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Abstract: The concept of pointwise slant submanifolds of a Kähler manifold was presented by Chen
and Garay. This research extends this notion to a more general setting, specifically in a locally
conformal Kähler manifold. We study the pointwise pseudo-slant warped products of the form
Σθ × f Σ⊥ in a locally conformal Kähler manifold. Using the concept of pointwise pseudo-slant,
we establish the necessary and sufficient condition for it to be characterized as a warped product
submanifold. In addition, we derive several results on pointwise pseudo-slant warped products
that expand previously proven main ones. Further, some examples of such submanifolds and their
warped products are also given.
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1. Introduction

Bishop and O’Neill [1] introduced the concept of warped product manifolds in 1969,
extending the notion of Riemannian product manifolds. This extension was developed to
investigate manifolds with negative sectional curvature. Moreover, warped products have
important applications in physics and differential geometry, especially in the context of
general relativity. Warped products appear in many of the fundamental solutions of the
Einstein field equations. For example, in general relativity, the models of Schwarzschild
and Robertson–Walker are both warped products [2].

In the early 2000s, Chen initiated the investigation of warped products in Kähler
manifolds [3,4]. He showed that the warped products in the Kähler manifold of the form
Σ⊥ × f ΣT do not exist, where Σ⊥ is an anti-invariant submanifold and ΣT is an invariant
submanifold. Building upon Chen’s work on CR-warped product submanifolds, this topic
has emerged as a major field of differential geometry research. Several researchers have
extended this notion to explore various types of warped products in almost Hermitian
manifolds (see [5–7]). These studies continued in more general manifolds and in almost
Hermitian manifolds known as locally conformal Kähler manifolds, such as CR-warped
product submanifolds [8,9], warped product semi-slant submanifolds [10,11], hemi-slant
warped products [12] and pointwise slant warped products [13,14].

Locally conformal Kähler manifolds share some characteristics with Kähler geometry
but provide more flexibility. They are crucial in studying non-Kähler complex manifolds
and have significant applications in mathematics and theoretical physics. Specifically, they
are valuable in string theory and general relativity, where their adaptable structure is useful
for modeling spaces that are restrictive for standard Kähler geometry. Additionally, locally
conformal Kähler manifolds help in analyzing solutions to Einstein’s equations that do not
have a Kähler structure [15,16].

Building on previous research, this paper extends the concept of the CR-warped
product into the pointwise pseudo-slant warped product in locally conformal Kähler
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manifolds, leading to the discovery of several fundamental results and some generalizations.
More precisely, we study pointwise pseudo-slant warped products of the form Σθ × f Σ⊥

in locally conformal Kähler manifolds, where Σθ are proper pointwise slant submanifolds
and Σ⊥ are anti-invariant submanifolds. We also obtained some essential results that serve
as generalizations of the main findings reported in various studies in the literature.

This paper is organized as follows: Section 2 presents the essential background nec-
essary for our study. Section 3 establishes several preliminary lemmas and results. In
Section 4, we prove the main theorems, followed by Section 5, which provides various
applications of our findings. Finally, we conclude with non-trivial examples of pointwise
pseudo-slant warped products.

2. Basic Definitions and Lemmas

Let Ñ be a differentiable manifold equipped with a tensor field J of type (1, 1) such
that J2 = −I. Then, we say that Ñ is an almost complex manifold with an almost complex
structure J if Ñ has even dimension ≥ 2, and there exists a Riemannian metric g on Ñ that
is compatible with J, i.e.,

g(JX1, JX2) = g(X1, X2), (1)

for all X1, X2 ∈ Γ(TÑ). If such a metric g exists, then g is called a Hermitian metric on Ñ.
An almost complex manifold with a Hermitian metric (Ñ, J, g) is called an almost

Hermitian manifold.
Furthermore, an almost Hermitian manifold (Ñ, J, g) is called a locally conformally

Kähler manifold (an LCK-manifold) if a Hermitian metric g is locally conformal to a Kähler
metric [16].

The LCK-manifold Ñ is a Hermitian manifold with structure (J, g) such that there is
a global closed 1-form β (known as the Lee form) which satisfies for any X1, Y1 ∈ TÑ the
following [16,17]:

(∇̃X1 J)Y1 = g(λ, JY1)X1 − g(λ, Y1)JX1 + g(JX1, Y1)λ + g(X1, Y1)Jλ (2)

where ∇̃ is the Levi–Civita connection on an LCK-manifold M̃ and λ is the dual vector field
of β (i.e., g(X1, λ) = β(X1) for X1 ∈ TM̃), called the Lee vector field [15]. The Lee-form β
of LCK-manifolds has significance for determining many geometric characteristics of their
submanifolds. An LCK-manifold with an exact 1-form β is called a globally conformal
Kähler manifold (GCK-manifold).

Consider N as a Riemannian manifold that is isometrically immersed in LCK-manifold
(Ñ, β, J, g), with the Riemannian metric on M induced by the immersion denoted by the
same symbol g. Let Γ(TN) represent the tangent vector fields on N and Γ(T⊥N) denote the
set of normal vector fields to N. Let ∇ be the Levi–Civita connection on N. The Weingarten
and Gauss formulas are given as follows:

∇̃X1 V = −AV X1 +∇⊥
X1

V, (3)

∇̃X1Y1 = ∇X1Y1 + σ(X1, Y1), (4)

for any X1, Y1 ∈ Γ(TN) and V ∈ Γ(T⊥N), where σ is the second fundamental form, AV is
the Weingarten map and ∇⊥ is the normal connection. Also, AV and σ are interconnected
through the following relations:

g(σ(X1, Y1), V) = g(AV X1, Y1). (5)

A submanifold N of an LCK-manifold is totally geodesic if σ(X1, Y1) = 0.
Now, for any tangent vector X1 to N and any normal vector V to N, we have

JX1 = TX1 + FX1, (6)
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JV1 = tV1 + f V1, (7)

where TX1 (tV1) is the tangential component and FX1 ( f V1) is the normal component of
JX1 (JV1).

In accordance with Chen’s definition [18] of a pointwise slant submanifold of an almost
Hermitian manifold, we will define a pointwise slant submanifold in an LCK-manifold.

Definition 1 ([18]). A Riemannian manifold N isometrically immersed into an almost Hermitian
manifold Ñ is said to be a pointwise pseudo-slant submanifold if it has tangent bundle of orthog-
onal distributions Dθ and D⊥ on N such that TN = Dθ ⊕D⊥, where Dθ is a pointwise slant
distribution with slant function θ and D⊥ is an anti-invariant distribution.

If we denote the dimensions of Dθ and D⊥ by n1 and n2, respectively, then CR-
submanifolds and slant submanifolds represent specific cases of pseudo-slant submanifolds,
corresponding to the cases where the slant angle θ = 0 and n2 = 0, respectively. Further-
more, invariant submanifolds correspond to pseudo-slant submanifolds with θ = 0 and
n2 = 0, while anti-invariant submanifolds have θ = π

2 or n1 = 0. Moreover, a pointwise
slant submanifold is proper if neither θ = 0, π

2 nor θ is constant.
It is established in [18] that a submanifold N of an almost Hermitian manifold Ñ is

called a pointwise slant if and only if it satisfies the condition

T2 = −(cos2 θ)I, (8)

where θ is a real-valued function defined on N and I is the identity map on the tangent
bundle TN of N. A pointwise slant submanifold is termed proper if it contains neither
totally real nor complex points, meaning 0 < cos2 θ < 1.

Similarly, if N is a submanifold of a locally conformal Kähler (LCK-manifold) Ñ, then
N is pointwise slant if and only if it satisfies condition (8) as well.

Moreover, from (8), for a pointwise slant submanifold of an LCK-manifold Ñ, the
following useful relation was obtained:

g(TX1, TY1) = (cos2 θ) g(X1, Y1), (9)

Also,

g(FX1, FY1) = (sin2 θ) g(X1, Y1) (10)

tFX1 = − sin2 θ X1, f FX1 = −FTX (11)

for any X1, Y1 ∈ Γ(TN).
The following results on pointwise pseudo-slant submanifolds of LCK-manifolds were

established in [14] and are instrumental in proving the main theorems.

Lemma 1 ([14]). On the pointwise pseudo-slant submanifold N of Ñ, the following relations hold
for any V1 ∈ Γ(D⊥), X1, X2 ∈ Γ(Dθ):

cos2 θg(∇X1X2, V1) = [g(AJV1 TX2 − AFTX2 V1, X1) + g(X1, TX2)g(λ, JV1)]

− g(X1, X2)g(λ, V1).

Lemma 2 ([14]). On the pointwise pseudo-slant submanifold N of Ñ, the following relations hold
for any V1, V2 ∈ Γ(D⊥), X1 ∈ Γ(Dθ):

cos2 θg(∇V2V1, X1) = [g(AFTX1 V1 − AJV1 TX1, V2)− g(V1, V2)g(λ, X1)].
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Next, we present the following result for the leaves of the anti-invariant distribution
D⊥ and pointwise slant distribution Dθ .

Theorem 1 ([14]). On the pointwise pseudo-slant submanifold N of LCK-manifold Ñ, the follow-
ing hold for any V1 ∈ Γ(D⊥), X1 ∈ Γ(Dθ):

(i) The totally real distribution D⊥ defines a totally geodesic foliation in N if and only if

AFTX1 V1 − AJV1 TX1 = g(λ, X1)V1.

(ii) The proper pointwise slant distribution Dθ defines a totally geodesic foliation if and only if

AJV1 TX1 − AFTX1 V1 = cos2 θg(λ, V1)X1 − g(λ, JV1)TX1.

The integrability theorem is introduced as follows.

Theorem 2 ([14]). Let (Ñ, J, g) be an LCK-manifold and N a pointwise pseudo-slant submanifold
of Ñ. Then, we have the following:

(i) The distribution of anti-invariant D⊥ is integrable if and only if

AJV2 V1 = AJV1 V2.

(ii) The distribution Dθ of pointwise slant is integrable if and only if

g(AJV1 TX2 − AFTX2 V1, X1) = g(AJV1 TX1 − AFTX1 V1, X2) + 2g(X1, TX2)g(λ, JV1).

3. Pointwise Pseudo-Slant Warped Products Σθ × f Σ⊥

In this study on LCK-manifold Ñ, we investigate the warped product submanifold
N = Σθ × f Σ⊥ when Σθ is a proper pointwise slant submanifold and Σ⊥ is an anti-invariant
submanifold under the condition that the Lee vector field λ is tangent to N. This new type of
warped product is called the pointwise pseudo-slant warped product of an LCK-manifold.

To begin, we need to know some definitions. A warped product Σ1 × Σ2 of two
pseudo-Riemannian manifolds (Σ1, g1) and (Σ2, g2) with their metrics g1 and g2 is the
product manifold N = Σ1 × f Σ2 equipped with the warped product metric g defined by

g = g1 + f 2g2

where f is a positive differential function on Σ1. The function f is called the warping
function of the warped product [3]. A warped product manifold Σ1 × f Σ2 is called a
Riemannian product if its warping function f is constant.

Definition 2. In an LCK-manifold Ñ, a warped product pointwise pseudo-slant submanifold
Σθ × f Σ⊥ is a warped product, where Σθ is a pointwise slant submanifold and Σ⊥ is an anti-
invariant submanifold. A warped product Σθ × f Σ⊥ is a proper pointwise pseudo-slant submanifold
if Σθ is a proper pointwise slant. If not, it is classified as non-proper.

First, we remember the well-known lemma that follows.

Lemma 3 ([1]). For any X1, X2 ∈ T(Σ1) and V1, V2 ∈ T(Σ2), we have, for a warped product
manifold N = Σ1 × f Σ2 and the warping function f , the following:

(i) ∇X1X2 ∈ T(Σ1);
(ii) ∇X1V1 = ∇V1 X1 = X1(ln f )(V1);
(iii) ∇V1X2 = ∇V

Σ2
1 V2 − g(V1, V2)∇⃗ ln f .
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Here, the gradient ∇⃗ ln f of the function ln f is given by g(∇⃗ f , X1) = X1( f ), and both ∇
and ∇Σ2 denote the Levi–Civita connections on N and Σ2, respectively.

To simplify, we refer to the tangent spaces of Σ⊥ and Σθ as D⊥ and Dθ , respectively.
Note that, in an LCK-manifold Ñ, the normal bundle for warped product pointwise

pseudo-slant N = Σθ × f Σ⊥ is given by

T⊥N = ν ⊕ JD⊥ ⊕ FDθ . (12)

such that ν is an orthogonal complementary distribution of JD⊥ ⊕ FDθ in T⊥N.

Proposition 1. Let Ñ be an LCK-manifold and N = Σθ × f Σ⊥ a proper warped product pointwise
pseudo-slant in Ñ; then, the Lee vector field λ is normal to D⊥.

Proof. We have, for any X1, X2 ∈ Γ(Dθ) and V1 ∈ Γ(D⊥),

g(σ(X1, X2), JV1) = g(∇̃X1X2, JV1)

By the structure of a complex manifold, we derive

g(σ(X1, X2), JV1) = −g(J∇̃X1X2, V1)

Then, we have from the definition of J

g(σ(X1, X2), JV1) = g((∇̃X1 J)X2), V1)− g(∇̃X1 JX2, V1). (13)

Thus, from Formula (2),

g(σ(X1, X2), JV1) = g(X1, X2)g(Jλ, V1) + g(TX1, X2)g(λ, V1) + g(∇̃X1V1, JX2). (14)

Then, we have from Lemma 3 (ii)

g(σ(X1, X2), JV1) = g(X1, X2)g(Jλ, V1) + g(TX1, X2)g(λ, V1) + X1(ln f )g(V1, TX2). (15)

By the orthogonality of the vector fields V1 and TX2, it follows that

g(σ(X1, X2), JV1) = g(X1, X2)g(Jλ, V1) + g(TX1, X2)g(λ, V1). (16)

Then, using the symmetry of σ and g, we obtain that

g(TX1, X2)g(λ, V1) = 0 (17)

Thus, for any V ∈ Γ(D⊥), we have g(λ, V1) = 0, which proves the proposition.

Remark 1. In our research, proposition 1 indicates the Lee vector field λ is in (Dθ).

Remark 2. The Lee vector field λ is tangent to D for a CR-warped product in an LCK-manifold [9].

Next, the following lemmas are preparatory.

Lemma 4. Let Ñ be an LCK-manifold and N = Σθ × f Σ⊥ be a warped product submanifold of Ñ,
with tangent Lee vector field λ to N. Then, for any X1, X2 ∈ Γ(Dθ) and V1, V2 ∈ Γ(D⊥), we have
the following:

(i) g(σ(X1, X2), JV1) = 0;
(ii) g(σ(X1, V1), JV2) = [g(λ, TX1) − TX1(ln f )]g(V1, V2) + g(σ(V1, V2), FX1), where Σθ

are proper pointwise slant and Σ⊥ are anti-invariant submanifolds of N.
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Proof. By interchanging X1 with X2 in Equation (16), we obtain

g(σ(X1, X2), JV1) = g(X1, X2)g(Jλ, V1) + g(X1, TX2)g(λ, V1), (18)

Now, using (16) and (18) with the symmetry of σ and g, we conclude that

g(σ(X1, X2), JV1) = g(X1, X2)g(λ, JV1).

Applying Proposition 1 and the condition that λ is tangent to N, which implies
g(λ, JV1) = 0, we then derive statement (i) of the lemma.

Now, for statement (ii), we obtain

g(σ(X1, V1), JV2) = −g(J∇̃V1X1, V2),

Using the definition of the covariant derivative of J,

g(σ(X1, V1), JV2) = g((∇̃V1 J)X1, V2)− g(∇̃V1 JX1, V2).

Then, from Lemma 3 (ii) and Equation (6),

g(σ(X1, V1), JV2) = g((∇̃V1 J)X1, V2)− TX1(ln f )g(V1, V2) + g(AFX1 V1, V2).

Next, from the definition of the structure of LCK-manifolds (2),

g(σ(X1, V1), JV2) = [g(λ, TX1)− TX1(ln f )]g(V1, V2) + g(σ(V1, V2), FX1),

Therefore, the second statement (ii) of the lemma is given by the last equation.

Thus, we can give the subsequent result.

Lemma 5. Let N = Σθ × f Σ⊥ be a non-trivial warped product pointwise pseudo-slant submanifold
of an LCK-manifold Ñ such that λ Lee field is tangent to N. Then, we have

g(σ(TX1, V1), JV2)− g(σ(V1, V2), FTX1) = cos2 θ[X1(ln f )− g(λ, X1)]g(V1, V2)

for any X ∈ Γ(Dθ) and V1, V2 ∈ Γ(D⊥).

Proof. The proof is derived from Lemma 4 (ii) by interchanging X1 with TX1. Then, we
obtain the result by using Formula (8).

By considering both Lemma 4 and Lemma 5, we can present the subsequent outcome:

Theorem 3. Let Ñ be an LCK-manifold. Then, a warped product pointwise pseudo-slant N =
Σθ × f Σ⊥, with the Lee vector field λ tangent to N, satisfies the following:

(i) g(AJV1 X1, X2) = 0.
(ii) g(AJV2 TX1 − AFTX1 V2, V1) = cos2 θ[X1(ln f )− β(X1)]g(V1, V2).

This holds for any X1, X2 ∈ Γ(Dθ) and V1, V2 ∈ Γ(D⊥).

Proof. Statement (i) is just Lemma 4 (i). Statement (ii) follows from Lemma 5.

4. Main Results

This section establishes several properties of pointwise pseudo-slant submanifolds
and presents the essential result related to their characterization as warped products.
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Theorem 4. Let Ñ be an LCK-manifold and N = Σθ × f Σ⊥ be a proper pointwise pseudo-slant
warped product submanifold. Then, if σ(X1, V1) ∈ ν, then we have

g(AFTX1 V1, V2) = cos2 θ[g(λ, X1)− X1(ln f )]g(V1, V2),

for any X1 ∈ Γ(Dθ) and V1, V2 ∈ Γ(D⊥).

Proof. From Lemma 5, we have

g(σ(TX1, V1), JV2)− g(σ(V1, V2), FTX1) = cos2 θ[X1(ln f )− g(λ, X1)]g(V1, V2).

Using the hypothesis that σ(X1, V1) ∈ ν, it follows that

g(σ(V1, V2), FTX1) = cos2 θ[g(λ, X1)− X1(ln f )]g(V1, V2).

Since ν and JD⊥ are orthogonal distributions, we conclude that g(σ(TX1, V1), JV2) = 0.
Finally, applying Formula (5), we obtain the desired result.

For a proper pointwise pseudo-slant submanifold N in an LCK-manifold, N is called
mixed totally geodesic if the second fundamental form σ of N satisfies σ(X1, V1) = 0,
for any X1 ∈ Γ(Dθ) and V1 ∈ Γ(D⊥). As a consequence of Theorem 4, we arrive at the
subsequent outcome.

Theorem 5. Let N be a mixed totally geodesic pointwise pseudo-slant warped product N =
Σθ × f Σ⊥ of an LCK-manifold Ñ. Then, for any X1 ∈ Γ(Dθ) and V1 ∈ Γ(D⊥),

AFTX1 V1 = cos2 θ[β(X1)− X1(ln f )]V1.

Moreover, we can also establish the next result.

Theorem 6. Let Ñ be an LCK-manifold and N = Σθ × f Σ⊥ be a proper pointwise pseudo-slant
warped product submanifold. Then, if Σ⊥ is totally geodesic in N and σ(X1, V1) ∈ ν, then
β(X1) = X1(ln f ) for any X ∈ Γ(Dθ) and V ∈ Γ(D⊥).

Proof. By virtue of Theorem 4 and the hypothesis of the theorem, we obtain the follow-
ing equation.

cos2θ[g(λ, X1)− X1(ln f )]g(V1, V2) = 0, (19)

Since g is the Riemannian metric and N is proper pointwise pseudo-slant, the result
follows from (19).

To establish the characterization of pointwise pseudo-slant warped products, let us
first recall Hiepko’s Theorem.

Theorem 7 ([19]). Let M be a Riemannian manifold and suppose that D1 and D2 are two orthogo-
nal distributions in M. Assume that D1 and D2 are involutive such that D1 is a totally geodesic
foliation and D2 is a spherical foliation. Then, N is locally isometric to a non-trivial warped product
N1 × f N2, where N1 and N2 are integral manifolds of D1 and D2, respectively.

We now present a characterization theorem that provides the necessary and sufficient
conditions for a pointwise pseudo-slant submanifold to be a warped product of the form
Σθ × f Σ⊥.
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Theorem 8. Let Ñ be an LCK-manifold. Then, a pointwise pseudo-slant submanifold N in Ñ is
locally a non-trivial warped product manifold of the form N = Σθ × f Σ⊥ if and only if the Lee
vector field λ tangent to N (orthogonal to D⊥) and the shape operator A satisfies

AFTX1 V1 − AJV1 TX1 = cos2 θ(β(X1)− X1(µ))V1, ∀ V1 ∈ Γ(D⊥), X1 ∈ Γ(Dθ), (20)

Here, Σθ is a pointwise slant submanifold and Σ⊥ is an anti-invariant submanifold in Ñ, while µ
is a smooth function on N. Additionally, for any W ∈ Γ(D⊥), the condition W(µ) = 0 holds.

Proof. If N is a warped product submanifold of an LCK-manifold Ñ of the form Σθ × f

Σ⊥ such that Σθ is a proper pointwise slant submanifold and Σ⊥ is an anti-invariant
submanifold, then Theorem 3 (ii) directly implies Equation (20) with µ = ln f and β(X1) =
g(λ, X1).

On the other hand, by applying Lemma 1 under the given conditions and noting
that N is a pointwise pseudo-slant submanifold of an LCK-manifold Ñ, we have the
following result.

cos2 θ g(∇X2 X1, V1) = 0 ∀ V1 ∈ Γ(D⊥), X1, X2 ∈ Γ(Dθ)

Given that N is a proper pointwise pseudo-slant submanifold of an LCK-manifold Ñ,
the above equality implies that the leaves of the distribution Dθ are totally geodesic in N.
Moreover, we have the following by applying Lemma 2:

cos2 θ g(∇V2V1, X1) = [g(AFTX1 V1 − AJV1 TX1, V2)− g(V1, V2)g(λ, X1)] (21)

for any X1 ∈ Γ(Dθ) and V1, V2 ∈ Γ(D⊥). Using the polarization identity, we have

cos2 θ g(∇V1V2, X1) = [g(AFTX1 V2 − AJV2 TX1, V1)− g(V1, V2)g(λ, X1)] (22)

Subtracting (22) from (21) and with the hypothesis of the theorem, we obtain

cos2 θ g([V1, V2], X1) = 0.

Because cos2 θ ̸= 0 due to N being a proper pointwise pseudo-slant submanifold, this
implies that the distribution D⊥ is integrable anti-invariant. Let σ⊥ denote the second
fundamental form of N⊥ in N, where N⊥ represents a leaf of D⊥ on N. Then, we have for
any X1 ∈ Γ(Dθ) and V1, V2 ∈ Γ(D⊥)

g(σ⊥(V1, V2), X1) = g(∇V1 V2, X1) = g(∇̃V1 V2, X1) = g(J∇̃V1 V2, JX1).

Then, using Formula (2), we obtain the following equation.

g(σ⊥(V1, V2), X1) = g(∇̃V1 JV2, JX1)− g((∇̃V1 J)V2, JX1)

= −g(∇̃V1 JX1, JV2)− g(V1, V2)g(λ, X1).

Applying Formula (6),

g(σ⊥(V1, V2), X1) = −g(∇̃V1 TX1, JV2)− g(∇̃V1 FX1, JV2)− g(V1, V2)g(λ, X1).

= −g(∇̃V1 TX1, JV2) + g(J∇̃V1 FX1, V2)− g(V1, V2)g(λ, X1).

Hence,

g(σ⊥(V1, V2), X1) = −g(AJV2 TX1, V1) + g(∇̃V1 JFX1, V2)− g((∇̃V1 J)FX1, V2)

− g(V1, V2)g(λ, X1).
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By applying relation (11) under the theorem’s hypotheses, the submanifold N is a
proper pointwise pseudo-slant

g(σ⊥(V1, V2), X1) = −g(AJV2 TX1, V1) + sin 2θ V1(θ)g(V2, X1) + sin2 θ g(∇̃V1 V2, X1)

+ g(AFTX1 V2, V1)− g(V1, V2)g(λ, X1) cos2 θ.

Equivalently,

g(σ⊥(V1, V2), X1) = sin2 θ g(∇̃V1 V2, X1) + g(AFTX1 V2 − AJV2 TX1, V1)

− g(V1, V2)g(λ, X1) cos2 θ.

Then, from condition (20), we derive the following conclusion:

cos2 θ g(σ⊥(V1, V2), X1) = − cos2 θ X1(µ)g(V1, V2).

Hence, by the gradient of the function µ, we conclude that

g(σ⊥(V1, V2), X1) = −∇⃗µg(V1, V2)

Therefore, Σ⊥ is totally umbilical in N and H⊥ = −∇⃗µ represents the mean curvature
vector. Further, we can prove that the mean curvature vector H⊥ is parallel to the normal
connection of Σ⊥ in N (see [19] for more details). Hence, it is an extrinsic sphere. Thus,
according to a result by Theorem 7 , we conclude that N is a warped product submanifold
Σθ × f Σ⊥, where µ is the warping function.

5. Consequences of the Main Results

We provide a variety of special situations in this section derived from our previous
results; some of them are obtained from important theorems that were proven in earlier
research. This means that the conclusions presented in this study are extensions and
generalizations of basic theories. We present the following applications:

Theorem 4 extends the following theories in particular special cases.
For the pseudo-slant warped product submanifold of an LCK-manifold Ñ, the slant

function θ of Σθ in Theorem 4 is replaced by a constant value rather than a function, and as
a result, we obtain the following:

Theorem 9. If N = Σθ × f Σ⊥ is a mixed totally geodesic pseudo-slant warped product submanifold
of an LCK-manifold Ñ, then for any X ∈ Γ(Dθ), V ∈ Γ(D⊥)

AFTX1 V1 = cos2 θ[β(X1)− X1(ln f )]V1.

Currently, by applying Theorem 4 and setting θ = 0 in the equation, it yields result
(3.3) in [9]. Consequently, Theorem 4 is valid for CR-warped product submanifolds of the
form N = ΣT × f Σ⊥, demonstrated as follows:

Theorem 10. If N = ΣT × f Σ⊥ is a mixed totally geodesic CR-warped product submanifold of an
LCK-manifold Ñ, we have for any X1 ∈ Γ(D)

X1(ln f ) = β(X1)

Therefore, Proposition 3.3 in [9] can be regarded as a special case of Theorem 4.
Moreover, a Kähler manifold can be considered an LCK-manifold with λ = 0. Thus,

Theorem 5 leads to the following result.



Axioms 2024, 13, 807 10 of 14

Theorem 11. Let N = Σθ × f Σ⊥ be a mixed totally geodesic pointwise pseudo-slant warped
product of Kähler manifold Ñ. Then, for any X1 ∈ Γ(Dθ) and V1 ∈ Γ(D⊥),

AFTX1 V1 = − cos2 θ[X1(ln f )]V1.

Additionally, Theorem 5 implies the following.

Theorem 12 ([20]). A pointwise pseudo-slant warped product submanifold N = Σθ × f Σ⊥ in a
Kähler manifold Ñ is simply a locally Riemannian product X1(ln f ) = 0 if and only if AFTX1 V1 = 0
for any X1 ∈ Γ(Dθ) and V1 ∈ Γ(D⊥).

The previous theorem is merely Theorem (3.3), which was proven in [20].
Now, we may deduce the following outcome specifically for the case in which λ = 0

and θ = 0 in Theorem 5, i.e., N is a CR-warped product submanifold in Kähler manifold Ñ.

Theorem 13. On a Kähler manifold Ñ, no mixed geodesic CR-warped product submanifold of the
form N = ΣT × f Σ⊥ exists in Ñ.

Next, we present the following consequences of Theorem 8.
If we consider that the slant function θ is a constant in Theorem 8, then the submanifold

N is a pseudo-slant submanifold of an LCK-manifold. Accordingly, Theorem 8 indicates
the following for this case.

Theorem 14. Let Ñ be an LCK-manifold. Then, a pseudo-slant submanifold N in Ñ is locally a
non-trivial warped product manifold of the form N = Σθ × f Σ⊥ if and only if the Lee vector field λ
tangent to N and the shape operator A satisfies

AFTX1 V1 − AJV1 TX1 = cos2 θ(β(X1)− X1(µ))V1, ∀ V1 ∈ Γ(D⊥), X1 ∈ Γ(Dθ), (23)

Here, Σθ is a slant submanifold, and Σ⊥ is an anti-invariant submanifold in Ñ, while µ is a
smooth function on N. Additionally, for any W ∈ Γ(D⊥), the condition W(µ) = 0 holds.

In Theorem 8, if θ = 0, the submanifold N is a CR-submanifold of an LCK-manifold.
Hence, in this instance, Theorem 8 states the following.

Theorem 15 ([21]). Let Ñ be an LCK-manifold. Then, a proper CR-submanifold N in Ñ is locally
a CR-warped product if and only if the Lee vector field λ tangent to N (orthogonal to D⊥) and the
shape operator A satisfies

AJV1 X1 = −(JX1(µ) + g(Jλ, X1))V1 X1 ∈ Γ(D), V1 ∈ Γ(D⊥), (24)

Here, D is an invariant distribution, and D⊥ is an anti-invariant distribution of N, while µ is
a smooth function on N. Additionally, for any W ∈ Γ(D⊥), the condition W(µ) = 0 holds.

On the other hand, when λ = 0 is considered, we arrive at a particular case of
Theorem 8 where the submanifold N becomes a submanifold within a Kähler manifold.
This particular case was studied in [20]. In this context, Theorem 8 corresponds to the
characterization theorem (Theorem 4.2) presented in [20].

Theorem 16. Let Ñ be a Kähler manifold. Then, a pointwise pseudo-slant submanifold N in Ñ is
locally a non-trivial warped product manifold of the form N = Σθ × f Σ⊥ if and only if the shape
operator A satisfies

AFTX1 V1 − AJV1 X1 = −(cos2 θ)X1(µ)V1, ∀ X1 ∈ Γ(Dθ), V1 ∈ Γ(D⊥), (25)
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Here, Σθ is a pointwise slant submanifold, and Σ⊥ is an anti-invariant submanifold in Ñ,
while µ is a smooth function on N. Additionally, for any W ∈ Γ(D⊥), the condition W(µ) = 0
holds.

Consequently, the main result of Theorem in [20] represents a specific instance of
Theorem 8.

However, if λ = 0 and θ is a slant function in Theorem 8, the pointwise pseudo-slant
warped product submanifold simplifies to the pseudo-slant warped product submanifold.
Then, the characterization theorem (Theorem 5.1) of [22] is derived from Theorem 8.

Theorem 17. Let Ñ be the Kähler manifold. Then, a pseudo-slant submanifold N in Ñ is locally a
non-trivial warped product manifold of the form N = Σθ × f Σ⊥ if and only if the shape operator
A satisfies

AFTX1 V1 − AJV1 TX1 = −(cos2 θ)X1(µ)V1, ∀ X1 ∈ Γ(Dθ), V1 ∈ Γ(D⊥), (26)

Here, Σθ is a slant submanifold, and Σ⊥ is an anti-invariant submanifold in Ñ, while µ is a
smooth function on N. Additionally, for any W ∈ Γ(D⊥), the condition W(µ) = 0 holds.

Furthermore, this theorem is proven in [22] (Theorem 5.1). We can prove Theorem 5.1
without using the mixed condition. Consequently, Theorem 8 extends Theorem 5.1 of [22].

By setting λ = 0 and θ = 0 in Theorem 8, the submanifold N becomes a CR-
submanifold in a Kähler manifold, a case that has been examined in [3]. A characterization
theorem for such submanifolds is provided below. Therefore, Theorem 8 simplifies to
Theorem 4.2 from [3].

Theorem 18. Let Ñ be the Kähler manifold. Then, a proper CR-submanifold N in Ñ is locally a
CR-warped product if and only if

AJV1 X1 = −JX1(µ)V1, X1 ∈ Γ(D), V1 ∈ Γ(D⊥), (27)

Here, D is an invariant submanifold, and D⊥ is an anti-invariant submanifold in Ñ, while µ
is a smooth function on N. Additionally, for any W ∈ Γ(D⊥), the condition W(µ) = 0 holds.

This result corresponds to Theorem 4.2 from [3]. Therefore, the main result of [3] is a
particular case of Theorem 8.

6. Examples

To conclude this study, we provide the following examples of a non-trivial warped
product pointwise pseudo-slant submanifold of an LCK-manifold.

Now, let (R2n, J, g) be a usual Kähler manifold with the Cartesian coordinates

(x1, . . . , xn, y1, . . . , yn)

of a Euclidean 2n-space R2n equipped with the Euclidean metric g0, and the standard
complex structure J is defined:

J(
∂

∂xi
) = − ∂

∂yi
, J(

∂

∂yj
) =

∂

∂xj
, 1 ≤ i, j ≤ n. (28)

Remark 3. By applying the same method as Proposition 2.2 of [18], we may prove the same result
for warped product pointwise pseudo-slant submanifolds N in LCK-manifolds.

Proposition 2. Let N = Σθ × f Σ⊥ be a warped product pointwise pseudo-slant submanifold of a
Kähler manifold Ñ. Then, N is also a warped product pointwise pseudo-slant submanifold with the
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same slant function in an LCK-manifold (Ñ, J, g̃) with g̃ = e− f g, where f is any smooth function
on Ñ.

Example 1. Consider a submanifold N of a Kähler manifold (R6, J, g0) defined in R6. Let
N be given by the following immersion:

x1 = a1 cos a2, x2 = a1 + a3, x3 = a1 sin a2,

y1 = a3 cos a2, y2 = a1 − a3, y3 = a3 sin a2,
(29)

for non-vanishing functions a1, a2 and a3 on N. Then, the TN of N is spanned by

E1 = cos a2
∂

∂x1
+

∂

∂x2
+

∂

∂y2
+ sin a2

∂

∂x3
,

E2 = cos a2
∂

∂y1
+

∂

∂x2
− ∂

∂y2
+ sin a2

∂

∂y3
,

E3 = −a1 sin a2
∂

∂x1
− a3 sin a2

∂

∂y1
+ a1 cos a2

∂

∂x3
+ a1 cos a2

∂

∂y3
.

Clearly, we see that JE3 is orthogonal to TN. Then, D⊥ = Span {E3} and Dθ =
Span{E1, E2} if we consider D⊥ is the anti-invariant distribution and Dθ is the slant
distribution. Furthermore, N is a proper pseudo-slant submanifold, and the slant angle
θ = cos−1(1/3).

Consider the integral manifolds of Dθ and D⊥ represented by Σ⊥ and Σθ , respectively.
Consequently, the induced metric tensor ĝ of N = Σθ × Σ⊥ is

ĝ = gθ + gΣ⊥ , gθ = da1
2 + da2

3, gΣ⊥ = (a2
1 + a2

3)da2
2. (30)

Let f be a smooth, non-constant function on R6 depending on a1, a3. Consider the
Riemannian metric g̃ = e− f g0 on R6, which is conformal to the standard metric g0. Under
this construction, Ñ = (R6, J, g̃) forms a GCK-manifold. Consequently, the metric induced
on N from this GCK-manifold is the warped product metric.

gN = gΣθ + e− f gΣ⊥ , gΣθ = e− f gθ . (31)

Moreover, (N, gN) is a proper warped product pseudo-slant submanifold by applying
Proposition 2. Furthermore, since f is a smooth function on R6 depending only on a1, a3, it
follows from (29) that, when restricted to the submanifold N, the corresponding Lee form
is expressed as

β = d f =
∂ f
∂a1

da1 +
∂ f
∂a3

da3. (32)

As a result, the Lee vector field λ is tangent to Σθ and, by extension, tangent to N, as
shown by (31) and (37).

Example 2. Let us consider R6, the Kähler manifold with the standard Kähler structure.
For non-vanishing functions b1, b2 and b3, where b1b2 ̸= 1, b3 ̸= 0 and (b1 − b2) ∈

(
0, π

2
)
,

we define a submanifold N in R6 as follows:

x1 = b3, x2 = b1 cos b2, x3 = b1 sin b2,

y1 = b3, y2 = b2 cos b1, y3 = b2 sin b1,
(33)
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Next, the tangent bundle of N is spanned by

ψb3 =

(
∂

∂x1
+

∂

∂y1

)
ψb1 =

1√
1 + b2

2

(
cos b2

∂

∂x2
+ sin b2

∂

∂x3
− b2 sin b1

∂

∂y2
+ b2 cos b1

∂

∂y3

)
,

ψb2 =
1√

1 + b2
1

(
−b1 sin b2

∂

∂x2
+ b1 cos b2

∂

∂x3
+ cos b1

∂

∂y2
+ sin b1

∂

∂y3

)
.

It is clear that N is a proper pointwise pseudo-slant submanifold with pointwise slant
distribution Dθ = Span{ψb1, ψb2} and anti-invariant distribution D⊥ = Span {ψb3}. Also,
the slant function θ of the pointwise slant distribution satisfies

cos2 θ =
(b1b2 − 1)2 cos2(b1 − b2)

(1 + b2
1)(1 + b2

2)
.

It is easy to verify that Dθ and D⊥ are integrable and totally geodesic in N. Thus, the
metric ĝ on N = Σθ × Σ⊥ such that Σθ and Σ⊥ are integral submanifolds to D⊥ and Dθ is
given by

ĝ = gθ + gΣ⊥ , (34)

where

gθ = (1 + b2
2)db2

1 + (1 + b2
1)db2

2, gΣ⊥ = 2db2
3. (35)

Now, consider the Riemannian metric g̃ = e− f g0, in which f is a smooth function
on R6 and g̃ is conformal to the standard metric g0 on R6 as in Example 1.In this case, the
warped product metric is

gN = gΣθ + e− f gΣ⊥ , gΣθ = e− f gθ . (36)

Furthermore, Proposition 2 implies that (N, gN) is a non-trivial warped product point-
wise pseudo-slant submanifold. Moreover, the corresponding Lee form is expressed as

β = d f =
∂ f
∂b1

db1 +
∂ f
∂b2

db2. (37)

As a consequence, the Lee vector field λ is tangent to Σθ and, by extension, tangent to
N, as shown by (31) and (37).

7. Conclusions

This paper introduces the concept of pointwise pseudo-slant warped products in
locally conformal Kähler manifolds (LCK-manifolds), building upon and generalizing
the idea of CR-warped products. We studied warped products of the form Σθ × f Σ⊥,
where Σθ denotes proper pointwise slant submanifolds and Σ⊥ represents anti-invariant
submanifolds. Through this framework, we established necessary and sufficient conditions
for these submanifolds to be classified as warped product submanifolds.

Additionally, we derived several key results that expand and generalize existing
findings in [3,9,20–22]. Non-trivial examples were provided to illustrate the properties and
validate the theoretical results presented. This research contributes to the understanding
of these submanifolds and their warped products, paving the way for future research in
differential geometry and related fields.
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