di ,0]

{|As1(ζ)− As2(ζ)|}+
∫ t

0
Ni(η+di)

|Aη1(ζ)− Aη2(ζ)|dη.
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and

|At1(ζ)− At2(ζ)| ≤ |A01 − A02|+ (1 + L(ζ))

{
m

∑
i=0

∫ t

0
Niu|A(u−di)1(ζ)− A(u−di)2(ζ)|du

}

≤ |A01 − A02|+ (1 + L(ζ))

{
m

∑
i=0

(
M1 sup

s∈[−di ,0]
{|As1(ζ)− As2(ζ)|}

+
∫ t

0
Ni(η+di)

|Aη1(ζ)− Aη2(ζ)|dη

)}
≤ |A01 − A02|+ (1 + L(ζ))

{
M1(m + 1) sup

s∈[−dm ,0]
{|As1(ζ)− As2(ζ)|}

+
∫ t

0

(
m

∑
i=0

Ni(η+di)

)
|Aη1(ζ)− Aη2(ζ)|dη

}
≤ {(1 + L(ζ))M1(m + 1) + 1} sup

s∈[−τm ,0]
{|As1(ζ)− As2(ζ)|}

+ (1 + L(ζ))
∫ t

0

(
m

∑
i=0

Ni(η+di)

)
|Aη1(ζ)− Aη2(ζ)|dη.

According to the Gronwall inequality [23], we know that

|At1(ζ)− At2(ζ)| ≤ sup
s∈[−dm ,0]

{|As1(ζ)− As2(ζ)|} exp(2M1(m + 1)(1 + L(ζ))).

With the help of Theorem 1, ∀ε > 0, and R1 > 0, it follows that

M{ζ|L(ζ) ≤ R1} ≥ 1 − ε.

Set
θ1 = exp(−2M1(1 + m)(1 + R1))ε.

If
sup

s∈[−dm ,0]
{|As1 − As2|} ≤ θ1,

then we know that

M{|At1 − At2| ≤ ε} ≥ M

{
sup

s∈[−dm ,0]
{|As1 − As2|} exp(2M1(1 + m)(1 + L(ζ))) ≤ ε

}
≥ M{ζ|L(ζ) ≤ R1}
≥ 1 − ε.

If
sup

s∈[−dm ,0]
{|As1 − As2|} → 0,

we know that
M{|At1 − At2| ≤ ε} → 1, ∀t > 0.

Thus

lim
sup

s∈[−dm ,0]
{|As1−As2|}→0

M{|At1 − At2| ≤ ε, ∀t ≥ 0} = 1.
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Example 1. Consider the UMDDE

dAt = cos(x) exp(− x
2
)At−1dt +

sin2(x)
t(1 + (ln t)2)

At−2dLt, (5)

where At−1 and At−2 stand for the delay term. By setting h1 = cos(x) exp(− x
2 )b1 and

h2 = sin2(x)
t(1+(ln t)2)

a2, we obtain

N1t = cos(x) exp(− x
2
), N2t =

sin2(x)
t(1 + (ln t)2)

,

then ∣∣∣∣∫ +∞

0
N1tdt

∣∣∣∣ ≤ ∫ +∞

0

∣∣∣cos(x) exp(− x
2
)
∣∣∣dt ≤ 2 < +∞

and ∣∣∣∣∫ +∞

0
N2tdt

∣∣∣∣ ≤ ∫ +∞

0

∣∣∣∣∣ sin2(x)
t(1 + (ln t)2)

∣∣∣∣∣dt ≤ π

2
< +∞.

Based on Theorem 4, UMDDE (5) is stable in measure.

Corollary 1. Consider the UMDDE

dAt = (n0t At + n1t At−d1 + · · ·+ nmt At−dm + l̂t)dt + (n0t At + n1t At−d1 + · · ·+ nmt At−dm + l̆t)dLt (6)

satisfying ∫ +∞

0
nitdt < +∞, i = 0, 1, . . . , m, (7)

where l̂t and l̆t are the real functions; if ao, then UMDDE (6) is stable in measure.

Proof. Let

h1 = n0tb0 + n1tb1 + · · ·+ nmtbm + l̂t
h2 = n0tb0 + n1tb1 + · · ·+ nmtbm + l̆t,

we obtain

|h1(t, b1)− h1(t, b2)| ∨ |h2(t, b1)− h2(t, b2)| ≤
m

∑
i=0

nit|bi1 − bi2|,

where bi = (b1i, b2i and . . . , bni), i = 1, 2. Based on the condition (7), this satisfies the
condition (4). Therefore, UMDDE (6) is stable in measure.

Example 2. Consider the UMDDE

dAt =(cos(x)At−1 + sin(x) exp(−x)At−4)dt + (cos(x)At−1 + sin(x) exp(−x)At−4)dLt, (8)

where At−1 and At−4 stand for the delay term. Let

h1 = cos(x)a + sin(x) exp(−x)b, h2 = cos(x)a + sin(x) exp(−x)b.

Setting
n1t = cos(x), n2t = sin(x) exp(−x),

we find that ∣∣∣∣∫ +∞

0
n1tdt

∣∣∣∣ = ∣∣∣∣∫ +∞

0
cos(x)dt

∣∣∣∣ ≤ 2 < +∞,
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∣∣∣∣∫ +∞

0
n2tdt

∣∣∣∣ ≤ ∫ +∞

0
|sin(x) exp(−x)|dt ≤

∫ +∞

0
|exp(−x)|dt = 1 < +∞.

By Corollary 1, UMDDE (8) is then stable in measure.

Theorem 5. If UMDDE (1) with a given initial condition has a unique solution, by setting
a = (a0, a1, . . . , am) and b = (b0, b1, . . . , bm), the coefficients of UMDDE (1) satisfy the conditions

|h1(t, a)− h1(t, b)| ≤
m

∑
i=0

Fit|ai − bi|

|h2(t, a)− h2(t, b)| ≤
m

∑
i=0

Git|ai − bi|,
(9)

where ai, bi ∈ ℜ, i = 0, 1, . . . , m, and the symbol ∨ stands for taking the minimum,∫ +∞

0
Nitdt < +∞

∫ +∞

0
Fjtdt < +∞,

∫ +∞

0
Gjtdt < +∞, j = 0, 1, . . . , m,

then UMDDE (1) is stable in measure.

Proof. According to the initial states a1s and a2s, −dm ≤ s ≤ 0, the corresponding solutions
for UMDDE (1) are A1t and B1t. By setting A1t = (A1t, A1(t−d1)

, A1(t−d2)
, . . . , A1(t−dm)) and

A2t = (A2t, A2(t−d1)
, A2(t−d2)

, . . . , A2(t−dm)), we find that{
dA1t = h1(t, A1t)dt + h2(t, A1t)dLt, t ∈ (0,+∞)
A1t = a1t, t ∈ [−dm, 0]

and {
dA2t = h1(t, A2t)dt + h2(t, A2t)dLt, t ∈ (0,+∞)
A2t = a2t, t ∈ [−dm, 0].

Assuming that Lt(ζ) is the continuous Lipschitz sample of Lt, we obtain

A1t(ζ) = A10 +
∫ t

0
h1(u, A1u(ζ))du +

∫ t

0
h2(u, A1u(ζ))dLu(ζ)

and

A2t(ζ) = A20 +
∫ t

0
h1(u, A2u(ζ))du +

∫ t

0
h2(u, A2u(ζ))dLu(ζ).

Moreover, L(ζ) represents the Lipschitz constants of Lt(ζ). By applying the Lipschitz
condition (9) and Theorem 2,

|A2t(ζ)− A2t(ζ)| =
∣∣∣∣{A10 +

∫ t

0
h1(u, A1u(ζ))du +

∫ t

0
h2(u, A1u(ζ))dLu(ζ)

}
−
{

A20 +
∫ t

0
h1(u, A2u(ζ))du +

∫ t

0
h2(u, A2u(ζ))dLu(ζ)

}∣∣∣∣
≤|A10 − A20|+

∫ t

0

{
m

∑
i=0

Fiu|A1(u−di)
(ζ)− A2(u−di)

(ζ)|
}

du

+
∫ t

0
L(ζ)

{
m

∑
i=0

Giu|A1(u−di)
(ζ)− A2(u−di)

(ζ)|
}

du

≤|A10 − A20|+ (1 + L(ζ))

{
m

∑
i=0

∫ t

0
(Fiu + Giu)|A1(u−di)

(ζ)− A2(u−di)
(ζ)|du

}
.
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Based on Condition (9),∫ +∞

0
Fitdt < +∞,

∫ +∞

0
Gitdt < +∞, i = 0, 1, . . . , m.

Then, as M2 > 0, ∫ +∞

0
Fitdt < M2,

∫ +∞

0
Gitdt < M2, i = 0, 1, . . . , m.

Setting η = u − τi, we obtain∫ t

0
Fiu|A1(u−di)

(ζ)− A2(u−di)
(ζ)|du

=
∫ t−di

−di

Fi(η+di)
|A1η(ζ)− A2η(ζ)|dη

≤ sup
s∈[−di ,0]

{|A1s(ζ)− A2s(ζ)|}
∫ di

0
Fiηdη +

∫ t

0
Fi(η+di)

|A1η(ζ)− A2η(ζ)|dη

≤ M2 sup
s∈[−di ,0]

{|A1s(ζ)− A2s(ζ)|}+
∫ t

0
Fi(η+di)

|A1η(ζ)− A2η(ζ)|dη.

Similarly,

∫ t

0
Miu|A1(u−di)

(ζ)− A2(u−di)
(ζ)|du ≤ M2 sup

s∈[−di ,0]
{|A1s(ζ)− A2s(ζ)|}+

∫ t

0
Gi(η+di)

|A1η(ζ)− A2η(ζ)|dη.

Therefore,

|A1t(ζ)− A2t(ζ)| ≤ |A10 − B20|+ (1 + L(ζ))

{
m

∑
i=0

∫ t

0
(Fiu + Giu)|A1(u−di)

(ζ)− A2(u−di)
(ζ)|du

}

≤ |A10 − B20|+ (1 + L(ζ))

{
2M2(m + 1) sup

s∈[−dm ,0]
{|A1s(ζ)− A2s(ζ)|}

+
∫ t

0

(
m

∑
i=0

(Fi(η+di)
+ Gi(η+di)

)

)
|A1η(ζ)− A2η(ζ)|dη

}
≤ {2(1 + L(ζ))M2(m + 1) + 1} sup

s∈[−dm ,0]
{|A1s(ζ)− A2s(ζ)|}

+ (1 + L(ζ))
∫ t

0

(
m

∑
i=0

(Fi(η+di)
+ Gi(η+di)

)

)
|A1η(ζ)− A2η(ζ)|dη.

According the Gronwall inequality [23],

|A1t(ζ)− A2t(ζ)| ≤ {2(1 + L(ζ))M2(m + 1) + 1} sup
s∈[−dm ,0]

{|A1s(ζ)− A2s(ζ)|}

· exp

(
(1 + L(ζ))

∫ t

0

m

∑
i=0

(Fi(η+τi)
+ Gi(η+di)

)dη

)
≤ {2(1 + L(ζ))M2(m + 1) + 1} sup

s∈[−dm ,0]
{|A1s(ζ)− A2s(ζ)|}

· exp((m + 1)(1 + L(ζ))M2)

≤ sup
s∈[−dm ,0]

{|A1s(ζ)− A2s(ζ)|} exp(3M2(m + 1)(1 + L(ζ))).
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With the help of Theorem 1, ∀ε > 0, P > 0 and

M{ζ|L(ζ) ≤ P} ≥ 1 − ε.

Set
θ = exp(−3M2(1 + m)(1 + P))ε.

If
sup

s∈[−dm ,0]
{|A1s − A2s|} ≤ θ,

we know that

M{|A1t − A2t| ≤ ε} ≥ M

{
sup

s∈[−dm ,0]
{|A1s − A2s|} exp(3M2(1 + m)(1 + L(ζ))) ≤ ε

}
≥ M{ζ|L(ζ) ≤ P} ≥ 1 − ε.

In other words, if
sup

s∈[−dm ,0]
{|A1s − A2s|} → 0,

we obtain
M{|A1t − B1t| ≤ ε} → 1, ∀t > 0.

Therefore,
lim

sup
s∈[−dm ,0]

{|A1s−A2s |}→0
M{|A1t − A2t| ≤ ε, ∀t ≥ 0} = 1.

Remark 1. Actually, Theorem 4 and Theorem 5 are equivalent. If Inequality (4) is established,
we can set Fit = Git = Nit and i = 0, 1, 2, . . . , m, and then Inequality (9) is established. But, if
Inequality (9) is established, we set Njt = Fjt + Gjt and j = 0, 1, 2, . . . , m, and then Inequality (4)
is established.

Corollary 2. Assume the UMDDE

dAt = (a0t At + a1t At−d1 + · · ·+ amt At−dm + at)dt + (b0t At + b1t At−d1 + · · ·+ bmt At−dm + bt)dLt (10)

satisfies ∫ +∞

0
aitdt < +∞,

∫ +∞

0
bitdt < +∞, i = 0, 1, . . . , m, (11)

where ait and bit are real-valued functions and i = 0, 1, . . . , m; then, UMDDE (10) is stable
in measure.

Proof. Set

h1 = a0ta0 + a1ta1 + · · ·+ amtam + at, h2 = b0tb0 + b1tb1 + · · ·+ bmtbm + bt,

then
Nit = ait, Mit = bit, i = 0, 1, 2, . . . , m.

By applying Condition (11) and Theorem 5, UMDDE (10) is stable in measure.

Example 3. Consider the UMDDE

dAt =

(
t2 exp(−t3)At−1 +

t
1 + t4 At−2

)
dt + (exp(−t) cos(t)At−1 + sin(−t)At−2)dLt, (12)
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where At−1 and At−2 stand for the delay term. Set

h1(t, a1, a2) = t2 exp(−t3)a +
t

1 + t4 b

and
h2(t, a1, a2) = exp(−t) cos(t)a + sin(−t)b,

and we obtain ∫ +∞

0
t2 exp(−t3)dt =

1
3
< +∞,

∫ +∞

0

t
1 + t4 dt =

π

4
< +∞,

∣∣∣∣∫ +∞

0
exp(−t) cos(t)dt

∣∣∣∣ ≤ 1 < +∞,
∣∣∣∣∫ +∞

0
sin(−t)dt

∣∣∣∣ ≤ 2 < +∞.

According to Corollary 2, UMDDE (12) is then stable in measure.

3. Conclusions

In order to model a feedback control system with multiple delays, uncertain multiple-
delay differential equations (UMDDEs) were defined in this paper. Moreover, the existence
and uniqueness theorem for the solutions to these UMDDEs was proven. In order to
judge the stability of the solutions to these UMDDEs, the concept of stabling in measure
was provided. Meanwhile, two sufficient theorems were proven to testify the stability in
measure of the solutions to the UMDDEs.

Based on these uncertain multiple-delay differential equations, the stability in mean,
stability in p-moment, numerical methods, uncertain multiple-delay Logistic models, pa-
rameter estimations, and numerical simulations can be investigated in the future.
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