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Abstract: In this paper, we introduce several new concepts: generalized neutrosophic rectangu-
lar b-metric-like spaces (GNRBMLSs), generalized intuitionistic rectangular b-metric-like spaces
(GIRBMLSs), and generalized fuzzy rectangular b-metric-like spaces (GFRBMLSs). These innovative
spaces can expand various topological spaces, including neutrosophic rectangular extended b-metric-
like spaces, intuitionistic fuzzy rectangular extended b-metric-like spaces, and fuzzy rectangular
extended b-metric-like spaces. Moreover, we establish Banach’s fixed point theorem and Ćirić’s
quasi-contraction theorem with respect to these spaces, and we explore an application regarding the
existence and uniqueness of solutions for fuzzy fractional delay integro-differential equations, as
derived from our main results.

Keywords: generalized neutrosophic rectangular b-metric-like space; generalized intuitionistic
rectangular b-metric-like space; generalized fuzzy rectangular b-metric-like space; fuzzy fixed point;
fuzzy fractional delay integro-differential equations
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1. Introduction and Preliminaries

Schweizer and Sklar [1] played a key role in the introduction of the concepts of contin-
uous triangular norms (CtN) and continuous t norms (CtCN). Zadeh [2] later developed
the theory of fuzzy sets (FSs). Extending Zadeh’s foundation, Kramosil and Michalek
introduced the concept of fuzzy metric spaces (FMSs) in their work [3]. Subsequently,
George and Veeramani redefined FMS [4], and Grabiec, based on the work of Kramosil
and Michalek, derived a well-known fixed point theorem known as the Banach contraction
theorem (BCT) [5]. Gregori and Sapena [6] then generalized the fuzzy BCT to fuzzy metric
spaces as defined by George and Veeramani.

While fuzzy sets are limited to membership functions, they leave a gap regarding non-
membership functions. Atanassov [7] addressed this gap by introducing intuitionistic fuzzy
sets (IFSs), which incorporate both membership and non-membership degrees. However,
IFSs do not account for the concept of naturalness, which Smarandache [8] later tackled by
introducing neutrosophic sets (NSs), a more general framework that extends IFSs.

Kirişci and Simsek [9] combined neutrosophic sets with metric spaces to form neu-
trosophic metric spaces (NMSs). Following this, Saleem et al. [10] introduced extended
fuzzy rectangular b-metric spaces (EFRBMSs), while Saleem et al. [11] expanded upon this
by presenting extended fuzzy rectangular metric-like spaces (EFRBMLSs). In later works,
Hussain et al. [12] introduced fuzzy rectangular b-metric-like spaces (FRBMLSs), intu-
itionistic fuzzy rectangular b-metric-like spaces (IFRBMLSs), and neutrosophic rectangular
b-metric-like spaces (NRBMLSs). Kattan et al. [13] proposed an extension to intuitionistic
fuzzy rectangular b-metric spaces, defining extended intuitionistic rectangular b-metric
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spaces (EIRBMSs), thus creating a more generalized framework. Uddin et al. [14] intro-
duced controlled neutrosophic b-metric-like spaces, while Saleem et al. [15] introduced
neutrosophic extended b-metric spaces (ENRBMSs).

Despite these advances, the concepts of intuitionistic fuzzy rectangular extended
b-metric-like spaces (IEFRBMLSs) and neutrosophic rectangular extended b-metric-like
spaces (ENRBMLSs) remain relatively novel.

On another front, Ashraf et al. [16] introduced generalized FMSs by relaxing the trian-
gular inequality in these systems. This relaxation allows for more flexibility in calculating
distances between elements in a set, which is particularly advantageous when the standard
triangle inequality cannot be applied, but a less strict version still provides a sufficient
framework for practical applications, such as convergence analysis, fixed point theorems,
and optimization issues. This generalized concept extends to various topological spaces, in-
cluding FMSs, fuzzy b-MSs, and dislocated FMSs, with the BCT and Ćirić quasi-contraction
theorem (CQT) proven in the context of generalized FMSs.

In this paper, inspired by the work of Ashraf et al. [16] and Hussain et al. [17], we
define and expand the classes of generalized neutrosophic rectangular b-metric-like spaces
(GNRBMLSs), generalized intuitionistic rectangular b-metric-like spaces (GIRBMLSs), and
generalized fuzzy rectangular b-metric-like spaces (GFRBMLSs). We also extend and
improve several fixed point (FP) theorems within the contexts of GNRBMLSs, GIRBMLSs,
and GFRBMLSs. Our findings are applicable in the study of the existence and uniqueness
of solutions for fuzzy fractional delay integro-differential equations (FFDIDEs). These new
spaces offer a robust framework for addressing more complex problems in mathematical
modeling, optimization, and decision making, particularly in situations where NMSs or
fuzzy metric spaces are insufficient.

The structure of the remainder of the manuscript is as follows: Section 2 introduces
GNRBMLSs, GIRBMLSs, and GFRBMLSs, explores the concept of Cauchy sequences and
their convergence properties, and provides examples and propositions. Section 3 proves
two major fixed point theorems and derives some corollaries, supported by non-trivial
examples. Section 4 demonstrates the existence of a unique analytical solution for FFDIDEs.
Finally, Section 5 discusses future work and presents two open problems.

Now, we will review several foundational concepts that are essential for understanding
the subsequent sections.

Definition 1 ([15,18]). Let Q be a non-empty set, Λ : Q × Q → [1,+∞) be a function, ∗
represent a CtN, and ◦ denote a CtCN. Furthermore, let N ,O,L : Q×Q× (0,+∞) → [0, 1] be
NSs. A six-tuple (Q,N ,O,L, ∗, ◦) is called an ENRBMS over Q if the following conditions hold
for any ξ, η ∈ Q, γ, λ ∈ Q \ {ξ, η}, and τ, ι, σ > 0:

(N1) N (ξ, η, τ) +O(ξ, η, τ) + L(ξ, η, τ) ≤ 3;
(N2) N (ξ, η, τ) > 0;
(N3) N (ξ, η, τ) = 1 if and only if ξ = η;
(N4) N (ξ, η, τ) = N (η, ξ, τ);
(N5) N (ξ, η, Λ(ξ, η)(τ + ι + σ)) ≥ N (ξ, γ, τ) ∗ N (γ, λ, ι) ∗ N (λ, η, σ);
(N6) N (ξ, η, .) : (0,+∞) → [0, 1] is continuous and lim

τ→+∞
N (ξ, η, τ) = 1;

(N7) O(ξ, η, τ) < 1;
(N8) O(ξ, η, τ) = 0 if and only if ξ = η;
(N9) O(ξ, η, τ) = O(η, ξ, τ);
(N10) O(ξ, η, Λ(ξ, η)(τ + ι + σ)) ≤ O(ξ, γ, τ) ◦ O(γ, λ, ι) ◦ O(λ, η, σ);
(N11) O(ξ, η, .) : (0,+∞) → [0, 1] is continuous and lim

τ→+∞
O(ξ, η, τ) = 0;

(N12) L(ξ, η, τ) < 1;
(N13) L(ξ, η, τ) = 0 if and only if ξ = η;
(N14) L(ξ, η, τ) = L(η, ξ, τ);
(N15) L(ξ, η, Λ(ξ, η)(τ + ι + σ)) ≤ L(ξ, γ, τ) ◦ L(γ, λ, ι) ◦ L(λ, η, σ);
(N16) L(ξ, η, .) : (0,+∞) → [0, 1] is continuous and lim

τ→+∞
L(ξ, η, τ) = 0;
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(N17) If τ ≤ 0 then N (ξ, η, τ) = 0,O(ξ, η, τ) = 1,L(ξ, η, τ) = 1.

Theorem 1 ([18]). Let (Q,N ,O,L, ∗, ◦) be a complete ENRBMS in the company of Λ : Q×
Q → [1,+∞) with α ∈ (0, 1). Let T : Q → Q be a mapping satisfying

N (T ξ, T η, ατ) ≥ N (ξ, η, τ),

O(T ξ, T η, ατ) ≤ O(ξ, η, τ),

L(T ξ, T η, ατ) ≤ L(ξ, η, τ).

for all ξ, η ∈ Q, τ > 0. Furthermore, suppose that for arbitrary ξ0 ∈ Q we have Λ(ξn, ξn+m) <
1
α .

Then, {T nξ0} will converge to a unique FP of T .

Remark 1. According to Definition 1, we derive the following definitions:

1. Considering the following condition,

(L1) N (ξ, η, τ) +O(ξ, η, τ) ≤ 1, for all ξ, η ∈ Q, τ > 0,

along with conditions (N2)–(N11), then (Q,N ,O, ∗, ◦) characterizes an extended intuition-
istic rectangular b-metric space (EIRBMS) on Q; we refer the reader to [13].

2. Taking into account the following condition,

(L2) 0 < N (ξ, η, τ) ≤ 1, for all ξ, η ∈ Q, τ > 0,

along with conditions (N3)–(N6), then (Q,N , ∗) characterizes an extended fuzzy rectangular
b-metric space (EFRBMS) on Q; we direct the reader to [10]. Furthermore, as discussed in [11],
EFRBMLSs can be derived by replacing (N3) in EFRBMSs with the axiom stated below:

(L3) N (ξ, η, τ) = 1 ⇒ ξ = η, for every ξ, η ∈ Q, τ > 0.

In this paper, from Remark 1 and Definition 1, we are able to introduce the concepts of
ENRBMLSs and EIRBMLSs, defined in Q as a generalization of ENRBMS and EIRBMS, if
we replace (N8) and (N13) introduced in Definition 1 with the following axioms:

(L4) O(ξ, η, τ) = 0 ⇒ ξ = η, for all ξ, η ∈ Q, τ > 0 ;
(L5) L(ξ, η, τ) = 0 ⇒ ξ = η, for all ξ, η ∈ Q, τ > 0 .

2. Generalized Neutrosophic Rectangular b-Metric Spaces

In this section, we present the concepts of GNRBMLSs, GIRBMLSs, and GFRBMLSs,
and we demonstrate several FP theorems within these contexts. Let Q be a non-empty set
and N ,O,L : Q×Q× (0,+∞) → [0, 1] be NSs. For ξ ∈ Q, we define the sets below for
any τ > 0:

C1(Q,N , ξ) = {{ξn} ⊂ Q : lim
n→+∞

N (ξn, ξ, τ) = N (ξ, ξ, τ)},

C2(Q,O, ξ) = {{ξn} ⊂ Q : lim
n→+∞

O(ξn, ξ, τ) = O(ξ, ξ, τ)},

C3(Q,L, ξ) = {{ξn} ⊂ Q : lim
n→+∞

L(ξn, ξ, τ) = L(ξ, ξ, τ)}.

Definition 2. Let Q be a non-empty set; Λ : Q×Q → [1,+∞) be a given function; ∗ and ◦
be a CtN and CtCN, respectively; and let N ,O,L : Q×Q× (0,+∞) → [0, 1] be NSs. Then,
(Q,N ,O,L, ∗, ◦) can be referred to as a GNRBMLS on Q. If for any ξ, η ∈ Q, γ ∈ Q \ {ξ, η},
and all τ, s, r > 0 then following conditions are satisfied:

(S1) N (ξ, η, τ) +O(ξ, η, τ) + L(ξ, η, τ) ≤ 3;
(S2) N (ξ, η, τ) > 0;
(S3) N (ξ, η, τ) = 1 implies ξ = η;
(S4) N (ξ, η, τ) = N (η, ξ, τ);
(S5) N (ξ, η, Λ(ξ, η)(τ + s + r)) ≥ lim sup

n→+∞
[N (ξ, γ, τ) ∗ N (γ, ηn, s) ∗ N (η, η, r)}], for all

{ηn} ∈ C1(Q,N , η) ;
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(S6) N (ξ, η, .) : (0,+∞) → [0, 1] is continuous and lim
τ→+∞

N (ξ, η, τ) = 1;

(S7) O(ξ, η, τ) < 1;
(S8) O(ξ, η, τ) = 0 implies ξ = η;
(S9) O(ξ, η, τ) = O(η, ξ, τ);
(S10) O(ξ, η, Λ(ξ, η)(τ + s + r)) ≤ lim sup

n→+∞
[O(ξ, γ, τ) ◦ O(γ, ηn, s) ◦ O(η, η, r)}] for all

{ηn} ∈ C2(Q,O, η);
(S11) O(ξ, η, .) : (0,+∞) → [0, 1] is continuous and lim

τ→+∞
O(ξ, η, τ) = 0;

(S12) L(ξ, η, τ) < 1;
(S13) L(ξ, η, τ) = 0 implies ξ = η;
(S14) L(ξ, η, τ) = L(η, ξ, τ);
(S15) L(ξ, η, Λ(ξ, η)(τ + s + r)) ≤ lim sup

n→+∞
[L(ξ, γ, τ) ◦ L(γ, ηn, s) ◦ L(η, η, r)}], for all

{ηn} ∈ C3(Q,L, η) ;
(S16) L(ξ, η, .) : (0,+∞) → [0, 1] is continuous and lim

τ→+∞
L(ξ, η, τ) = 0;

(S17) If τ ≤ 0, then N (ξ, η, τ) = 0,O(ξ, η, τ) = 1,L(ξ, η, τ) = 1.

Remark 2. From Definition 2, the following holds:

1. If the function Λ : Q×Q× → [1,+∞) is given as Λ(ξ, η) = b, b ≥ 1, then the structure
(Q,N ,O,L, ∗, ◦) simplifies to a GNRBMLS.

2. If we consider only conditions (S2)–(S6) then (Q,N , ∗) is a GFRBMLS on Q.
3. Taking into account the condition (L1) along with conditions (S2)–(S11), then (Q,N ,O, ∗, ◦)

characterizes a GIRBMS on Q.

Definition 3. Let (Q,N ,O,L, ∗, ◦) be a GNRBMLS.

(i) A sequence {ξn} ⊂ Q is considered to converge to a point ξ if and only if lim
n→+∞

N (ξn, ξ, τ) =

N (ξ, ξ, τ) , lim
n→+∞

O(ξn, ξ, τ) = O(ξ, ξ, τ), and lim
n→+∞

L(ξn, ξ, τ) = L(ξ, ξ, τ) for all

τ > 0.
(ii) {ξn} is called a Cauchy sequence if for all τ > 0, (m ≥ 1), n, m ∈ N, lim

n→+∞
N (ξn+m, ξn, τ)

exists and is finite , lim
n→+∞

O(ξn+m, ξn, τ) exists and is finite , and lim
n→+∞

L(ξn+m, ξn, τ)

exists and is finite.
(iii) (Q,N ,O,L, ∗, ◦) is called a complete GNRBMLS if every Cauchy sequence converges to

some ξ ∈ Q, such that

lim
n→∞

N (ξn+m, ξn, τ) = N (ξ, ξ, τ) = lim
n→∞

N (ξn, ξ, τ),

lim
n→∞

O(ξn+m, ξn, τ) = O(ξ, ξ, τ) = lim
n→∞

O(ξn, ξ, τ),

lim
n→∞

L(ξn+m, ξn, τ) = L(ξ, ξ, τ) = lim
n→∞

L(ξn, ξ, τ) for all τ > 0, m ≥ 1.

Example 1. Let Q = [0, 2], k ∈ R+, m > 0 and Λ : Q×Q → [1,+∞) be a function given by
Λ(ξ, η) = 1 + max{ξ, η}. Define N ,O,L : Q×Q× (0,+∞) → [0, 1] as follows:

N (ξ, η, τ) =
kτ

kτ + m max{ξ, η} ,

O(ξ, η, τ) =
max{ξ, η}

kτ + m max{ξ, η} ,

L(ξ, η, τ) =
m max{ξ, η}2

kτ + m max{ξ, η}2 .

Then, (Q,N ,O,L, ∗, ◦) is a GNRBMLS, where “∗” is taken as the product norm and “◦” is
taken as the maximum CtCN.
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Proof. We need to show that conditions (S5), (S10), and (S15) from Definition 2, the re-
maining hypotheses, are simpler to verify. Let ξ, η ∈ Q, γ ∈ Q \ {ξ, η}, and for all {ηn},
such that {ηn} ∈ C1(Q,N , η), {ηn} ∈ C2(Q,O, η), and {ηn} ∈ C3(Q,L, η) for all τ > 0,
we obtain

k(1 + max{ξ, η})τ
k(1 + max{ξ, η})τ + m max{ξ, η} ≥ lim sup

n→+∞
[

kτ
3

kτ
3 + m max{ξ, γ}

·
kτ
3

kτ
3 + m max{γ, ηn}

·
kτ
3

kτ
3 + m max{η, η}

],

implying that

N (ξ, η, Λ(ξ, η)(τ)) ≥ lim sup
n→+∞

[N (ξ, γ,
τ

3
) ∗ N (γ, ηn,

τ

3
) ∗ N (η, η,

τ

3
)].

And,

m max{ξ, η}
k(1 + max{ξ, η})τ + m max{ξ, η} ≤ max

{ m max{ξ, γ}
kτ
3 + m max{ξ, γ}

, lim sup
n→+∞

m max{γ, ηn}
kτ
3 + m max{γ, ηn, }

,

m max{η, η}
kτ
3 + m max{η, η}

}
,

implies that

O(ξ, η, Λ(ξ, η)τ) ≤ lim sup
n→+∞

[O(ξ, γ,
τ

3
) ◦ O(γ, ηn,

τ

3
) ◦ O(η, η,

τ

3
)].

Also,

m min{ξ, η}2

k(1 + max{ξ, η})τ + m max{ξ, η}2 ≤ max
{ m max{ξ, γ}2

kτ
3 + m max{ξ, γ}2

, lim sup
n→+∞

m max{γ, ηn}2

kτ
3 + m max{γ, ηn}2

,

m max{η, η}2

kτ
3 + m max{η, η}2

}
,

implies that

L(ξ, η, Λ(ξ, η)(τ + s + r)) ≤ lim sup
n→+∞

[L(ξ, γ,
τ

3
) ◦ L(γ, ηn,

τ

3
) ◦ L(η, η,

τ

3
)].

Remark 3. In a GNRBMLS (Q,N ,O,L, ∗, ◦), the limit of a converging sequence might not be
unique. Consider the GNRBMLS (Q,N ,O,L, ∗, ◦) from Example 1, where m = k = 1. Construct
the sequence {ξn} in Q, such that ξn = 1

n for every n ∈ N. If ξ ≥ 0 then for any τ > 0,

lim
n→+∞

N (ξn, ξ, τ) = lim
n→+∞

τ

τ + max{ξn, ξ} =
τ

τ + ξ
= N (ξ, ξ, τ),

lim
n→+∞

O(ξn, ξ, τ) = lim
n→+∞

max{ξn, ξ}
τ + max{ξn, ξ} =

ξ

τ + ξ
= O(ξ, ξ, τ),

lim
n→+∞

L(ξn, ξ, τ) = lim
n→+∞

max{ξn, ξ}
τ + max{ξn, ξ} =

ξ

τ + ξ
= L(ξ, ξ, τ).

Consequently, the sequence {ξn} converges for any ξ ∈ Q.

Remark 4. In a GNRBMLS (Q,N ,O,L, ∗, ◦), a convergent sequence might not be a Cauchy
sequence. Consider the GNRBMLS (Q,N ,O,L, ∗, ◦) from Example 1, where m = k = 1.



Axioms 2024, 13, 818 6 of 25

Construct the sequence {ξn} in Q, such that ξn = (−1)n n
2n+1 + n

2n+1 for every n ∈ N. If ξ ≥ 1
then for any τ > 0,

lim
n→+∞

N (ξn, ξ, τ) = lim
n→+∞

τ

τ + max{ξn, ξ} =
τ

τ + ξ
= N (ξ, ξ, τ),

lim
n→+∞

O(ξn, ξ, τ) = lim
n→+∞

max{ξn, ξ}
τ + max{ξn, ξ} =

ξ

τ + ξ
= O(ξ, ξ, τ),

lim
n→+∞

L(ξn, ξ, τ) = lim
n→+∞

max{ξn, ξ}
τ + max{ξn, ξ} =

ξ

τ + ξ
= L(ξ, ξ, τ).

As a result, the sequence {ξn} converges for any ξ ≥ 1; it fails to be a Cauchy sequence,
since for every τ > 0 and n, m ∈ N, the limits lim

n→+∞
N (ξn+m, ξn, τ), lim

n→+∞
O(ξn+m, ξn, τ), and

lim
n→+∞

L(ξn+m, ξn, τ) do not exist.

Proposition 1. Any ENRBMLS (Q,N ,O,L, ∗, ◦) is a GNRBMLS.

Proof. We confirm (S5), (S10), and (S15) of Definition 2 here, as the remaining conditions
can be proven without difficulty.

Let ξ, η ∈ Q \ {γ}, {ηn} ∈ C1(Q,N , η), {ηn} ∈ C2(Q,O, η), and {ηn} ∈ C3(Q,L, η).
We then obtain the following:

N (ξ, η, τ) ≥ N (ξ, γ,
τ

3Λ(ξ, η)
) ∗ N (γ, ηn,

τ

3Λ(ξ, η)
) ∗ N (ηn, η,

τ

3Λ(ξ, η)
), (1)

O(ξ, η, τ) ≤ O(ξ, γ,
τ

3Λ(ξ, η)
) ◦ O(γ, ηn,

τ

3Λ(ξ, η)
) ◦ O(ηn, η,

τ

3Λ(ξ, η)
), (2)

L(ξ, η, τ) ≤ L(ξ, γ,
τ

3Λ(ξ, η)
) ◦ L(γ, ηn,

τ

3Λ(ξ, η)
) ◦ L(ηn, η,

τ

3Λ(ξ, η)
). (3)

Taking n → +∞ in (1)–(3), it can be seen that (S5), (S10), and (S15) in Definition 2 are
satisfied.

Following the same reasoning as in Proposition 1, we obtain the subsequent propositions.

Proposition 2. Any EIRBMLS (Q,N ,O, ∗, ◦) is a GIRBMLS.

Proposition 3. Any EFRBMLS (Q,N , ∗) is a GFRBMLS.

Remark 5. A GNRBMLS may not always satisfy the conditions of being an ENRBMLS; the
following example supports our contention. Consequently, a GIRBMLS and a GFRBMLS may not
always satisfy the conditions of being an EIRBMLS and an EFRBMLS, respectively.

Example 2. Let Q = [0, 1], Λ : Q × Q → [1,+∞) be a function given by Λ(ξ, η) = 1 +
max{ξ, η}, and define N ,O,L : Q×Q× (0,+∞) → [0, 1] as follows:{

N (ξ, η, τ) = exp −(ξ+η)
τ , if ξ, η ∈ Q \ {0},

N (ξ, 0, τ) = N (0, ξ, τ) = exp −ξ
3τ , ξ ∈ Q,{

O(ξ, η, τ) = 1 − exp −(ξ+η)2

τ , if ξ, η ∈ Q \ {0},
O(ξ, 0, τ) = O(0, ξ, τ) = 1 − exp −ξ

3τ , ξ ∈ Q,{
L(ξ, η, τ) = 1 − exp −(ξ+η)

τ , if ξ, η ∈ Q \ {0},

L(ξ, 0, τ) = L(0, ξ, τ) = 1 − exp −ξ2

3τ , ξ ∈ Q.

For every ξ, η ∈ Q and τ. Then, (Q,N ,O,L, ∗, ◦) is GNRBMLS but does not meet the
criteria for ENRBMLS, where “∗” and “◦” are taken as the minimum CtN and maximum CtCN,
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respectively. We now demonstrate that conditions (S5), (S10), and (S15) in Definition 2 are satisfied,
as the remaining conditions are evident.

Case 1: Let ξ, η,∈ Q\{0}, γ ∈ Q\{ξ, η}; for all τ > 0, the sets C1(Q,N , η), C2(Q,O, η),
and C3(Q,L, η) contain only the eventually constant sequences {ηn = η}n≥N , n ∈ N. We obtain
the following two subcases:

• Subcase 1: If γ ̸= 0 then the following inequality holds:

e
−(ξ+η)

(1+max{ξ,η})τ ≥ min{e
−3(ξ+γ)

τ , e
−3(γ+η)

τ , e
−6η

τ }

= e
−(ξ+γ)

τ
3 ∗ e

−(γ+η)
τ
3 ∗ e

−2η
τ
3 ,

which implies that

N (ξ, η, Λ(ξ, η)(τ)) ≥ lim sup
n→+∞

[N (ξ, γ,
τ

3
) ∗ N (γ, ηn,

τ

3
) ∗ N (η, η,

τ

3
)}].

Also, we observe that the following inequality is valid:

1 − e
−(ξ+η)2

(1+max{ξ,η})τ ≤ max{1 − e
−3(ξ+γ)2

τ , 1 − e
−3(γ+η)2

τ , 1 − e
−12η2

τ }

= (1 − e
−(ξ+γ)2

τ
3 ) ◦ (1 − e

−(γ+η)2
τ
3 ) ◦ (1 − e

−4η2
τ
3 ),

which implies that

O(ξ, η, Λ(ξ, η)(τ)) ≤ lim sup
n→+∞

[O(ξ, γ,
τ

3
) ◦ O(γ, ηn,

τ

3
) ◦ O(η, η,

τ

3
)}].

Additionally, the following inequality holds:

1 − e
−(ξ+η)

(1+max{ξ,η})τ ≤ max{1 − e
−3(ξ+γ)

τ , 1 − e
−3(γ+η)

τ , 1 − e
−6η

τ }

= (1 − e
−(ξ+γ)

τ
3 ) ◦ (1 − e

−(γ+η)
τ
3 ) ◦ (1 − e

−2η
τ
3 ),

which implies that

L(ξ, η, Λ(ξ, η)(τ)) ≤ lim sup
n→+∞

[L(ξ, γ,
τ

3
) ◦ L(γ, ηn,

τ

3
) ◦ L(η, η,

τ

3
)}].

• Subcase 2: If γ = 0, we obtain

e
−(ξ+η)

(1+max{ξ,η})τ ≥ min{e
−ξ
τ , e

−η
τ , e

−6η
τ }

= e
−ξ
τ ∗ e

−η
τ ∗ e

−2η
τ
3 ,

which implies that

N (ξ, η, Λ(ξ, η)(τ)) ≥ lim sup
n→+∞

[N (ξ, γ,
τ

3
) ∗ N (γ, ηn,

τ

3
) ∗ N (η, η,

τ

3
)}]

Also, we find

1 − e
−(ξ+η)2

(1+max{ξ,η})τ ≤ max{1 − e
−ξ
τ , 1 − e

−η
τ , 1 − e

−12η2
τ }

= (1 − e
−ξ
τ ) ◦ (1 − e

−η
τ ) ◦ (1 − e

−4η2
τ
3 ),
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which implies that

O(ξ, η, Λ(ξ, η)(τ)) ≤ lim sup
n→+∞

[O(ξ, γ,
τ

3
) ◦ O(γ, ηn,

τ

3
) ◦ O(η, η,

τ

3
)}].

Finally, we also find the following inequality:

1 − e
−(ξ+η)

(1+max{ξ,η})τ ≤ max{(1 − e
−ξ2

τ ), (1 − e
−η2

τ ), (1 − e
−6η

τ )}

= (1 − e
−ξ2

τ ) ◦ (1 − e
−η2

τ ) ◦ (1 − e
−2η

τ
3 ),

which implies that

L(ξ, η, Λ(ξ, η)(τ)) ≤ lim sup
n→+∞

[L(ξ, γ,
τ

3
) ◦ L(γ, ηn,

τ

3
) ◦ L(η, η,

τ

3
)}

Case 2: If ξ or η = 0, let η = 0, γ ̸= 0, we have

e
−ξ

(1+max{ξ,η})3τ ≥ min{e
−3(ξ+γ)

τ , e
−3(γ+ηn)

τ , 1}

= e
−(ξ+γ)

τ
3 ∗ e

−(γ+ηn)
τ
3 ∗ 1,

which implies that

N (ξ, η, Λ(ξ, η)(τ)) ≥ lim sup
n→+∞

[N (ξ, γ,
τ

3
) ∗ N (γ, ηn,

τ

3
) ∗ N (η, η,

τ

3
)}].

And the subsequent inequality is valid:

1 − e
−ξ

(1+max{ξ,η})3τ ≤ max{1 − e
−3(ξ+γ)2

τ , 1 − e
−3(γ+ηn)2

τ , 0}

= (1 − e
−(ξ+γ)2

τ
3 ) ◦ (1 − e

−(γ+ηn)2
τ
3 ) ◦ 0,

which implies that

O(ξ, η, Λ(ξ, η)(τ)) ≤ lim sup
n→+∞

[O(ξ, γ,
τ

3
) ◦ O(γ, ηn,

τ

3
) ◦ O(η, η,

τ

3
)}].

Also, the subsequent inequality is valid:

1 − e
−ξ2

(1+max{ξ,η})3τ ≤ max{1 − e
−3(ξ+γ)

τ , 1 − e
−3(γ+ηn)

τ , 0}

= (1 − e
−(ξ+γ)

τ
3 ) ◦ (1 − e

−(γ+ηn)
τ
3 ) ◦ 0,

which implies that

L(ξ, η, Λ(ξ, η)(τ)) ≤ lim sup
n→+∞

[L(ξ, γ,
τ

3
) ◦ L(γ, ηn,

τ

3
) ◦ L(η, η,

τ

3
)}],

Therefore, it follows that (Q,N ,O,L, ∗, ◦) is a GNRBMLS. However, it is not an ENRBMLS.
By selecting ξ = 1

2 , γ = 8
10 , ζ = 2

10 , and η = 3
10 , we obtain

N (ξ, γ,
τ

3
) ∗ N (γ, ζ,

τ

3
) ∗ N (ζ, η,

τ

3
)

= N (
1
2

,
8
10

,
τ

10
) ∗ N (

8
10

,
2
2

,
τ

3
) ∗ N (

2
10

,
3
10

,
τ

3
)

= min{e
−39
10τ , e

−τ
2 , e

−3
2τ }
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= e
−39
10τ

≥ e
− 8

10
(1+max{ 1

2 , 3
10 })τ

= e
−8

15τ)

= N (ξ, η, Λ(ξ, η)τ).

3. Fixed-Point Results
3.1. Main Results

In this subsection, we introduce Banach’s fixed point theorem and Ćirić’s quasi-contraction
theorem within the context of GNRBMLSs, and we offer two illustrative examples.

Definition 4. Let (Q,N ,O,L, ∗, ◦) be a GNRBMLS. A mapping T : Q → Q is said to be an
α-contraction if for all ξ, η ∈ Q, τ > 0 and for some α ∈ (0, 1) it holds that

N (T ξ, T η, ατ) ≥ N (ξ, η, τ),

O(T ξ, T η, ατ) ≤ O(ξ, η, τ),

L(T ξ, T η, ατ) ≤ L(ξ, η, τ).

(4)

Theorem 2. Let (Q,N ,O,L, ∗, ◦) be a complete GNRBMLS and T be an α contraction. If there
exists ξ0 ∈ Q, such that for all τ > 0 the subsequent expressions are satisfied

δ1(N , T , ξ0, τ) = inf
i,j∈N

{N (T iξ0, T jξ0, τ)} > 0,

δ2(O, T , ξ0, τ) = sup
i,j∈N

{O(T iξ0, T jξ0, τ)} < 1,

δ3(L, T , ξ0, τ) = sup
i,j∈N

{L(T iξ0, T jξ0, τ)} < 1,

then T has a unique FP ξ ∈ Q, with N (ξ, ξ, τ) = 1,O(ξ, ξ, τ) = 0,L(ξ, ξ, τ) = 0 for all τ > 0.
Moreover, {T nξ0} will converge to a unique FP of T .

Proof. Let ξ0 ∈ Q, such that for all τ > 0 we have

δ1(N , T , ξ0, τ) = inf
i,j∈N

{N (T iξ0, T jξ0, τ)} > 0,

δ2(O, T , ξ0, τ) = sup
i,j∈N

{O(T iξ0, T jξ0, τ)} < 1,

δ3(L, T , ξ0, τ) = sup
i,j∈N

{L(T iξ0, T jξ0, τ)} < 1.

It therefore holds that ξn = T nξ0 for all τ > 0 and all fixed p = 0, 1, 2 . . . ,

δ1(N , T p+1, ξ0, τ) = inf
i,j∈N

{N (T p+iξ0, T p+jξ0, τ)},

δ2(O, T p+1, ξ0, τ) = sup
i,j∈N

{O(T p+iξ0, T p+jξ0, τ)},

δ3(L, T p+1, ξ0, τ) = sup
i,j∈N

{L(T p+iξ0, T p+jξ0, τ)}.

For all τ > 0, p = 0, 1, 2 . . . and i, j ∈ N, we obtain

{N (T p+iξ0, T p+jξ0, τ)} ⊆ {N (T iξ0, T jξ0, τ)},

{O(T p+iξ0, T p+jξ0, τ)} ⊆ {O(T iξ0, T jξ0, τ)},

{L(T p+iξ0, T p+jξ0, τ)} ⊆ {L(T iξ0, T jξ0, τ)},
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which implies that

δ1(N , T p+1, ξ0, τ) ≥ δ1(N , T , ξ0, τ) > 0, (5)

δ2(O, T p+1, ξ0, τ) ≤ δ2(O, T , ξ0, τ) < 1, (6)

δ3(L, T p+1, ξ0, τ) ≤ δ3(L, T , ξ0, τ) < 1. (7)

Next, for all i, j ∈ N and n ≥ 1, τ > 0, we can use (5) to obtain

N (T n+iξ0, T n+jξ0, τ) ≥ N (T n+i−1ξ0, T n+j−1ξ0,
τ

α
)

≥ δ1(N , T n, ξ0,
τ

α
)

≥ N (T n+iξ0, T n+jξ0, τ)

≥ δ1(N , T n+1, ξ0, τ)

≥ δ1(N , T n, ξ0,
τ

α
)

≥ δ1(N , T n−1, ξ0,
τ

α2 )

...

≥ δ1(N , T , ξ0,
τ

αn ).

Therefore, for every m ≥ 1, we attain

N (ξn+m, ηn, τ) = N (T n+mξ0, T nξ0, τ) ≥ δ1(N , T n, ξ0, τ) → 1 as n → +∞,

as δ1(N , T n, ξ0, τ) > 0 for all τ > 0 and α ∈ (0, 1), according to (S6) in Definition 2.
Therefore, we have

lim
n→+∞

N (ξn+m, ξn, τ) = 1. (8)

Then, for all i, j ∈ N, n ≥ 1, and τ > 0, it holds that

O(T n+iξ0, T n+jξ0, τ) ≤ O(T n+i−1ξ0,T n+j−1ξ0,
τ

α
)

≤ δ2(O, T n, ξ0,
τ

α
)

≤ O(T n+iξ0, T n+jξ0, τ)

≤ δ2(O, T n+1, ξ0, τ)

≤ δ2(O, T n, ξ0,
τ

α
)

≤ δ2(O, T n−1, ξ0,
τ

α2 )

...

≤ δ2(O, T , ξ0,
τ

αn ).

Therefore, for every m ≥ 1, we can use (6) to obtain

O(ξn+m, ξn, τ) = O(T n+mξ0, T nξ0, τ) ≤ δ2(O, T n, ξ0, τ) → 0 as n → +∞,

as δ2(O, T n, ξ0, τ) < 1 for all τ > 0 and α ∈ (0, 1), according to (S11) in Definition 2.
Therefore, we have

lim
n→+∞

O(ξn+m, ξm, τ) = 0. (9)
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Now, for all i, j ∈ N, n ≥ 1, and τ > 0,

L(T n+iξ0, T n+jξ0, τ) ≤ L(T n+i−1ξ0,T n+j−1ξ0,
τ

α
)

≤ δ3(L, T n, ξ0,
τ

α
)

≤ L(T n+iξ0, T n+jξ0, τ)

≤ δ3(L, T n+1, ξ0, τ)

≤ δ3(L, T n, ξ0,
τ

α
)

≤ δ3(L, T n−1, ξ0,
τ

α2 )

...

≤ δ3(L, T , ξ0,
τ

αn ).

Therefore, for every m ≥ 1, we can use (7) to obtain

L(ξn+m, ξn, τ) = L(T n+mξ0, T mξ0, τ) ≤ δ3(L, T n, ξ0, τ) → 0 as n → +∞,

as δ3(L, T n, ξ0, τ) < 1 for all τ > 0 and α ∈ (0, 1), according to (S16) in Definition 2.
Therefore, we have

lim
n→+∞

L(ξn+m, ξn, τ) = 0. (10)

Thus, {ξn} is a Cauchy sequence. By completeness of (Q,N ,O,L, ∗, ◦), this sequence
converges to some ξ ∈ Q, such that

lim
n→+∞

N (ξn, ξ, τ) = N (ξ, ξ, τ) = lim
n→+∞

N (ξn+m, ξn, τ) = 1,

lim
n→+∞

O(ξn, ξ, τ) = O(ξ, ξ, τ) = lim
n→+∞

O(ξn+m, ξn, τ) = 0,

lim
n→+∞

L(ξn, ξ, τ) = L(ξ, ξ, τ) = lim
n→+∞

L(ξn+m, ξn, τ) = 0.

Now, we have the following for all τ > 0:

N (T ξ, ξ, Λ(ξ, T ξ)τ) ≥ lim sup
n→+∞

[N (T ξ, ξn+1,
τ

3
) ∗ N (ξn+1, ξn,

τ

3
) ∗ N (ξ, ξ,

τ

3
)]

≥ lim sup
n→+∞

[N (ξ, ξn,
τ

3
) ∗ N (ξn+1, ξn,

τ

3
) ∗ N (ξ, ξ,

τ

3
)]

≥ 1,

O(T ξ, ξ, Λ(ξ, T ξ)τ) ≤ lim sup
n→+∞

[O(T ξ, ξn+1,
τ

3
) ◦ O(ξn+1, ξn,

τ

3
) ◦ O(ξ, ξ,

τ

3
)]

≤ lim sup
n→+∞

[O(ξ, ξn,
τ

3
) ◦ O(ξn+1, ξn,

τ

3
) ◦ O(ξ, ξ,

τ

3
)]

≤ 0,

L(T ξ, ξ, Λ(ξ, T ξ)τ) ≤ lim sup
n→+∞

[L(T ξ, ξn+1,
τ

3
) ◦ L(ξn+1, ξn,

τ

3
) ◦ L(ξ, ξ,

τ

3
)]

≤ lim sup
n→+∞

[L(ξ, ξn,
τ

3
) ◦ L(ξn+1, ξn,

τ

3
) ◦ L(ξ, ξ,

τ

3
)]

≤ 0.
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Then, we achieve T ξ = ξ, where ξ is a FP of T . Now, let v ∈ Q be another FP of T ,
such that N (ξ, v, τ) > 0. Then, according to (4), for all τ > 0, n ∈ N we find that

N (v, ξ, τ) ≥N (T v, T ξ,
τ

α
)

=N (v, ξ,
τ

α
)

≥N (T v, T ξ,
τ

α2 )

...

≥N (T v, T ξ,
τ

αn ) → 1 as n → +∞,

(11)

O(v, ξ, τ) ≤O(T v, T ξ,
τ

α
)

=O(v, ξ,
τ

α
)

≤O(T v, T ξ,
τ

α2 )

...

≤O(T v, T ξ,
τ

αn ) → 0 as n → +∞,

(12)

L(v, ξ, τ) ≤ L(T v, T ξ,
τ

α
)

= L(v, ξ,
τ

α
)

≤ L(T v, T ξ,
τ

α2 )

...

≤ L(T v, T ξ,
τ

αn ) → 0 as n → +∞.

(13)

From (11)–(13), we can conclude that v = ξ.

The subsequent result is derived from Theorem 2 and Proposition 1.

Example 3. In Example 1, let k = 2, m = 3, and T : Q → Q be defined by T (ξ) = ξ
2 for all

ξ ∈ [0, 2]. Then, by Theorem 2, we ascertain that T possesses a unique FP at ξ = 0. It is clear that
T is an α-contraction, with α = 1

2 ∈ (0, 1). It is observable that for any ξ0 ∈ [0, 2], T n(ξ0) =
ξ0
2n converges to the fixed point 0 as n → +∞ and δ1(N , T , ξ0, τ) = 1, δ2(O, T , ξ0, τ) =
0, δ3(L, T , ξ0, τ) = 0, and N (0, 0, τ) = 1,O(0, 0, τ) = 0,L(0, 0, τ) = 0 for all τ > 0.

Definition 5. Let (Q,N ,O,L, ∗, ◦) be a GNRBMLS. A mapping T : Q → Q is an α-quasi
contraction (α-QC) for every ξ, η ∈ Q, τ > 0 and a certain α ∈ (0, 1) if it holds that

N (T ξ, T η, ατ) ≥ min{N (ξ, η, τ),N (ξ, T η, τ),N (η, T ξ, τ)}, (14)

O(T ξ, T η, ατ) ≤ max{O(ξ, η, τ),O(ξ, T η, τ),O(η, T ξ, τ)}, (15)

L(T ξ, T η, ατ) ≤ max{L(ξ, η, τ),L(ξ, T η, τ),L(η, T ξ, τ)}. (16)
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Theorem 3. Let (Q,N ,O,L, ∗, ◦) be a complete GNRBMLS and T be an α-quasi contraction. If
there exists ξ0 ∈ Q, and for all τ > 0

δ1(N , T , ξ0, τ) = inf
i,j∈N

{N (T iξ0, T jξ0, τ)} > 0,

δ2(O, T , ξ0, τ) = sup
i,j∈N

{O(T iξ0, T jξ0, τ)} < 1,

δ3(L, T , ξ0, τ) = sup
i,j∈N

{L(T iξ0, T jξ0, τ)} < 1,

then T has a unique FP ξ ∈ Q, with N (ξ, ξ, τ) = 1,O(ξ, ξ, τ) = 0,L(ξ, ξ, τ) = 0 for all τ > 0.
Moreover, {T nξ0} will converge to a unique FP of T .

Proof. Let ξ0 ∈ Q be arbitrary, such that the following conditions are satisfied for all τ > 0:

δ1(N , T , ξ0, τ) = inf
i,j∈N

{N (T iξ0, T jξ0, τ)} > 0,

δ2(O, T , ξ0, τ) = sup
i,j∈N

{O(T iξ0, T jξ0, τ)} < 1,

δ3(L, T , ξ0, τ) = sup
i,j∈N

{L(T iξ0, T jξ0, τ)} < 1,

where ξn = T nξ0 and

δ1(N , T p, ξ0, τ) = inf
i,j∈N

{N (T p+iξ0, T p+jξ0, τ)} > 0,

δ2(O, T p, ξ0, τ) = sup
i,j∈N

{O(T p+iξ0, T p+jξ0, τ)} < 1,

δ3(L, T p, ξ0, τ) = sup
i,j∈N

{L(T p+iξ0, T p+jξ0, τ)} < 1.

Observe that for every i, j ∈ N, τ > 0,

{N (T p+iξ0, T p+jξ0, τ)} ⊆ {N (T iξ0, T jξ0, τ)},

{O(T p+iξ0, T p+jξ0, τ)} ⊆ {O(T iξ0, T jξ0, τ)},

{L(T p+iξ0, T p+jξ0, τ)} ⊆ {L(T iξ0, T jξ0, τ)},

which implies that

δ1(N , T p+1, ξ0, τ) ≥ δ1(N , T , ξ0, τ), (17)

δ2(O, T p+1, ξ0, τ) ≤ δ2(O, T , ξ0, τ), (18)

δ3(L, T p+1, ξ0, τ) ≤ δ3(L, T , ξ0, τ). (19)

Now, for all i, j ∈ N,

N (T n+iξ0, T n+jξ0, τ) ≥ min{N (T n+i−1ξ0, T n+j−1ξ0,
τ

α
),

N (T n+i−1ξ0, T n+jξ0,
τ

α
),N (T n+iξ0, T n+j−1ξ0,

τ

α
)}.

(20)

Then, for all i, j ∈ N, τ > 0, it holds that

min{N (T n+iξ0, T n+jξ0, τ)} ≥ min{min{N (T n+i−1ξ0, T n+j−1ξ0,
τ

α
),

N (T n+i−1ξ0, T n+jξ0,
τ

α
),N (T n+iξ0, T n+j−1ξ0,

τ

α
)}},
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which implies that

δ1(N , T n+1, ξ0, τ) ≥ min
{

δ1(N , T n, ξ0,
τ

α
), δ1(N , T n, ξ0,

τ

α
), δ1(N , T n, ξ0,

τ

α
)
}

. (21)

It follows that, for all n ≥ 1, τ > 0,

N (T n+iξ0, T n+jξ0, τ) ≥ δ1(N , T n+1, ξ0, τ)

≥ δ1(N , T n, ξ0,
τ

α
)

≥ δ1(N , T n−1, ξ0,
τ

α2 )

...

≥ δ1(N , T , ξ0,
τ

αn ).

(22)

Again, for all i, j ∈ N,

O(T n+iξ0, T n+jξ0, τ) ≤ max
{
O(T n+i−1ξ0, T n+j−1ξ0,

τ

α
),

O(T n+i−1ξ0, T n+jξ0,
τ

α
),

O(T n+iξ0, T n+j−1ξ0,
τ

α
)
}

.

(23)

Then, for all i, j ≥ 1, it holds that

max{O(T n+iξ0, T n+jξ0, τ)} ≤ max
{

max{O(T n+i−1ξ0, T n+j−1ξ0,
τ

α
),

O(T n+i−1ξ0, T n+jξ0,
τ

α
),

O(T n+iξ0, T n+j−1ξ0,
τ

α
)
}}

,

(24)

which implies that

δ2(O, T n+1, ξ0, τ) ≤ max
{

δ2(O, T n, ξ0,
τ

α
), δ2(O, T n, ξ0,

τ

α
),

δ2(O, T n, ξ0,
τ

α
)
}

.
(25)

It follows that, for all n ≥ 1, τ > 0,

O(T n+iξ0, T n+jξ0, τ) ≤ δ2(O, T n+1, ξ0, τ)

≤ δ2(O, T n, ξ0,
τ

α
)

≤ δ2(O, T n−1, ξ0,
τ

α2 )

...

≤ δ2(O, T , ξ0,
τ

αn ).

(26)

Similarly, we find that for all n ≥ 1, τ > 0,

L(T n+iξ0, T n+jξ0, τ) ≤ δ2(L, T , ξ0,
τ

αn ). (27)

Therefore, for every m ≥ 1, we can use (22), (26), and (27) to obtain

N (ξn+m, ξn, τ) = N (T n+mξ0, T nξ0, τ) ≥ δ1(N , T n, ξ0, τ) ≥ δ1(N , T , ξ0,
τ

αn ),
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O(ξn+m, ξn, τ) = O(T n+mξ0, T nξ0, τ) ≤ δ2(O, T n, ξ0, τ) ≤ δ2(O, T , ξ0,
τ

αn ),

L(ξn+m, ξn, τ) = L(T n+mξ0, T nξ0, τ) ≤ δ3(L, T n, ξ0, τ) ≤ δ3(L, T , ξ0,
τ

αn ).

As δ1(N , T n, ξ0, τ) > 0, δ2(O, T n, ξ0, τ) < 1, and δ3(L, T n, ξ0, τ) < 1 for all τ >
0, α ∈ (0, 1), according to (S6), (S11), and (S16) in Definition 2, we can then obtain

lim
n→+∞

N (ξn+m, ξn, τ) = 1,

lim
n→+∞

O(ξn+m, ξn, τ) = 0,

lim
n→+∞

L(ξn+m, ξn, τ) = 0.

Hence, the sequence {ξn} is a Cauchy sequence. Given that (Q,N ,O,L, ∗, ◦) is
complete, this sequence converges to a certain ζ ∈ Q. Now,

N (ξn+1, T ζ, τ) ≥ min{N (ξn, ζ,
τ

α
),N (ξn, T ζ,

τ

α
),N (ζ, T ξn,

τ

α
)}

= min{N (ξn, ζ,
τ

α
),N (ξn, T ζ,

τ

α
),N (ζ, ξn+1,

τ

α
)}

= N (ξn, T ζ,
τ

α
)

≥
...

≥ min{N (ξ0, ζ,
τ

αn+1 ),N (ξ0, T ζ,
τ

αn+1 ),N (ζ, T ξ0,
τ

αn+1 )}

→ 1 as n → +∞.

Furthermore, according to (S5) and (S6) in Definition 2, we have

N (ζ, T ζ, Λ(ζ, T ζ)τ) ≥ lim sup
n→+∞

[N (ζ, ξn,
τ

3
) ∗ N (ξn, ξn+1,

τ

3
) ∗ N (ζ, ζ,

τ

3
)]. (28)

We obtain

N (ζ, T ζ, τ) ≥ 1 ∗ 1 ∗ 1 = 1. (29)

Also,

O(ξn+1, T ζ, τ) ≤ max{O(ξn, ζ,
τ

α
),O(ξn, T ζ,

τ

α
),O(ζ, T ξn,

τ

α
)}

= max{O(ξn, ζ,
τ

α
),O(ξn, T ζ,

τ

α
),O(ζ, ξn+1,

τ

α
)}

= O(ξn, T ζ,
τ

α
)

≤
...

≤ max{O(ξ0, ζ,
τ

αn+1 ),O(ξ0, T ζ,
τ

αn+1 ),O(ζ, T ξ0,
τ

αn+1 )}

→ 0 as n → +∞.

Furthermore, according to (S10) of Definition 2, we gain

O(T ζ, ζ, Λ(ζ, T ζ)τ) ≤ lim sup
n→+∞

[O(T ζ, ζm+1,
τ

3
) ◦ O(ξm+1, ζ,

τ

3
) ◦ O(ζ, ζ,

τ

3
)]. (30)



Axioms 2024, 13, 818 16 of 25

We can then obtain

O(ζ, T ζ, τ) ≤ 0 ◦ 0 ◦ 0 = 0. (31)

In a similar fashion, we can show that

L(ζ, T ζ, τ) = 0. (32)

Therefore, according to (S3), (S8), and (S13) of Definition 2, it holds that ζ = T ζ.
Consider v ∈ Q to be a different FP of T , such that N (ζ, v, τ) > 0. Then, due to the

α-quasi contractions (14)–(16), it is evident that

N (v, ζ, τ) ≥ min{N (v, ζ,
τ

α
),N (T v, ζ,

τ

α
),N (v, T ζ,

τ

α
)}

= N (v, ζ,
τ

α
)

≥ N (v, ζ,
τ

α2 )

...

≥ N (v, ζ,
τ

αn ) → 1 as n → +∞,

O(v, ζ, τ) ≤ max{O(v, ζ,
τ

α
),O(T v, ζ,

τ

α
),O(v, T ζ,

τ

α
)}

= O(v, ζ,
τ

α
)

≤ O(v, ζ,
τ

α2 )

...

≤ O(v, ζ,
τ

αn ) → 0 as n → +∞,

L(v, ζ, τ) ≤ max{L(v, ζ,
τ

α
),L(T v, ζ,

τ

α
),L(v, T ζ,

τ

α
)}

= L(v, ζ,
τ

α
)

≤ L(v, ζ,
τ

α2 )

...

≤ L(v, ζ,
τ

αn ) → 0 as n → +∞;

that is, v = ζ.

Example 4. Let Q = Mn(R) be the space of all upper triangular matrices of order n and Λ :
Q×Q → [1,+∞) be a function given by

Λ(Ξ, Π) =

{
1, if Ξ = Π,
1 + det(Ξ) + det(Π), if Ξ ̸= Π.
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Let N ,O,L : Q×Q× (0,+∞) → [0, 1] be defined by

N (Ξ, Π, τ) = exp
−∑n

s,r=1(|us,r|+ |vs,r|)2

τ
,

O(Ξ, Π, τ) = 1 − exp
−∑n

s,r=1(|us,r|+ |vs,r|)2

τ
,

L(Ξ, Π, τ) = 1 − exp
−∑n

s,r=1 max{|us,r|, |vs,r|}
τ

,

for all Ξ = (us,r), Π = (vs,r) ∈ Q. Define T : Q → Q by

T (Ξ) = (
us,r

2
)

for all Ξ ∈ Q. (Q,N ,O,L, ∗, ◦) is a complete GNRBMLS, where ∗ is a product continuous CtN
and ◦ is a maximum CtCN.

We check that T is an α-QC on (Q,N ,O,L, ∗, ◦) with α = 1
4 . Indeed, let Ξ = (ui,j) and

Π = (vi,j) ∈ Q. Then,

N (T Ξ, T Π, ατ) = exp
−∑n

s,r=1(|
us,r
2 |+ | vs,r

2 |)2

ατ

= exp
−∑n

s,r=1(|us,r|+ |vs,r|)2

4ατ
, α =

1
4

≥ min

{
exp

−∑n
s,r=1(|us,r|+ |vs,r|)2

τ
, exp

−∑n
s,r=1(|us,r|+ | vs,r

2 |)2

τ
,

exp
−∑n

s,r=1(|
us,r
2 |+ |vs,r|)2

τ

}
,

OT Ξ, T Π, ατ) =1 − exp
−∑n

s,r=1(|
us,r
2 |+ | vs,r

2 |)2

ατ

=1 − exp
−∑n

s,r=1(|us,r|+ |vs,r|)2

4ατ
, α =

1
4

≤max

{
1 − exp

−∑n
s,r=1(|us,r|+ |vs,r|)2

τ
, 1 − exp

−∑n
s,r=1(|us,r|+ | vs,r

2 |)2

τ
,

1 − exp
−∑n

s,r=1(|
us,r
2 |+ |vs,r|)2

τ

}
,

L(T Ξ, T Π, ατ) =1 − exp
−∑n

s,r=1 max{| us,r
2 |, | vs,r

2 |}
ατ

= 1 − exp
−∑n

s,r=1 max{|us,r|, |vs,r|}
4ατ

, α =
1
4

≤ max{1 − exp
−∑n

s,r=1 max{|us,r|, |vs,r|}
τ

,

1 − exp
−∑n

s,r=1 max{|us,r|, | vs,r
2 |}

τ
,

1 − exp
−∑n

s,r=1 max{| us,r
2 |, |vs,r|}

τ
}.

Now, we can construct a sequence ξn+1 = T ξn for all n ∈ N∪ {0} by taking some 0 ̸= A =
(as,r) ∈ Q. We can obtain a non-trivial sequence as follows:

{ξn} = {(as,r), (
as,r

2
), (

as,r

22 ), (
as,r

23 ), . . . },
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which implies that for any fixed τ > 0,

δ1(N , T , A, τ) = inf
i,j∈N

{N (T i A, T j A, τ)}

= inf
i,j∈N

{exp
−∑n

l,m=1[|
as,r

2i−1 |+ | |as,r
2j−1 |]2

τ
} > 0,

δ2(O, T , A, τ) = sup
i,j∈N

{O(T i A, T j A, τ)}

= sup
i,j∈N

{1 − exp
−∑n

l,m=1[|
as,r

2i−1 |+ | |as,r
2j−1 |]2

τ
} < 1,

δ3(L, T , A, τ) = sup
i,j∈N

{L(T i A, T j A, τ)}

= sup
i,j∈N

{1 − exp
−∑n

l,m=1 max{| as,r
2i−1 |, |

|as,r
2j−1 |}

τ
} < 1.

Thus, T fulfills all the requirements stated in Theorem 3, and the null matrix On×n is the
unique FP of T , satisfying N (On×n, On×n, τ) = 1,O(On×n, On×n, τ) = 0,L(On×n, On×n, τ) =
0 for all τ > 0.

3.2. Consequences

In this subsection, we present the findings from Section 3.1 in the framework of
ERBMLSs, GIRBMLS, EIRBMLS, EFRBMLS, and GFRBMLS.

Corollary 1. Let (Q,N ,O,L, ∗, ◦) be a complete ENRBMLS and T be an α-contraction. If for
some ξ0 ∈ Q and all τ > 0 the subsequent expressions are satisfied,

δ1(N , T , ξ0, τ) = inf
i,j∈N

{N (T iξ0, T jξ0, τ)} > 0,

δ2(O, T , ξ0, τ) = sup
i,j∈N

{O(T iξ0, T jξ0, τ)} < 1,

δ3(L, T , ξ0, τ) = sup
i,j∈N

{L(T iξ0, T jξ0, τ)} < 1,

then {T nξ0} converges to a unique FP of T .

Definition 6. Let (Q,N ,O, ∗, ◦) be a GIRBMLS. A mapping T : Q → Q is said to be an
α-contraction. If for all ξ, η ∈ Q some α ∈ (0, 1) and all τ > 0, it holds that

N (T ξ, T η, ατ) ≥ N (ξ, η, τ),

O(T ξ, T η, ατ) ≤ O(ξ, η, τ).
(33)

Corollary 2. Let (Q,N ,O, ∗, ◦) be a complete GIRBMLS and T be an α-contraction. If there
exists ξ0 ∈ Q, such that subsequent expressions are held to be

δ1(N , T , ξ0, τ) = inf
i,j∈N

{N (T iξ0, T jξ0, τ)} > 0,

δ2(O, T , ξ0, τ) = sup
i,j∈N

{O(T iξ0, T jξ0, τ)} < 1,

then {T nξ0} converges to a unique FP of T .

Proof. This proof follows similarly to the proof of Theorem 2, but without considering an
NS L.
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The subsequent corollary is derived from Corollary 2 and Proposition 2.

Corollary 3. Let (Q,N ,O, ∗, ◦) be a complete EIRBMLS and T be an α-contraction. If for some
ξ0 ∈ Q and all τ > 0 the subsequent expressions hold,

δ1(N , T , ξ0, τ) = inf
i,j∈N

{N (T iξ0, T jξ0, τ)} > 0,

δ2(O, T , ξ0, τ) = sup
i,j∈N

{O(T iξ0, T jξ0, τ)} < 1,

then {T nξ0} converges to a unique FP of T .

Definition 7. Let (Q,N , ∗) be a GFRBMLS. A mapping T : Q → Q is said to be an α-contraction
if for all ξ, η ∈ Q, some α ∈ (0, 1), and all τ > 0, it holds that

N (T ξ, T η, ατ) ≥ N (ξ, η, τ). (34)

Corollary 4. Let (Q,N , ∗) be a complete GFRBMLS and T be an α-contraction. If for some
ξ0 ∈ Q and all τ > 0 the subsequent expression holds

δ1(N , T , ξ0, τ) = inf
i,j∈N

{N (T iξ0, T jξ0} > 0,

then {T nξ0} converges to a unique FP of T .

Proof. This proof follows similarly to the proof of Corollary 2, but without considering the
NSs O and L.

The subsequent result is a direct consequence of Corollary 4 and Proposition 3.

Corollary 5. Let (Q,N , ∗) be a complete EFRBMLS and T be a α contraction. If for some ξ0 ∈ Q
and all τ > 0 the subsequent expression holds,

δ1(N , T , ξ0, τ) = inf
i,j∈N

{N (T iξ0, T jξ0, τ)} > 0,

then {T nξ0} converges to a unique FP of T .

Definition 8. Let (Q,N ,O, ∗, ◦) be a GIRBMLS. A mapping T : Q → Q is an α-QC for every
ξ, η ∈ Q, τ > 0 and a certain α ∈ (0, 1) if it holds that

N (T ξ, T η, ατ) ≥ min{N (ξ, η, τ),N (ξ, T η, τ),N (η, T ξ, τ)}, (35)

O(T ξ, T η, ατ) ≤ max{O(ξ, η, τ),O(ξ, T η, τ),O(η, T ξ, τ)}. (36)

Corollary 6. Let (Q,N ,O, ∗, ◦) be a complete GIRBMLS and T be an α-quasi contraction. If for
some ξ0 ∈ Q and all τ > 0 the subsequent expressions hold

δ1(N , T , ξ0, τ) = inf
i,j∈N

{N (T iξ0, T jξ0, τ)} > 0,

δ2(O, T , ξ0, τ) = sup
i,j∈N

{O(T iξ0, T jξ0, τ)} < 1.

then {T nξ0} converges to a unique FP of T .

Proof. This demonstration follows a similar approach to Theorem 3, except for the inclusion
of the neutrosophic set L.
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Definition 9. Let (Q,N , ∗) be a GFRBMLS. A mapping T : Q → Q is an α-QC for every
ξ, η ∈ Q, any τ > 0 and a certain α ∈ (0, 1) if it holds that

N (T ξ, T η, ατ) ≥ min{N (ξ, η, τ),N (ξ, T η, τ),N (η, T ξ, τ)}. (37)

Corollary 7. Let (Q,N , ∗) be a complete GFRBMLS and T be an α-quasi contraction. If for some
ξ0 ∈ Q and all τ > 0 the subsequent expression holds,

δ1(N , T , ξ0, τ) = inf
i,j∈N

{N (T iξ0, T jξ0, τ)} > 0,

then {T nξ0} converges to a unique FP of T .

Proof. This proof proceeds in a manner analogous to the proof of Theorem 3, except that it
does not take into account NSs O and L.

Remark 6. Similar to Propositions 1–3, one can derive FP theorems for CQT within the context of
ENRBMLSs, EIRBMLSs, and EFRBMLSs as a result of Theorem 3 and Corollarys 6 and 7.

4. Application to FFDIDE with the OBCFFD

In 2024, Dwivedi et al. [19] refined and introduced the Odibat–Baleanu–Caputo fuzzy
fractional derivative (OBCFFD), a generalized version of the Caputo-type fractional deriva-
tive in a fuzzy setting. To the best of our knowledge, FFDIDEs with the OBCFFD have
not yet been investigated in the existing literature. Motivated by these results, we aim to
explore and establish the existence and uniqueness of the solution to the following FFDIDE:{

OBC
t0

Dκ,ϱ
t P(t) = F (t, P(t), Pt) +

∫ θ
t0
H(t, s, P(s), Ps)ds, t ∈ [t0, θ],

P(t) = ψ(t − t0), t ∈ [t0 − a, t0], a > 0,
(38)

where κ ∈ (0, 1),M̃ = {(t, s); t0 < s ≤ t ≤ θ}, ψ ∈ Cβ(C([−β, 0],FR)), Pt = P(t + s), t ∈
[t0, θ], s ∈ [−β, 0], and F : [t0, θ] × FR × Cβ → FR and H : M̃ × FR × Cv → FR are
continuous. For more information about FFDIDEs, please refer to [20].

Definition 10 ([21]). The Hausdorff distance DH : FR × FR between P1 and P2 ∈ FR is given by

DH(P1, P2) = sup
ς∈[0,1]

max{|P1l (ς)− P2l (ς)|, |P1u(ς)− P2u(ς)|}.

Definition 11 ([21]). The generalized Hukuhara difference of two fuzzy numbers P1, P2 ∈ FR, if
they exist, is defined as follows:{

P1 ⊖gH P2 = P3 if and only if

{
(i)P1 = P2 + P3, if diam([P1]

r) ≥ diam([P2]
r)

(ii)P2 = P1 + (−1)P3, if diam([P1]
r) ≤ diam([P2]

r),

where diam([P]r) = Pu(r)− Pl(r), r ∈ (0, 1).

Definition 12 ([19]). The generalized fractional integral of order κ > 0 of P ∈ L1,loc([t0, t],FR)
is expressed as follows:

K
t0
I
κ,ϱ
t P(t) =

ϱ1−κ

Γ(κ) ⊙
∫ t

t0

ςϱ−1(tϱ − ςϱ)κ−1 ⊙ P(ς)dς. (39)

Definition 13 ([19]). The OBCFFD of order m − 1 < κ < m of P ∈ L1,loc([t0, t],FR) is given by

OBC
t0

Dκ,ϱ
t P =

ϱκ−m+1

Γ(m −κ) ⊙
∫ t

t0

ςϱ−1(tϱ − ςϱ)m−κ−1
(

ς1−ϱ d
dς

)m

⊙ P(ς)dς, (40)
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where the gH-derivative of Pm is defined as

Pm(t) = lim
h→0

Pm−1(t0 + h)⊖g Pm−1(t0)

h
.

Lemma 1. The generalized OBC FFDIDE corresponding to (38) has two distinct forms in the
context of fuzzy logic.

Proof. By applying the generalized fractional integral of order κ > 0 to both sides of
FFDIDE (38), we obtain

K
t0
I
κ,ϱ
t

OBC
t0

Dκ,ϱ
t P(t) = P(t)⊖ P(t0) =

K
t0
I
κ,ϱ
t

[
F (t, P(t), Pt) +

∫ θ

t0

H(t, s, P(s), Ps)ds

]

=
ϱ1−κ

Γ(κ) ⊙
∫ t

t0

ςϱ−1(tϱ − ςϱ)κ−1 ⊙
[
F (t, P(t), Pt)

+
∫ θ

t0

H(t, s, P(s), Ps)ds
]
dς.

Applying this in IVP of (38), we obtain

P(t)⊖ ψ(0)

=
ϱ1−κ

Γ(κ) ⊙
∫ t

t0

ςϱ−1(tϱ − ςϱ)κ−1 ⊙
[
F (t, P(t), Pt) +

∫ θ

t0

H(t, s, P(s), Ps)ds

]
dς.

(41)

Equation (41) branches into two distinct integral equations, contingent upon whether
P(t) is differentiable in the i-gH sense or the ii-gH sense.

1. When P(t) is i-gH,

P(t) =ψ(0)⊕ ϱ1−κ

Γ(κ) ⊙
∫ t

t0

ςϱ−1(tϱ − ςϱ)κ−1 ⊙
[
F (t, P(t), Pt)

+
∫ θ

t0

H(t, s, P(s), Ps)ds

]
dς.

(42)

2. When P(t) is ii-gH,

P(t) =ψ(0)⊖g (−1)
ϱ1−κ

Γ(κ) ⊙
∫ t

t0

ςϱ−1(tϱ − ςϱ)κ−1 ⊙
[
F (t, P(t), Pt)

+
∫ θ

t0

H(t, s, P(s), Ps) ds

]
dς.

(43)

Theorem 4. Let F be continuous, and let there exist A,B > 0, such that

DH(F (t, U(t), Ut(t)),F (t, V(t), Vt(t))) ≤ ADH(U(t), V(t)),

DH(H(t, s, U(s), Us(s)),H(t, s, V(s)), Vs(s))) ≤ BDH(U(s), V(s)),

for all U, V ∈ Q. Then, (41) has a unique solution for each case, provided that ϱ1−κ

Γ(κ) (
θϱ−tϱ

0)
κ

κ )(A+

(θ − t0)B) < 1.
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Proof. Considering the first case (42), as mentioned in Lemma 1,

P(t) = ψ(0)⊕ ϱ1−κ

Γ(κ) ⊙
∫ t

t0

ςϱ−1(tϱ − ςϱ)κ−1 ⊙
[
F (t, P(t), Pt) +

∫ θ

t0

H(t, s, P(s), Ps)ds
]
dς.

With this consideration, we introduce the subsequent operator on Q = C([t0, θ],FR):

(T P)(t) = ψ(0)⊕ ϱ1−κ

Γ(κ) ⊙
∫ t

t0

ςϱ−1(tϱ − ςϱ)κ−1 ⊙ GU(ς)dς,

where GU(ς) =
[
F (t, P(t), Pt) +

∫ θ
t0
H(t, s, P(s), Ps)ds

]
. This operator is well defined, as the

expression on the right-hand side is valid for any t. Let (Q,N , ∗) be a complete GFRBMLS,
where N : Q×Q× [0,+∞) → [0, 1] is defined by

N (U, V, τ) = exp sup
t∈[t0,θ]

−DH(U(t), V(t))
τ

,

Λ : Q × Q → [1,+∞) is given by Λ(U, V) = 1 + max{|U|, |V|}, and ∗ denotes the
product CtN.

Note that, for some P0(t) ∈ Q, τ > 0, it holds that

δ1(N , T , P0, t) = inf
i,j∈N

{N (T iP0(t), T jP0(t), τ)}

= inf
i,j∈N

{exp sup
t∈[t0,θ]

−DH(T iP0(t), T jP0(t))
τ

} > 0.

We also have

−DH(T U(t), T V(t)) =− DH(ψ(0)⊕
ϱ1−κ

Γ(κ) ⊙
∫ t

t0

ςϱ−1(tϱ − ςϱ)κ−1 ⊙ GU(ς)dς,

ψ(0)⊕ ϱ1−κ

Γ(κ) ⊙
∫ t

t0

ςϱ−1(tϱ − ςϱ)κ−1 ⊙ GV(ς)dς)

≥ − ϱ1−κ

Γ(κ) (
∫ t

t0

ςϱ−1(tϱ − ςϱ)κ−1DH(GU(ς), GV(ς))dς).

We can also show that T is an α-contraction, as follows:

N (T U(t), T V(t), τ)

= exp sup
t∈[t0,θ]

−DH(T U(t), T V(t))
τ

≥ exp sup
t∈[t0,θ]

− ϱ1−κ

Γ(κ) (
∫ t

t0
ςϱ−1(tϱ − ςϱ)κ−1DH(GU(ς), GV(ς))dς)

τ

≥ exp sup
t∈[t0,θ]

− ϱ1−κ

Γ(κ) (
∫ t

t0
ςϱ−1(tϱ − ςϱ)κ−1DH(GU(ς), GV(ς))dς)

τ

≥ exp sup
t∈[t0,θ]

− ϱ1−κ

Γ(κ) (
∫ t

t0
ςϱ−1(tϱ − ςϱ)κ−1[ADH(U(ς), V(ς)) +

∫ θ
t0
BDH(U(ς), V(ς))dς])

τ

≥ exp sup
t∈[t0,θ]

− ϱ1−κ

Γ(κ) (
∫ t

t0
ςϱ−1(tϱ − ςϱ)κ−1(A+ (t − t0)B)DH(U(t), V(t)))

τ
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≥ exp sup
t∈[t0,θ]

− ϱ1−κ

Γ(κ) (
tϱ−tϱ

0)
κ

κ )(A+ (t − t0)B)DH(U(t), V(t))

τ

≥ exp sup
t∈[t0,θ]

−DH(U(t), V(t))
τ
α

, α =
ϱ1−κ

Γ(κ) (
Tϱ − tϱ

0)
κ

κ )(A+ (θ − t0)B) < 1.

Following a similar approach, we can prove the second case stated in Lemma 1 for
Equation (42). Thus, based on Corollary 4, the proof is concluded.

5. Conclusions and Future Works

This paper presented the definitions of generalized neutrosophic rectangular b-metric-
like spaces, generalized intuitionistic rectangular b-metric- spaces, and generalized fuzzy
rectangular b-metric-like spaces. Various fixed point theorems were established with respect
to these frameworks, accompanied by examples to substantiate the results. Our results
extend and enrich the existing knowledge that is present in the literature. Furthermore,
we used our findings to show that FFDIDEs possess a unique solution. Additionally,
these findings could unlock new opportunities and introduce novel methods for their
application across different domains, including mathematical modeling, decision making,
pattern recognition, image processing, and data analysis, which are evolving. This allows
researchers to refer to papers [22,23], develop more advanced predictive models, and
participate in discussions about their findings. This research proposes two unsolved issues:

Problem 1. Excluding the axioms lim
τ→+∞

N (ξ, η, τ) = 1, lim
τ→+∞

O(ξ, η, τ) = 0, and

lim
τ→+∞

L(ξ, η, τ) = 0 from Definition 2, we question whether we can ensure the validity of

Theorems 2 and 3 by substituting the α-contraction condition with

1
N (T ξ, T η, τ)

− 1 ≤ α
[ 1
N (ξ, η, τ)

]
,

O(T ξ, T η, τ) ≤ αO(ξ, η, τ),

L(T ξ, T η, τ) ≤ αL(ξ, η, τ),

for any ξ, η ∈ Q, τ > 0, and α ∈ (0, 1). Moreover, consider replacing the α-quasi contraction
condition with

1
N (T ξ, T η, τ)

− 1 ≤ α max{ 1
N (ξ, η, τ)

− 1,
1

N (ξ, T η, τ)
− 1,

1
N (η, T ξ, τ)

− 1},

O(T ξ, T η, τ) ≤ α max{O(ξ, η, τ),O(ξ, T η, τ),O(η, T ξ, τ)},

L(T ξ, T η, τ) ≤ α max{L(ξ, η, τ),L(ξ, T η, τ),L(η, T ξ, τ)},

for any ξ, η ∈ Q, τ > 0, and α ∈ (0, 1).

Problem 2. How can the results in this paper be generalized in the context of extended rectangular
graphical neutrosophic b-metric spaces?
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GNRBMLS generalized neutrosophic rectangular b-metric-like space
GIRBMLS generalized intuitionistic rectangular b-metric-like space
GFRBMLS generalized fuzzy rectangular b-metric-like space
OBCFFD Odibat–Baleanu–Caputo fuzzy fractional derivative
CtN continuous triangular norm
CtCN continuous t-conorm
FS fuzzy set
FP fixed point
BCT Banach contraction theorem
IFS intuitionistic fuzzy set
NMS neutrosophic metric space
FRBMLS fuzzy rectangular b-metric-like space
IFRBMLS intuitionistic fuzzy rectangular b-metric-like space
NRBMLS neutrosophic rectangular b-metric-like space
ENRBMLS neutrosophic rectangular extended b- metric-like space
CQT Ćirić quasi-contraction theorem
FFDIDE fuzzy fractional delay integro-differential equation
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9. Şimşek, N.; Kirişci, M. Fixed Point Theorems in Neutrosophic Metric Spaces. Sigma Eng. Nat. Sci. 2019, 10, 221–230.
10. Saleem, N.; Furqan, S.; Abbas, M.; Jarad, F. Extended rectangular fuzzy b-metric space with application. AIMS Math. 2022,

7, 16208–16230. [CrossRef].
11. Saleem, N.; Furqan, S.; Jarad, F. On extended b-rectangular and controlled rectangular fuzzy metric-like spaces with application.

J. Funct. Spacess 2022, 2022, 5614158. [CrossRef].
12. Hussain, A.; Al Sulami, H.; Ishtiaq, U. Some new aspects in the intuitionistic fuzzy and neutrosophic fixed point theory. J. Funct.

Spacess 2022, 2022, 3138740. [CrossRef].
13. Kattan, D.; Alzanbaqi, A.O.; Islam, S. Contraction mappings in intuitionistic fuzzy rectangular extended B-metric spaces. Math.

Probl. Eng. 2022, 2022, 1814291. [CrossRef].
14. Uddin, F.; Ishtiaq, U.; Saleem, N.; Ahmad, K.; Jarad, F. Fixed point theorems for controlled neutrosophic metric-like spaces. AIMS

Math. 2022, 7, 20711–20739. [CrossRef].
15. Saleem, N.; Ishtiaq, U.; Ahmad, K.; Sessa, S.; Di Martino, F. Fixed Point Results in Neutrosophic Rectangular Extended b-Metric

Spaces. Neutrosophic Syst. Appl. 2020, 9, 48–80. [CrossRef].
16. Ashraf, M.S.; Ali, R.; Hussain, N. New fuzzy fixed point results in generalized fuzzy metric spaces with application to integral

equations. IEEE Access 2020, 8, 91653–91660. [CrossRef].
17. Hussain, N.; Alharbi, N.; Basendwah, G. Solving fractional boundary value problems with nonlocal mixed boundary conditions

using covariant JS-contractions. Symmetry 2024, 16, 939. [CrossRef].
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