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Abstract: Closeness is a measure that quantifies how quickly information can spread from a given
node to all other nodes in the network, reflecting the efficiency of communication within the network
by indicating how close a node is to all other nodes. For a graph G, the subset S of vertices of V(G) is
called vertex cut of G if the graph G − S becomes disconnected. The minimum cardinality of S for
which G− S is either disconnected or contains precisely one vertex is called connectivity of G. A graph
is called k-connected if it stays connected even when any set of fewer than k vertices is removed. In
communication networks, a k-connected graph improves network reliability; even if up to k − 1 nodes
fail, the network remains operational, maintaining connectivity between devices. This paper aims to
study the concept of closeness within n-vertex graphs with fixed connectivity. First, we identify the
graphs that maximize the closeness among all graphs of order n with fixed connectivity k. Then, we
determine the graphs that achieve the maximum closeness within all k-connected graphs of order n,
given specific fixed parameters such as diameter, independence number, and minimum degree.

Keywords: closeness; connectivity; k-connected graph; diameter; independence number; minimum
degree
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1. Introduction

Network science has undergone substantial advancements in the last ten years and
has emerged as the foremost scientific discipline in the analysis of complex networks. Con-
sequently, the study of complex networks represents a crucial domain within the broader
field of complexity science. A network is commonly represented as an undirected simple
graph, where the vertices are denoted by nodes and the edges by the connections between
the nodes. A key focus of network analysis is to determine which nodes occupy critical
positions within the network. Graph theory has proven to be a powerful mathematical
framework for conducting network analysis, providing a variety of techniques and method-
ologies. Within this context, several graph-theoretic parameters contribute to the analysis
of networks. One important parameter is closeness, which helps identify nodes that can
effectively spread information across the network. In essence, a node with high closeness
can reach other nodes swiftly and efficiently. This indicates that the node is well-connected
to the broader network and has the potential to influence or be influenced by other nodes
more quickly than those with lower closeness values.

Nodes characterized by high closeness are vital in numerous practical applications.
They significantly improve the efficiency of communication networks by enabling swift
data transfers, which is critical for real-time communication systems. In the context of social
networks, these nodes act as pivotal influencers, promoting the rapid spread of information
and encouraging community involvement, thus influencing marketing strategies and
public awareness initiatives. In transportation networks, high closeness nodes can optimize
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routing and scheduling, ensuring timely responses in emergencies and improving overall
traffic management.

The first closeness concept was given by Bavelas [1]. Then, Freeman also presented the
concept of closeness [2], but his methodology was ineffective for disconnected graphs and
revealed constraints during graph operations. To overcome the initial limitation, Latora
and Marchiori developed a new measure of closeness applicable to disconnected graphs [3],
although it still faces challenges related to the second limitation. In response, Danglachev
offered an alternative definition [4], which successfully tackles the issues associated with
disconnected graphs and allows for the derivation of useful formulas for graph operations.
Building on this definition of closeness, several vulnerability measures have been created
to evaluate the resilience of a network. Notably, the vertex (or edge) residual closeness
parameters have been introduced to measure the closeness of a graph after the removal of
vertices (or edges) [4]. Additionally, the concept of additional closeness has been defined
to determine the maximum potential of a graph’s closeness through the addition of an
edge [5,6]. For a more comprehensive discussion of these new sensitive parameters, we
suggest consulting [7–13].

The analysis of closeness across different categories of graphs has attracted consid-
erable interest [4,14–16]. For example, Danglachev explored the closeness of splitting
networks [17]. In a subsequent study [18], the same researcher assessed the closeness of
line graphs for a specific family of graphs. Golpek [19] derived the closeness for some
classes of graphs. Additionally, Poklukar and Žerovnik [20] determined the graphs with
maximum or minimum closeness in the class of all graphs and trees, and determined
the graphs with maximum closeness over cacti with given order and cycles. Hayat and
Xu [21] identified the graph having minimum closeness among cacti with predetermined
numbers of vertices and cycles. Furthermore, Zheng and Zhou [22] recently integrated the
concept of closeness within spectral graph theory. They discovered the closeness matrix
and established a relationship between the closeness eigenvalues and the structure of a
graph. Recently, Hayat and Otera [23] explored the graphs having maximum closeness in
the class of bipartite graphs with some given parameters such as diameter, dissociation
number, connectivity, and cut edges.

The k-connected graphs, where the removal of any k − 1 vertices does not discon-
nect the graph, have numerous practical applications across various fields. For instance,
k-connected graphs are essential in designing robust communication networks, ensuring
that the network remains connected even if several nodes fail. This is particularly im-
portant for telecommunications and data networks, where reliability is crucial [24]. In
transportation networks, k-connectivity ensures that multiple routes exist between destina-
tions, enhancing resilience against disruptions. This is important for urban planning and
optimizing public transit systems [25]. For more details about k-connected graphs and its
applications, we recommend referring to [26–28].

To investigate the connection between closeness and the structural characteristics of
a graph, we explore extremal problems aimed at maximizing closeness in graphs with n
vertices and specified connectivity. In particular, we obtain the unique graph that attains
the maximum closeness among all graphs of order n with connectivity k. Then, we identify
those graphs that maximize closeness within k-connected graphs of order n and one of the
fixed parameters such as diameter, independence number, and minimum degree.

2. Basic Definitions

Let G represent a simple connected graph with vertex set V(G) and edge set E(G).
For any two vertices u and v within V(G), the distance between u and v in the graph G is
defined as the length of the shortest path that links them, represented as dG(u, v).

In [4], for a vertex u of G, the closeness of u in G is defined as

CG(u) = ∑
v∈V(G)\{u}

2−dG(u,v).
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The closeness of G is defined as

C(G) = ∑
u∈V(G)

CG(u) = ∑
u∈V(G)

∑
v∈V(G)\{u}

2−dG(u,v).

A subset H of V(G) is referred to as a vertex cut of G if the graph G − H becomes
disconnected. The smallest cardinality of H for which G − H is either disconnected or
contains precisely one vertex is called connectivity of G, and denoted by k(G). A graph
is called k-connected if it stays connected even when any set of fewer than k vertices
is removed. The diameter of graph G is defined as the greatest distance between any
two vertices. A subset M of the vertex set V(G) is referred to as an independent set of
G if the vertices within M are mutually non-adjacent. The independence number of G
represents the largest size of independent sets within the graph. The degree of a vertex v in
G is quantified by the number of edges that are incident to v, which is denoted as degG(v).

For any e ∈ E(G), the expression G − e denotes the subgraph obtained by removing
the edge e from G, and G+ uv indicates a graph formed by adding an edge between vertices
u and v, where u, v ∈ V(G). The operation of removing a vertex x ∈ V(G), along with all
edges incident to it, is denoted as G − x. The symbols Pn and Kn represent the path graph
and complete graph of order n, respectively.

The union of two graphs G1 and G2, denoted G1 ∪ G2, is defined as the graph where
V(G1 ∪ G2) = V(G1)∪V(G2) and E(G1 ∪ G2) = E(G1)∪ E(G2). The join of two graphs G1
and G2, represented as G1 ∨ G2, is created by connecting every vertex in G1 to each vertex
in G2. For disjoint graphs G1, G2, . . . , Gs where s ≥ 3, the sequential join G1 ∨ G2 ∨ · · · ∨ Gs
is the graph obtained from G1, G2, . . . , Gs is formed by first joining each vertex of G1 to all
vertices of G2, then connecting each vertex of G2 to all vertices of G3, and continuing this
process until each vertex of Gs−1 is connected to all vertices of Gs. For convenience, sG
(and [s]G) is used to denote the union (and sequential join) of s disjoint copies of G. For
instance, sK1 = Ks represents s isolated vertices and [a]G1 ∨ G2 ∨ [b]G3 is the sequential
join G1 ∨ G1 ∨ · · · ∨ G1︸ ︷︷ ︸

a

∨G2 ∨ G3 ∨ G3 ∨ · · · ∨ G3︸ ︷︷ ︸
b

.

The following lemma will be utilized in the proof of the main results.

Lemma 1 ([4,13]). Let G be a graph with vertices u and v in V(G). If the edge uv in not present
in E(G), then C(G) < C(G + uv). If uv is an edge in E(G), then C(G) > C(G − uv).

3. Main Results

In [20], it was proved that Kn uniquely maximizes the closeness among all connected
graphs of order n. Note that the connectivity of Kn is (n − 1). Now the question arises:
which graph maximizes the closeness when the connectivity is fixed and less than n − 1?
To answer this question, in the following result, we determine the graph that maximizes
the closeness among all graphs of order n with connectivity k, where k ≤ n − 2.

Let Gn
k be the graph obtained from Kn−1 by adding edges between a single vertex and

k vertices of Kn−1. Clearly, Gn
k is a graphs of order n with connectivity k, where k ≤ n − 2.

Theorem 1. Let G be a graph of order n with connectivity k that maximizes closeness, where
k ≤ n − 2. Then, G ∼= Gn

k .

Proof. Let G be a graph of order n with connectivity k such that G has the largest closeness.
Denote by X the set of cut vertices of G with |X| = k. Let H1, H2, . . . , Ht represent the
components of G−X with t ≥ 2. We assert that t = 2. Assume, for the sake of contradiction,
that t ≥ 3, and consider H1, H2, H3 the three components of G. Let G′ = G + {uv : u ∈
V(H2), v ∈ V(H3)}. Obviously, G′ is a graph of order n with connectivity k. According
to Lemma 1, we obtain C(G) < C(G′), a contradiction. So, t = 2. Also by Lemma 1,
G[V(H1) ∪ X] and G[V(H2) ∪ X] are complete graphs. Hence, we obtain G ∼= Kk ∨ (Kq1 ∪
Kq2), where q1 = |V(H1)|, q2 = |V(H2)|, and q1 + q2 = n − k. We suppose that q1 ≥ q2.
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To finalize the proof it suffices to prove that q2 = 1. Assume that q2 ≥ 2. For
u ∈ V(H2), let G′′ = G − {uv : v ∈ V(H2) \ {u}} + {uv : v ∈ V(H1)}. Clearly, G′′ is
k-connected graphs of order n.

From G to G′′, we have CG(x) = CG′′(x) for each x ∈ V(G) \ {u}; CG(u) = 2−2q1 +
2−1(q2 − 1); CG′′(u) = 2−1q1 + 2−4(q2 − 1).

This gives

C(G)− C(G′′) = CG(u)− CG′′(u)

= 2−2q1 + 2−1(q2 − 1)− 2−1q1 − 2−4(q2 − 1)

= 2−2(q2 − q1 − 1)

< 0,

a contradiction. So, q2 = 1. Thus, G ∼= Gn
k . This completes the proof.

In the following result, we identify the graph that maximizes the closeness within
k-connected graphs of order n with a fixed diameter α. Note that Kn uniquely maximized
the closeness among k-connected graphs of order n having diameter 1. Therefore, in the
following, we take α ≥ 2. For even α, we define

Ek(n, α) = K1 ∨ [(α − 2)/2]Kk ∨ Kn−kα+2k−2 ∨ [(α − 2)/2]Kk ∨ K1,

and

Ok(n, α) = K1 ∨ [(α − 3)/2]Kk ∨ Ka+1 ∨ Kb+1 ∨ [(α − 3)/2]Kk ∨ K1

when α is odd, a, b ≥ k − 1 and a + b = n − kα + 3k − 4.
Clearly, Ek(n, )α is a k-connected graph of order n with diameter α, and Ok(n, α) is a

set of n-vertex k-connected graphs with diameter α.

Theorem 2. Let G be a k-connected graph of order n with a diameter α ≥ 2 that maximizes
closeness. Then, G ∼= Ek(n, α) if α is even, and G ∈ Ok(n, α) otherwise.

Proof. Let G be a k-connected graph of order n with a diameter α such that C(G) is as large
as possible. Consider a diametral path P := u0u1 · · · uα within G. Let Ji = {x ∈ V(G) :
dG(x, u0) = i}. Then, |J0| = 1 and J0 ∪ J1 ∪ · · · ∪ Jα is a partition of V(G).

Given that G is a k-connected, we observe that |Ji| ≥ k for each i ∈ {1, 2, . . . , α − 1}. Ac-
cording to Lemma 1, the subgraphs G[Ji] and G[Ji−1 ∪ Ji] are complete graphs for 1 ≤ i ≤ α.
We claim that |Jα| = 1. Assume that |Jα| ≥ 2, and we choose a vertex x ∈ Jα \ {uα} and
let G′ = G + {xw : w ∈ Jα−2}. Clearly, G′ is k-connected graph having diameter α. By
Lemma 1, C(G) < C(G′), leading to a contradiction. Therefore, we conclude that |Jα| = 1.
Thus, we obtain |J0| = |Jα| = 1, and |Ji| ≥ k for each 2 ≤ i ≤ α − 1. We considering the
following three possible cases.

Case 1. If α = 2, then |J0| = |J2| = 1 one has |J1| = n − 2 and the result holds.

Case 2. α ≥ 3 is even. We claim that |J1| = |J2| = · · · = |J α
2 −1| = |J α

2 +1| = · · · = |Jα−1| = k
and |J α

2
| = n − kα + 2k − 2.

First, we prove that |J1| = |Jα−1| = k. Assume that |J1| ≥ k + 1; then, we select
w ∈ J1 \ {u1} and let G′ = G − wu0 + {wx : x ∈ J3}. Clearly, J0 ∪ (J1 \ {w})∪ (J2 ∪ {w})∪
J3 ∪ · · · ∪ Jα is a vertex partition of V(G′). From the structure of G′, one has CG(v) = CG′(v)
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for each v ∈ (J1 \ {w}) ∪ J2; CG(v) = CG′(v) − ∑α
i=3 2−(i−1) for each v ∈ J3 ∪ · · · ∪ Jα;

CG(u0) = CG′(u0) + 2−2: CG(w) = CG′(w) + 2−2 − ∑α
i=3 2−(i−1). This gives

C(G)− C(G′) = ∑
u∈V(G)

CG(u)− ∑
u∈V(G′)

CG′(u)

= [CG(u0)− CG′(u0)] + [CG(w)− CG′(w)]

+ ∑
v∈J3∪···∪Jα

(CG(v)− CG′(v))

= 2−2 + 2−2 −
α

∑
i=3

2−(i−1) −
α

∑
i=3

2−(i−1)

< 0.

Thus, C(G) < C(G′), a contradiction. Thus, |J1| = k. Similarly, |Jα−1| = k, as
claimed. We can similarly demonstrate that |J2| = |Jα−2| = k, . . . , |J α

2 −1| = |J α
2 +1| = k.

As |J0| = |Jα| = 1 and |J1| = |J2| = · · · = |J α
2 −1| = |J α

2 +1| = · · · = |Jα−1| = k, one has
|J α

2
| = n − kα + 2k − 2. Thus, G ∼= Ek(n, d).

Case 3. α ≥ 3 is odd. By the similar way as in Case 2, we have |J1| = |J2| = · · · =
|J α−3

2
| = |J α+3

2
| = · · · = |Jα−1| = k. This gives |J α−1

2
|+ |J α−1

2
| = n − kα + 3k − 2. Hence,

G ∈ Ok(n, α).

To finalize the proof, it suffices to prove that all graphs within Ok(n, α) have equal
closeness. Let H1 = K1 ∨ [(α − 3)/2]Kk ∨ Kr+1 ∨ [(α − 3)/2]Kk ∨ K1, where r = n − kα +
2k − 3. Clearly, H1 ∈ Ok(n, α). For a graph H2 = K1 ∨ [(α − 3)/2]Kk ∨ Ks+1 ∨ Kt+1 ∨ [(α −
3)/2]Kk ∨ K1, we suppose its vertex partition J0 ∪ J1 ∪ · · · ∪ Jα defined as above. We show
that C(H1) = C(H2). If one of s, t is k − 1, then C(H1) ∼= C(H2). Suppose that s, t ≥ k. Let
Q ⊆ J α+1

2
\ {u α+1

2
} and |Q| = t − k + 1. We derive H1 from H2 through the subsequent

graph transformation:

H1 = H2 − {xy : x ∈ Q, y ∈ J α+3
2
}+ {xy : x ∈ Q, y ∈ J α−3

2
}.

It is straightforward to verify that J0 ∪ J1 ∪ · · · ∪ J α−3
2

∪ (J α−1
2

∪ Q)∪ (J α+1
2

\ Q)∪ J α+3
2

∪
· · · ∪ Jα is a partition of V(H1). From the structure of H1 and H2, it is straightforward to
verify that

CH2(v) = CH1(v) for each v ∈ J α−1
2

∪ J α+1
2

,

CH2(v) = CH1(v)− 2−2|Q| for each v ∈ J0 ∪ · · · ∪ J α−3
2

,

CH2(v) = CH1(v) + 2−2|Q| for each v ∈ J α+3
2

∪ · · · ∪ Jα.

This gives

C(H2)− C(H1) = ∑
v∈J α−1

2
∪J α+1

2

(CH2(v)− CH1(v)) + ∑
v∈J0∪···∪J α−3

2

(CH2(v)− CH1(v))

+ ∑
v∈J α+3

2
∪···∪Jα

(CH2(v)− CH1(v))

= ∑
v∈J0∪···∪J α−3

2

(CH1(v)− 2−2|Q| − CH1(v))

+ ∑
v∈J α+3

2
∪···∪Jα

(CH1(v) + 2−2|Q| − CH1(v))

= 0.
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Thus, C(H2) = C(H1). This completes the proof.

In the following, we obtain the graph that maximizes the closeness within k-connected
graphs of order n and a fixed independence number λ.

If λ = 1, then Kn is a unique k-connected graph of independence number of 1 that
achieve maximum closeness. Consequently, we will focus on cases λ ≥ 2 in the following.

Let Ak(n, λ) = Kk ∨ [K1 ∪ (Kn−k−λ ∨ (λ − 1)K1)]. Evidently, Ak(n, λ) is a k-connected
graph of order n and independence number λ.

Theorem 3. Let G be a k-connected graph of order n with independence number λ ≥ 2 that
maximizes closeness. Then, G ∼= Ak(n, λ).

Proof. Note that G is k-connected graph of order n with independence number λ. It follows
that the inequality k + λ ≤ n holds. In the specific scenario where k + λ = n, it can be
established that G ∼= Kk ∨ λK1, and the result is valid in this case. Consequently, we will
focus on the case where k + λ + 1 ≤ n in the subsequent.

Assume G be a k-connected graph of order n with independence number λ, and let
C(G) be maximized. Denote M as the maximum independent set and Z as the vertex cut of
G, where |M| = λ and |Z| = k. Let H1, H2, . . . , Ht represent the components of G − Z with
t ≥ 2. We will assume that the sizes of these components satisfy |H1| ≥ |H2| ≥ · · · ≥ |Ht|.
It is claimed that H1 must be non-trivial; if it were trivial, then each Hi for i ∈ {1, 2, . . . , t}
would also be trivial, leading to an independence number for G of at least n − k (≥ λ + 1),
resulting in a contradiction. Therefore, we conclude that H1 is indeed non-trivial. Let
us define |Z ∩ M| = a, |Z \ M| = b and |V(Hi) ∩ M| = si, |V(Hi) \ M| = mi for i ∈
{1, 2, . . . , t}. It is evident that k = a + b and V(Hi) = si + mi for i ∈ {1, 2, . . . , t}. We
proceed with the subsequent claims.

Claim 1. The structure G − Z comprises precisely two components, i.e., t = 2.

Proof of Claim 1. Assume that t ≥ 3. Given that H1 is non-trivial, it follows that V(H1) \
M ̸= ∅. We can select x ∈ V(H1) \ M and y ∈ V(H2). Define the graph Q = G + xy.
It is evident that Q is k-connected graph of order n with an independence number λ.
By Lemma 1, it holds that C(G) < C(Q), which leads to a contradiction. Therefore, we
conclude that t = 2.

Claim 2. G[Z] ∼= Kb ∨ aK1, Hi
∼= Kmi ∨ siK1 and G[V(Hi) ∪ Z] ∼= Kb+mi

∨ (a + si)K1 for
i = 1, 2.

Proof of Claim 2. Initially, we establish that G[Z] ∼= Kb ∨ aK1. Assume, for the sake of
contradiction, that G[Z] ≇ Kb ∨ aK1. This assumption implies the existence of x, y ∈ Z \ M
or x ∈ Z \ M, y ∈ Z ∩ M. Consider the graph Q′ = G + uv. It is evident that Q′ is
k-connected graph of order n with an independence number λ. According to Lemma 1,
it follows that C(G) < C(Q′), leading to a contradiction. Therefore, we conclude that
G[Z] ∼= Kb ∨ aK1. Similarly, we can prove that Hi

∼= Kmi ∨ siK1 and G[V(Hi) ∪ Z] ∼=
Kb+mi

∨ (a + si)K1 for i = 1, 2.

Claim 3. H2 is trivial.

Proof of Claim 3. Assuming that H2 is non-trivial. Then, we consider the following two
possible cases.

Case 1. s2 = 0.
If a = 0, then M = V(H1) ∩ M. We can choose w ∈ V(H2) \ M, we arrive at

the conclusion that the set M ∪ {w} constitutes an independent set, with the cardinality
|M ∪ {w}| = λ + 1, which presents a contradiction. Therefore, it follows that a ≥ 1.
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Let G′ = G − {wu : u ∈ V(H2) \ {w}} + {uv : u ∈ V(H2) \ {w}, v ∈ V(H1)}. It is
evident that G′ is k-connected graph of order n and an independence number λ. From the
construction of G′, it is straight forward to verify that CG(v) = CG′(v) for v ∈ Z. Moreover,
CG(w) = CG′(w) + 2−2(m2 − 1); CG(v) = CG′(v) − 2−2(m2) + 2−2 for each v ∈ V(H1);
CG(v) = CG′(v)− 2−2(s1)− 2−2(m1) + 2−2 for each v ∈ V(H2) \ {w}.

This gives

C(G)− C(G′) = [CG(w)− CG′(w)] + ∑
v∈V(H1)

[CG(v)− CG′(v)]

+ ∑
v∈V(H2)\{w}

[CG(v)− CG′(v)]

= [CG′(w) + 2−2(m2 − 1)− CG′(w)]

+ ∑
v∈V(H1)

[CG′(v)− 2−2(m2) + 2−2 − CG′(v)]

+ ∑
v∈V(H2)\{w}

[CG′(v)− 2−2(s1)− 2−2(m1) + 2−2 − CG′(v)]

< 2−2(−s1 − m1 + 1)

< 0.

The last inequality follows from the fact that V(H1) = s1 + m1 ≥ 2. Consequently, this
leads to the conclusion that C(G) < C(G′), a contradiction.

Case 2. s2 ̸= 0.
Choose w ∈ V(H2)∩ M. Let G′′ = G−{wu : u ∈ V(H2)}+ {uv : u ∈ V(H1)∩ M, v ∈

V(H2) \ M}+ {uv : u ∈ V(H1) \ M, v ∈ V(H2) \ {w}}. Clearly, G′′ is k-connected graph of
order n with an independence number λ. From the structure of G′′, it is not difficult to verify
that CG(v) = CG′′(v) for each v ∈ Z. Moreover, CG(w) = CG′′(w) + 2−2(m2); CG(v) =
CG′′(v)− 2−2(m2) for each v ∈ V(H1) ∩ M; CG(v) = CG′′(v)− 2−2(s2)− 2−2(m2) + 2−2

for each v ∈ V(H1) \ M; CG(v) = CG′′(v) − 2−2(m1) for each v ∈ (V(H2) ∩ M) \ {w};
CG(v) = CG′′(v)− 2−2(s1)− 2−2(m1) + 2−2 for each v ∈ V(H2) \ M.

This provides

C(G)− C(G′′) = [CG(w)− CG′′(w)] + ∑
v∈V(H1)∩M

[CG(v)− CG′′(v)]

+ ∑
v∈V(H1)\M

[CG(v)− CG′′(v)]

+ ∑
v∈(V(H2)∩M)\{w}

[CG(v)− CG′′(v)] + ∑
v∈V(H2)\M

[CG(v)− CG′′(v)]

= [CG′′(w) + 2−2(m2)− CG′′(w)] +

+ ∑
v∈V(H1)∩M

[CG′′(v)− 2−2(m2)− CG′′(v)]

+ ∑
v∈V(H1)\M

[CG′′(v)− 2−2(s2)− 2−2(m2) + 2−2 − CG′′(v)]

+ ∑
v∈(V(H2)∩M)\{w}

[CG′′(v)− 2−2(m1)− CG′′(v)]

+ ∑
v∈V(H2)\M

[CG′′(v)− 2−2(s1)− 2−2(m1) + 2−2 − CG′′(v)]

< 2−2(−s1 − m1 + 1)

< 0,

a contradiction. Thus, H2 is trivial.
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Claim 4. V(H2) ⊆ M.

Proof of Claim 4. Assume that V(H2) ⊈ M; then, a ≥ 2. Suppose that a ≤ 1. If
a = 1, i.e., Z ∩ M = {u}. Let G∗ = G + {ux : x ∈ V(H1) ∩ M}. Clearly, G∗ is k-
connected graph of order n with an independence number λ. According to Lemma 1, we
obtain C(G) < C(G∗), which leads to a contradiction. If a = 0, then M ∪ V(H2) is an
independent set of G such that |M ∪ V(H2)| = λ + 1, a contradiction. So, a ≥ 2. Given
that H1 is non-trivial, then V(H1) \ M ̸= ∅. We select u′ ∈ V(H1) \ M. Define a graph
G∗∗ = G − {uv : {v} = V(G2)}+ {u′v : {v} = V(G2)}. Evidently, G∗∗ is k-connected
graph of order n with an independence number λ.

From G to G∗∗, it is easy to verify that CG(x) = CG∗∗(x) for each x ∈ V(G) \ {u, u′}.
Furthermore, CG(u) = CG∗∗(u) + 2−2; CG(u′) = CG∗∗(u′)− 2−1.

We obtain

C(G)− C(G∗∗) = [CG(u)− CG∗∗(u)] + [CG(u′)− CG∗∗(u′)]

= [CG∗∗(u) + 2−2 − CG∗∗(u)] + [CG∗∗(u′)− 2−1 − CG∗∗(u′)]

= −1
4

< 0,

a contradiction. Thus, V(H2) ⊆ M. From claims 1 to 4, it follows that G ∼= Ak(n, λ).

In the following, we determine the graph that maximizes the closeness within k-
connected graphs of order n with a fixed minimum degree β.

Let Fk(n, β) = Kk ∨ (Kβ−k+1 ∪ Kn−β−1). Obviously, Fk(n, β) is a k-connected graphs of
order n with a minimum degree β.

Theorem 4. Let G be a k-connected graph of order n with a minimum degree β that maximizes
closeness. Then, G ∼= Fk(n, β).

Proof. Let us consider a graph G that is k-connected of order n with a minimum degree
β. It is important to note that k + 1 ≤ n. In the case where k + 1 = n, it follows that
G ∼= Fk(n, β), and the result is valid in this case. Consequently, we will focus on the case
where k + 2 ≤ n.

Let G be a k-connected graph of order n with a minimum degree β, with the largest
possible value of C(G). Let Z denote the vertex cut of G such that |Z| = k. The components
of of G − Z are represented as H1, H2, . . . , Ht where t ≥ 2. We assert that t = 2. Suppose
that t ≥ 3; then, let H1, H2, H3 represent at least three components of G. We can construct
a new graph G′ = G + {uv : u ∈ V(H2), v ∈ V(H3)}. It is evident that G′ remains
a k-connected graph of order n with a minimum degree β. According to Lemma 1, it
follows that C(G) < C(G′), leading to a contradiction. Therefore, we conclude that t = 2.
Furthermore, by applying Lemma 1, we find that both G[V(H1) ∪ Z] and G[V(H2) ∪ Z]
are complete graphs. This leads us to the conclusion that G ∼= Kk ∨ (Kq1 ∪ Kq2), where
q1 = |V(H1)|, q2 = |V(H2)|, and q1 + q2 = n − k. For the sake of simplicity, we will assume
q1 ≤ q2.

To finalize the proof, it is sufficient to prove that either q1 = β− k + 1 or q2 = β− k + 1.
Assume, for the sake of argument, that q1 > β − k + 1. Consider a vertex u0 ∈ V(H1). We
can define a new graph G′ = G − {u0v : v ∈ V(H1) \ {u0}}+ {u0v : v ∈ V(H2)}. It is
evident that G′ remains a k-connected graph of order n with a minimum degree β.

From G to G′, it is easy to verify that CG(v) = CG′(v) for each v ∈ Z; CG(u0) =
CG′(u0)− 2−2; CG(v) = CG′(v) + 2−2 for each v ∈ V(H1) \ {u0}; CG(v) = CG′(v)− 2−2

for each v ∈ V(H2).
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This provides

C(G)− C(G′) = [CG(u0)− CG′(u0)] + ∑
v∈V(H1)\{u0}

[CG(v)− CG′(v)]

+ ∑
v∈V(H2)

[CG(v)− CG′(v)]

= −2−2 + 2−2 − 2−2

< 0,

a contradiction. Therefore, we have q1 = β − k + 1 and consequently, q2 = n − β − 1.
Hence, it follows that G ∼= Fk(n, β). This concludes the proof.

4. Concluding Remarks

Nodes with high closeness are vital in numerous network applications, including
communication networks, social networks, and transportation networks, as they enable
rapid information exchange, impact decision-making, and improve overall network re-
silience. Therefore, comprehending the closeness of nodes offers significant insights into
the structural and functional attributes of complex networks. In this paper, we have thor-
oughly investigated the concept of closeness within n-vertex graphs with fixed connectivity
k. We identified the graphs that maximize closeness among all graphs of order n with
connectivity k. We also determined those graphs that achieved the maximum closeness
over the k-connected graphs with fixed order and one of the additional fixed parameters
such as diameter, independence number, and minimum degree. However, finding the
graphs that minimize closeness in this same class is still an open problem. This leads to an
interesting direction for future research.
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