Next Article in Journal
A Class of Bounded Iterative Sequences of Integers
Previous Article in Journal
New Conditions for Testing the Oscillation of Solutions of Second-Order Nonlinear Differential Equations with Damped Term
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Parametric Expansions of an Algebraic Variety Near Its Singularities II

by
Alexander D. Bruno
1,*,† and
Alijon A. Azimov
2,†
1
Keldysh Institute of Applied Mathematics of RAS, 125047 Moscow, Russia
2
Department of Algebra and Geometry, Samarkand State University Named after Sh. Rashidov, Samarkand 140104, Uzbekistan
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Axioms 2024, 13(2), 106; https://doi.org/10.3390/axioms13020106
Submission received: 9 November 2023 / Revised: 25 January 2024 / Accepted: 30 January 2024 / Published: 4 February 2024
(This article belongs to the Section Algebra and Number Theory)

Abstract

:
The paper is a continuation and completion of the paper Bruno, A.D.; Azimov, A.A. Parametric Expansions of an Algebraic Variety Near Its Singularities. Axioms 2023, 5, 469, where we calculated parametric expansions of the three-dimensional algebraic manifold Ω , which appeared in theoretical physics, near its 3 singular points and near its one line of singular points. For that we used algorithms of Nonlinear Analysis: extraction of truncated polynomials, using the Newton polyhedron, their power transformations and Formal Generalized Implicit Function Theorem. Here we calculate parametric expansions of the manifold Ω near its one more singular point, near two curves of singular points and near infinity. Here we use 3 new things: (1) computation in algebraic extension of the field of rational numbers, (2) expansions near a curve of singular points and (3) calculation of branches near infinity.

1. Introduction

Here we continue and conclude the paper [1]. There, in Sections 1–5, we proposed a new method for solving the polynomial equation
f x 1 , , x n = 0
near a singular point or curve of singular points of the polynomial f. In Sections 6–10, this method was applied to compute the solutions to such a 12th degree equation with n = 3 that originated in theoretical physics. This new method is based on:
  • Newton’s polyhedron to isolate the truncated equations,
  • Power transformations to simplify those equations, and
  • Formal Generalized Implicit Function Theorem to obtain solutions in the form of power expansions whose coefficients are rational functions of the parameters. Computer algebra is used in these calculations.
Newton’s polyhedron is a multidimensional generalization of Newton’s polygon (see [2,3,4,5,6,7]). Power transformations are a generalization of the sigma process used previously to resolve singularities of algebraic manifolds (see [8,9,10]). Algorithms for computing power transformations were proposed in [11]. The resolution of the singularity is done step-by-step until we come to the situation with a truncated equation containing a polynomial multiplier of degree one. If the roots of this multiplier are parameterized, the roots of the whole polynomial are obtained as a power expansion using a Generalized Implicit Function Theorem (Theorem 1 of [1]). All these are an application to algebraic equations of the general theory of Nonlinear Analysis [12], which is also suitable for differential equations. For its applications to systems of partial derivative equations, see [13].
According to [1] and [12] (Section 2) computational steps are the following:
Step 1. 
Introduction of local coordinates. For coordinates X = ( x 1 , , x n ) and singular point X 0 = ( x 1 0 , , x n 0 ) , they are Y = X X 0 , i.e., y i = x i x i 0 , i = 1 , , n .
Step 2. 
Writing the initial polynomial f ( X ) in local coordinates
g ( Y ) = f ( X 0 + Y ) = g Q Y Q over Q S .
Here Q = ( q 1 , , q n ) , Y Q = y 1 q 1 y n q n , g Q are real or complex coefficients, the sum has not similar terms, the set S ( g ) = { Q : a Q 0 } , is called as support of the sum g ( Y ) . Here 0 Q Z n . Let the support S ( g ) consists of vectors Q 1 , , Q k .
Step 3. 
The Newton polyhedron Γ ( g ) is computating as the convex hull of the support S :
Γ ( g ) = Q = i = 1 k λ i Q i , λ i 0 , i = 1 , , k , i = 1 k λ i = 1 .
The boundary Γ of the polyhedron Γ ( g ) consists from its generalized faces Γ j ( d ) , where d is dimension, 0 d n 1 , and j is a number of the face Γ j ( d ) . Each face Γ j ( d ) corresponds to its truncated polynomial
g ^ j ( d ) ( Y ) = g Q Y Q over Q S Γ j ( d )
and the normal cone U j ( d ) , consisting of all normals to the face Γ j ( d ) , which are external to the polyhedron Γ . For their computation we use the PolyhedralSets package of the computer algebra system (CAS) Maple. In the steps below n = 3 . Then Γ j ( 2 ) is two dimensional face and normal cone U j ( 2 ) is a ray, spanned by external normal N j to the face Γ j ( 2 ) .
Step 4. 
We select faces Γ j ( 2 ) with normal N j 0 and corresponding truncated polynomials g ^ j ( 2 ) ( Y ) .
Step 5. 
For each selected truncated polynomial g ^ j ( 2 ) ( Y ) , we compute corresponding power transformation
ln y 1 , ln y 2 , ln y 3 = ln z 1 , ln z 2 , ln z 3 α ,
where α is an unimodular 3 × 3 matrix, such that
g ^ j ( 2 ) ( Y ) = h ( z 1 , z 2 ) z 3 l
with integral l.
Step 6. 
If the curve h ( z 1 , z 2 ) = 0 has parametrization
z 1 = b 1 ( t ) , z 2 = b 2 ( t ) ,
then it is obtained with the algcurves package from the CAS Maple. In that case we make the power transformation (2) in the full polynomial (1) and write it as
g ( Y ) = T ( z 1 , z 2 , z 3 ) z 3 l = z 3 l k = 0 m T k ( z 1 , z 2 ) z 3 k ,
with some natural m. Here polynomials T k ( z 1 , z 2 ) are computed by the command coeff(T,z[k],m) in CAS Maple. Here T 0 ( z 1 , z 2 ) = h ( z 1 , z 2 ) from (3).
Step 7. 
If T 1 ( b 1 ( t ) , b 2 ( t ) ) 0 , we make the substitution
z 1 = b 1 ( t ) + ε , z 2 = b 2 ( t ) + ε
into the polynomial T ( z 1 , z 2 , z 3 ) , obtain function u ( ε , t , z 3 ) = T ( z 1 , z 2 , z 3 ) , apply to the equation u ( ε , t , z 3 ) = 0 the Formal Generalized Implicit Function Theorem 1 [1] and get the parametric expansion
ε = k = 1 c k ( t ) z 3 k .
Step 8. 
We compute several terms of expansion (5), substitute them into (4). The result is substituted in power transformation (2), and we obtain parametric expansion of Y in power series of z 3 with coefficients which are rational functions of t.
If T 1 ( b 1 ( t ) , b 2 ( t ) ) 0 , we continue computation with new Newton polyhedron etc.
The method is new, with parts: the Newton polyhedron Γ ( g ) , polyhedron’s faces Γ j ( d ) , polyhedron graph, normal cones U j ( d ) and power transformations (2) were proposed by the first author beginning 1962. Early such objects he calculated manually, but now there are programs for that.
In [1], this theory was applied to a problem arises in the study of Ricci flows (see [14,15,16,17,18,19,20,21,22]). The Ricci flows describe the evolution of Einstein’s metrics on a variety. The equations of the normalized Ricci flow are reduced to a system of two differential equations with three parameters: a 1 , a 2 and a 3 :
d x 1 d t = f ˜ 1 ( x 1 , x 2 , a 1 , a 2 , a 3 ) , d x 2 d t = f ˜ 2 ( x 1 , x 2 , a 1 , a 2 , a 3 ) ,
here, f ˜ 1 and f ˜ 2 are certain given functions.
The singular points of this system are associated with the invariant Einstein’s metrics. At the singular (stationary) point x 1 0 , x 2 0 , system (6) has two eigenvalues, λ 1 and λ 2 . If at least one of them is equal to zero, then the singular (stationary) point x 1 0 , x 2 0 is said to be degenerate. It was proved in [14,15,16,17,18,19,20,21,22] that the set Ω of the values of the parameters a 1 , a 2 , a 3 , in which system (6) has at least one degenerate singular point, is described by all solutions of the equation
Q ( s 1 , s 2 , s 3 ) def ( 2 s 1 + 4 s 3 1 ) 64 s 1 5 64 s 1 4 + 8 s 1 3 + 240 s 1 2 s 3 1536 s 1 s 3 2 4096 s 3 3 + 12 s 1 2 240 s 1 s 3 + 768 s 3 2 6 s 1 + 60 s 3 + 1 8 s 1 s 2 ( 2 s 1 + 4 s 3 1 ) ( 2 s 1 32 s 3 1 ) ( 10 s 1 + 32 s 3 5 ) 16 s 1 2 s 2 2 52 s 1 2 + 640 s 1 s 3 + 1024 s 3 2 52 s 1 320 s 3 + 13 + + 64 ( 2 s 1 1 ) s 2 3 ( 2 s 1 32 s 3 1 ) + 2048 s 1 ( 2 s 1 1 ) s 2 4 = 0 ,
where s 1 , s 2 , s 3 are elementary symmetric polynomials, equal, respectively, to
s 1 = a 1 + a 2 + a 3 , s 2 = a 1 a 2 + a 1 a 3 + a 2 a 3 , s 3 = a 1 a 2 a 3 .
Here Q is different from Q’s in Steps 2 and 3, but the sign def means only a new notation.
Hence the polynomial P ( a 1 , a 2 , a 3 ) = Q ( s 1 , s 2 , s 3 ) has degree 12. In [23], for symmetry reasons, the coordinates a = ( a 1 , a 2 , a 3 ) were changed to the coordinates A = ( A 1 , A 2 , A 3 ) by the linear transformation
a 1 a 2 a 3 = M · A 1 A 2 A 3 , M = ( 1 + 3 ) / 6 ( 1 3 ) / 6 1 / 3 ( 1 3 ) / 6 ( 1 + 3 ) / 6 1 / 3 1 / 3 1 / 3 1 / 3
The resulting polynomial is
R ( A ) = P ( a )
and has degree 12 again.
Definition 1.
Let φ X be some polynomial, where X = ( x 1 , , x n ) . A point X = X 0 of the set φ X = 0 is called the singular point of the k-order, if all partial derivatives of the polynomial φ X with respect to x 1 , , x n turn into zero at this point, up to and including the k-th order derivatives, and at least one partial derivative of order k + 1 is nonzero.
In [23], all singular points of the variety Ω in coordinates A = A 1 , A 2 , A 3 were found. The five points of the third order are:
NameCoordinates  A
P 1 ( 3 ) ( 0 , 0 , 3 / 4 )
P 2 ( 3 ) ( 0 , 0 , 3 / 2 )
P 3 ( 3 ) 1 + 3 2 , 3 1 2 , 1 2
P 4 ( 3 ) 3 1 2 , 1 + 3 2 , 1 2
P 5 ( 3 ) ( 1 , 1 , 1 / 2 )
three points of the second order
NameCoordinates  A
P 1 ( 2 ) 1 + 3 4 , 1 3 4 , 1 2
P 2 ( 2 ) 1 3 4 , 1 + 3 4 , 1 2
P 3 ( 2 ) ( 1 / 2 , 1 / 2 , 1 / 2 )
and three more algebraic curves of singular points of the first order:
F = a 1 = a 2 , 16 a 1 3 + 16 a 1 2 a 3 4 a 1 2 a 3 + 1 = 0 , I = A 1 + A 2 + 1 = 0 , A 3 = 1 2 , K = A 1 = 9 4 t h t , A 2 = 9 4 h t , A 3 = 3 4 , h t = t 2 + 1 ( t + 1 ) ( t 2 4 t + 1 ) .
The points P 3 ( 3 ) , P 4 ( 3 ) and P 5 ( 3 ) are of the same type; they pass into each other when rotated in the plane A 1 , A 2 by an angle 2 π / 3 , just as all points P 1 ( 2 ) , P 2 ( 2 ) , P 3 ( 2 ) . The curves F , I , K correspond to two more curves of the same type. Therefore, it is sufficient to study the variety Ω in the neighborhood of points P 1 ( 3 ) , P 2 ( 3 ) , P 5 ( 3 ) , P 3 ( 2 ) and curves F , I and K . Moreover, in [23] there were computed sections of the variety Ω by planes A 3 = const , and was shown that in finite part of the space R 3 = A 1 , A 2 , A 3 the variety Ω consists of two dimensional branches F 1 , F 2 , F 3 , G 1 , G 2 , G 3 divided into parts F i ± , G i ± with boundaries at the plane A 3 = 1 / 2 .
In the paper [24], three variants of the global parametrization of the variety Ω were proposed. These parametrizations were computed using the parametric description of the discriminant set of a monic cubic polynomial [25] and can be written in radical form [26]. Such a global description of the variety Ω cannot provide an adequate picture of the Ω structure in the vicinity of its singular points.
In [1], parametric expansions of the variety Ω near the singular points P 1 ( 3 ) (Section 7), P 1 ( 3 ) (Section 8), P 2 ( 2 ) (Section 8), P 3 ( 2 ) (Section 10) and near the line of singular points I (Section 9) were computed. Here these expansions are computed near the singular point P 5 ( 3 ) (Section 2), near the curves of singular points H (Section 3) and F (Section 4), and near infinity (Section 5). Together they cover a wide range of cases. The following tactic has developed: if the truncated equation contains linear multipliers, they are used to do a linear transformation of the coordinates followed by the computation of Newton’s polyhedron; and if they are nonlinear, a power transformation of the coordinates is done. To understand the present article it is necessary a knowledge with papers [1] (open access), [23] and the book [27].

2. The Structure of the Manifold Ω near the Singular Point P 5 ( 3 )

2.1. Preliminary Computations

Near the point P 5 3 : A 1 , A 2 , A 3 = ( 1 , 1 , 1 / 2 ) we introduce local coordinates x 1 , x 2 , x 3 :
A 1 = x 1 + 1 , A 2 = x 2 + 1 , A 3 = 1 2 + x 3 .
Then, from the polynomial R A in (7) we get a polynomial of degree 12.
S 4 x 1 , x 2 , x 3 = R A = Q s 1 , s 2 , s 3 .
We compute the support S of the polynomial S 4 , the Newton polyhedron Γ 4 ( S 4 ) , its faces Γ j 2 and their external normals using the PolyhedralSets package of the computer algebra system (CAS) Maple 2021 [27]. We obtain 5 faces Γ j 2 . The graph of the polyhedron Γ 4 is shown in Figure 1.
In the top row—the whole polyhedron, in the next—all two-dimensional faces. Further down are the edges, then the vertices, and at the bottom is the empty set. The external normals to its two-dimensional faces are
N 71 = 1 , 1 , 1 , N 143 = 1 , 1 , 1 , N 215 = 1 , 0 , 0 , N 239 = 0 , 1 , 0 , N 241 = 0 , 0 , 1 .
Since x 1 , x 2 , x 3 0 , we take the only normal that has all coordinates negative. This is N 71 = 1 , 1 , 1 . It corresponds to a truncated polynomial
f ^ 71 = 16 2 x 1 2 8 x 1 x 2 + 2 x 1 x 3 + 2 x 2 2 + 2 x 2 x 3 x 3 2 2 / 81 .
The quadratic polynomial bracketed in (9) does not factorize in the field of rational numbers, but it does factorize in the extension of this field with 3 . We get
f = 2 x 1 2 8 x 1 x 2 + 2 x 1 x 3 + 2 x 2 2 + 2 x 2 x 3 x 3 2 .
We proceed according to [27]:
  • >alpha := RootOf(y^2-3);
  • >factor (f,alpha);
1 2 ( 2 x 2 R o o t O f Z 2 3 x 3 R o o t O f Z 2 3 + 2 x 1 4 x 2 + x 3 · · 2 x 2 R o o t O f Z 2 3 x 3 R o o t O f Z 2 3 2 x 1 + 4 x 2 x 3 )
i.e.,
f = 1 2 2 x 1 4 2 3 x 2 + 1 3 x 3 · 2 x 1 4 + 2 3 x 2 + 1 + 3 x 3 .
Now we do a linear substitution of the coordinates
y 1 = 2 x 1 4 2 3 x 2 + 1 3 x 3 , y 2 = 2 x 1 4 + 2 3 x 2 + 1 + 3 x 3 , y 3 = x 3 .
Its inverse substitution is
x 1 = 2 + 3 3 12 y 1 + 2 + 3 3 12 y 2 + 1 2 y 3 , x 2 = 3 12 y 1 3 12 y 2 + 1 2 y 3 , x 3 = y 3 .
We substitute it into the polynomial S 4 x and get the polynomial S 5 y = S 4 x . For the polynomial S 5 y , we compute Newton’s polyhedron Γ 5 . Its graph is shown in Figure 2. It has 11 two-dimensional faces with external normals
N 14397 = 1 , 1 , 0 , N 15959 = 1 , 0 , 1 , N 19269 = 2 , 2 , 1 , N 39917 = 0 , 1 , 1 , N 111761 = 1 , 1 , 1 , N 131145 = 1 , 0 , 0 , N 132735 = 0 , 0 , 1 , N 135677 = 0 , 1 , 0 , N 137855 = 1 , 0 , 0 , N 159459 = 0 , 1 , 0 , N 162019 = 0 , 0 , 1 .
We parse the first 4 of them that have 2 or 3 coordinates negative, dedicating a subsection to each of them. Below we use notation from Maple [27].

2.2. The Normal ( 2 , 2 , 1 )

The corresponding truncated polynomial is
f t r 19269 = 104976 ( 5 + 3 α ) ( 864 α y 1 y 3 6 3456 α y 2 y 3 6 + 117 α y 1 2 y 3 4 594 α y 1 y 2 y 3 4 + 1287 α y 2 2 y 3 4 1728 y 1 y 3 6 + 6048 y 2 y 3 6 12 α y 1 2 y 2 y 3 2 + 48 α y 1 y 2 2 y 3 2 360 α y 2 3 y 3 2 117 y 1 2 y 3 4 + 990 y 1 y 2 y 3 4 2223 y 2 2 y 3 4 + 6 α y 1 2 y 2 2 24 y 1 3 y 3 2 + 24 y 1 2 y 2 y 3 2 84 y 1 y 2 2 y 3 2 + 624 y 2 3 y 3 2 10 y 1 2 y 2 2 ) ,
where α = 3 . Here and below “ f t r ” number means truncated polynomial, corresponding to normal N j with written number j. According to [11], we compute the matrix γ = 1 0 0 0 1 0 2 2 1 such that 2 , 2 , 1 γ = 0 , 0 , 1 . Since γ 1 = 1 0 0 0 1 0 2 2 1 , then we do a power transformation
y 1 = z 1 z 3 2 , y 2 = z 2 z 3 2 , y 3 = z 3 .
We get after factorization
f t r 19269 = 104976 ( 5 + 3 α ) ( 6 α z 1 2 z 2 2 12 α z 1 2 z 2 + 48 α z 1 z 2 2 360 α z 2 3 10 z 1 2 z 1 2 z 2 2
+ 117 α z 1 2 594 α z 1 z 2 + 1287 z 2 2 α 24 z 1 3 + 24 z 1 2 z 2 84 z 1 z 2 2 + 624 z 2 3 + 864 α z 1
3456 α z 2 117 z 1 2 + 990 z 1 z 2 2223 z 2 2 1728 z 1 + 6048 z 2 ) z 3 8 ,
where α = 3 . The large polynomial in the parentheses is denoted by
f 1 ( z 1 , z 2 ) = 6 α z 1 2 z 2 2 12 α z 1 2 z 2 + 48 α z 1 z 2 2 360 α z 2 3 10 z 1 2 z 1 2 z 2 2
+ 117 α z 1 2 594 α z 1 z 2 + 1287 z 2 2 α 24 z 1 3 + 24 z 1 2 z 2 84 z 1 z 2 2 + 624 z 2 3 + 864 α z 1
3456 α z 2 117 z 1 2 + 990 z 1 z 2 2223 z 2 2 1728 z 1 + 6048 z 2 .
Consider the curve f 1 z 1 , z 2 = 0 . It has intersections with the axes: z 1 = 0 , z 2 = 0 . It is a curve of genus 0, with one singular point
z 1 , z 2 = 6 + 6 3 ; 6 6 3 4.39230485 ; 16.39230485
and parameterization
z 1 = b 1 t = 5 + 3 3 β 2042820 3 t 521639194050 t 2 + 64 3 7660575 t 119 2 510705 t + 2 2 , z 2 = b 2 t = 153 3 + 265 β 2042820 3 t 260819597025 t 2 + 120 3 5617755 t 212 2 510705 t + 2 , β = 3 4 3 + 510705 t 5 .
We simplify these expressions by transforming t = t 1 / 510705 and obtaining
z 1 = b 1 t 1 = 3 5 + 3 3 4 3 t 1 2 t 1 2 + 64 3 15 t 1 119 4 3 + t 1 5 2 t + 2 2 , z 2 = b 2 t 1 = 3 265 + 153 3 4 3 t 1 t 1 2 + 120 3 11 t 1 212 4 3 + t 1 5 2 t 1 + 2 .
The curve is shown in Figure 3.
With z 3 fixed according to (8), (10) and (11) at the original coordinates A , we obtain a curve
A 1 = 1 + ( 2 + 3 ) 3 12 z 1 z 3 2 + ( 2 + 3 ) 3 12 z 2 z 3 2 + 1 2 z 3 , A 2 = 1 + 3 12 z 1 z 3 2 3 12 z 2 z 3 2 + 1 2 z 3 ,
where z 1 = b 1 t 1 , z 2 = b 2 t 1 according to (12).
If z 3 = 0.05 , z 1 = b 1 t 1 , z 2 = b 2 t 1 then according to (8), (10) and (13) A 3 = 9 / 20 = 0.45 ,
A 1 = ( 2 + 3 ) 3 4800 z 1 + ( 2 + 3 ) 3 4800 z 2 + 39 40 , A 2 = 3 4800 z 1 3 4800 z 2 + 39 40 .
This curve is shown in Figure 4. This curve is similar to the curve of [23] (Figure 12) showing the cross-section of the variety Ω at A 3 = 0.45 , with branches F 1 and G 2 .
If z 3 = 0.005 , then A 3 = 101 / 200 = 0.505 , hence according to (13)
A 1 = ( 2 + 3 ) 3 480000 z 1 + ( 2 + 3 ) 3 480000 z 2 + 401 400 , A 2 = 3 480000 z 1 3 480000 z 2 + 401 400 .
When z 1 = b 1 t 1 , z 2 = b 2 t 1 , the curve (15) is shown in Figure 5. It is similar to Figure 15 in [23], which shows the section of the variety Ω at A 3 = 0.505 , with coinsiding branches F 1 + and G 2 + .
In fact, the parametric expansion of the variety Ω can also be computed here. To do this, we substitute (11) into the polynomial S 5 y and get the polynomial of Step 6
T z = z 3 8 k = 0 m T k ( z 1 , z 2 ) z 3 k ,
where polynomials T k ( z 1 , z 2 ) are uniquelly determined and can be computed by the command coeff(T,z[k],m).
In it, according to (12), we make the substitution
z 1 = b 1 t + ε , z 2 = b 2 t + ε .
We obtain that T z / z 3 8 = u ( ε , z 3 ) with coefficients depending on t via b 1 t and b 2 t . We apply Theorem 1 in [1] to the equation u ε , z 3 = 0 and obtain the expansion
ε = k = 1 c k ( t ) z 3 k .
Returning to initial coordinates A via (8), (10)–(12) and (17), we obtain expansions
A 1 = 1 + 1 2 z 3 + 2 3 + 3 12 b 1 ( t 1 ) + k = 1 c k ( t 1 ) z 3 k z 3 2 + 3 2 3 12 b 2 ( t 1 ) + k = 1 c k ( t 1 ) z 3 k z 3 2 , A 2 = 1 + 1 2 z 3 + 3 12 b 1 ( t 1 ) + k = 1 c k ( t 1 ) z 3 k z 3 2 3 12 b 2 ( t 1 ) + k = 1 c k ( t 1 ) z 3 k z 3 2 , A 3 = 1 2 + z 3
with parameters t 1 R and z 3 R for small | z 3 | . Formula (13) contain first terms of expansions (18).

2.3. The Normal ( 1 , 1 , 0 )

It corresponds to a truncated polynomial
f t r 14397 = 11337408 1 + α α y 2 + y 1 2 y 2 4 y 3 1 y 3 + 2 3 y 3 6 .
Since it is linear on y 1 , y 2 , its root is the y 3 -axis, i.e., y 1 = y 2 = 0 , which we denote by N. This line N lies on the variety Ω and through N it passes one of its branches, which in the first approximation has the form y 1 = ( 2 α ) y 2 .
According to (8) and (9) in the original coordinates A , this line N has the following form
A 1 = 1 2 y 3 + 1 , A 2 = 1 2 y 3 + 1 , A 3 = 1 2 + y 3 .
This is the straight line g 2 of [23] (Figure 3). In [23] (Figures 4–15), the points of the line N lie in the plane M : A 1 = A 2 . Moreover, in Figure 6  A 1 1 , 0 , in Figures 8–11 A 1 0 , 1 , in Figures 4, 13 and 14 A 1 1 , 2 . According to (19), there are 3 singular points on the line N
y 3 = 0 , y 3 = 2 , y 3 = 1 / 4 .
In A coordinates, they look like this:
1 , 1 , 1 / 2 , 0 , 0 , 3 / 2 , 9 / 8 , 9 / 8 , 3 / 4 ,
i.e., they are points P 5 ( 3 ) , P 2 ( 3 ) , and a point with t = 1 on the curve H of singular points. The structure of the variety Ω near the point P 5 ( 3 ) is dealt with in this Section, near the point P 2 ( 3 ) was dealt with in Section 7 of [1], and in the next Section we will deal with the structure of the variety Ω near the curve H .
We can obtain an expansion of the variety Ω near the line N. To do this, we substitute (10) in the polynomial S 4 ( x ) and obtain the polynomial V y 1 , y 2 , y 3 = S 4 x , which we write as
V y 1 , y 2 , y 3 = V q 1 q 2 y 3 y 1 q 1 y 2 q 2 ,
where 0 q 1 , q 2 Z , V q 1 q 2 y 3 polynomials. Thus according to (19)
V 00 = 0 ,
V 10 = 11337408 ( 1 + α ) ( 4 y 3 1 ) ( y 3 + 2 ) 3 y 3 6 ,
V 01 = 11337408 1 + α α 2 4 y 3 1 y 3 + 2 3 y 3 6 .
According to [1] (Theorem 1), the equation V = 0 has a solution
y 1 = 2 α y 2 + k = 2 c k y 3 y 2 k .
Going to the original coordinates, we get the expansion for A with parameters y 2 and y 3 . It is valid everywhere except the neighborhoods of the points (20).

2.4. The Normal ( 1 , 0 , 1 )

It corresponds to a truncated polynomial
f t r 15959 = 18 26 + 15 α y 2 + 6 + 6 α 2 y 2 + 3 + 3 α 2 · ( 18 y 2 2 y 3 2 α + 6 α y 1 2 y 2
108 y 2 y 3 2 α y 1 2 y 2 2 + 36 y 2 2 y 3 2 18 α y 1 2 + 6 y 1 2 y 2 + 108 y 2 y 3 2 36 y 1 2 ) · y 2 2 .
Let’s put
f 2 = 18 y 2 2 y 3 2 α + 6 α y 1 2 y 2 108 y 2 y 2 y 3 2 α y 1 2 y 2 2 + 36 y 2 2 y 2 y 3 2 18 α y 1 2 + 6 y 1 2 y 2 + 108 y 2 y 3 2 36 y 1 2 .
According to [11], we compute the unimodular matrix γ = 1 0 0 0 1 0 1 0 1 such that 1 , 0 , 1 γ = 0 , 0 , 1 . Since γ 1 = 1 0 0 0 1 0 1 0 1 , then we do a power transformation
y 1 = z 1 z 3 , y 2 = z 2 , y 3 = z 3 .
We get
f 2 z 1 , z 2 , z 3 = 6 α z 1 2 z 2 z 1 2 z 2 2 18 α z 1 2 18 α z 2 2 + 6 z 1 2 z 2 108 z 2 α 36 z 1 2 + 36 z 2 2 + 108 z 2 z 3 2
Let’s denote
g z 1 , z 2 = 6 α z 1 2 z 2 z 1 2 z 2 2 18 α z 1 2 18 α z 1 2 18 α z 2 2 + 6 z 1 2 z 2 108 z 2 α 36 z 1 2 + 36 z 2 2 + 108 z 2 = z 1 2 z 2 2 + 6 α + 1 z 1 2 z 2 18 α + 2 z 1 2 + 18 α + 2 z 2 2 + 108 ( α + 1 ) z 2 .
The curve g z 1 , z 2 = 0 has genus 0, intersections with axes
( z 1 , z 2 ) = 0 , 0 , ( z 1 , z 2 ) = 0 , 6 3 1 3 2 = ( 0 , 16.39230485 ) ,
parameterization
z 1 = b 1 t = 3 ( 173465063 3 1091281895 ) β 2 ( 176651 t + 52563 + 26043 3 ) 70130447 ( 2376102210 3 t 7846989697 t 2 814835898 3 + 4779544314 t 1425469788 ) , z 2 = b 2 t = 2662513 + 1729681 3 β 2 2 1891308 45683 t + 17823 + 9267 3 131 t + 25 + 11 3 , β 2 = ( 717 + 381 3 397 t ) .
The singular points are reached at
t 1 = 717 + 381 3 397 3.468290574 , t 2 = 52563 + 26043 3 176651 0.5529026114 ,
The plot of the curve is shown in Figure 6:
According to (8), (10) and (11) in coordinates A 1 , A 2 , A 3 , we obtain
A 1 = 1 + ( 2 + 3 ) 3 12 z 1 z 3 + ( 2 + 3 ) 3 12 z 2 + 1 2 z 3 , A 2 = 1 + 3 12 z 1 z 3 3 12 z 2 + 1 2 z 3 , A 3 = 1 2 + z 3 .
If z 3 = 0 then,
A 1 = 1 + 2 + 3 3 12 z 2 , A 2 = 1 3 12 z 2 , A 3 = 1 2 .
This is the singular line of [23] (Figure 5), which is obtained from the singular line I by rotating by an angle 2 π / 3 . If z 3 = 0.05 , then according to (25) A 3 = 9 / 20 = 0.45 and
A 1 = 2 + 3 3 240 z 1 + 2 + 3 3 12 z 2 + 39 40 , A 2 = 3 240 z 1 3 12 z 2 + 39 40 .
When parameterized by (24), this curve is shown in Figure 7. It is similar to the part of [23] (Figure 12) corresponding to A 3 = 0.45 , with parts of branches F 1 and G 2 .
If z 3 = 0.005 , then A 3 = 101 200 = 0.505 and
A 1 = 2 + 3 3 2400 z 1 + 2 + 3 3 12 z 2 + 401 400 , A 2 = 3 2400 z 1 3 12 z 2 + 401 400 .
When parameterized by (24), this curve is shown in Figure 8. According to (23) in this figure, when z 2 < 0 and z 2 > 6 ( 3 1 ) 2 3 , 2 branches each merge into one line. These results are similar to those of Section 9 of [1], differing from them by the angle 2 π / 3 rotation.
Figure 8 is similar to the part of Figure 15 in [23] corresponding to A 3 = 0.505 with parts of branches F 1 + and G 2 + .
Here the branches are very close and a different scale is needed. We can draw each branch separately, as in Figure 9.
In that case also there exists a parametric expansions. In the polynomial V ( y ) = S ( x ) we make the power transformation (21) and obtain
V ( y ) = W ( z ) = z 3 2 k = 0 10 w k z 1 , z 2 z 3 k .
Here w 0 ( z 1 , z 2 ) = g ( z 1 , z 2 ) from (22). According to (24) we substitute (17) into polynomials w k ( z 1 , z 2 ) . We obtain W ( z ) / z 3 2 = u 1 ( ε , z 3 ) with coefficients depending on t via b 1 ( t ) and b 2 ( t ) . We apply Theorem 1 in [1] to the equation u 1 ( ε , z 3 ) = 0 and obtain the expansion
ε = k = 1 c ˜ k ( t ) z 3 k .
So according to (25)
A 1 = 1 + ( 2 3 + 3 ) 12 ( b 1 ( t ) + ε ) z 3 + ( 3 2 3 ) 12 ( b 2 ( t ) + ε ) + 1 2 z 3 , A 2 = 1 + 3 12 ( b 1 ( t ) + ε ) z 3 3 12 ( b 2 ( t ) + ε ) + 1 2 z 3 , A 3 = 1 2 + z 3 .
Formulas (26) and (27) give the initial terms of them.

2.5. The Normal ( 0 , 1 , 1 )

It corresponds to a truncated polynomial
f t r 39917 = 18 26 + 15 α y 1 3 + 3 α 2 y 1 6 + 6 α 2 y 1 2 ·
18 y 1 2 y 3 2 α 6 α y 1 y 2 2 + 108 y 1 y 3 2 α y 1 2 y 2 2 + 36 y 1 2 y 3 2 + 18 y 2 2 α + 6 y 1 y 2 2 + 108 y 1 y 3 2 36 y 2 2 .
Let’s denote
f 3 = 18 y 1 2 y 3 2 α 6 α y 1 y 2 2 + 108 y 1 y 3 2 α y 1 2 y 2 2 + 36 y 1 2 y 3 2 + 18 y 2 2 α + 6 y 1 y 2 2 + 108 y 1 y 3 2 36 y 2 2 .
According to [11], we compute the matrix γ = 1 0 0 0 1 0 0 1 1 such that 0 , 1 , 1 γ = ( 0 , 0 , 1 ) . Since γ 1 = 1 0 0 0 1 0 0 1 1 , then we do a power transformation.
y 1 = z 1 , y 2 = z 2 z 3 , y 3 = z 3
and we get
f 3 = 6 α z 1 z 2 2 z 1 2 z 2 2 + 18 α z 1 2 + 18 α z 2 2 + 6 z 1 z 2 2 + 108 α z 1 + 36 z 1 2 36 z 2 2 + 108 z 1 z 3 2 .
Let us denote
g 1 z 1 , z 2 = z 1 2 z 2 2 + 18 α + 36 z 1 2 + 6 α + 6 z 1 z 2 2 + 108 α + 108 z 1 + 18 α 36 z 2 2 =
= z 1 2 z 2 2 + 6 α + 1 z 1 z 2 2 + 18 α + 2 z 1 2 + 18 α 2 z 2 2 + 108 α + 1 z 1 .
According to (22) the polynomial g 1 z 1 , z 2 is obtained from the polynomial g z 1 , z 2 by the transposition
( z 1 , z 2 , α ) ( z 2 , z 1 , α ) .
So here everything is similar to Section 2.4, but in the plane A 1 , A 2 rotated by an angle of 2 π / 3 . Also here there are expansions symmetric to (29) by transpositions (30) and
( ( b 1 ( t ) , b 2 ( t ) ) ( ( b 2 ( t ) , b 1 ( t ) )
Theorem 1.
Near the singular point P 5 ( 3 ) the variety Ω has 3 local singular parametric expansions (18) and (29) and symmetric to (29) by transpositions (30) and (31). The expansions (18) describe parts of branches F 1 and G 2 very near the point P 5 ( 3 ) . Expansions (29) and its symmetric describes branches F 1 and G 2 near line (26) and symmetry line to it. For ε 0 branches F 1 and G 2 coincide at parts of these lines.

3. The Structure of the Manifold Ω near the Curve H of Singular Points

Recall that the curve H is given by equations
A 1 = b 1 t = 9 t t 2 + 1 4 t + 1 t 2 4 t + 1 , A 2 = b 2 t = 9 t 2 + 1 4 t + 1 t 2 4 t + 1 , A 3 = 3 4 .
In the polynomial R A = Q ( s ) , substitute
A 3 = 3 4 + μ
and write the result as
R ˜ A 1 , A 2 , μ = k = 0 m R k ( A 1 , A 2 ) μ k .
The polynomials R 0 , R 1 , R 2 , and R 3 are computed using the command coeff(R, mu, k) [27]. After factorization, the polynomials R 0 , R 1 , R 2 and R 3 have the form:
R 0 A 1 , A 2 = ( 256 A 1 6 1536 A 1 5 A 2 + 768 A 1 4 A 2 2 + 5120 A 1 3 A 2 3 + 768 A 1 2 A 2 4 1536 A 1 A 2 5 + 256 A 2 6 5184 A 1 4 10368 A 1 2 A 2 2 5184 A 2 4 + 17496 A 1 2 + 17496 A 2 2 19683 ) ( 4 A 1 3 12 A 1 2 A 2 12 A 1 A 2 2 + 4 A 2 3 + 9 A 1 2 + 9 A 2 2 ) 2 / 2125764 ,
R 1 A 1 , A 2 = ( 1 / 177147 ) ( 8 ( 4 A 1 3 12 A 1 2 A 2 12 A 1 A 2 2 + 4 A 2 3 + 9 A 1 2 + 9 A 2 2 ) ( 64 A 1 8 384 A 1 7 A 2 + 256 A 1 6 A 2 2 + 896 A 1 5 A 2 3 + 384 A 1 4 A 2 4 + 896 A 1 3 A 2 5 + 256 A 1 2 A 2 6 384 A 1 A 2 7 + 64 A 2 8 576 A 1 7 + 1728 A 1 6 A 2 + 576 A 1 5 A 2 2 + 2880 A 1 4 A 2 3 + 2880 A 1 3 A 2 4 + 576 A 1 2 A 2 5 + 1728 A 1 A 2 6 576 A 2 7 2592 A 1 6 7776 A 2 2 A 1 4 7776 A 2 4 A 1 2 2592 A 2 6 + 3888 A 1 5 11664 A 1 4 A 2 7776 A 1 3 A 2 2 7776 A 1 2 A 2 3 11664 A 1 A 2 4 + 3888 A 2 5 + 13122 A 1 4 + 26244 A 1 2 A 1 2 + 13122 A 2 4 6561 A 1 3 + 19683 A 1 2 A 2 + 19683 A 1 A 2 2 6561 A 2 3 19683 A 1 2 19368 A 2 2 ) ) ,
R 2 A 1 , A 2 = 544 81 A 2 6 16 3 A 1 3 544 81 A 1 6 16 3 A 2 3 512 27 A 2 5 A 1 + 16 A 1 2 A 2 + 16 A 1 A 2 2 512 27 A 2 A 1 5 544 27 A 2 2 A 1 4 + 5120 81 A 2 3 A 1 3 544 27 A 2 4 A 1 2 + 5120 19683 A 1 2 A 2 8 + 10240 19683 A 1 4 A 2 6 + 8192 19683 A 1 3 A 2 7 + 5120 19683 A 1 8 A 2 2 + 8192 19683 A 1 7 A 2 3 + 10240 19683 A 1 6 A 2 4 + 28672 19683 A 1 5 A 2 5 2048 6561 A 1 9 A 2 7168 2187 A 1 2 A 2 6 + 256 27 A 1 2 A 2 5 + 3584 729 A 1 7 A 2 7168 2187 A 1 6 A 2 2 + 256 9 A 1 6 A 2 25088 2187 A 1 5 A 2 3 + 256 27 A 1 5 A 2 2 3584 729 A 1 4 A 2 4 + 1280 27 A 1 4 A 2 3 688 9 A 1 4 A 2 25088 2187 A 1 3 A 2 5 + 1280 27 A 1 3 A 2 4 1376 27 A 1 3 A 2 2 + 160 3 A 1 2 A 2 2 2048 6561 A 1 A 2 9 + 3584 729 A 1 A 2 7 + 256 9 A 1 A 2 6 688 9 A 1 A 2 4 1376 27 A 1 2 A 2 3 16384 6561 A 1 8 A 2 + 14336 6561 A 1 7 A 2 2 2048 19683 A 1 6 A 2 3 75776 6561 A 1 5 A 2 4 75776 6561 A 1 4 A 2 5 2048 19683 A 1 3 A 2 6 + 14336 6561 A 1 2 A 2 7 16384 6561 A 2 8 A 1 256 27 A 2 7 + 688 27 A 2 5 + 80 3 A 2 4 + 10240 19683 A 1 10 1792 2187 A 2 8 + 80 3 A 1 4 + 688 27 A 1 5 256 27 A 1 7 1792 2187 A 1 8 + 1024 19683 A 2 10 + 34816 59049 A 2 9 + 34816 59049 A 1 9 ,
R 3 A 1 , A 2 = 5120 729 A 2 6 1216 27 A 1 3 + 5120 729 A 1 6 1216 27 A 2 3 5120 243 A 2 5 A 1 + 1216 9 A 1 2 A 2 + 1216 9 A 2 2 A 1 5120 243 A 1 5 A 2 + 5120 243 A 2 2 A 1 4 + 51200 729 A 1 3 A 2 3 + 5120 243 A 2 4 A 1 2 163840 19683 A 1 2 A 2 6 + 23552 2187 A 1 2 A 2 5 + 8192 6561 A 1 7 A 2 163840 19683 A 1 6 A 2 2 + 23552 729 A 1 6 A 2 57344 19683 A 1 5 A 2 3 + 23552 2187 A 1 5 A 2 2 81920 6561 A 1 4 A 2 4 + 117760 2187 A 1 4 A 2 3 14272 81 A 1 4 A 2 57344 19683 A 1 3 A 2 5 + 117760 2187 A 1 3 A 2 4 28544 243 A 1 3 A 2 2 + 1280 27 A 1 2 A 2 2 + 8192 6561 A 1 A 2 7 + 23552 729 A 1 A 2 6 14272 81 A 1 A 2 4 28544 243 A 1 2 A 2 3 65536 59049 A 1 8 A 2 + 57344 59049 A 1 7 A 2 2 8192 177147 A 1 6 A 2 3 303104 59049 A 1 5 A 2 4 303104 59049 A 1 4 A 2 5 8192 177147 A 1 3 A 2 6 + 57344 59049 A 1 2 A 2 7 65536 59049 A 1 A 2 8 23552 2187 A 2 7 + 14272 243 A 2 5 + 640 27 A 2 4 40960 19683 A 2 8 + 640 27 A 1 4 + 14272 243 A 1 5 23552 2187 A 1 7 40960 19683 A 1 8 + 139264 531441 A 2 9 + 139264 531441 A 1 9 .
Let’s denote
Φ A 1 , A 2 = 4 A 1 3 + A 2 3 12 A 1 2 A 2 + A 1 A 2 2 + A 1 2 + A 2 2 .
Then R 0 is divided by Φ 2 , R 1 is divided by Φ , and R 2 and R 3 are not divided by Φ . The curve Φ A 1 , A 2 = 0 has genus 0, its parameterization is
A 1 , A 2 = { 9 t t 2 + 1 4 t + 1 t 2 4 t + 1 , 9 t 2 + 1 4 t + 1 t 2 4 t + 1 }
and is shown in Figure 10.
The parameterization (34) is the same as the formulas of (32). The curve H goes to infinity at
t 1 = 1 , t 2 = 2 + 3 3.732050808 , t 3 = 2 3 0.267949192 .
According to (32) we substitute
A 1 = b 1 t + ε , A 2 = b 2 t .
into the polynomials R k ( A 1 , A 2 ) . Then the polynomial (33) will become a polynomial
R ˜ A 1 , A 2 , μ = u ε , μ = u p q t ε p μ q ,
whereby
u p q = 1 p ! · p R q A 1 p ,
where A 1 = b 1 t , A 2 = b 2 t according to (32). In particular, we obtain
u 00 = u 10 = u 01 0 ,
u 20 t = 1 2 · 2 R 0 A 1 2 = 28160 59049 A 1 9 9728 59049 A 2 9 + 320 243 A 1 8 + 512 81 A 1 7 + 3 2 A 2 2 112 9 A 1 5 14 9 A 2 4 70 9 A 1 4 + 16 27 A 2 5 + 9 2 A 1 2 + 320 2187 A 2 8 4 3 A 2 3 + 64 243 A 2 6 + 20 3 A 1 3 + 448 243 A 1 6 + 80 3 A 1 4 A 2 5120 243 A 1 4 A 2 3 + 3200 729 A 1 4 A 2 4 + 3584 729 A 1 5 A 2 3 28 3 A 1 2 A 2 2 + 160 9 A 1 2 A 2 3 512 81 A 1 2 A 2 5 + 1280 729 A 1 2 A 2 6 + 160 27 A 1 3 A 2 2 2560 243 A 1 3 A 2 4 + 17920 2187 A 1 3 A 2 5 3584 243 A 1 6 A 2 + 8960 2187 A 1 6 A 2 2 + 716800 59049 A 1 6 A 2 4 512 81 A 1 7 A 2 16384 59049 A 1 7 A 2 3 71680 19683 A 1 8 A 2 2 + 80 9 A 1 A 2 4 81920 59049 A 1 3 A 2 7 839680 59049 A 1 4 A 2 6 + 51200 19683 A 1 2 A 2 8 57344 19683 A 1 5 A 2 5 4 A 1 A 2 2 448 81 A 1 A 2 5 12 A 1 2 A 2 + 64 27 A 1 2 A 2 4 4480 243 A 1 3 A 2 3 + 448 27 A 1 5 A 2 + 320 81 A 1 4 A 2 2 + 71680 19683 A 1 3 A 2 6 + 2048 729 A 1 2 A 2 7 3584 6561 A 1 A 2 8 + 35840 6561 A 1 4 A 2 5 38912 6561 A 1 7 A 2 2 100352 19683 A 1 6 A 2 3 + 7168 729 A 1 5 A 2 4 + 225280 177147 A 1 9 A 2 + 2560 729 A 1 8 A 2 + 512 729 A 1 A 2 7 1024 243 A 1 A 2 6 80 9 A 1 3 A 2 + 80 9 A 1 A 2 3 4096 177147 A 1 A 2 9 22528 177147 A 1 10 14336 177147 A 2 10 = 243 t 2 + 1 2 ( t 4 + 6 t 2 8 t 3 ) 2 ( 5 t 6 + 24 t 5 + 15 t 4 80 t 3 + 15 t 2 + 24 t + 5 ) 2 1024 ( t + 1 ) 8 ( t 2 4 t + 1 ) 8 ,
u 11 t = R 1 A 1 = 32 A 1 A 2 2 224 9 A 1 5 + 71680 6561 A 1 4 A 2 5 + 7168 243 A 1 6 A 2 + 32 A 1 3 512 243 A 2 8 22528 177147 A 1 10 56 3 A 2 4 64 9 A 2 5 + 512 81 A 1 8 + 1024 243 A 2 7 + 2048 729 A 1 7 320 9 A 1 4 A 2 35840 729 A 1 4 A 2 3 5120 243 A 1 4 A 2 4 + 2048 243 A 1 5 A 2 2 + 2048 19683 A 2 10 + 280 9 A 1 4 + 640 9 A 1 2 A 2 3 8192 243 A 1 5 A 2 3 112 3 A 1 2 A 2 2 + 2048 243 A 1 3 A 2 4 4096 243 A 1 3 A 2 5 + 28672 6561 A 1 6 A 2 4 38912 19683 A 1 8 A 2 2 4096 243 A 1 7 A 2 224 9 A 1 A 2 4 114688 59049 A 1 7 A 2 3 + 143360 59049 A 1 4 A 2 6 14336 19683 A 1 2 A 2 8 + 57344 19683 A 1 5 A 2 5 + 16384 6561 A 1 3 A 2 7 + 6400 81 A 1 3 A 2 3 + 1600 27 A 1 2 A 2 4 + 640 81 A 1 A 2 5 + 4096 2187 A 1 2 A 2 7 + 1600 81 A 1 4 A 2 2 + 10240 2187 A 1 5 A 2 4 + 28672 6561 A 1 6 A 2 3 + 20480 6561 A 1 7 A 2 2 + 20480 6561 A 1 3 A 2 6 1024 243 A 1 8 A 2 77824 177147 A 1 A 2 9 + 20480 19683 A 1 9 A 2 + 2048 729 A 1 A 2 6 + 5120 6561 A 1 A 2 8 + 640 9 A 1 5 A 2 224 3 A 1 3 A 2 224 9 A 1 A 2 3 + 5120 6561 A 1 9 1024 2187 A 2 9 2240 81 A 1 6 + 320 27 A 2 6 4096 243 A 1 2 A 2 6 448 9 A 1 3 A 2 2 7168 243 A 1 2 A 2 5 = = 729 t 2 + 1 4 t 4 + 6 t 2 8 t 3 5 t 6 + 24 t 5 + 15 t 4 80 t 3 + 15 t 2 + 24 t + 5 2 512 ( t + 1 ) 8 ( t 2 4 t + 1 ) 8 ,
u 02 t = R 2 b 1 t , b 2 t = = 243 t 2 + 1 3 t 2 + 8 t + 1 11 t 4 + 8 t 3 42 t 2 + 8 t + 11 5 t 6 + 24 t 5 + 15 t 4 80 t 3 + 15 t 2 + 24 t + 5 2 1024 t + 1 8 t 2 4 t + 1 8 .
From the Formulas (37) and (38), we can see that the Newton’s polygon Γ of the polynomial u ε , μ (36) in the plane p , q has an edge Γ 1 ( 1 ) containing the points ( 2 , 0 ) , ( 1 , 1 ) , ( 0 , 2 ) (Figure 11) with external normal N 1 = 1 , 1 .
So we’re doing a power transformation
ε = μ δ .
Then the polynomial u ε , μ becomes a polynomial.
μ 2 V δ , μ = μ 2 V p r t δ p μ r = u ε , μ ,
where
u p , q t = V p , p + q 2 t .
The support and Newton’s polygon for the polynomial V δ , μ are shown in Figure 12.
The truncated equation corresponding to the edge Γ ˜ 1 ( 1 ) is
u 20 t δ 2 + u 11 t δ + u 02 t = 0 .
It has two roots
δ 1 ( t ) = 3 ( t 2 + 1 ) 2 + 2 5 t 8 + 24 t 7 + 20 t 6 56 t 5 + 30 t 4 56 t 3 + 20 t 2 + 24 t + 5 t 4 + 6 t 2 8 t 3 , δ 2 ( t ) = 3 t 2 + 1 2 2 5 t 8 + 24 t 7 + 20 t 6 56 t 5 + 30 t 4 56 t 3 + 20 t 2 + 24 t + 5 t 4 + 6 t 2 8 t 3 .
Their denominator goes to zero at two real points
t 4 1.324070992 , t 5 0.3044219351 .
These points are indicated in Figure 10.
Next, we consider the expansions of the Ω manifold for the cases of two roots (42).
In the polynomial V δ , μ of (40), we make the substitutions
δ = δ i + ϰ i , i = 1 , 2 .
where δ i are given by the formula (42). We get
W i ϰ i , μ = V δ , μ = W i s r t ϰ i s μ r , i = 1 , 2 ,
where integers s , r 0 , r + s 1 . In this case.
W i s r t = p s V p s t C p s δ i p s , i = 1 , 2 ,
where C p s = p ! s ! ( p s ) ! are binomial coefficients. In particular, according to (38), (41) and (42), we have
W i 00 0 , W i 10 2 u 20 t · δ i t + u 11 t , i = 1 , 2 .
More specifically,
W 110 = 2 u 20 t δ 1 t + u 11 t = 243 t 4 + 6 t 2 8 t 3 t 2 + 1 2 5 t 6 + 24 t 5 + 15 t 4 80 t 3 + 15 t 2 + 24 t + 5 2 256 t + 1 8 × t 2 + 1 5 t 6 + 24 t 5 + 15 t 4 80 t 3 + 15 t 2 + 24 t + 5 t 2 4 t + 1 8 ,
W 210 = 2 u 20 t δ 2 t + u 11 t = 243 t 4 + 6 t 2 8 t 3 t 2 + 1 2 5 t 6 + 24 t 5 + 15 t 4 80 t 3 + 15 t 2 + 24 t + 5 2 256 t + 1 8 × t 2 + 1 ( 5 t 6 + 24 t 5 + 15 t 4 80 t 3 + 15 t 2 + 24 t + 5 ) ( t 2 4 t + 1 ) 8 ,
i.e., W 210 = W 110 0 . Hence Theorem 1 in [1] is applicable, which for solutions of equations W i ϰ i , μ = 0 according to (45) and (46) gives the expansions
ϰ i t = k = 1 c i k ( t ) μ k , i = 1 , 2 .
Let’s go from coordinates ϰ i , μ to coordinates δ , μ by (44), with decompositions
δ ( 1 ) = δ 1 ( t ) + ϰ 1 ( t ) = δ 1 + k = 1 c 1 k μ k
and
δ ( 2 ) = δ 2 ( t ) + ϰ 2 t = δ 2 + k = 1 c 2 k μ k .
Then we go to the coordinates ε , μ :   ε ( i ) = μ δ ( i ) , i = 1 , 2 by (39) to the coordinates A 1 , μ by (35):
A 1 1 = b 1 t + ε 1 = b 1 t + μ δ 1 + ϰ 1 = b 1 t + δ 1 ( t ) μ + μ k = 1 c 1 k t μ k ,
A 1 2 = b 1 t + ε 2 = b 1 t + μ δ 2 + ϰ 2 = b 1 t + δ 2 ( t ) μ + μ k = 1 c 2 k t μ k ,
A 2 = b 2 t = 9 t 2 + 1 4 t + 1 t 2 4 t + 1 .
With μ fixed, the Formulas (47) and (49) are defined in the plane A 1 , A 2 with A 3 = 3 / 4 + μ the first curve K ( 1 ) , and the Formulas (48) and (49) define there the second curve K ( 2 ) . We obtain four curves. Restricting ourselves to the initial terms of the expansions, we draw them. When μ = 1 8 , the curve K 1 is
K 1 = A 1 1 = b 1 t + δ 1 t μ , A 2 = b 2 t = 9 t t 2 + 1 4 t + 1 t 2 4 t + 1 + 3 t 2 + 1 2 + 2 t 2 + 1 ( 5 t 6 + 24 t 5 + 15 t 4 80 t 3 + 15 t 2 + 24 t + 5 ) 8 · t 4 + 6 t 2 8 t 3 , b 2 t ,
and it is shown in Figure 13.
The curve K 2 is
K 2 = A 1 2 = b 1 t + δ 2 t μ , A 2 = b 2 t = 9 t t 2 + 1 4 t + 1 t 2 4 t + 1 + 3 t 2 + 1 2 2 t 2 + 1 ( 5 t 6 + 24 t 5 + 15 t 4 80 t 3 + 15 t 2 + 24 t + 5 ) 8 · t 4 + 6 t 2 8 t 3 , b 2 t ,
It’s shown in Figure 14.
When μ = 1 / 8 , the curve
K 1 = A 1 1 = b 1 t + δ 1 t μ , A 2 = b 2 t = 9 t t 2 + 1 4 t + 1 t 2 4 t + 1 3 t 2 + 1 2 + 2 t 2 + 1 5 t 6 + 24 t 5 + 15 t 4 80 t 3 + 15 t 2 + 24 t + 5 8 · t 4 + 6 t 2 8 t 3 , b 2 t
is shown in Figure 15.
Figure 15. The curve K 1 at μ = 1 / 8 .
Figure 15. The curve K 1 at μ = 1 / 8 .
Axioms 13 00106 g015
and the curve
K 2 = A 1 2 = b 1 t + δ 2 t μ , A 2 = b 2 t = 9 t t 2 + 1 4 t + 1 t 2 4 t + 1 + 3 t 2 + 1 2 + 2 t 2 + 1 5 t 6 + 24 t 5 + 15 t 4 80 t 3 + 15 t 2 + 24 t + 5 8 · t 4 + 6 t 2 8 t 3 , b 2 t
is shown in Figure 16.
The curves of Figure 13 and Figure 14 correspond to A 3 = 7 / 8 and are similar to the curves of Figure 13 of [23], showing the section of the variety Ω by the plane A 3 = 1 . The curves of Figure 15 and Figure 16 correspond to A 3 = 5 / 8 and they are similar to the curves of Figure 14 of [23], showing the cross section of Ω by the plane A 3 = 5 / 8 . This confirms the correctness of the calculated expansions.
In Figure 13, Figure 15 and Figure 16, there are discontinuities in the curves at the places of the roots (43) of the denominators δ 1 ( t ) and δ 2 ( t ) in (42). They can be eliminated by substituting
A 1 = b 1 t + ε , A 2 = b 2 t + ε
instead of substitution (35) and calculate the corresponding expansion.
Theorem 2.
Near the curve H of singular points the variety Ω has two singular parametric expansions (47), (49) and (48), (49). They represent parts of branches G 2 + and G 3 correspondingly. At A 3 = 3 / 4 they coincide with curve H .

4. The Structure of the Variety Ω near the Curve F of Singular Points

We take the polynomial Q s = Q s 1 , s 2 , s 3 , where s 1 = a 1 + a 2 + a 3 , s 2 = a 1 · a 2 + a 1 · a 3 + a 1 · a 3 , s 3 = a 1 · a 2 · a 3 are elementary symmetric polynomials, and we substitute a 1 = a 2 . Then the polynomial Q s takes the form
Q ˜ a 1 , a 3 = 1 + 2 a 3 8 a 1 a 3 + 8 a 3 2 4 a 1 4 a 3 + 1 16 a 1 3 + 16 a 1 2 a 3 4 a 1 2 a 3 + 1 3 .
Let’s write the polynomial 16 a 1 3 + 16 a 1 2 a 3 4 a 1 2 a 3 + 1 in A coordinates, substituting
a 1 = 1 + 3 6 A 1 + 1 3 6 A 1 + 1 3 A 3 , a 3 = 1 3 A 1 1 3 A 1 + 1 3 A 3
with A 1 = A 2 .
Then we get a polynomial 1 27 16 A 1 3 48 A 1 A 3 2 32 A 3 3 + 54 A 3 27 . We put
F A 1 , A 3 = 16 A 1 3 48 A 1 A 3 2 32 A 3 3 + 54 A 3 27 .
The curve F = 0 consists of singular points, has genus 0, and parameterization
A 1 , A 3 = b 1 t = 5 t + 2 t + 4 2 6 t t 2 16 t 8 , b 2 t = 11 t 3 48 t 2 48 t 16 6 t t 2 16 t 8 .
The curve is shown in Figure 17.
In [23] (Figure 3), the components f 1 ± , f 2 , f 3 ± of this curve are shown in gray. The scales on the axes are different there. In the polynomial R A = Q ( s ) we substitute
A 1 = B 1 , A 2 = B 1 + B 2 , A 3 = B 3 ,
and we get a polynomial depending on three variables,
K B 1 , B 2 , B 3 = l = 0 12 K l ( B 1 , B 3 ) B 2 l .
We factorize K l for l = 0 , 1 , 2 , 3 because they are need for our computation and get
531441 K 0 ( B 1 , B 3 ) = ( 2 B 3 3 + 4 B 1 ) 16 B 1 2 40 B 1 B 3 + 16 B 3 2 + 12 B 1 24 B 3 + 9 × 16 B 1 3 48 B 1 B 3 2 32 B 3 3 + 54 B 3 27 3 = = 2 B 3 3 + 4 B 1 16 B 1 2 40 B 1 B 3 + 16 B 3 2 + 12 B 1 24 B 3 + 9 F 3 ( B 1 , B 3 ) .
and
177147 K 1 B 1 , B 3 = 8 B 1 16 B 1 3 48 B 1 B 3 2 32 B 3 3 + 54 B 3 27 2
× 256 B 1 4 704 B 1 3 B 3 + 96 B 1 2 B 3 2 + 736 B 1 B 3 3 320 B 3 4 + 378 B 1 B 3 432 B 3 2 189 B 1 + 216 B 3
= 8 B 1 256 B 1 4 704 B 1 3 B 3 + 96 B 1 2 B 3 2 + 736 B 1 B 3 3 320 B 3 4 + 378 B 1 B 3 432 B 3 2 189 B 1 + 216 B 3 F 2 B 1 , B 3 .
Then
K 2 B 1 , B 3 = 45056 729 B 1 7 B 3 + 1856 27 B 1 4 B 3 131072 19683 B 1 10 467 27 B 1 4 + 22528 729 B 1 7 + 1310720 177147 B 3 10 32768 2187 B 3 8 + 16384 2187 B 3 7 128 3 B 3 3 + 2048 81 B 3 4 + 1024 81 B 3 5 1024 81 B 3 6 + 64 3 B 3 2 32 9 B 3 65536 729 B 1 2 B 3 5 + 106496 2187 B 1 3 B 3 4 + 136192 729 B 1 4 B 3 3 + 512 27 B 1 2 B 3 2 + 2048 81 B 1 3 B 3 212992 2187 B 1 3 B 3 5 40960 729 B 1 5 B 3 2 177152 2187 B 1 6 B 3 + 131072 729 B 1 2 B 3 6 + 81920 729 B 1 5 B 3 3 272384 729 B 1 4 B 3 4 + 354304 2187 B 1 6 B 3 2 + 3080192 177147 B 1 9 B 3 1638400 19683 B 1 7 B 3 3 5472256 59049 B 1 6 B 3 4 + 2621440 19683 B 1 5 B 3 5 + 2768896 19683 B 1 4 B 3 6 + 671744 19683 B 1 8 B 3 2 1441792 19683 B 1 2 B 3 8 3407872 59049 B 1 3 B 3 7 + 2048 27 B 1 2 B 3 4 + 8192 81 B 1 3 B 3 3 1856 27 B 1 4 B 3 2 8192 81 B 1 3 B 3 2 2048 27 B 1 2 B 3 3 , K 3 B 1 , B 3 = 1024 27 B 1 B 3 4 + 65536 729 B 1 B 3 6 1024 27 B 1 B 3 3 32768 729 B 1 B 3 5 + 256 27 B 1 B 3 2 1952 243 B 1 3 + 336896 6561 B 1 6 3276800 531441 B 1 9 917504 531441 B 3 9 90112 6561 B 3 7 + 3424 243 B 3 3 5632 243 B 3 4 + 5632 243 B 3 5 + 45056 6561 B 3 6 112 9 B 3 2 + 56 3 B 3 720896 19683 B 1 B 3 8 28 27 851968 59049 B 1 2 B 3 7 + 23953408 177147 B 1 3 B 3 6 + 655360 6561 B 1 4 B 3 5 6324224 59049 B 1 5 B 3 4 13991936 177147 B 1 6 B 3 3 + 1015808 59049 B 1 8 B 3 53248 2187 B 1 2 B 3 5 2772992 6561 B 1 3 B 3 4 + 20480 243 B 1 4 B 3 3 2048 81 B 1 2 B 3 2 + 7808 243 B 1 3 B 3 + 604160 2187 B 1 5 B 3 2 673792 6561 B 1 6 B 3 + 720896 19683 B 1 7 B 3 2 + 512 81 B 1 2 B 3 + 26624 2187 B 1 2 B 3 4 + 1386496 6561 B 1 3 B 3 3 10240 243 B 1 4 B 3 2 302080 2187 B 1 5 B 3 7808 243 B 1 3 B 3 2 + 2048 81 B 1 2 B 3 3 .
The multiplier F ( B 1 , B 3 ) enters in K 0 B 1 , B 3 in the third degree, in K 1 B 1 , B 3 in the second degree, in K 2 B 1 , B 3 , and in K 3 B 1 , B 3 it does not enter. Then K 0 is divisible by F 3 , K 1 is divisible by F 2 , and K 2 and K 3 are not divisible by F . The curve F B 1 , B 3 = 0 has genus 0, parameterization (50).
The curve F = 0 goes to infinity at
t 1 = 0 , t 2 = 2 4 + 3 2 16.48528137 , t 3 = 2 4 3 2 0.485281372 .
Into the polynomials K l ( B 1 , B 3 ) we substitute
B 1 = b 1 t + ε , B 3 = b 2 t
according to (50). Then the polynomial (52) will become a polynomial
K B 1 , B 3 , B 2 = u ε , B 2 = p , q 0 u p q t ε p B 2 q , whereby u p q = 1 p ! · p K q B 1 p b 1 t , b 2 t ,
where B 1 = b 1 t , B 3 = b 2 t according to (50). In particular, we obtain
u 00 = u 10 = u 01 0 , u 20 t = 1 2 · 2 K 0 B 1 2 b 1 t , b 2 t = 0 , u 11 t = K 1 B 1 b 1 t , b 2 t = 0 , u 02 t = K 2 b 1 t , b 2 t = 64 ( 5 t + 2 ) 2 ( t + 4 ) 4 ( t 2 ) 4 ( t + 1 ) 4 t 2 ( t 2 16 t 8 ) 6 .
u 30 = 1 6 · 3 K 0 B 1 3 = = 40960 81 B 1 2 B 3 3 + 14417920 59049 B 1 8 B 3 + 10240 81 B 1 2 B 3 286720 729 B 1 4 B 3 2 57671680 531441 B 1 9 + 360448 6561 B 3 7 + 4259840 6561 B 1 3 B 3 3 + 3670016 531441 B 3 9 + 22528 243 B 3 4 22528 243 B 3 5 180224 6561 B 3 6 + 1835008 2187 B 1 5 B 3 2 + 102400 243 B 1 3 B 3 + 2621440 6561 B 1 7 B 3 2 2981888 6561 B 1 6 B 3 150470656 177147 B 1 6 B 3 3 2883584 19683 B 1 B 3 8 + 4096 27 B 1 B 3 4 4096 27 B 1 B 3 3 131072 729 B 1 B 3 5 + 262144 729 B 1 B 3 6 + 573440 729 B 1 4 B 3 3 + 1490944 6561 B 1 6 224 9 B 3 13696 243 B 3 3 + 448 9 B 3 2 25600 243 B 1 3 + 112 27 917504 2187 B 1 5 B 3 102400 243 B 1 3 B 3 2 17039360 59049 B 1 2 B 3 7 + 103546880 177147 B 1 3 B 3 6 + 1024 27 B 1 B 3 2 40370176 59049 B 1 5 B 3 4 1064960 2187 B 1 2 B 3 5 + 18350080 19683 B 1 4 B 3 5 + 532480 2187 B 1 2 B 3 4 40960 81 B 1 2 B 3 2 8519680 6561 B 1 3 B 3 4 = 8192 5 t + 2 t + 4 2 t 2 2 t + 1 3 8 t 3 3 t 2 + 24 t + 8 3 6561 t 5 t 2 16 t 8 6 .
From the Formulas (55) and (57), we can see that the Newton’s polygon Γ of the polynomial u ε , B 2 given by (54) in the plane p , q has an edge Γ 1 ( 1 ) , containing the points ( 3 , 0 ) , ( 0 , 2 ) (Figure 18) with external normal N 1 = 2 , 3 .
A truncated polynomial corresponds to this edge
ε 3 u 30 t + B 2 2 u 02 t = 0
According to [11] we find the unimodular matrix α = 3 1 2 1 for N 1 such that N 1 α = 0 , 1 . Therefore, we need to do a power transformation
ln δ , ln D = ln ε , ln B 2 · α ,
where δ and D are new variables, i.e.,
ln ε , ln B 2 = ln δ , ln D · α 1 .
Since α 1 = 1 1 2 3 , then ε = δ D 2 , B 2 = δ D 3 . Hence we can write
K B 1 , B 3 , B 2 = u ε , B 2 = u p q t ε p B 2 q = u p q t δ p + q D 2 p + 3 q = δ 2 D 6 V δ , D .
Then the polynomial u ε , B 2 becomes a polynomial
δ 2 D 6 V δ , D = δ 2 D 6 V r s t δ r D s = u ε , B 2 ,
where V r , s t = V p + q , 2 p + 3 q t = u p , q t . Thus the polygon Γ of Figure 18 takes the form shown in Figure 19. For the polynomial V δ , D the polygon is shown in Figure 20. The truncated Equation (57) takes the form of
δ 2 D 6 u 30 t δ + u 02 t = 0 .
From where
δ 0 t = c 0 t = u 02 t u 30 t = 6561 5 t + 2 · t + 4 2 · t 2 2 t + 1 t 3 128 8 t 3 3 t 2 + 24 t + 8 3 .
The only real root of the denominator is
t 4 = 3 13 + 16 2 1 3 8 + 21 8 13 + 16 2 1 3 + 1 8 0.3111842957 .
In this case.
V g , h t = V p + q 2 , 2 p + 3 q 6 t = u p , q t .
After substitution δ = δ 0 t + ξ , into the polynomial V δ , D , we obtain
W ξ , D = V δ 0 t + ξ , D .
When ξ = 0 , the polynomial W 0 , D is calculated using the command c o e f f M 0 , D , 0 [27]. The quotient at D of degree zero is zero. The coefficient on the first degree of D is obtained by
a t = c o e f f M 0 , D , D , 1 = 1594323 t 6 5 t + 2 2 t + 4 4 t 2 4 t + 1 4 2 .
Therefore, Theorem 1 in [1] is applied to equation W ξ , D = 0 , and according to it a solution is
ξ = k = 1 c k t D k .
When we get the truncated equation u 30 t · ξ + a t · D = 0 , then it follows
ξ = a t u 30 t · D = 10460353203 t 11 t + 1 5 t + 2 t + 4 2 t 2 2 t 2 16 t 8 6 16384 8 t 3 3 t 2 + 24 t + 8 3 · D = c 1 t D .
Now let’s go back and get an approximation
ε = δ D 2 = ( δ 0 t + ξ ) D 2 δ 0 t D 2 + c 1 t D 3 ,
B 2 = ( δ 0 t + ξ ) D 3 δ 0 t D 3 + c 1 t D 4 .
Therefore, from the formula (51) we get
A 1 = B 1 = b 1 t + δ 0 t D 2 + c 1 t D 3 ,
A 2 = B 1 + B 2 = b 1 t + δ 0 t D 2 + ( c 1 t + δ 0 t ) D 3 + c 1 t D 4 ,
A 3 = B 3 = b 2 t = 11 t 3 48 t 2 48 t 16 6 t t 2 16 t 8 .
The curves (62) and (63) at D = ± 0.1 are shown in Figure 21 and Figure 22, respectively. The gaps in these curves are the neighborhoods of the point t 4 of (58). They can be filled in if instead of substituting (51) we do
B 1 = b 1 t + ε , B 3 = b 2 t + ε .
The closeness of these curves to the curve of Figure 17 confirms the correctness of the found parametric expansion of the (59) of the variety Ω near the curve of singular points.
According to (61) and (62) branches F i intersect curve F with singularity of type
A 1 b 1 ( t ) δ 0 ( t ) B 2 δ 0 ( t ) 1 / 3 .
Theorem 3.
Near the curve F of singular points the variety Ω has one singular parametric expansions (59)(61) and (63). They represent parts of branches F 1 ± , F 2 , F 3 ± . At A 1 = A they coincide with curve F , having points of curve F as singular points.

5. The Variety Ω at Infinity

The number of branches of the variety Ω at infinity exceeds their number near its singularities. Their complete study would exceed 7 sections on branches in the finite domain (4 Section in [1] and 3 Section here). Therefore, we study here only those branches corresponding to the first nonlinear polynomial multiplier included in the truncated polynomial in degree one.

5.1. Reducing the Study at Infinity to the Study in the Finite Domain

In the polynomial S A = Q ( s ) , we do a power transformation
A 1 = B 1 B 3 , A 2 = B 2 B 3 , A 3 = B 3 .
The resulting polynomial is divided by B 3 12 and factorized, we get
S ( B 1 B 3 , B 2 B 3 , B 3 ) / B 3 12 = 1 531441 T ˜ B 1 , B 2 , B 3 .
In the sum T ˜ B 1 , B 2 , B 3 , which is not a polynomial, we substitute
B 1 = C 1 , B 2 = C 2 , B 3 = C 3 1 .
The resulting polynomial is J C 1 , C 2 , C 3 = T ˜ B 1 , B 2 , B 3 . Let us explain the meaning of these transformations for the two-dimensional case, restricting ourselves to coordinates A 2 and A 3 . The polyhedron of the original polynomial S ( A ) has the form shown in Figure 23.
After replacing (64), it takes the form shown in Figure 24.
The polyhedron of sum T ( B ) is shown in Figure 25.
After substituting (65), we get the polynomial J C , whose polyhedron is shown in Figure 26.
In Figure 23, Figure 24, Figure 25 and Figure 26, the edge that corresponds to infinity in coordinates A is bolded.
Now we need to study the polynomial J C at C 1 , C 2 c o n s t , C 3 0 . For this purpose, we compute the Newton’s polyhedron Γ 8 of the polynomial J C . Its graph is shown in Figure 27.
It has 4 two-dimensional faces with external normals
N 53 = 1 , 1 , 1 , N 71 = 1 , 0 , 0 , N 77 = 0 , 1 , 0 , N 79 = 0 , 0 , 1 .
Since C 1 and C 2 const , and C 3 0 , we select the only normal N 79 = 0 , 0 , 1 , which has only the third coordinate negative. After factorization, the corresponding truncated polynomial f t r 79 has the form:
f t r 79 = 1024 C 1 2 4 C 1 C 2 + C 2 2 2 C 1 2 C 2 2 2 × C 1 2 4 C 1 C 2 + C 2 2 + 4 C 1 + 4 C 2 8 2 C 1 + C 2 + 2 2 C 1 + C 2 1 2 .
We will devote a separate subsection to each of its multipliers.

5.2. The First Multiplier in (66)

Multiplier
f 1 = C 1 2 4 C 1 C 2 + C 2 2 2 C 1 2 C 2 2
does not factorize in the field of rational numbers, but does factorize in the extension of that field with α = 3 . It is the product of two linear forms f 1 = D 1 D 2 , and we will consider the whole thing as a coordinate substitution, where
D 1 = C 1 C 2 3 + 2 3 + 1 ,
D 2 = C 1 + C 2 3 2 + 3 1 ,
D 3 = C 3 .
and put D = D 1 , D 2 , D 3 . Its inverse substitution is
C 1 = ( 2 + 3 ) 3 6 D 1 + ( 2 + 3 ) 3 6 D 2 1 ,
C 2 = 3 6 D 1 + 3 6 D 2 1 , C 3 = D 3 .
We substitute it into the polynomial J ( C ) and get the polynomial S 1 D = J C . For the polynomial S 1 D , we compute its Newton’s polyhedron Γ 9 .
Its graph is shown in Figure 28. It has 11 two-dimensional faces with external normals
N 5645 = 1 , 0 , 1 , N 6101 = 1 , 1 , 1 , N 13631 = 0 , 1 , 1 , N 116147 = 1 , 1 , 1 , N 122463 = 1 , 0 , 0 , N 122607 = 0 , 3 , 2 , N 124121 = 0 , 1 , 0 , N 133225 = 0 , 0 , 1 , N 150921 = 3 , 0 , 2 , N 164051 = 1 , 0 , 0 , N 175461 = 0 , 1 , 0 .
Since D 1 , D 2 and D 3 0 , we select the only normal that has all coordinates negative. This is N 6101 = 1 , 1 , 1 . It corresponds to the truncated polynomial
f t r 6101 = 23328 2 + α ( 288 α D 1 4 D 3 2 128 α D 1 3 D 2 3 + 256 α D 1 2 D 2 4 288 α D 1 2 D 2 2 D 3 2 + 1728 α D 1 D 2 3 D 3 2 1782 α D 1 D 2 D 3 4 4320 α D 2 4 D 3 2 + 4212 α D 2 2 D 3 4 2916 α D 3 6 + 64 D 1 4 D 2 2 576 D 1 4 D 3 2 256 D 1 3 D 2 3 + 432 D 1 3 D 2 D 3 2 + 448 D 1 2 D 2 4 576 D 1 2 D 2 2 D 3 2 + 1053 D 1 2 D 3 4 + 3024 D 1 D 2 3 D 3 2 3564 D 1 D 2 D 3 4 7488 D 2 4 D 3 2 + 7371 D 2 2 D 3 4 5832 D 3 6 ) .
After the power transformation
D 1 = M 1 M 3 , D 2 = M 2 M 3 , D 3 = M 3 ,
we get f t r 6101 = F 10 ( M 1 , M 2 ) · M 3 6 , where
F 10 M 1 , M 2 = ( 128 α M 1 3 M 2 3 + 256 α M 1 2 M 2 4 + 64 M 1 4 M 2 2 256 M 1 3 M 2 3 + 448 M 1 2 M 2 4 + 288 α M 1 4 288 α M 1 2 M 2 2 + 1728 α M 1 M 2 3 4320 α M 2 4 576 M 1 4 + 432 M 1 3 M 2 576 M 1 2 M 2 2 + 3024 M 1 M 2 3 7488 M 2 4 1782 α M 1 M 2 + 4212 α M 2 2 + 1053 M 1 2 3564 M 1 M 2 + 7371 M 2 2 2916 α 5832 ) M 3 6 .
The curve F 10 = 0 has genus 0, and parameterization
M 1 = b 1 t = ( 3 ( 35677231 + 53951067 α ) ( 226041519229686484434944000 α t 3 + 312865218289492809482240000 t 4 + 29692450221454838768025600 α t 2 + 2752150186688110972108800 t 3 + 19470907467358707865979520 α t + 205018459636432060173312000 t 2 + 431078468622082108802982 α + 552278881165356491537664 t + 2976481999975581125816265 ) ) / ( 81242985303506296261120 t   × × ( 2346560 t + 357378 + 757301 α ) ( 56960 α t + 204800 t 2 26880 t + 25527 ) ) ,
M 2 = b 2 t = ( ( 327921327 + 145854781 α ) ( 84568711555214157742080000 α t 3 + 15278292434425670008832320000 t 4 582100343712291111321600 α t 2 8379475635071933625131392000 t 3 + 22597125012513902404916160 α t + 129684691757394325122969600 t 2 + 862156937244164217605964 α + 7644517497617158949374080 t + 4294936642585162134439377 ) ) / ( 123980512928512598138 56960 α t + 204800 t 2 26880 t + 25527 56960 t + 8509 α 8509 + 8960 t ) ,
and is shown in Figure 29.
In (70), the denominator has 2 real roots
t 1 = 0 , t 2 0.7112802609 .
In (70), the denominator has 2 real roots
t 3 = 8509 8960 0.9496651786 , t 4 = 8509 3 56960 0.2587433343
In fact, the parametric expansion of the variety Ω can also be calculated here. To do this, we perform a power transformation (68) to the polynomial S 1 D and similarly to (16) get the polynomial
T M M 3 6 = k = 0 6 T k M 1 , M 2 M 3 k ,
where M = ( M 1 , M 2 , M 3 ) . We substitute into the polynomials T k M 1 , M 2 according to (69) and (70)
M 1 = b 1 t + ε , M 2 = b 2 t + ε .
We obtain the polynomial u ε , M 3 = T M 1 , M 2 , M 3 / M 3 6 with coefficients depending on t via b 1 t and b 2 t . In this polynomial.
u ε , M 3 = k = 0 6 T k ( b 1 + ε , b 2 + ε ) M 3 k = p , q 0 u p q ε p M 3 q ,
where
u p q = p 1 + p 2 = p 1 1 p 1 ! p 2 ! · p T q M 1 p 1 M 2 p 2 ,
when M i = b i t , i = 1 , 2 , p 1 , p 2 0 , p 1 ,
Specifically
u 00 0 , u 10 = T 0 M 1 , M 2 M 1 + T 0 M 1 , M 2 M 2 = 2985984 α M 1 4 M 2 + 5971968 α M 1 3 M 2 2 5971968 α M 1 2 M 2 3 2985984 α M 1 M 2 4 5971968 M 1 4 M 2 2985984 M 1 3 M 2 2 2985984 M 1 2 M 2 3 5971968 M 1 M 2 4 97417728 α M 1 3 + 30233088 α M 1 2 M 2 30233088 α M 1 M 2 2 + 97417728 α M 2 3 + 167961600 M 1 3 47029248 M 1 2 M 2 47029248 M 1 M 2 2 + 167961600 M 2 3 + 49128768 α M 1 49128768 α M 2 56687040 M 1 56687040 M 2 = def H b 1 ( t ) , b 2 ( t ) , u 01 = T 1 b 1 ( t ) , b 2 ( t ) = def G b 1 ( t ) , b 2 ( t ) .
Here the sign = def means new notation.
Indeed functions u 10 ( t ) and u 01 ( t ) have very complicated forms. So we omit them and give only some their properties.
The function u 10 ( t ) has two multiple roots
t 5 = 5553288233 3 11245663040 1415395569 2811415760 + 6443874209 6 22491326080 + 828223515 2 2249132608 0.1361976710 , t 6 = 5553288233 3 11245663040 1415395569 2811415760 6443874209 6 22491326080 828223515 2 2249132608 2.581322779
of multiplicity 6, and the function u 01 ( t ) has the same roots of multiplicity 8. The denominators of the functions u 10 ( t ) and u 01 ( t ) each have four multiple roots of (71) and (72). By the implicit function theorem [1] (Theorem 1), the equation u ε , M 3 = 0 has a solution as a power series on M 3
ε = k = 1 c k ( t ) M 3 k ,
where c k t are the rational functions of t, which are expressed through the coefficients u p q t , which in turn are expressed through b 1 ( t ) and b 2 t according to (74). This expansion is valid for all values of t , except maybe the neighborhood of the roots of (75). In particular,
c 1 t = u 01 u 10 = G H = 3 5000596138840425 3 6061042284824999 7108208938240 3 t + 15394617958400 t 2 + 1623856300668 3 1613861867520 t + 6311014555365 ) 7108208938240 3 t + 7197224345600 t 2 + 541285433556 3 + 7246825313280 t + 1592795378919 ) / 42266280808032016   × × 69374221130894188740608000 3 t 2 + 303911073479526952468480000 t 4 9161742964858347934924800 3 t 2 168426828577166939652096000 t 3 + 21223516032095931917445120 3 t + 80511690505906612625817600 t 2 + 2536997119105720789608561 3 + 21428792681795614620161280 t + 5952963999951162251632530 )
where the denominator has no real roots. According to (76) approximately.
ε c 1 t M 3 .
By the sequence of substitutions (64), (65), (67), (68) and (73), we return to the original coordinates, which at small M 3 by Ω are approximated with
D 1 = b 1 t + c 1 t M 3 M 3 , D 2 = b 2 t + c 1 t M 3 M 3 , D 3 = M 3 ;
C 1 = 2 3 3 6 · 2 c 1 t 2 3 + 3 M 3 2 + b 1 t 4 3 b 2 t 7 b 2 t M 3 + 4 3 + 6 , C 2 = 3 6 · b 1 t M 3 b 2 t M 3 + 2 3 , C 3 = M 3 ;
According to (65)
B 1 = C 1 , B 2 = C 2 , B 3 = 1 C 3 = 1 M 3 .
According to (64)
A 1 = B 1 B 3 = b 1 t 1 2 3 3 + b 2 t 1 2 + 3 3 + c 1 t M 3 1 M 3 ,
A 2 = B 2 B 3 = 3 6 · b 1 t + 3 6 · b 2 t 1 M 3 ,
A 3 = 1 M 3 .
When M 3 = 0.1 , the curve (77) and (78) is shown in Figure 30.
At M 3 = 0.1 , the curve (77) and (78) is shown in Figure 31.

5.3. Second Multiplier in (66)

Polynomial
f 2 = C 1 2 4 C 1 C 2 + C 2 2 + 4 C 1 + 4 C 2 8
does not factorize in the field of rational numbers, but does factorize in the extension of that field with α = 3 . It is the product of two linear forms f 2 = D 1 · D 2 , which we treat as coordinate substitutions
D 1 = C 1 C 2 3 + 2 + 2 3 + 2 , D 2 = C 1 + C 2 3 2 2 3 2 , D 3 = C 3 .
Its inverse substitution is
C 1 = ( 2 + 3 ) 3 6 D 1 + ( 2 + 3 ) 3 6 D 2 + 2 , C 2 = 3 6 D 1 + 3 6 D 2 + 2 , C 3 = D 3 .
We substitute it into the polynomial J ( C ) and get the polynomial S 2 D = J ( C ) . For the polynomial S 2 D , we calculate Newton’s polyhedron Γ 10 .
Its graph is shown in Figure 32. It has 11 two-dimensional faces with external normals
N 2049 = 2 , 2 , 1 , N 6293 = 2 , 0 , 1 , N 52673 = 0 , 2 , 1 , N 117443 = 1 , 1 , 1 , N 122283 = 2 , 1 , 0 , N 122987 = 0 , 1 , 0 , N 123867 = 1 , 0 , 0 , N 132855 = 0 , 1 , 0 , N 150911 = 1 , 0 , 0 , N 158011 = 0 , 0 , 1 , N 164049 = 1 , 2 , 0 .
Since D 1 , D 2 and D 3 0 , we select the only normal that has all coordinates negative. This is the normal N 2049 = 2 , 2 , 1 . It corresponds to the truncated polynomial
f t r 2049 = 26244 ( 3 α D 3 2 + 3 D 3 2 8 D 1 ) 2 ( 3 α D 3 2 3 D 3 2 + 8 D 2 ) 2 .
Assume
x 1 = 8 D 1 + ( 3 α + 3 ) D 3 2 , x 2 = 8 D 2 + ( 3 α 3 ) D 3 2 , x 3 = D 3 .
The inverse transformation is
D 1 = 1 8 x 1 + 3 + 3 α 8 x 3 2 , D 2 = 1 8 x 2 + ( 3 3 α ) 8 x 3 2 , D 3 = x 3 .
We substitute it into the polynomial S 2 D = J C and get the polynomial S 3 ( x ) = J C . For the polynomial S 3 ( x ) , we compute Newton’s polyhedron Γ 11 .
Its graph is shown in Figure 33. It has 9 two-dimensional faces with external normals
N 1919 = 2 , 0 , 1 , N 2049 = 2 , 2 , 1 , N 4559 = 0 , 2 , 1 , N 12467 = 2 , 2 , 1 , N 14571 = 1 , 0 , 0 , N 15095 = 0 , 1 , 0 , N 15335 = 1 , 0 , 0 , N 18043 = 0 , 0 , 1 , N 19131 = 0 , 1 , 0 .
Since x 1 , x 2 , and x 3 0 , we select the only normal that has all coordinates negative. This is N 2049 = 2 , 2 , 1 . According to results of our program, it corresponds to the truncated polynomial
f t r 2049 = 13695130288521216 α 2 x 3 8 126806761930752 α 2 x 1 2 x 3 4 507227047723008 α 2 x 1 x 2 x 3 4 126806761930752 α 2 x 2 2 x 3 4 + 41085390865563648 x 3 8 + 380420285792256 x 1 2 x 3 4 + 1521681143169024 x 3 4 x 1 x 2 + 380420285792256 x 2 2 x 3 4 + 7044820107264 x 1 2 x 2 2 .
Doing the power transformation
x 1 = y 1 y 3 2 , x 2 = y 2 y 3 2 , x 3 = y 3
and factorize we get
f t r 2049 = 7044820107264 18 α 2 y 1 2 + 72 α 2 y 1 y 2 + 18 α 2 y 2 2 y 1 2 y 2 2 + 1944 α 2 54 y 1 2 216 y 1 y 2 54 y 2 2 5832 y 3 8 .
If we substitute α = 3 , into the polynomial in parentheses, it is equal to y 1 2 y 2 2 . Therefore, the power transformation (81) is substituted into the large polynomial S 3 ( x ) and divided by ( 7 + 4 3 ) y 3 8 we get the polynomial S 4 y . We compute its Newton polyhedron Γ 12 .
Its graph is shown in Figure 34. It has 11 two-dimensional faces with external normals
N 4367 = 1 , 0 , 0 , N 5643 = 1 , 0 , 1 , N 6099 = 1 , 1 , 1 ,
N 13629 = 0 , 1 , 1 , N 57365 = 0 , 1 , 0 , N 111755 = 2 , 2 , 1 , N 122609 = 0 , 1 , 0 ,
N 124119 = 0 , 2 , 1 , N 150923 = 1 , 0 , 0 , N 162019 = 0 , 0 , 1 , N 164049 = 2 , 0 , 1 .
Since y 1 , y 2 , and y 3 0 , we select the only normal that has all coordinates negative. This is N 6099 = 1 , 1 , 1 . The corresponding shortening
f t r 6099 = 28179280429056 y 1 2 y 2 2 α + 63403380965376 y 1 2 y 2 y 3 α 31701690482688 y 1 2 y 3 2 α
+ 232479063539712 y 1 y 2 2 y 3 α 507227047723008 y 1 y 2 y 3 2 α + 285315214344192 y 1 y 3 3 α
475525357240320 y 2 2 y 3 2 α + 1046155785928704 y 2 y 3 3 α 570630428688384 y 3 4 α
49313740750848 y 1 2 y 2 2 + 105672301608960 y 1 2 y 2 y 3 63403380965376 y 1 2 y 3 2
+ 401554746114048 y 1 y 2 2 y 3 887647333515264 y 1 y 2 y 3 2 + 475525357240320 y 1 y 3 3
824243952549888 y 2 2 y 3 2 + 1806996357513216 y 2 y 3 3 998603250204672 y 3 4
Doing the power transformation.
y 1 = z 1 z 3 , y 2 = z 2 z 3 , y 3 = z 3 .
and we get
f t r 6099 p o w = 1761205026816 z 3 4 ( 16 α z 1 2 z 2 2 36 α z 1 2 z 2 132 α z 1 z 2 2 + 28 z 1 2 z 2 2 + 18 α z 1 2 + 288 α z 1 z 2 + 270 α z 2 2 60 z 1 2 z 2 288 z 1 z 2 2 162 α z 1 594 α z 2 + 36 z 1 2 + 504 z 1 z 2 + 468 z 2 2 + 324 α 270 z 1 1026 z 2 + 567 ) = 1761205026816 z 3 4 · F 20 ( z 1 , z 2 ) ,
where addition “ p o w ” indicate that it is after power transformation.
If we substitute α = 3 inside the brackets, we get the factorization
F 20 z 1 , z 2 = ( 4 3 + 7 ) ( 3 3 2 z 1 + 3 ) 2 ( 2 z 2 + 3 3 3 ) 2 4 .
The power transformation (82) we do in the polynomial S 4 ( y ) , we get the polynomial z 3 4 S 5 z = S 4 ( y ) .
In S 5 z , we substitute, introducing new variables L i ,
z 1 = L 1 + 3 ( 3 + 1 ) 2 , z 2 = L 2 + 3 ( 3 1 ) 2 , z 3 = L 3 .
We get the polynomial S 6 L = S 5 z and for it we calculate Newton’s polyhedron Γ 13 .
Its graph is shown in Figure 35. The computer computed the polyhedron Γ 13 in 87 h and 23 min. It has 9 two-dimensional faces with exterior normals
N 2165 = 0 , 1 , 0 , N 5047 = 0 , 0 , 1 , N 5649 = 3 , 1 , 1 , N 6083 = 1 , 0 , 0 , N 11169 = 1 , 3 , 1 , N 13283 = 1 , 0 , 0 , N 14775 = 1 , 1 , 1 , N 17273 = 3 , 3 , 1 , N 17669 = 0 , 1 , 0 .
Since L 1 , L 2 , and L 3 0 , we select the only normal that has all coordinates negative. This is N 14775 = 1 , 1 , 1 . The corresponding truncation
f t r 14775 = 440301256704 ( α + 1 ) ( 384 α L 1 2 L 2 2 + 672 α L 1 2 L 2 L 3 315 α L 1 2 L 3 2 + 2688 α L 1 L 2 2 L 3 + 5778 α L 1 L 2 L 3 2 + 756 α L 1 L 3 3 2880 α L 2 3 L 3 3465 α L 2 2 L 3 2 + 3024 α L 2 L 3 3 + 972 α L 3 4 192 L 1 3 L 3 + 640 L 1 2 L 2 2 + 1344 L 1 2 L 2 L 3 315 L 1 2 L 3 2 + 4704 L 1 L 2 2 L 3 + 9630 L 1 L 2 L 3 2 + 1512 L 1 L 3 3 4992 L 2 3 L 3 5985 L 2 2 L 3 2 + 5292 L 2 L 3 3 + 1620 L 3 4 )
We do a power transformation.
L 1 = M 1 M 3 , L 2 = M 2 M 3 , L 3 = M 3 .
Then
f t r 14775 p o w = 440301256704 ( α + 1 ) ( 384 α M 1 2 M 2 2 + 672 α M 1 2 M 2 + 2688 α M 1 M 2 2 2880 α M 2 3 + 640 M 1 2 M 2 2 315 α M 1 2 + 5778 α M 1 M 2 3465 α M 2 2 192 M 1 3 + 1344 M 1 2 M 2 + 4704 M 1 M 2 2 4992 M 2 3 + 756 α M 1 + 3024 α M 2 315 M 1 2 + 9630 M 1 M 2 5985 M 2 2 + 972 α + 1512 M 1 + 5292 M 2 + 1620 ) M 3 4 = 440301256704 α + 1 M 3 4 · F 40 .
The curve F 40 = 0 has genus 0, and parameterization
M 1 , M 2 = [ b 1 t , b 2 t ] = = ( 5 3 3 ) ( 1344 3 t 2 + t 3 + 2352 t 2 345047040 3 597639168 ) / ( 256 t 2 ) , ( 265 153 3 ) ( t 3 + 3612672 3 t + 1380188160 3 + 6257664 t + 2390556672 ) / ( 49152 t )
and is shown in Figure 36.
Figure 36 shows the limiting values of t = , 0 , + 0 , + , when the branch goes to infinity. The approximate values of the zeros of the numerators in (85) are. t 1 481 , 241 , t 2 4623 , 972 , t 3 537 , 144 for b 1 t and t 4 3715 , 095 , t 5 3328 , 446 , t 6 386 , 649 for b 2 t .
We do a power transformation (84) to S 6 L , and we get
M 3 4 E M = S 6 L = M 3 4 k = 0 E k M 1 , M 2 M 3 k ,
where
E 0 = 440301256704 ( 1 + α ) ( 384 α M 1 2 M 2 2 + 672 α M 1 2 M 2 + 2688 α M 1 M 2 2 2880 α M 2 3 + 640 M 1 2 M 2 2 315 α M 1 2 + 5778 α M 1 M 2 3456 α M 2 2 192 M 1 3 + 1344 M 1 2 M 2 + 4704 M 1 M 2 2 4992 M 2 3 + 756 α M 1 + 3024 α M 2 315 M 1 2 + 9630 M 1 M 2 5985 M 2 2 + 972 α + 1512 M 1 + 5292 M 2 + 1620 ) , E 1 = 2641807540224 ( 1 + α ) ( 112 α M 1 2 M 2 + 448 α M 1 M 2 2 480 α M 2 3 105 α M 1 2 + 1926 α M 1 M 2 1155 α M 2 2 32 M 1 3 + 224 M 1 2 M 2 + 784 M 1 M 2 2 832 M 2 3 + 378 α M 1 + 1512 α M 2 105 M 1 2 + 3210 M 1 M 2 1995 M 2 2 + 648 α + 756 M 1 + 2646 M 2 + 1080 ) , E 2 = 55037657088 ( 1 + α ) ( 7680 α M 1 2 M 2 2 + 7728 α M 1 2 M 2 + 30912 α M 1 M 2 2 21600 α M 2 3 + 12800 M 1 2 M 2 2 + 4599 α M 1 2 32778 α M 1 M 2 + 50589 α M 2 2 1440 M 1 3 + 15456 M 1 2 M 2 + 54096 M 1 M 2 2 37440 M 2 3 17766 α M 1 71064 α M 2 + 4599 M 1 2 54630 M 1 M 2 + 87381 M 2 2 52002 α 35532 M 1 124362 M 2 86670 ) .
Into the polynomial E M we substitute
M 1 = b 1 t , M 2 = b 2 t + ε
according to (85). Then the polynomial E M becomes a polynomial
u ε , M 3 = p , q 0 u p q t ε p M 3 q ,
whereby
u p q = 1 p ! · p E q M 2 p b 1 t , b 2 t ,
where M 1 = b 1 t ,   M 2 = b 2 t according to (85). In particular, from (86)–(88) we obtain
u 00 = E ( b 1 t , b 2 t ) 0 ,
u 10 M 1 , M 2 = E 0 M 2 =
u 10 M 1 , M 2 = E 0 M 2 = 1761205026816 7 + 4 α 168 α M 1 2 + 336 α M 1 M 2 432 α M 2 2 + 128 M 1 2 M 2 315 α M 2 168 M 1 2 + 336 M 1 M 2 720 M 2 2 + 189 α + 963 M 1 630 M 2 + 189 ) = 69984 ( 571 α 989 ) 384 α t t 2 516096 α + 672 t 893952 3 t + 672 + 384 α 3 t 5 ,
u 01 = E 1 b 1 t , b 2 t = ( ( 729 151316 α 262087 2304 α t + t 2 + 516096 α + 4032 t + 893952 ( 384 α t t 2 516096 α + 672 t 893952 ) 3 ( t + 672 + 384 α ) 4 ) / ( 256 t 6 ) ) ,
u 11 M 1 , M 2 = E 1 M 2 = 5283615080448 ( 5 + 3 α ) ( 112 α M 1 M 2 192 α M 2 2 + 321 α M 1 315 α M 2 + 56 M 1 2 + 224 M 1 M 2 336 M 2 2 + 189 α + 321 M 1 525 M 2 + 378 ) = 1 t 4 ( 209952 ( 571 α 989 ) · · ( 3333609787974746112 18912215826432 t 2 + 14958900893712384 t + t 6 + 1792 t 5 + 2681856 t 4 + 1024 α t 5 + 1548288 α t 4 4600627200 α t 3 1924660508460318720 α 10918972882944 α t 2 + 8636525457702912 α t 7968522240 t 3 ) t + 672 + 384 α 2 ) ,
u 20 M 1 , M 2 = 1 2 2 E 0 M 2 2 = 880602513408 7 + 4 α 336 α M 1 864 α M 2 + 128 M 1 2 315 α + 336 M 1 1440 M 2 630 = ( 6879707136 ( α 2 ) ( 144 α t t 2 69120 α + 240 t 119808 ) × × 528 α t + t 2 + 963072 α + 912 t + 1668096 ( t + 240 + 144 α ) ( t + 912 + 528 α ) / t 4 ) .
According to [1] (Theorem 1), the solution to the equation u ε , M 3 = 0 has the form, ε = k = 1 c k ( t ) M 3 k , where
c 1 t = u 01 t u 10 t = 265 + 153 α 2304 α t + t 2 + 516096 α + 4032 t + 893952 t + 672 + 384 α 49152 t .
The denominators in c 1 t and in (85) have root t = 0 .
Now let’s go back and approximately from (84) obtain
L 1 = b 1 t M 3 , L 2 = b 2 t + c 1 t M 3 M 3 = b 2 t M 3 = b 2 t M 3 + c 1 t M 3 2 , L 3 = M 3 .
Substitute that into (83).
z 1 = b 1 t M 3 + 3 ( 3 + 1 ) 2 , z 2 = b 2 t M 3 + c 1 t M 3 2 + 3 ( 3 1 ) 2 , z 3 = M 3 .
We substitute the values of (89) into (82) and obtain
y 1 = b 1 t M 3 2 + 3 ( 3 + 1 ) 2 M 3 , y 2 = c 1 t M 3 3 + b 2 t M 3 2 + 3 ( 3 1 ) 2 M 3 , y 3 = M 3 .
We substitute the values of (90) into (81) and obtain
x 1 = y 1 y 3 2 = b 1 t M 3 4 + 3 ( 3 + 1 ) 2 M 3 3 , x 2 = y 2 y 3 2 = c 1 t M 3 5 + b 2 t M 3 4 + 3 ( 3 1 ) 2 M 3 3 , x 3 = y 3 = M 3 .
We substitute the values of (91) into (80) and obtain
D 1 = 1 8 x 1 + 3 + 3 α 8 x 3 2 = 1 8 b 1 t M 3 4 3 3 + 1 16 M 3 3 + 3 + 3 3 8 M 3 2 , D 2 = 1 8 x 2 + ( 3 3 α ) 8 x 3 2 = 1 8 c 1 t M 3 5 + b 2 t M 3 4 + 3 ( 3 1 ) 16 M 3 3 + ( 3 3 3 ) 8 M 3 2 , D 3 = M 3 .
We substitute the values of (92) into (79) and obtain
C 1 = 2 + 3 3 6 D 1 + 2 + 3 3 6 D 2 + 2 = 2 3 + 3 48 c 1 t M 3 5 4 3 b 1 t M 3 4 + 7 b 1 t M 3 4 + 8 b 2 t M 3 4 9 M 3 3 + 6 3 M 3 3 + 18 M 3 2 12 3 M 3 2 96 + 64 3 , C 2 = 3 6 D 1 + 3 6 D 2 + 2 = 3 48 c 1 t M 3 5 + b 1 t M 3 4 + 8 b 2 t M 3 4 + 3 3 M 3 3 6 3 M 3 2 + 32 3 , C 3 = M 3 .
We substitute the values of (93) into (65) and obtain
B 1 = C 1 = 2 3 + 3 48 ( c 1 t M 3 5 4 3 b 1 t M 3 4 + 7 b 1 t M 3 4 + 8 b 2 t M 3 4 9 M 3 3 + 6 3 M 3 3 + 18 M 3 2 12 3 M 3 2 96 + 64 3 ) , B 2 = C 2 = 3 48 c 1 t M 3 5 + b 1 t M 3 4 + 8 b 2 t M 3 4 + 3 3 M 3 3 6 3 M 3 2 + 32 3 , B 3 = C 3 1 = 1 M 3 .
Finally, we substitute the values of (94) into (64) and obtain values A 1 , A 2 , A 3 :
A 1 = B 1 B 3 = 2 3 + 3 48 ( c 1 t M 3 4 4 3 b 1 t M 3 3 + 7 b 1 t M 3 3 + 8 b 2 t M 3 3
9 M 3 2 + 6 3 M 3 2 + 18 M 3 12 3 M 3 96 M 3 + 64 3 M 3 ) ,
A 2 = B 2 B 3 = 3 48 ( c 1 t M 3 4 + b 1 t M 3 3 + 8 b 2 t M 3 3 + 3 3 M 3 2 6 3 M 3 + 32 3 M 3 , A 3 = B 3 = 1 M 3 .
We need them to drive figures. Figure 37 and Figure 38 show the curves of (95) and (96) at M 3 = 0.1 and M 3 = 0.1 , respectively.

5.4. Third Multiplier in (66)

It is a linear multiplier defined with
f 3 = C 1 + C 2 + 2 .
The substitution is
D 1 = C 1 + C 2 + 2 , D 2 = C 2 , D 3 = C 3 .
Its inverse substitution is
C 1 = D 1 D 2 2 , C 2 = D 2 , C 3 = D 3 .
Let’s consider all of this as a coordinate substitution in the polynomial J ( C ) . We substitute it into the polynomial J ( C ) and get the polynomial S 7 ( D ) = J ( C ) . For the polynomial S 7 ( D ) , we compute Newton’s polyhedron Γ 14 .
Its graph is shown in Figure 39. It has 7 two-dimensional faces with external normals
N 701 = 2 , 0 , 1 , N 1403 = 1 , 1 , 1 , N 1537 = 0 , 0 , 1 ,
N 1679 = 0 , 1 , 0 , N 1935 = 2 , 1 , 0 , N 2009 = 0 , 1 , 0 , N 2085 = 1 , 0 , 0 .
Since D 1 0 , D 2 c o n s t , and D 3 0 , we select the only normal whose first and third coordinates are negative. This is the normal N 701 = 2 , 0 , 1 . It corresponds to a truncated polynomial
f t r 701 = 186624 D 2 + 1 2 D 2 2 + 2 D 2 2 2 × × 48 D 1 D 2 2 D 3 2 + 64 D 1 2 D 2 2 96 D 1 D 2 D 3 2 + 27 D 3 4 + 128 D 1 2 D 2 48 D 1 D 3 2 + 64 D 1 2 .
Do a power transformation.
D 1 = x 1 x 3 2 , D 2 = x 2 , D 3 = x 3 .
Then ftr701 after the power transformation (98) is
f t r 701 p o w = 186624 x 2 + 1 2 x 2 2 + 2 x 2 2 2 x 3 4 64 x 1 2 x 2 2 + 128 x 1 2 x 2 48 x 1 x 2 2 + 64 x 1 2 96 x 1 x 2 48 x 1 + 27 = 186624 x 2 + 1 2 x 2 2 + 2 x 2 2 2 x 3 4 · F 30 x 1 , x 2 ,
where F 30 x 1 , x 2 = 64 x 1 2 x 2 2 + 128 x 1 2 x 2 48 x 1 x 2 2 + 64 x 1 2 96 x 1 x 2 48 x 1 + 27 . The curve F 30 = 0 has genus 0, and parameterization
{ x 1 , x 2 } = b 1 t , b 2 t = 81 29 t + 3 2 4 23283 t 2 + 5466 t + 499 , 27459 t 2 + 8682 t + 787 48 3 t + 2 29 t + 3
and is shown in the Figure 40.
The curve F 30 = 0 goes to infinity x 2 = ± at
t 1 = 3 29 0.1034482759 , t 2 = 2 3 0.6666666667 .
We do a power transformation of (98) to the polynomial S 7 ( D ) and get the polynomial
x 3 4 W x = S 7 D = x 3 4 k = 0 W k ( x 1 , x 2 ) x 3 k .
where
W 0 = 186624 x 2 + 1 2 x 2 2 + 2 x 2 2 2 64 x 1 2 x 2 2 + 128 x 1 2 x 2 48 x 1 x 2 2 + 64 x 1 2 96 x 1 x 2 48 x 1 + 27 , W 1 = 559872 x 2 + 1 2 x 2 2 + 2 x 2 2 2 8 x 1 x 2 2 + 16 x 1 x 2 + 8 x 1 9 , W 2 = 15552 ( x 2 2 + 2 x 2 2 ) ( 512 x 1 3 x 2 6 + 6144 x 1 3 x 2 5 + 19968 x 1 3 x 2 4 2304 x 1 2 x 2 5 + 24064 x 1 3 x 2 3 10080 x 1 2 x 2 4 + 6144 x 1 3 x 2 2 13824 x 1 2 x 2 3 7680 x 1 3 x 2 8352 x 1 2 x 2 2 + 972 x 1 x 2 3 81 x 2 4 4096 x 1 3 4032 x 1 2 x 2 + 4860 x 1 x 2 2 324 x 2 3 1728 x 1 2 + 5832 x 1 x 2 243 x 2 2 + 1944 x 1 + 162 x 2 1296 ) .
Into the polynomial W x we substitute
x 1 = b 1 t , x 2 = b 2 t + ε
according to (99). Then the polynomial W x becomes a polynomial
u ε , x 3 = p , q 0 u p q t ε p x 3 q ,
whereby
u p q = 1 p ! · p W q x 2 p x 1 , x 2 ,
where x 1 = b 1 t , x 2 = b 2 t according to (99). In particular, from (101)–(103) we obtain
u 00 = W ( b 1 ( t ) , b 2 ( t ) ) 0 , u 10 x 1 , x 2 = W 0 x 2 = 373248 x 2 + 1 x 2 2 + 2 x 2 2 × 256 x 1 2 x 2 4 + 1024 x 1 2 x 2 3 192 x 1 x 2 4 + 1152 x 1 2 x 2 2 768 x 1 x 2 3 + 256 x 1 2 x 2 864 x 1 x 2 2 128 x 1 2 192 x 1 x 2 + 81 x 2 2 + 96 x 1 + 162 x 2 ) = 81 ( 23283 t 2 + 5466 t + 499 ) 22131 t 2 + 3930 t 13 4 2048 29 t + 3 5 3 t + 2 5 ,
u 01 = W 1 b 1 t , b 2 t = 27 23283 t 2 + 5466 t + 499 2 22131 t 2 + 3930 t 13 5 8388608 29 t + 3 6 3 t + 2 8 .
According to Theorem 1 of [1], the solution of equation u ε , x 3 = 0 is
ε = k = 1 c k ( t ) x 3 k , where
c 1 t = u 01 t u 10 t = 23283 t 2 + 5466 t + 499 22131 t 2 + 3930 t 13 12288 29 t + 3 3 t + 2 3 .
The denominator in c 1 t has roots (100).
Now let’s go back and approximate from (102) obtain
x 1 = b 1 t , x 2 = b 2 t + c 1 t x 3 .
Substitute that into (98) and we get
D 1 = b 1 t x 3 2 , D 2 = b 2 t + c 1 t x 3 , D 3 = x 3 .
We substitute the expression (104) into (97) and obtain
C 1 = D 1 D 2 2 = b 1 t x 3 2 b 2 t c 1 t x 3 2 , C 2 = b 2 t + c 1 t x 3 , C 3 = x 3 .
We substitute (105) into (65) and we get
B 1 = C 1 = b 1 t x 3 2 b 2 t c 1 t x 3 2 , B 2 = C 2 = b 2 t + c 1 t x 3 , B 3 = C 3 1 = 1 x 3 .
Finally, according to (64)
A 1 = B 1 B 3 = b 1 t x 3 2 b 2 t c 1 t x 3 2 / x 3 = b 1 t x 3 c 1 t ( b 2 t + 2 ) / x 3 ,
A 2 = B 2 B 3 = c 1 t + b 2 t / x 3 , A 3 = B 3 = 1 / x 3 .
In Figure 41, Figure 42, Figure 43 and Figure 44, are shown the curves of (106) and (107) for values x 3 = 1 , 0.1 , 1, 0.1 , respectively.
The another branch is symmetric to this one with respect to the line A 1 = A 2 .

5.5. Fourth Multiplier in (66)

5.5.1. Preliminary Calculations

The 4th multiplier is a linear multiplier f 4 = C 1 + C 2 1 . Let’s do the substitution D 1 = C 1 + C 2 1 , D 2 = C 2 , D 3 = C 3 . Its inverse substitution is
C 1 = D 1 D 2 + 1 , C 2 = D 2 , C 3 = D 3 .
We treat it all as a coordinate transformation in the polynomial J ( C ) . We substitute it into the polynomial J ( C ) and get the polynomial S 8 D = J C . For the polynomial S 8 D , we compute Newton’s polyhedron Γ 15 , with graph given in Figure 45. It has 7 two-dimensional faces with external normals
N 593 = 1 , 0 , 1 , N 1295 = 1 , 1 , 1 , N 1645 = 0 , 0 , 1 , N 1941 = 1 , 0 , 0 , N 1989 = 0 , 3 , 2 , N 2111 = 0 , 1 , 0 , N 2171 = 0 , 1 , 0 .
Since D 1 0 , D 2 const , and D 3 0 , we select the only normal that has negative first and third coordinates. This is N 593 = 1 , 0 , 1 and it corresponds to the truncated polynomial
f t r 593 = 186624 2 D 2 2 2 D 2 1 4 2 D 1 3 D 3 2 D 1 + 3 D 3 .
Let’s do the substitution x 1 = 2 D 1 3 D 3 , x 2 = D 2 , x 3 = 2 D 1 + 3 D 3 . Its inverse substitution is
D 1 = 1 4 x 1 + 1 4 x 3 , D 2 = x 2 , D 3 = 1 6 x 1 + 1 6 x 3 ,
and treat it all as a coordinate change in the polynomial S 8 D . Substitute it into the polynomial S 8 D and get the polynomial S 9 x = S 8 D . For the polynomial S 9 x , we calculate Newton’s polyhedron Γ 17 .
Its graph is shown in Figure 46. It has 8 two-dimensional faces with external normals
N 593 = 1 , 0 , 2 , N 1923 = 2 , 0 , 1 , N 3725 = 1 , 1 , 1 , N 4561 = 0 , 0 , 1 , N 4601 = 0 , 1 , 2 , N 5649 = 1 , 0 , 0 , N 6363 = 0 , 1 , 0 , N 6485 = 0 , 1 , 0 .
Since x 1 0 , x 2 c o n s t , and x 3 0 , we select two normals whose first and third coordinates are negative. These are N 593 = 1 , 0 , 2 and N 1923 = 2 , 0 , 1 . We will deal with them in separate subsubsections.

5.5.2. The Normal N 593 = ( 1 , 0 , 2 )

According to result of our program it corresponds to a truncated polynomial
f t r 593 = 764411904 x 1 2 x 2 2 2 x 2 1 3 ( 32 x 2 2 x 3 + x 1 2 32 x 2 x 3 16 x 3 ) .
Making a power transformation
x 1 = y 1 , x 2 = y 2 , x 3 = y 1 2 y 3 ,
We get a polynomial
f t r 593 p o w = 764411904 y 1 3 2 y 2 2 2 y 2 1 3 32 y 2 2 y 3 32 y 2 y 3 16 y 3 + 1 = = 764411904 y 1 3 2 y 2 2 2 y 2 1 3 · F 50 y 2 , y 3 ,
where F 50 = 32 y 2 2 y 3 32 y 2 y 3 16 y 3 + 1 . The curve F 50 = 0 has genus 0, parameterization
y 2 , y 3 = b 2 ( t ) , b 3 ( t ) = t , 1 16 ( 2 t 2 2 t 1 )
and is shown in Figure 47.
In (112), the denominator in b 2 ( t ) has 2 real roots
t 1 = 1 2 + 3 2 1.366025404 , t 2 = 1 2 3 2 0.3660254040 .
In fact, here we can also compute the parametric expansion of the Ω manifold. To do this, we do the power transformation (110) in the polynomial S 9 x and get the polynomial
y 1 3 U y = S 9 x = y 1 3 k = 0 U k ( y 2 , y 3 ) y 1 k .
In the polynomials U k y 2 , y 3 according to (112) we substitute
y 2 = b 1 t + ε , y 3 = b 2 t + ε .
We obtain the polynomial u ε , y 1 = U y 1 , y 2 , y 3 with coefficients depending on t through b 1 t and b 2 t . In this polynomial
u ε , y 1 = k = 0 m U k ( b 1 + ε , b 2 + ε ) y 1 k = p , q 0 u p q ε p y 1 q ,
where u p q = p 1 + p 2 = p 1 1 p 1 ! p 2 ! · p U q y 2 p 1 y 3 p 2 when y i = b i t , i = 2 , 3 , p 1 , p 2 0 , p 1 . Specifically,
u 00 0 , u 10 = U 0 y 2 , y 3 y 2 + U 0 y 2 , y 3 y 3
= 1528823808 2 y 2 2 2 y 2 1 2 32 y 2 4 + 256 y 2 3 y 3 64 y 2 3 384 y 2 2 y 3 + 38 y 2 + 64 y 3 + 5
= 1528823808 2 t 3 16 t 3 8 t 2 12 t 3 2 t 2 2 t 1 2 = def H b 1 ( t ) , b 2 ( t ) ,
u 01 = U 1 b 1 , b 2 = 31850496 2 t + 5 2 t 1 2 t 2 2 t 1 2 = def G b 1 ( t ) , b 2 ( t ) .
The function u 10 ( t ) has real roots
t 1 = 3 2 = 1.5 , t 2 = 1 2 + 3 2 1.366025404 2 - multiple , t 3 = 1 2 3 2 0.3660254040 , 2 - multiple , t 4 1.232176060 ,
and the function u 01 ( t ) has 2-multiple roots t 2 , t 3 and
t 5 = 5 2 = 2.5 , t 6 = 1 2 .
By the Implicit Function Theorem [1] (Theorem 1), the equation u ε , y 1 = 0 has a solution as a power series on y 1
ε = k = 1 c k ( t ) y 1 k ,
where c k t are rational functions of t, which are expressed through the coefficients u p q t , which in turn are expressed through b 1 ( t ) and b 2 t according to (110). This expansion is valid for all values of t , except maybe the neighborhood of the roots of (114). In particular,
c 1 t = u 01 u 10 = G H = ( 2 t + 5 ) ( 2 t 1 ) 48 ( 2 t 3 ) ( 16 t 3 8 t 2 12 t 3 ) ,
where the denominator has 2 real roots t 1 and t 4 of (114). Approximately we get
ε c 1 t y 1 .
Let’s return to the previous coordinates, which are approximated to be equal for small y 3 on the manifold Ω
y 2 = b 1 t + c 1 t y 1 , y 3 = b 2 t + c 1 t y 1 .
x 1 = y 1 , x 2 = y 2 = b 1 t + c 1 t y 1 , x 3 = y 1 2 y 3 = b 2 t y 1 2 + c 1 t y 1 3 .
We substitute the expressions (115) into the transformation (109) and get
D 1 = 1 4 x 1 + 1 4 x 3 = 1 4 y 1 + 1 4 b 2 t y 1 2 + 1 4 c 1 t y 1 3 , D 2 = x 2 = b 1 t + c 1 t y 1 , D 3 = 1 6 x 1 + 1 6 x 3 = 1 6 y 1 + 1 6 b 2 t y 1 2 + 1 6 c 1 t y 1 3 .
We substitute the expressions (116) into the transformation (109) and obtain variables defind in (108)
C 1 = D 1 = b 1 t + c 1 t y 1 , C 2 = D 1 D 2 + 1 = 1 4 y 1 + 1 4 b 2 t y 1 2 + 1 4 c 1 t y 1 3 b 1 t c 1 t y 1 + 1 , C 3 = D 3 = 1 6 y 1 + 1 6 b 2 t y 1 2 + 1 6 c 1 t y 1 3 .
Substitute (117) into (65) and obtain
B 1 = C 1 = b 1 t + c 1 t y 1 , B 2 = C 2 = 1 4 c 1 t y 1 3 + 1 4 b 2 t y 1 2 + 1 4 y 1 c 1 t y 1 b 1 t + 1 , B 3 = C 3 1 = 1 C 3 = 1 1 6 y 1 + 1 6 b 2 t y 1 2 + 1 6 c 1 t y 1 3 .
Finally, we substitute the expressions (118) into the transformation (64) and obtain
A 1 = B 1 B 3 = b 1 t + c 1 t y 1 1 6 y 1 + 1 6 b 2 t y 1 2 + 1 6 c 1 t y 1 3 = 6 b 1 t + c 1 t y 1 y 1 b 2 t y 1 2 c 1 t y 1 3 ,
A 2 = B 2 B 3 = 1 4 c 1 t y 1 3 + 1 4 b 2 t y 1 2 + 1 4 y 1 c 1 t y 1 b 1 t + 1 1 6 y 1 + 1 6 b 2 t y 1 2 + 1 6 c 1 t y 1 3 = 3 2 c 1 t y 1 3 + 3 2 b 2 t y 1 2 + 3 2 y 1 6 c 1 t y 1 6 b 1 t + 6 y 1 b 2 t y 1 2 c 1 t y 1 3 ,
A 3 = B 3 = 6 y 1 b 2 t y 1 2 c 1 t y 1 3 .
Figure 48 and Figure 49, show the curves (119) and (120) for values y 3 = 1 and 1 , respectively.

5.5.3. The Normal N 1923 = ( 2 , 0 , 1 ) from (110)

It corresponds to a truncated polynomial
f t r 1923 = 254803968 x 3 2 x 2 2 2 x 2 1 3 4 x 2 2 x 3 2 + 96 x 1 x 2 2 4 x 2 x 3 2 96 x 1 x 2 + x 3 2 48 x 1 .
By the power transformation
x 1 = y 1 y 3 2 , x 2 = y 2 , x 3 = y 3 .
We have
f t r 1923 p o w = 254803968 y 3 3 2 y 2 2 2 y 2 1 3 96 y 1 y 2 2 96 y 1 y 2 + 4 y 2 2 48 y 1 4 y 2 + 1 = = 254803968 y 3 3 2 y 2 2 2 y 2 1 3 · F 60 y 1 , y 2 ,
where F 60 y 1 , y 2 = 96 y 1 y 2 2 96 y 1 y 2 + 4 y 2 2 48 y 1 4 y 2 + 1 . The curve F 60 = 0 has genus 0, and parameterization
y 1 , y 2 = b 1 t , b 2 t = { ( 2 t 1 ) 2 48 ( 2 t 2 2 t 1 ) , t } .
It is shown in Figure 50.
In (122), the denominator in b 1 ( t ) has 2 real roots t 1 , t 2 given by (113). In fact, the parametric expansion of the manifold Ω can also be calculated here. To do this, we do a power transformation (121) in the polynomial S 9 x and get the polynomial
y 3 3 P y = S 9 x = y 3 3 k = 0 P k y 1 , y 2 y 3 k .
Into the polynomials P k y 1 , y 2 we substitute
y 1 = b 1 t + ε , y 2 = b 2 t + ε = t + ε
according to (122).
We obtain the polynomial u ε , y 3 = P y 1 , y 2 , y 3 with coefficients depending on t through b 1 t and b 2 t . In this polynomial
u ε , y 3 = k = 0 m P k ( b 1 + ε , b 2 + ε ) y 3 k = p , q 0 u p q ε p y 3 q ,
where u p q = p 1 + p 2 = p 1 1 p 1 ! p 2 ! · p P q y 1 p 1 y 2 p 2 where y i = b i = b i t , i = 1 , 2 , p 1 , p 2 0 , p 1 . Specifically
u 00 0 , u 10 = P 0 y 1 , y 2 y 1 + P 0 y 1 , y 2 y 2 = 509607936 2 y 2 2 2 y 2 1 2 × × 768 y 1 y 2 3 + 96 y 2 4 1152 y 1 y 2 2 160 y 2 3 48 y 2 2 + 192 y 1 + 114 y 2 + 23 = = 1528823808 2 t 3 16 t 3 8 t 2 12 t 3 2 t 2 2 t 1 2 = def H b 1 ( t ) , b 2 ( t ) , u 01 = P 1 b 1 , b 2 = 31850496 2 t + 5 2 t 1 2 t 2 2 t 1 2 = def G b 1 ( t ) , b 2 ( t ) .
The function u 10 ( t ) has real roots (114). By the Implicit Function Theorem [1] (Theorem 1), the equation u ε , y 3 = 0 has a solution as a power series on y 3
ε = k = 1 c k ( t ) y 3 k ,
where c k t are rational functions of t, which are expressed through the coefficients u p q t , which in turn are expressed through b 1 ( t ) and b 2 t according to (122). This expansion is valid for all values of t , except maybe the neighborhood of the roots of the polynomial (123). In particular,
c 1 t = u 01 u 10 = G H = 2 t + 5 2 t 1 48 2 t 3 16 t 3 8 t 2 12 t 3 ,
where the denominator has 2 real roots t 1 and t 4 of (114). We get an approximation
ε c 1 t y 3 .
Let’s return to the previous coordinates, which, for small y 3 on Ω , are approximately equal to
y 1 = b 1 t + c 1 t y 3 , y 2 = b 2 t + c 1 t y 3 .
We substitute the expressions (124) into the transformation (121) and get
x 1 = y 1 y 3 2 = b 1 t y 3 2 + c 1 t y 3 3 , x 2 = y 2 = b 2 t + c 1 t y 3 , x 3 = y 3 .
We substitute the expressions (125) into the transformation (109) and obtain
D 1 = 1 4 x 1 + 1 4 x 3 = 1 4 b 1 t y 3 2 + 1 4 c 1 t y 3 3 + 1 4 y 3 , D 2 = x 2 = b 2 t + c 1 t y 3 , D 3 = 1 6 x 1 + 1 6 x 3 = 1 6 b 1 t y 3 2 1 6 c 1 t y 3 3 + 1 6 y 3 .
We substitute the expressions (126) into the transformation (108) and get the following results
C 1 = D 2 = b 2 t + c 1 t y 3 , C 2 = D 1 D 2 + 1 = 1 4 b 1 t y 3 2 + 1 4 c 1 t y 3 3 + 1 4 y 3 b 2 t c 1 t y 3 + 1 , C 3 = D 3 = 1 6 b 1 t y 3 2 1 6 c 1 t y 3 3 + 1 6 y 3 .
We substitute the expressions (127) into the transformation (65) and obtain
B 1 = C 1 = b 2 t + c 1 t y 3 , B 2 = C 2 = 1 4 c 1 t y 3 3 + 1 4 b 1 t y 3 2 + 1 4 y 3 c 1 t y 3 b 2 t + 1 , B 3 = C 3 1 = 1 C 3 = 1 1 6 b 1 t y 3 2 1 6 c 1 t y 3 3 + 1 6 y 3 .
Finally, we substitute the expressions (128) into the transformation of (64) and obtain
A 1 = B 1 B 3 = b 2 t + c 1 t y 3 1 6 b 1 t y 3 2 1 6 c 1 t y 3 3 + 1 6 y 3 = 6 b 2 t + c 1 t y 3 c 1 t y 3 3 + b 1 t y 3 2 y 3 ,
A 2 = B 2 B 3 = 1 4 c 1 t y 3 3 + 1 4 b 1 t y 3 2 + 1 4 y 3 c 1 t y 3 b 2 t + 1 1 6 b 1 t y 3 2 1 6 c 1 t y 3 3 + 1 6 y 3
= 3 2 c 1 t y 3 3 + 3 2 b 1 t y 3 2 + 3 2 y 3 6 c 1 t y 3 6 b 2 t + 6 c 1 t y 3 3 + b 1 t y 3 2 y 3 , A 3 = B 3 = 6 c 1 t y 3 3 + b 1 t y 3 2 y 3 .
In Figure 51 and Figure 52, show the curves (129) and (131) for values y 3 = 1 and y 3 = 1 , respectively.

6. Conclusions

In the paper we show that all parametric expansions of variety Ω near its singularities and infinity can be computed with any accuracy and compute their first terms. We consider a very rich set of cases and find the ways to finish computations in all of them.
We do not intend to explain our results for original problems of Ricci flows and Einstein’s metrics. Let it will be done by authors of [14,15,16,17,18,19,20,21,22], who are specialists in the problem.

Author Contributions

Conceptualization, A.D.B.; methodology, A.D.B.; software, A.A.A.; validation, A.D.B.; writing—original draft preparation, A.A.A.; writing—review and editing, A.D.B.; visualization, A.A.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Acknowledgments

The authors are grateful to A.B. Batkhin for his help in the software implementation of algorithms and manuscript preparation.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bruno, A.D.; Azimov, A.A. Parametric Expansions of an Algebraic Variety near Its Singularities. Axioms 2023, 5, 469. [Google Scholar] [CrossRef]
  2. Newton, I. A treatise of the method of fluxions and infinite series, with its application to the geometry of curve lines. In The Mathematical Works of Isaac Newton; Woolf, H., Ed.; Johnson Reprint Corp.: New York, NY, USA; London, UK, 1964; Volume 1, pp. 27–137. [Google Scholar]
  3. Puiseux, V. Recherches sur les fonctions algebriques. J. Math. Pures et Appl. 1850, 15, 365–480. [Google Scholar]
  4. Chebotarev, N. The “Newton polygon” and its role in current developments in mathematics. In Isaak Newton; Izdatel’stvo Akademii Nauk SSSR: Moscow, Russia, 1943; pp. 99–126. (In Russian) [Google Scholar]
  5. Abhyankar, S.S.; Moh, T. Newton-Puiseux expansion and generalized Tschirnhausen transformation. I. J. Reine Angew. Math. 1973, 260, 47–83. [Google Scholar] [CrossRef]
  6. Abhyankar, S.S.; Moh, T. Newton-Puiseux expansion and generalized Tschirnhausen transformation. II. J. Reine Angew. Math. 1973, 261, 29–54. [Google Scholar] [CrossRef]
  7. Sathaye, A. Generalized Newton-Puiseux expansion and Abhyankar-Moh semigroup theorem. Invent. Math. 1983, 74, 149–157. [Google Scholar] [CrossRef]
  8. Hironaka, H. Resolution of singularities of an algebraic variety over a field of characteristic zero: I. Ann. Math. 1964, 79, 109–203. [Google Scholar] [CrossRef]
  9. Hironaka, H. Resolution of singularities of an algebraic variety over a field of characteristic zero: II. Ann. Math. 1964, 79, 205–326. [Google Scholar] [CrossRef]
  10. Kollár, J. Lectures on Resolution of Singularities; Annals of Mathematic Studies; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
  11. Bruno, A.D.; Azimov, A.A. Computation of unimodular matrices of power transformations. Program. Comput. Softw. 2023, 49, 32–41. [Google Scholar] [CrossRef]
  12. Bruno, A. Nonlinear Analysis as a Calculs. Lond. J. Res. Sci. Nat. Form. 2023, 23, 1–31. [Google Scholar]
  13. Bruno, A.D.; Batkhin, A.B. Asymptotic forms of solutions to system of nonlinear partial differential equations. Universe 2023, 9, 35. [Google Scholar] [CrossRef]
  14. Besse, A.L. Einstein Manifolds; Springer: Berlin, Germany, 1987. [Google Scholar]
  15. Abiev, N.A.; Arvanitoyeorgos, A.; Nikonorov, Y.G.; Siasos, P. The dynamics of the Ricci flow on generalized Wallach spaces. Differ. Geom. Its Appl. 2014, 35, 26–43. [Google Scholar] [CrossRef]
  16. Abiev, N.A.; Arvanitoyeorgos, A.; Nikonorov, Y.G.; Siasos, P. The Ricci flow on some generalized Wallach spaces. In Geometry and Its Applications; Springer Proceedings in Mathematics & Statistics; Rovenski, V., Walczak, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 72, pp. 3–37. [Google Scholar]
  17. Abiev, N.A.; Arvanitoyeorgos, A.; Nikonorov, Y.G.; Siasos, P. The normalized Ricci flow on generalized Wallach spaces. In Mathematical Forum; Studies in Mathematical Analysis; Yuzhnii Matematicheskii Institut, Vladikavkazskii Nauchnii Tsentr Rossiyskoy Akademii Nauk: Vladikavkaz, Russia, 2014; Volume 8, pp. 25–42. (In Russian) [Google Scholar]
  18. Chen, Z.; Nikonorov, Y.G. Invariant Einstein Metrics on Generalized Wallach Spaces. arXiv 2015, arXiv:1511.02567. [Google Scholar] [CrossRef]
  19. Abiev, N.A. On topological structure of some sets related to the normalized Ricci flow on generalized Wallach spaces. Vladikavkaz Math. J. 2015, 17, 5–13. [Google Scholar]
  20. Abiev, N.A.; Nikonorov, Y.G. The evolution of positively curved invariant Riemannian metrics on the Wallach spaces under the Ricci flow. Ann. Glob. Anal. Geom. 2016, 50, 65–84. [Google Scholar] [CrossRef]
  21. Nikonorov, Y.G. Correction to: Classification of generalized Wallach spaces. Geom. Dedicata 2021, 214, 849–851. [Google Scholar] [CrossRef]
  22. Jablonski, M. Homogeneous Einstein manifolds. Rev. Unión Matemática Argent. 2023, 64, 461–485. [Google Scholar] [CrossRef]
  23. Bruno, A.D.; Batkhin, A.B. Investigation of a real algebraic surface. Program. Comput. Softw. 2015, 41, 74–82. [Google Scholar]
  24. Batkhin, A.B. A real variety with boundary and its global parameterization. Program. Comput. Softw. 2017, 43, 75–83. [Google Scholar] [CrossRef]
  25. Batkhin, A.B. Parameterization of the Discriminant Set of a Polynomial. Program. Comput. Softw. 2016, 42, 65–76. [Google Scholar] [CrossRef]
  26. Sendra, J.R.; Sevilla, D. First steps towards radical parametrization of algebraic surfaces. Comput. Aided Geom. Des. 2013, 30, 374–388. [Google Scholar] [CrossRef]
  27. Thompson, I. Understanding Maple; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
Figure 1. Graph of the polyhedron Γ 4 .
Figure 1. Graph of the polyhedron Γ 4 .
Axioms 13 00106 g001
Figure 2. Graph of the polyhedron Γ 5 .
Figure 2. Graph of the polyhedron Γ 5 .
Axioms 13 00106 g002
Figure 3. Curve f 1 z 1 , z 2 = 0 .
Figure 3. Curve f 1 z 1 , z 2 = 0 .
Axioms 13 00106 g003
Figure 4. Curve (14).
Figure 4. Curve (14).
Axioms 13 00106 g004
Figure 5. Curve (15).
Figure 5. Curve (15).
Axioms 13 00106 g005
Figure 6. Plot of the curve g z 1 , z 2 = 0 .
Figure 6. Plot of the curve g z 1 , z 2 = 0 .
Axioms 13 00106 g006
Figure 7. Curve (27).
Figure 7. Curve (27).
Axioms 13 00106 g007
Figure 8. Curve (28).
Figure 8. Curve (28).
Axioms 13 00106 g008
Figure 9. Curve (28) in more detail.
Figure 9. Curve (28) in more detail.
Axioms 13 00106 g009
Figure 10. Curve Φ A 1 , A 2 = 0 .
Figure 10. Curve Φ A 1 , A 2 = 0 .
Axioms 13 00106 g010
Figure 11. The lower left side of the polygon Γ .
Figure 11. The lower left side of the polygon Γ .
Axioms 13 00106 g011
Figure 12. The support and polygon of the polynomial V δ , μ .
Figure 12. The support and polygon of the polynomial V δ , μ .
Axioms 13 00106 g012
Figure 13. The curve K 1 at μ = 1 / 8 .
Figure 13. The curve K 1 at μ = 1 / 8 .
Axioms 13 00106 g013
Figure 14. The curve K 2 at μ = 1 / 8 .
Figure 14. The curve K 2 at μ = 1 / 8 .
Axioms 13 00106 g014
Figure 16. The curve K 2 at μ = 1 / 8 .
Figure 16. The curve K 2 at μ = 1 / 8 .
Axioms 13 00106 g016
Figure 17. The curve F A 1 , A 3 = 0 .
Figure 17. The curve F A 1 , A 3 = 0 .
Axioms 13 00106 g017
Figure 18. Bottom left of the polygon Γ .
Figure 18. Bottom left of the polygon Γ .
Axioms 13 00106 g018
Figure 19. The Newton’s polygon of the polynomial δ 2 D 6 V δ , D .
Figure 19. The Newton’s polygon of the polynomial δ 2 D 6 V δ , D .
Axioms 13 00106 g019
Figure 20. Newton’s polygon of the polynomial V δ , D .
Figure 20. Newton’s polygon of the polynomial V δ , D .
Axioms 13 00106 g020
Figure 21. Curve (62) and (63) at D = 1 / 10 .
Figure 21. Curve (62) and (63) at D = 1 / 10 .
Axioms 13 00106 g021
Figure 22. Curve (62) and (63) at D = 1 / 10 .
Figure 22. Curve (62) and (63) at D = 1 / 10 .
Axioms 13 00106 g022
Figure 23. Projection of the polyhedron of the polynomial S ( A ) onto the plane o r d A 2 , o r d A 3 .
Figure 23. Projection of the polyhedron of the polynomial S ( A ) onto the plane o r d A 2 , o r d A 3 .
Axioms 13 00106 g023
Figure 24. Projection of the polyhedron of the polynomial S ( B 1 B 3 , B 2 B 3 , B 3 ) in coordinates o r d B 2 , o r d B 3 .
Figure 24. Projection of the polyhedron of the polynomial S ( B 1 B 3 , B 2 B 3 , B 3 ) in coordinates o r d B 2 , o r d B 3 .
Axioms 13 00106 g024
Figure 25. Projection of the polyhedron of sum T B .
Figure 25. Projection of the polyhedron of sum T B .
Axioms 13 00106 g025
Figure 26. Projection of the polyhedron of the polynomial J C .
Figure 26. Projection of the polyhedron of the polynomial J C .
Axioms 13 00106 g026
Figure 27. Graph of polyhedron Γ 8 .
Figure 27. Graph of polyhedron Γ 8 .
Axioms 13 00106 g027
Figure 28. Graph of polyhedron Γ 9 .
Figure 28. Graph of polyhedron Γ 9 .
Axioms 13 00106 g028
Figure 29. Curve F 10 = 0 .
Figure 29. Curve F 10 = 0 .
Axioms 13 00106 g029
Figure 30. Curve (77) and (78) at M 3 = 0.1 .
Figure 30. Curve (77) and (78) at M 3 = 0.1 .
Axioms 13 00106 g030
Figure 31. Curve (77), (78) at M 3 = 0.1 .
Figure 31. Curve (77), (78) at M 3 = 0.1 .
Axioms 13 00106 g031
Figure 32. Graph of Polyhedron Γ 10 .
Figure 32. Graph of Polyhedron Γ 10 .
Axioms 13 00106 g032
Figure 33. Graph of polyhedron Γ 11 .
Figure 33. Graph of polyhedron Γ 11 .
Axioms 13 00106 g033
Figure 34. Graph of polyhedron Γ 12 .
Figure 34. Graph of polyhedron Γ 12 .
Axioms 13 00106 g034
Figure 35. Graph of polyhedron Γ 13 .
Figure 35. Graph of polyhedron Γ 13 .
Axioms 13 00106 g035
Figure 36. Curve F 40 M 1 , M 2 = 0 .
Figure 36. Curve F 40 M 1 , M 2 = 0 .
Axioms 13 00106 g036
Figure 37. Curve (95) and (96) for M 3 = 0.1 .
Figure 37. Curve (95) and (96) for M 3 = 0.1 .
Axioms 13 00106 g037
Figure 38. Curve (95) and (96) for M 3 = 0.1 .
Figure 38. Curve (95) and (96) for M 3 = 0.1 .
Axioms 13 00106 g038
Figure 39. Graph of polyhedron Γ 14 .
Figure 39. Graph of polyhedron Γ 14 .
Axioms 13 00106 g039
Figure 40. Curve F 30 x 1 , x 2 = 0 .
Figure 40. Curve F 30 x 1 , x 2 = 0 .
Axioms 13 00106 g040
Figure 41. Curve (106) and (107) at x 3 = 1 .
Figure 41. Curve (106) and (107) at x 3 = 1 .
Axioms 13 00106 g041
Figure 42. Curve (106) and (107) at x 3 = 0.1 .
Figure 42. Curve (106) and (107) at x 3 = 0.1 .
Axioms 13 00106 g042
Figure 43. Curve (106) and (107) when x 3 = 1 .
Figure 43. Curve (106) and (107) when x 3 = 1 .
Axioms 13 00106 g043
Figure 44. Curve of (106) and (107) at x 3 = 0.1 .
Figure 44. Curve of (106) and (107) at x 3 = 0.1 .
Axioms 13 00106 g044
Figure 45. Graph of Polyhedron Γ 15 .
Figure 45. Graph of Polyhedron Γ 15 .
Axioms 13 00106 g045
Figure 46. Graph of polyhedron Γ 17 .
Figure 46. Graph of polyhedron Γ 17 .
Axioms 13 00106 g046
Figure 47. Curve F 50 ( y 2 , y 3 ) = 0 .
Figure 47. Curve F 50 ( y 2 , y 3 ) = 0 .
Axioms 13 00106 g047
Figure 48. Curve (119) and (120) at y 1 = 1 .
Figure 48. Curve (119) and (120) at y 1 = 1 .
Axioms 13 00106 g048
Figure 49. Curve (119) and (120) at y 1 = 1 .
Figure 49. Curve (119) and (120) at y 1 = 1 .
Axioms 13 00106 g049
Figure 50. Curve F 60 ( y 1 , y 2 ) = 0 .
Figure 50. Curve F 60 ( y 1 , y 2 ) = 0 .
Axioms 13 00106 g050
Figure 51. Curve (129) and (131) at y 1 = 1 .
Figure 51. Curve (129) and (131) at y 1 = 1 .
Axioms 13 00106 g051
Figure 52. Curve of (129) and (131) at y 1 = 1 .
Figure 52. Curve of (129) and (131) at y 1 = 1 .
Axioms 13 00106 g052
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Bruno, A.D.; Azimov, A.A. Parametric Expansions of an Algebraic Variety Near Its Singularities II. Axioms 2024, 13, 106. https://doi.org/10.3390/axioms13020106

AMA Style

Bruno AD, Azimov AA. Parametric Expansions of an Algebraic Variety Near Its Singularities II. Axioms. 2024; 13(2):106. https://doi.org/10.3390/axioms13020106

Chicago/Turabian Style

Bruno, Alexander D., and Alijon A. Azimov. 2024. "Parametric Expansions of an Algebraic Variety Near Its Singularities II" Axioms 13, no. 2: 106. https://doi.org/10.3390/axioms13020106

APA Style

Bruno, A. D., & Azimov, A. A. (2024). Parametric Expansions of an Algebraic Variety Near Its Singularities II. Axioms, 13(2), 106. https://doi.org/10.3390/axioms13020106

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop