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Abstract: The paper is a continuation and completion of the paper Bruno, A.D.; Azimov, A.A.
Parametric Expansions of an Algebraic Variety Near Its Singularities. Axioms 2023, 5, 469, where we
calculated parametric expansions of the three-dimensional algebraic manifold Ω, which appeared in
theoretical physics, near its 3 singular points and near its one line of singular points. For that we used
algorithms of Nonlinear Analysis: extraction of truncated polynomials, using the Newton polyhedron,
their power transformations and Formal Generalized Implicit Function Theorem. Here we calculate
parametric expansions of the manifold Ω near its one more singular point, near two curves of singular
points and near infinity. Here we use 3 new things: (1) computation in algebraic extension of the field
of rational numbers, (2) expansions near a curve of singular points and (3) calculation of branches
near infinity.
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1. Introduction

Here we continue and conclude the paper [1]. There, in Sections 1–5, we proposed a
new method for solving the polynomial equation

f (x1, . . . , xn) = 0

near a singular point or curve of singular points of the polynomial f . In Sections 6–10 , this
method was applied to compute the solutions to such a 12th degree equation with n = 3
that originated in theoretical physics. This new method is based on:

I. Newton’s polyhedron to isolate the truncated equations,
II. Power transformations to simplify those equations, and
III. Formal Generalized Implicit Function Theorem to obtain solutions in the form of power

expansions whose coefficients are rational functions of the parameters. Computer
algebra is used in these calculations.

Newton’s polyhedron is a multidimensional generalization of Newton’s polygon
(see [2–7]). Power transformations are a generalization of the sigma process used previously
to resolve singularities of algebraic manifolds (see [8–10]). Algorithms for computing power
transformations were proposed in [11]. The resolution of the singularity is done step-by-
step until we come to the situation with a truncated equation containing a polynomial
multiplier of degree one. If the roots of this multiplier are parameterized, the roots of the
whole polynomial are obtained as a power expansion using a Generalized Implicit Function
Theorem (Theorem 1 of [1]). All these are an application to algebraic equations of the
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general theory of Nonlinear Analysis [12], which is also suitable for differential equations.
For its applications to systems of partial derivative equations, see [13].

According to [1] and [12] (Section 2) computational steps are the following:

Step 1. Introduction of local coordinates. For coordinates X = (x1, . . . , xn) and singular
point X0 = (x0

1, . . . , x0
n), they are Y = X − X0, i.e., yi = xi − x0

i , i = 1, . . . , n.
Step 2. Writing the initial polynomial f (X) in local coordinates

g(Y) = f (X0 + Y) = ∑ gQYQ over Q ∈ S. (1)

Here Q = (q1, . . . , qn), YQ = yq1
1 · · · yqn

n , gQ are real or complex coefficients, the sum
has not similar terms, the set S(g) = {Q : aQ ̸≡ 0}, is called as support of the sum
g(Y). Here 0 ⩽ Q ∈ Zn. Let the support S(g) consists of vectors Q1, . . . , Qk.

Step 3. The Newton polyhedron Γ(g) is computating as the convex hull of the support S:

Γ(g) =

{
Q =

k

∑
i=1

λiQi, λi ⩾ 0, i = 1, . . . , k,
k

∑
i=1

λi = 1

}
.

The boundary ∂Γ of the polyhedron Γ(g) consists from its generalized faces Γ(d)
j ,

where d is dimension, 0 ⩽ d ⩽ n − 1, and j is a number of the face Γ(d)
j . Each face

Γ(d)
j corresponds to its truncated polynomial

ĝ(d)j (Y) = ∑ gQYQ over Q ∈ S ∩ Γ(d)
j

and the normal cone U(d)
j , consisting of all normals to the face Γ(d)

j , which are
external to the polyhedron Γ. For their computation we use the PolyhedralSets
package of the computer algebra system (CAS) Maple. In the steps below n = 3.
Then Γ(2)

j is two dimensional face and normal cone U(2)
j is a ray, spanned by external

normal Nj to the face Γ(2)
j .

Step 4. We select faces Γ(2)
j with normal Nj ⩽ 0 and corresponding truncated polynomials

ĝ(2)j (Y).

Step 5. For each selected truncated polynomial ĝ(2)j (Y), we compute corresponding power
transformation

(ln y1, ln y2, ln y3) = (ln z1, ln z2, ln z3)α, (2)

where α is an unimodular 3 × 3 matrix, such that

ĝ(2)j (Y) = h(z1, z2)zl
3 (3)

with integral l.
Step 6. If the curve h(z1, z2) = 0 has parametrization

z1 = b1(t), z2 = b2(t),

then it is obtained with the algcurves package from the CAS Maple. In that case we
make the power transformation (2) in the full polynomial (1) and write it as

g(Y) = T(z1, z2, z3)zl
3 = zl

3

m

∑
k=0

Tk(z1, z2)zk
3,

with some natural m. Here polynomials Tk(z1, z2) are computed by the command
coeff(T,z[k],m) in CAS Maple. Here T0(z1, z2) = h(z1, z2) from (3).

Step 7. If T1(b1(t), b2(t)) ̸≡ 0, we make the substitution
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z1 = b1(t) + ε, z2 = b2(t) + ε (4)

into the polynomial T(z1, z2, z3), obtain function u(ε, t, z3) = T(z1, z2, z3), apply to
the equation u(ε, t, z3) = 0 the Formal Generalized Implicit Function Theorem 1 [1]
and get the parametric expansion

ε =
∞

∑
k=1

ck(t)zk
3. (5)

Step 8. We compute several terms of expansion (5), substitute them into (4). The result is
substituted in power transformation (2), and we obtain parametric expansion of Y
in power series of z3 with coefficients which are rational functions of t.
If T1(b1(t), b2(t)) ≡ 0, we continue computation with new Newton polyhedron etc.

The method is new, with parts: the Newton polyhedron Γ(g), polyhedron’s faces Γ(d)
j ,

polyhedron graph, normal cones U(d)
j and power transformations (2) were proposed by the

first author beginning 1962. Early such objects he calculated manually, but now there are
programs for that.

In [1], this theory was applied to a problem arises in the study of Ricci flows (see [14–22]).
The Ricci flows describe the evolution of Einstein’s metrics on a variety. The equations of
the normalized Ricci flow are reduced to a system of two differential equations with three
parameters: a1, a2 and a3:

dx1

dt
= f̃1(x1, x2, a1, a2, a3),

dx2

dt
= f̃2(x1, x2, a1, a2, a3),

(6)

here, f̃1 and f̃2 are certain given functions.
The singular points of this system are associated with the invariant Einstein’s metrics.

At the singular (stationary) point x0
1, x0

2, system (6) has two eigenvalues, λ1 and λ2. If at
least one of them is equal to zero, then the singular (stationary) point x0

1, x0
2 is said to be

degenerate. It was proved in [14–22] that the set Ω of the values of the parameters a1, a2, a3,
in which system (6) has at least one degenerate singular point, is described by all solutions
of the equation

Q(s1, s2, s3)
def≡ (2s1 + 4s3 − 1)

(
64s5

1 − 64s4
1 + 8s3

1 + 240s2
1s3 − 1536s1s2

3−

−4096s3
3 + 12s2

1 − 240s1s3 + 768s2
3 − 6s1 + 60s3 + 1

)
−

− 8s1s2(2s1 + 4s3 − 1)(2s1 − 32s3 − 1)(10s1 + 32s3 − 5)−

− 16s2
1s2

2

(
52s2

1 + 640s1s3 + 1024s2
3 − 52s1 − 320s3 + 13

)
+

+ 64(2s1 − 1)s3
2(2s1 − 32s3 − 1) + 2048s1(2s1 − 1)s4

2 = 0,

where s1, s2, s3 are elementary symmetric polynomials, equal, respectively, to

s1 = a1 + a2 + a3, s2 = a1a2 + a1a3 + a2a3, s3 = a1a2a3.

Here Q is different from Q’s in Steps 2 and 3, but the sign
def≡ means only a new notation.

Hence the polynomial P(a1, a2, a3) = Q(s1, s2, s3) has degree 12. In [23], for symmetry
reasons, the coordinates a = (a1, a2, a3) were changed to the coordinates A = (A1, A2, A3)
by the linear transformation
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a1
a2
a3

 = M ·

A1
A2
A3

, M =

(1 +
√

3)/6 (1 −
√

3)/6 1/3
(1 −

√
3)/6 (1 +

√
3)/6 1/3

−1/3 −1/3 1/3


The resulting polynomial is

R(A) = P(a) (7)

and has degree 12 again.

Definition 1. Let φ(X) be some polynomial, where X = (x1, . . . , xn). A point X = X0 of the set
φ(X) = 0 is called the singular point of the k-order, if all partial derivatives of the polynomial
φ(X) with respect to x1, . . . , xn turn into zero at this point, up to and including the k-th order
derivatives, and at least one partial derivative of order k + 1 is nonzero.

In [23], all singular points of the variety Ω in coordinates A = (A1, A2, A3) were found.
The five points of the third order are:

Name Coordinates A

P(3)
1 (0, 0, 3/4)

P(3)
2 (0, 0,−3/2)

P(3)
3

(
− 1+

√
3

2 ,
√

3−1
2 , 1

2

)
P(3)

4

(√
3−1
2 ,− 1+

√
3

2 , 1
2

)
P(3)

5 (1, 1, 1/2)

three points of the second order

Name Coordinates A

P(2)
1

(
1+

√
3

4 , 1−
√

3
4 , 1

2

)
P(2)

2

(
1−

√
3

4 , 1+
√

3
4 , 1

2

)
P(2)

3 (−1/2,−1/2, 1/2)

and three more algebraic curves of singular points of the first order:

F =
{

a1 = a2, 16a3
1 + 16a2

1a3 − 4a1 − 2a3 + 1 = 0
}

,

I =

{
A1 + A2 + 1 = 0, A3 =

1
2

}
,

K =

{
A1 = −9

4
th(t), A2 = −9

4
h(t), A3 =

3
4

, h(t) =
t2 + 1

(t + 1)(t2 − 4t + 1)

}
.

The points P(3)
3 , P(3)

4 and P(3)
5 are of the same type; they pass into each other when

rotated in the plane A1, A2 by an angle 2π/3, just as all points P(2)
1 , P(2)

2 , P(2)
3 . The curves

F , I , K correspond to two more curves of the same type. Therefore, it is sufficient to study
the variety Ω in the neighborhood of points P(3)

1 , P(3)
2 , P(3)

5 , P(2)
3 and curves F , I and K.

Moreover, in [23] there were computed sections of the variety Ω by planes A3 = const, and
was shown that in finite part of the space R3 = {A1, A2, A3} the variety Ω consists of two
dimensional branches F1, F2, F3, G1, G2, G3 divided into parts F±

i , G±
i with boundaries at

the plane A3 = 1/2.
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In the paper [24], three variants of the global parametrization of the variety Ω were
proposed. These parametrizations were computed using the parametric description of the
discriminant set of a monic cubic polynomial [25] and can be written in radical form [26].
Such a global description of the variety Ω cannot provide an adequate picture of the Ω
structure in the vicinity of its singular points.

In [1], parametric expansions of the variety Ω near the singular points P(3)
1 (Section 7),

P(3)
1 (Section 8), P(2)

2 (Section 8), P(2)
3 (Section 10) and near the line of singular points I

(Section 9) were computed. Here these expansions are computed near the singular point
P(3)

5 (Section 2), near the curves of singular points H (Section 3) and F (Section 4), and near
infinity (Section 5). Together they cover a wide range of cases. The following tactic has
developed: if the truncated equation contains linear multipliers, they are used to do a linear
transformation of the coordinates followed by the computation of Newton’s polyhedron;
and if they are nonlinear, a power transformation of the coordinates is done. To understand
the present article it is necessary a knowledge with papers [1] (open access), [23] and the
book [27].

2. The Structure of the Manifold Ω near the Singular Point P(3)
5

2.1. Preliminary Computations

Near the point P(3)
5 : (A1, A2, A3) = (1, 1, 1/2) we introduce local coordinates x1, x2, x3:

A1 = x1 + 1, A2 = x2 + 1, A3 =
1
2
+ x3. (8)

Then, from the polynomial R(A) in (7) we get a polynomial of degree 12.

S4(x1, x2, x3) = R(A) = Q(s1, s2, s3).

We compute the support S of the polynomial S4, the Newton polyhedron Γ4(S4), its
faces Γ(2)

j and their external normals using the PolyhedralSets package of the computer

algebra system (CAS) Maple 2021 [27]. We obtain 5 faces Γ(2)
j . The graph of the polyhedron

Γ4 is shown in Figure 1.

Figure 1. Graph of the polyhedron Γ4.
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In the top row—the whole polyhedron, in the next—all two-dimensional faces. Further
down are the edges, then the vertices, and at the bottom is the empty set. The external
normals to its two-dimensional faces are

N71 = (−1,−1,−1), N143 = (1, 1, 1), N215 = (−1, 0, 0), N239 = (0,−1, 0), N241 = (0, 0,−1).

Since x1, x2, x3 −→ 0, we take the only normal that has all coordinates negative. This
is N71 = (−1,−1,−1). It corresponds to a truncated polynomial

f̂71 = −16
(

2x2
1 − 8x1x2 + 2x1x3 + 2x2

2 + 2x2x3 − x2
3

)2
/81. (9)

The quadratic polynomial bracketed in (9) does not factorize in the field of rational
numbers, but it does factorize in the extension of this field with

√
3. We get

f = 2x2
1 − 8x1x2 + 2x1x3 + 2x2

2 + 2x2x3 − x2
3.

We proceed according to [27]:

>alpha := RootOf ( y^2 −3);
> f a c t o r ( f , alpha ) ;

− 1
2 (
(
2x2RootO f

(
Z2 − 3

)
− x3RootO f

(
Z2 − 3

)
+ 2x1 − 4x2 + x3

)
·

·(2x2RootO f
(
Z2 − 3

)
− x3RootO f

(
Z2 − 3

)
− 2x1 + 4x2 − x3))

i.e.,

f = −1
2

(
2x1 −

(
4 − 2

√
3
)

x2 +
(

1 −
√

3
)

x3

)
·
(

2x1 −
(

4 + 2
√

3
)

x2 +
(

1 +
√

3
)

x3

)
.

Now we do a linear substitution of the coordinates

y1 = 2x1 −
(

4 − 2
√

3
)

x2 +
(

1 −
√

3
)

x3,

y2 = 2x1 −
(

4 + 2
√

3
)

x2 +
(

1 +
√

3
)

x3,

y3 = x3.

Its inverse substitution is

x1 =

(
2 +

√
3
)√

3

12
y1 +

(
−2 +

√
3
)√

3

12
y2 +

1
2

y3,

x2 =

√
3

12
y1 −

√
3

12
y2 +

1
2

y3,

x3 = y3.

(10)

We substitute it into the polynomial S4(x) and get the polynomial S5(y) = S4(x). For
the polynomial S5(y), we compute Newton’s polyhedron Γ5. Its graph is shown in Figure 2.
It has 11 two-dimensional faces with external normals

N14397 = (−1,−1, 0), N15959 = (−1, 0,−1), N19269 = (−2,−2,−1),

N39917 = (0,−1,−1), N111761 = (1, 1, 1), N131145 = (−1, 0, 0), N132735 = (0, 0, 1),

N135677 = (0, 1, 0), N137855 = (1, 0, 0), N159459 = (0,−1, 0), N162019 = (0, 0,−1).

We parse the first 4 of them that have 2 or 3 coordinates negative, dedicating a
subsection to each of them. Below we use notation from Maple [27].

2.2. The Normal (−2,−2,−1)

The corresponding truncated polynomial is
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f tr19269 = −104976(5 + 3α)(864αy1y6
3 − 3456αy2y6

3 + 117αy2
1y4

3 − 594αy1y2y4
3

+ 1287αy2
2y4

3 − 1728y1y6
3 + 6048y2y6

3 − 12αy2
1y2y2

3 + 48αy1y2
2y2

3 − 360αy3
2y2

3 − 117y2
1y4

3

+ 990y1y2y4
3 − 2223y2

2y4
3 + 6αy2

1y2
2 − 24y3

1y2
3 + 24y2

1y2y2
3 − 84y1y2

2y2
3 + 624y3

2y2
3 − 10y2

1y2
2),

where α =
√

3. Here and below “ f tr” number means truncated polynomial, corresponding
to normal Nj with written number j. According to [11], we compute the matrix γ = 1 0 0

0 1 0
−2 −2 1

 such that (−2,−2,−1)γ = (0, 0,−1). Since γ−1 =

1 0 0
0 1 0
2 2 1

, then we

do a power transformation

y1 = z1z2
3, y2 = z2z2

3, y3 = z3. (11)

Figure 2. Graph of the polyhedron Γ5.

We get after factorization

f tr19269 = −104976(5 + 3α)(6αz2
1z2

2 − 12αz2
1z2 + 48αz1z2

2 − 360αz3
2 − 10z2

1z2
1z2

2

+117αz2
1 − 594αz1z2 + 1287z2

2α − 24z3
1 + 24z2

1z2 − 84z1z2
2 + 624z3

2 + 864αz1
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−3456αz2 − 117z2
1 + 990z1z2 − 2223z2

2 − 1728z1 + 6048z2)z8
3,

where α =
√

3. The large polynomial in the parentheses is denoted by

f1(z1, z2) = 6αz2
1z2

2 − 12αz2
1z2 + 48αz1z2

2 − 360αz3
2 − 10z2

1z2
1z2

2

+117αz2
1 − 594αz1z2 + 1287z2

2α − 24z3
1 + 24z2

1z2 − 84z1z2
2 + 624z3

2 + 864αz1

−3456αz2 − 117z2
1 + 990z1z2 − 2223z2

2 − 1728z1 + 6048z2.

Consider the curve f1(z1, z2) = 0. It has intersections with the axes: z1 = 0, z2 = 0. It
is a curve of genus 0, with one singular point

(z1, z2) =
(
−6 + 6

√
3;−6 − 6

√
3
)
≈ (4.39230485; −16.39230485)

and parameterization

z1 = b1(t) =

(
5 + 3

√
3
)

β
(

2042820
√

3t − 521639194050t2 + 64
√

3 − 7660575t − 119
)

2(510705t + 2)2 ,

z2 = b2(t) =

(
153

√
3 + 265

)
β
(

2042820
√

3t − 260819597025t2 + 120
√

3 − 5617755t − 212
)

2(510705t + 2)
,

β = 3
(

4
√

3 + 510705t − 5
)

.

We simplify these expressions by transforming t = t1/510705 and obtaining

z1 = b1(t1) =
3
(

5 + 3
√

3
)(

4
√

3t1 − 2t2
1 + 64

√
3 − 15t1 − 119

)(
4
√

3 + t1 − 5
)

2(t + 2)2 ,

z2 = b2(t1) =
3
(

265 + 153
√

3
)(

4
√

3t1 − t2
1 + 120

√
3 − 11t1 − 212

)(
4
√

3 + t1 − 5
)

2(t1 + 2)
.

(12)

The curve is shown in Figure 3.

Figure 3. Curve f1(z1, z2) = 0.
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With z3 fixed according to (8), (10) and (11) at the original coordinates A, we obtain
a curve

A1 = 1 +
(2 +

√
3)
√

3
12

z1z2
3 +

(−2 +
√

3)
√

3
12

z2z2
3 +

1
2

z3,

A2 = 1 +

√
3

12
z1z2

3 −
√

3
12

z2z2
3 +

1
2

z3,

(13)

where z1 = b1(t1), z2 = b2(t1) according to (12).
If z3=−0.05, z1=b1(t1), z2 = b2(t1) then according to (8), (10) and (13) A3=9/20=0.45,

A1 =
(2 +

√
3)
√

3
4800

z1 +
(−2 +

√
3)
√

3
4800

z2 +
39
40

,

A2 =

√
3

4800
z1 −

√
3

4800
z2 +

39
40

.

(14)

This curve is shown in Figure 4. This curve is similar to the curve of [23] (Figure 12)
showing the cross-section of the variety Ω at A3 = 0.45, with branches F−

1 and G−
2 .

Figure 4. Curve (14).

If z3 = 0.005, then A3 = 101/200 = 0.505, hence according to (13)

A1 =
(2 +

√
3)
√

3
480000

z1 +
(−2 +

√
3)
√

3
480000

z2 +
401
400

,

A2 =

√
3

480000
z1 −

√
3

480000
z2 +

401
400

.

(15)

When z1 = b1(t1), z2 = b2(t1), the curve (15) is shown in Figure 5. It is similar to
Figure 15 in [23], which shows the section of the variety Ω at A3 = 0.505, with coinsiding
branches F+

1 and G+
2 .
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Figure 5. Curve (15).

In fact, the parametric expansion of the variety Ω can also be computed here. To do
this, we substitute (11) into the polynomial S5(y) and get the polynomial of Step 6

T(z) = z8
3

m

∑
k=0

Tk(z1, z2)zk
3, (16)

where polynomials Tk(z1, z2) are uniquelly determined and can be computed by the com-
mand coeff(T,z[k],m).

In it, according to (12), we make the substitution

z1 = b1(t) + ε, z2 = b2(t) + ε. (17)

We obtain that T(z)/z8
3 = u(ε, z3) with coefficients depending on t via b1(t) and b2(t).

We apply Theorem 1 in [1] to the equation u(ε, z3) = 0 and obtain the expansion

ε =
∞

∑
k=1

ck(t)zk
3.

Returning to initial coordinates A via (8), (10)–(12) and (17), we obtain expansions

A1 = 1 +
1
2

z3 +
2
√

3 + 3
12

(
b1(t1) +

∞

∑
k=1

ck(t1)zk
3

)
z2

3 +
3 − 2

√
3

12

(
b2(t1) +

∞

∑
k=1

ck(t1)zk
3

)
z2

3,

A2 = 1 +
1
2

z3 +

√
3

12

(
b1(t1) +

∞

∑
k=1

ck(t1)zk
3

)
z2

3 −
√

3
12

(
b2(t1) +

∞

∑
k=1

ck(t1)zk
3

)
z2

3,

A3 =
1
2
+ z3

(18)

with parameters t1 ∈ R and z3 ∈ R for small |z3|. Formula (13) contain first terms of
expansions (18).
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2.3. The Normal (−1,−1, 0)

It corresponds to a truncated polynomial

f tr14397 = −11337408(1 + α)(αy2 + y1 − 2y2)(4y3 − 1)(y3 + 2)3y6
3. (19)

Since it is linear on y1, y2, its root is the y3-axis, i.e., y1 = y2 = 0, which we denote by
N. This line N lies on the variety Ω and through N it passes one of its branches, which in
the first approximation has the form y1 = (2 − α)y2.

According to (8) and (9) in the original coordinates A, this line N has the following form

A1 =
1
2

y3 + 1, A2 =
1
2

y3 + 1, A3 =
1
2
+ y3.

This is the straight line g2 of [23] (Figure 3). In [23] (Figures 4–15), the points of the
line N lie in the plane M : A1 = A2. Moreover, in Figure 6 A1 ∈ (−1, 0), in Figures 8–11
A1 ∈ (0, 1), in Figures 4, 13 and 14 A1 ∈ (1, 2). According to (19), there are 3 singular
points on the line N

y3 = 0, y3 = −2, y3 = 1/4. (20)

In A coordinates, they look like this:

(1, 1, 1/2), (0, 0, −3/2), (9/8, 9/8, 3/4),

i.e., they are points P(3)
5 , P(3)

2 , and a point with t = 1 on the curve H of singular points. The

structure of the variety Ω near the point P(3)
5 is dealt with in this Section, near the point P(3)

2
was dealt with in Section 7 of [1], and in the next Section we will deal with the structure of
the variety Ω near the curve H.

We can obtain an expansion of the variety Ω near the line N. To do this, we substitute
(10) in the polynomial S4(x) and obtain the polynomial V(y1, y2, y3) = S4(x), which we
write as

V(y1, y2, y3) = ∑ Vq1q2(y3)y
q1
1 yq2

2 ,

where 0 ≤ q1, q2 ∈ Z, Vq1q2(y3)− polynomials. Thus according to (19)

V00 = 0,

V10 = −11337408(1 + α)(4y3 − 1)(y3 + 2)3y6
3,

V01 = −11337408(1 + α)(α − 2)(4y3 − 1)(y3 + 2)3y6
3.

According to [1] (Theorem 1), the equation V = 0 has a solution

y1 = (2 − α)y2 +
∞

∑
k=2

ck(y3)yk
2.

Going to the original coordinates, we get the expansion for A with parameters y2 and
y3. It is valid everywhere except the neighborhoods of the points (20).

2.4. The Normal (−1, 0,−1)

It corresponds to a truncated polynomial

f tr15959 = −18(−26 + 15α)(−y2 + 6 + 6α)2(−y2 + 3 + 3α)2 · (−18y2
2y2

3α + 6αy2
1y2

−108y2y2
3α − y2

1y2
2 + 36y2

2y2
3 − 18αy2

1 + 6y2
1y2 + 108y2y2

3 − 36y2
1) · y2

2.
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Let’s put

f2 = −18y2
2y2

3α + 6αy2
1y2 − 108y2y2y2

3α − y2
1y2

2 + 36y2
2y2y2

3 − 18αy2
1 + 6y2

1y2 + 108y2y2
3 − 36y2

1.

According to [11], we compute the unimodular matrix γ =

 1 0 0
0 1 0
−1 0 1

 such that

(−1, 0,−1)γ = (0, 0,−1). Since γ−1 =

1 0 0
0 1 0
1 0 1

, then we do a power transformation

y1 = z1z3, y2 = z2, y3 = z3. (21)

We get

f2(z1, z2, z3) =
(

6αz2
1z2 − z2

1z2
2 − 18αz2

1 − 18αz2
2 + 6z2

1z2 − 108z2α − 36z2
1 + 36z2

2 + 108z2

)
z2

3

Let’s denote

g(z1, z2) = 6αz2
1z2 − z2

1z2
2 − 18αz2

1 − 18αz2
1 − 18αz2

2 + 6z2
1z2 − 108z2α − 36z2

1

+36z2
2 + 108z2 = −z2

1z2
2 + 6(α + 1)z2

1z2 − 18(α + 2)z2
1 + 18(−α + 2)z2

2 + 108(−α + 1)z2.
(22)

The curve g(z1, z2) = 0 has genus 0, intersections with axes

(z1, z2) = (0, 0), (z1, z2) =

0,−
6
(√

3 − 1
)

√
3 − 2

 = (0, 16.39230485), (23)

parameterization

z1 = b1(t) =

3(173465063
√

3 − 1091281895)β2(−176651t + 52563 + 26043
√

3)
70130447(2376102210

√
3t − 7846989697t2 − 814835898

√
3 + 4779544314t − 1425469788)

,

z2 = b2(t) = −

(
2662513 + 1729681

√
3
)

β2
2

1891308
(
−45683t + 17823 + 9267

√
3
)(

−131t + 25 + 11
√

3
) ,

β2 = (717 + 381
√

3 − 397t).

(24)

The singular points are reached at

t1 =
717 + 381

√
3

397
≈ 3.468290574, t2 =

52563 + 26043
√

3
176651

≈ 0.5529026114,

The plot of the curve is shown in Figure 6:
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Figure 6. Plot of the curve g(z1, z2) = 0.

According to (8), (10) and (11) in coordinates A1, A2, A3, we obtain

A1 = 1 +
(2 +

√
3)
√

3
12

z1z3 +
(−2 +

√
3)
√

3
12

z2 +
1
2

z3,

A2 = 1 +

√
3

12
z1z3 −

√
3

12
z2 +

1
2

z3, A3 =
1
2
+ z3.

(25)

If z3 = 0 then,

A1 = 1 +

(
−2 +

√
3
)√

3

12
z2, A2 = 1 −

√
3

12
z2, A3 =

1
2

. (26)

This is the singular line of [23] (Figure 5), which is obtained from the singular line I

by rotating by an angle 2π/3. If z3 = −0.05, then according to (25) A3 = 9/20 = 0.45 and

A1 = −

(
2 +

√
3
)√

3

240
z1 +

(
−2 +

√
3
)√

3

12
z2 +

39
40

,

A2 = −
√

3
240

z1 −
√

3
12

z2 +
39
40

.

(27)

When parameterized by (24), this curve is shown in Figure 7. It is similar to the part
of [23] (Figure 12) corresponding to A3 = 0.45, with parts of branches F−

1 and G−
2 .



Axioms 2024, 13, 106 14 of 63

Figure 7. Curve (27).

If z3 = 0.005, then A3 = 101
200 = 0.505 and

A1 = −

(
2 +

√
3
)√

3

2400
z1 +

(
−2 +

√
3
)√

3

12
z2 +

401
400

,

A2 =

√
3

2400
z1 −

√
3

12
z2 +

401
400

.

(28)

When parameterized by (24), this curve is shown in Figure 8. According to (23) in this

figure, when z2 < 0 and z2 > 6(
√

3−1)
2−

√
3

, 2 branches each merge into one line. These results
are similar to those of Section 9 of [1], differing from them by the angle 2π/3 rotation.

Figure 8 is similar to the part of Figure 15 in [23]corresponding to A3 = 0.505 with
parts of branches F+

1 and G+
2 .

Figure 8. Curve (28).
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Here the branches are very close and a different scale is needed. We can draw each
branch separately, as in Figure 9.

Figure 9. Curve (28) in more detail.

In that case also there exists a parametric expansions. In the polynomial V(y) = S(x)
we make the power transformation (21) and obtain

V(y) = W(z) = z2
3

10

∑
k=0

wk(z1, z2)zk
3.

Here w0(z1, z2) = g(z1, z2) from (22). According to (24) we substitute (17) into polyno-
mials wk(z1, z2). We obtain W(z)/z2

3 = u1(ε, z3) with coefficients depending on t via b1(t)
and b2(t). We apply Theorem 1 in [1] to the equation u1(ε, z3) = 0 and obtain the expansion

ε =
∞

∑
k=1

c̃k(t)zk
3.

So according to (25)

A1 = 1 +
(2
√

3 + 3)
12

(b1(t) + ε)z3 +
(3 − 2

√
3)

12
(b2(t) + ε) +

1
2

z3,

A2 = 1 +

√
3

12
(b1(t) + ε)z3 −

√
3

12
(b2(t) + ε) +

1
2

z3, A3 =
1
2
+ z3.

(29)

Formulas (26) and (27) give the initial terms of them.

2.5. The Normal (0,−1,−1)

It corresponds to a truncated polynomial

f tr39917 = 18(26 + 15α)(y1 − 3 + 3α)2(y1 − 6 + 6α)2y2
1·(

18y2
1y2

3α − 6αy1y2
2 + 108y1y2

3α − y2
1y2

2 + 36y2
1y2

3 + 18y2
2α + 6y1y2

2 + 108y1y2
3 − 36y2

2

)
.

Let’s denote

f3 = 18y2
1y2

3α − 6αy1y2
2 + 108y1y2

3α − y2
1y2

2 + 36y2
1y2

3 + 18y2
2α + 6y1y2

2 + 108y1y2
3 − 36y2

2.
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According to [11], we compute the matrix γ =

1 0 0
0 1 0
0 −1 1

 such that (0,−1,−1)γ =

(0, 0,−1). Since γ−1 =

1 0 0
0 1 0
0 1 1

, then we do a power transformation.

y1 = z1, y2 = z2z3, y3 = z3

and we get

f3 =
(
−6αz1z2

2 − z2
1z2

2 + 18αz2
1 + 18αz2

2 + 6z1z2
2 + 108αz1 + 36z2

1 − 36z2
2 + 108z1

)
z2

3.

Let us denote

g1(z1, z2) = −z2
1z2

2 + (18α + 36)z2
1 + (−6α + 6)z1z2

2 + (108α + 108)z1 + (18α − 36)z2
2 =

= −z2
1z2

2 + 6(−α + 1)z1z2
2 + 18(α + 2)z2

1 + 18(α − 2)z2
2 + 108(α + 1)z1.

According to (22) the polynomial g1(z1, z2) is obtained from the polynomial g(z1, z2)
by the transposition

(z1, z2, α) → (z2, z1,−α). (30)

So here everything is similar to Section 2.4, but in the plane A1, A2 rotated by an angle
of 2π/3. Also here there are expansions symmetric to (29) by transpositions (30) and

((b1(t), b2(t)) → ((b2(t), b1(t)) (31)

• Result of Section 2

Theorem 1. Near the singular point P(3)
5 the variety Ω has 3 local singular parametric expansions

(18) and (29) and symmetric to (29) by transpositions (30) and (31). The expansions (18) describe
parts of branches F1 and G2 very near the point P(3)

5 . Expansions (29) and its symmetric describes
branches F1 and G2 near line (26) and symmetry line to it. For ε → 0 branches F1 and G2 coincide
at parts of these lines.

3. The Structure of the Manifold Ω near the Curve H of Singular Points

Recall that the curve H is given by equations

A1 = b1(t) = −
9t
(
t2 + 1

)
4(t + 1)(t2 − 4t + 1)

,

A2 = b2(t) = −
9
(
t2 + 1

)
4(t + 1)(t2 − 4t + 1)

,

A3 =
3
4

.

(32)

In the polynomial R(A) = Q(s), substitute

A3 =
3
4
+ µ

and write the result as

R̃(A1, A2, µ) =
m

∑
k=0

Rk(A1, A2)µ
k. (33)

The polynomials R0, R1, R2, and R3 are computed using the command coeff (R, mu, k) [27].
After factorization, the polynomials R0, R1, R2 and R3 have the form:
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R0(A1, A2) = −(256A6
1 − 1536A5

1 A2 + 768A4
1 A2

2 + 5120A3
1 A3

2 + 768A2
1 A4

2 − 1536A1 A5
2 + 256A6

2 − 5184A4
1

−10368A2
1 A2

2 − 5184A4
2 + 17496A2

1 + 17496A2
2 − 19683)(4A3

1 − 12A2
1 A2 − 12A1 A2

2 + 4A3
2 + 9A2

1 + 9A2
2)

2/2125764,

R1(A1, A2) = (−1/177147)(8(4A3
1 − 12A2

1 A2 − 12A1 A2
2 + 4A3

2 + 9A2
1 + 9A2

2)(64A8
1 − 384A7

1 A2

+256A6
1 A2

2 + 896A5
1 A3

2 + 384A4
1 A4

2 + 896A3
1 A5

2 + 256A2
1 A6

2 − 384A1 A7
2 + 64A8

2 − 576A7
1

+1728A6
1 A2 + 576A5

1 A2
2 + 2880A4

1 A3
2 + 2880A3

1 A4
2 + 576A2

1 A5
2 + 1728A1 A6

2 − 576A7
2 − 2592A6

1

−7776A2
2 A4

1 − 7776A4
2 A2

1 − 2592A6
2 + 3888A5

1 − 11664A4
1 A2 − 7776A3

1 A2
2 − 7776A2

1 A3
2

−11664A1 A4
2 + 3888A5

2 + 13122A4
1 + 26244A2

1 A2
1 + 13122A4

2 − 6561A3
1 + 19683A2

1 A2

+19683A1 A2
2 − 6561A3

2 − 19683A2
1 − 19368A2

2)),

R2(A1, A2) = −544
81

A6
2 −

16
3

A3
1 −

544
81

A6
1 −

16
3

A3
2 −

512
27

A5
2 A1 + 16A2

1 A2 + 16A1 A2
2

−512
27

A2 A5
1 −

544
27

A2
2 A4

1 +
5120

81
A3

2 A3
1 −

544
27

A4
2 A2

1 +
5120

19683
A2

1 A8
2 +

10240
19683

A4
1 A6

2 +
8192
19683

A3
1 A7

2

+
5120
19683

A8
1 A2

2 +
8192
19683

A7
1 A3

2 +
10240
19683

A6
1 A4

2 +
28672
19683

A5
1 A5

2 −
2048
6561

A9
1 A2 −

7168
2187

A2
1 A6

2 +
256
27

A2
1 A5

2

+
3584
729

A7
1 A2 −

7168
2187

A6
1 A2

2 +
256

9
A6

1 A2 −
25088
2187

A5
1 A3

2 +
256
27

A5
1 A2

2 −
3584
729

A4
1 A4

2 +
1280

27
A4

1 A3
2

−688
9

A4
1 A2 −

25088
2187

A3
1 A5

2 +
1280

27
A3

1 A4
2 −

1376
27

A3
1 A2

2 +
160

3
A2

1 A2
2 −

2048
6561

A1 A9
2 +

3584
729

A1 A7
2

+
256

9
A1 A6

2 −
688

9
A1 A4

2 −
1376

27
A2

1 A3
2 −

16384
6561

A8
1 A2 +

14336
6561

A7
1 A2

2 −
2048

19683
A6

1 A3
2 −

75776
6561

A5
1 A4

2

−75776
6561

A4
1 A5

2 −
2048

19683
A3

1 A6
2 +

14336
6561

A2
1 A7

2 −
16384
6561

A8
2 A1 −

256
27

A7
2 +

688
27

A5
2 +

80
3

A4
2

+
10240
19683

A10
1 − 1792

2187
A8

2 +
80
3

A4
1 +

688
27

A5
1 −

256
27

A7
1 −

1792
2187

A8
1 +

1024
19683

A10
2

+
34816
59049

A9
2 +

34816
59049

A9
1,

R3(A1, A2) =
5120
729

A6
2 −

1216
27

A3
1 +

5120
729

A6
1 −

1216
27

A3
2 −

5120
243

A5
2 A1 +

1216
9

A2
1 A2 +

1216
9

A2
2 A1

−5120
243

A5
1 A2 +

5120
243

A2
2 A4

1 +
51200

729
A3

1 A3
2 +

5120
243

A4
2 A2

1 −
163840
19683

A2
1 A6

2 +
23552
2187

A2
1 A5

2 +
8192
6561

A7
1 A2

−163840
19683

A6
1 A2

2 +
23552

729
A6

1 A2 −
57344
19683

A5
1 A3

2 +
23552
2187

A5
1 A2

2 −
81920
6561

A4
1 A4

2 +
117760
2187

A4
1 A3

2 −
14272

81
A4

1 A2

−57344
19683

A3
1 A5

2 +
117760

2187
A3

1 A4
2 −

28544
243

A3
1 A2

2 +
1280

27
A2

1 A2
2 +

8192
6561

A1 A7
2 +

23552
729

A1 A6
2 −

14272
81

A1 A4
2

−28544
243

A2
1 A3

2 −
65536
59049

A8
1 A2 +

57344
59049

A7
1 A2

2 −
8192

177147
A6

1 A3
2 −

303104
59049

A5
1 A4

2 −
303104
59049

A4
1 A5

2 −
8192

177147
A3

1 A6
2

+
57344
59049

A2
1 A7

2 −
65536
59049

A1 A8
2 −

23552
2187

A7
2 +

14272
243

A5
2 +

640
27

A4
2 −

40960
19683

A8
2 +

640
27

A4
1

+
14272
243

A5
1 −

23552
2187

A7
1 −

40960
19683

A8
1 +

139264
531441

A9
2 +

139264
531441

A9
1.

Let’s denote

Φ(A1, A2) = 4
(

A3
1 + A3

2

)
− 12

(
A2

1 A2 + A1 A2
2

)
+
(

A2
1 + A2

2

)
.
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Then R0 is divided by Φ2, R1 is divided by Φ, and R2 and R3 are not divided by Φ.
The curve Φ(A1, A2)= 0 has genus 0, its parameterization is

{A1, A2} = {−
9t
(
t2 + 1

)
4(t + 1)(t2 − 4t + 1)

, −
9
(
t2 + 1

)
4(t + 1)(t2 − 4t + 1)

} (34)

and is shown in Figure 10.

Figure 10. Curve Φ(A1, A2) = 0.

The parameterization (34) is the same as the formulas of (32). The curve H goes to
infinity at

t1 = −1, t2 = 2 +
√

3 ≈ 3.732050808, t3 = 2 −
√

3 ≈ 0.267949192.

According to (32) we substitute

A1 = b1(t) + ε, A2 = b2(t). (35)

into the polynomials Rk(A1, A2). Then the polynomial (33) will become a polynomial

R̃(A1, A2, µ) = u(ε, µ) = ∑ upq(t)εpµq, (36)

whereby

upq =
1
p!

·
∂pRq

∂Ap
1

,

where A1 = b1(t), A2 = b2(t) according to (32). In particular, we obtain

u00 = u10 = u01 ≡ 0, (37)
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u20(t) =
1
2
· ∂2R0

∂A2
1
= −28160

59049
A9

1 −
9728

59049
A9

2 +
320
243

A8
1 +

512
81

A7
1 +

3
2

A2
2 −

112
9

A5
1 −

14
9

A4
2 −

70
9

A4
1 +

16
27

A5
2 +

9
2

A2
1

+
320

2187
A8

2 −
4
3

A3
2 +

64
243

A6
2 +

20
3

A3
1 +

448
243

A6
1 +

80
3

A4
1 A2 −

5120
243

A4
1 A3

2 +
3200
729

A4
1 A4

2 +
3584
729

A5
1 A3

2

−28
3

A2
1 A2

2 +
160

9
A2

1 A3
2 −

512
81

A2
1 A5

2 +
1280
729

A2
1 A6

2 +
160
27

A3
1 A2

2 −
2560
243

A3
1 A4

2 +
17920
2187

A3
1 A5

2 −
3584
243

A6
1 A2

+
8960
2187

A6
1 A2

2 +
716800
59049

A6
1 A4

2 −
512
81

A7
1 A2 −

16384
59049

A7
1 A3

2 −
71680
19683

A8
1 A2

2 +
80
9

A1 A4
2 −

81920
59049

A3
1 A7

2

−839680
59049

A4
1 A6

2 +
51200
19683

A2
1 A8

2 −
57344
19683

A5
1 A5

2 − 4A1 A2
2 −

448
81

A1 A5
2 − 12A2

1 A2 +
64
27

A2
1 A4

2

−4480
243

A3
1 A3

2 +
448
27

A5
1 A2 +

320
81

A4
1 A2

2 +
71680
19683

A3
1 A6

2 +
2048
729

A2
1 A7

2 −
3584
6561

A1 A8
2 +

35840
6561

A4
1 A5

2 −
38912
6561

A7
1 A2

2

−100352
19683

A6
1 A3

2 +
7168
729

A5
1 A4

2 +
225280
177147

A9
1 A2 +

2560
729

A8
1 A2 +

512
729

A1 A7
2 −

1024
243

A1 A6
2 −

80
9

A3
1 A2

+
80
9

A1 A3
2 −

4096
177147

A1 A9
2 −

22528
177147

A10
1 − 14336

177147
A10

2

=
243
(
t2 + 1

)2
(t4 + 6t2 − 8t − 3)2

(5t6 + 24t5 + 15t4 − 80t3 + 15t2 + 24t + 5)2

1024(t + 1)8(t2 − 4t + 1)8 ,

u11(t) =
∂R1

∂A1
= 32A1 A2

2 −
224

9
A5

1 +
71680
6561

A4
1 A5

2 +
7168
243

A6
1 A2 + 32A3

1 − 512
243

A8
2

− 22528
177147

A10
1 − 56

3
A4

2 −
64
9

A5
2 +

512
81

A8
1 +

1024
243

A7
2 +

2048
729

A7
1 −

320
9

A4
1 A2 −

35840
729

A4
1 A3

2

−5120
243

A4
1 A4

2 +
2048
243

A5
1 A2

2 +
2048

19683
A10

2 +
280

9
A4

1 +
640

9
A2

1 A3
2 − 8192

243
A5

1 A3
2 −

112
3

A2
1 A2

2

+
2048
243

A3
1 A4

2 −
4096
243

A3
1 A5

2 +
28672
6561

A6
1 A4

2 −
38912
19683

A8
1 A2

2 −
4096
243

A7
1 A2 −

224
9

A1 A4
2

−114688
59049

A7
1 A3

2 +
143360
59049

A4
1 A6

2 − 14336
19683

A2
1 A8

2 +
57344
19683

A5
1 A5

2 +
16384
6561

A3
1 A7

2 +
6400

81
A3

1 A3
2

+
1600

27
A2

1 A4
2 +

640
81

A1 A5
2 +

4096
2187

A2
1 A7

2 +
1600
81

A4
1 A2

2 +
10240
2187

A5
1 A4

2 +
28672
6561

A6
1 A3

2

+
20480
6561

A7
1 A2

2 +
20480
6561

A3
1 A6

2 −
1024
243

A8
1 A2 −

77824
177147

A1 A9
2 +

20480
19683

A9
1 A2 +

2048
729

A1 A6
2

+
5120
6561

A1 A8
2 +

640
9

A5
1 A2 −

224
3

A3
1 A2 −

224
9

A1 A3
2 +

5120
6561

A9
1 −

1024
2187

A9
2 −

2240
81

A6
1

+
320
27

A6
2 −

4096
243

A2
1 A6

2 − 448
9

A3
1 A2

2 − 7168
243

A2
1 A5

2 =

=
729
(
t2 + 1

)4(t4 + 6t2 − 8t − 3
)(

5t6 + 24t5 + 15t4 − 80t3 + 15t2 + 24t + 5
)2

512(t + 1)8(t2 − 4t + 1)8 ,

(38)

u02(t) = R2(b1(t), b2(t)) =

= −
243
(
t2 + 1

)3(t2 + 8t + 1
)(

11t4 + 8t3 − 42t2 + 8t + 11
)(

5t6 + 24t5 + 15t4 − 80t3 + 15t2 + 24t + 5
)2

1024(t + 1)8(t2 − 4t + 1)8 .

From the Formulas (37) and (38), we can see that the Newton’s polygon Γ of the
polynomial u(ε, µ) (36) in the plane p, q has an edge Γ(1)

1 containing the points (2, 0), (1, 1),
(0, 2) (Figure 11) with external normal N1 = (−1,−1).
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Figure 11. The lower left side of the polygon Γ.

So we’re doing a power transformation

ε = µδ. (39)

Then the polynomial u(ε, µ) becomes a polynomial.

µ2V(δ, µ) = µ2 ∑ Vpr(t)δpµr =u(ε, µ), (40)

where
up,q(t) = Vp,p+q−2(t).

The support and Newton’s polygon for the polynomial V(δ, µ) are shown in Figure 12.
The truncated equation corresponding to the edge Γ̃(1)

1 is

u20(t)δ2 + u11(t)δ + u02(t) = 0. (41)

Figure 12. The support and polygon of the polynomial V(δ, µ).
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It has two roots

δ1(t) =
−3(t2 + 1)2

+ 2
√

5t8 + 24t7 + 20t6 − 56t5 + 30t4 − 56t3 + 20t2 + 24t + 5
t4 + 6t2 − 8t − 3

,

δ2(t) =
−3
(
t2 + 1

)2 − 2
√

5t8 + 24t7 + 20t6 − 56t5 + 30t4 − 56t3 + 20t2 + 24t + 5
t4 + 6t2 − 8t − 3

.

(42)

Their denominator goes to zero at two real points

t4 ≈ 1.324070992, t5 ≈ −0.3044219351. (43)

These points are indicated in Figure 10.
Next, we consider the expansions of the Ω manifold for the cases of two roots (42).
In the polynomial V(δ, µ) of (40), we make the substitutions

δ = δi +κi, i = 1, 2. (44)

where δi are given by the formula (42). We get

Wi(κi, µ) = V(δ, µ) = ∑ Wisr(t)κs
i µr, i = 1, 2,

where integers s, r ≥ 0, r + s ≥ 1. In this case.

Wisr(t) = ∑
p≥s

Vps(t)Cs
pδ

p−s
i , i = 1, 2,

where Cs
p =

p!
s!(p − s)!

are binomial coefficients. In particular, according to (38), (41) and

(42), we have
Wi00 ≡ 0, Wi10 ≡ 2u20(t) · δi(t) + u11(t), i = 1, 2.

More specifically,

W110 = 2u20(t)δ1(t) + u11(t)

=
243
(
t4 + 6t2 − 8t − 3

)(
t2 + 1

)2(5t6 + 24t5 + 15t4 − 80t3 + 15t2 + 24t + 5
)2

256(t + 1)8

×
√
(t2 + 1)(5t6 + 24t5 + 15t4 − 80t3 + 15t2 + 24t + 5)

(t2 − 4t + 1)8 ,

(45)

W210 = 2u20(t)δ2(t) + u11(t)

= −
243
(
t4 + 6t2 − 8t − 3

)(
t2 + 1

)2(5t6 + 24t5 + 15t4 − 80t3 + 15t2 + 24t + 5
)2

256(t + 1)8

×
√
(t2 + 1)(5t6 + 24t5 + 15t4 − 80t3 + 15t2 + 24t + 5)

(t2 − 4t + 1)8 ,

(46)

i.e., W210 = −W110 ̸≡ 0. Hence Theorem 1 in [1] is applicable, which for solutions of
equations Wi(κi, µ) = 0 according to (45) and (46) gives the expansions

κi(t) =
∞

∑
k=1

cik(t)µk, i = 1, 2.

Let’s go from coordinates (κi, µ) to coordinates (δ, µ) by (44), with decompositions

δ(1) = δ1(t) +κ1(t) = δ1 +
∞

∑
k=1

c1kµk
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and

δ(2) = δ2(t) +κ2(t) = δ2 +
∞

∑
k=1

c2kµk.

Then we go to the coordinates ε, µ : ε(i) = µδ(i), i = 1, 2 by (39) to the coordinates
A1, µ by (35):

A(1)
1 = b1(t) + ε(1) = b1(t) + µ(δ1 +κ1) = b1(t) + δ1(t)µ + µ

∞

∑
k=1

c1k(t)µk, (47)

A(2)
1 = b1(t) + ε(2) = b1(t) + µ(δ2 +κ2) = b1(t) + δ2(t)µ + µ

∞

∑
k=1

c2k(t)µk, (48)

A2 = b2(t) = −
9
(
t2 + 1

)
4(t + 1)(t2 − 4t + 1)

. (49)

With µ fixed, the Formulas (47) and (49) are defined in the plane A1, A2 with A3 =
3/4 + µ the first curve K(1), and the Formulas (48) and (49) define there the second curve
K(2). We obtain four curves. Restricting ourselves to the initial terms of the expansions, we
draw them. When µ = 1

8 , the curve K(1) is

K(1) =
{

A(1)
1 = b1(t) + δ1(t)µ, A2 = b2(t)

}
=

{
−

9t
(
t2 + 1

)
4(t + 1)(t2 − 4t + 1)

+
−3
(
t2 + 1

)2
+ 2
√
(t2 + 1)(5t6 + 24t5 + 15t4 − 80t3 + 15t2 + 24t + 5)

8 · (t4 + 6t2 − 8t − 3)
, b2(t)

}
,

and it is shown in Figure 13.

Figure 13. The curve K(1) at µ = 1/8.

The curve K(2) is

K(2) =
{

A(2)
1 = b1(t) + δ2(t)µ, A2 = b2(t)

}
=

{
−

9t
(
t2 + 1

)
4(t + 1)(t2 − 4t + 1)

+
−3
(
t2 + 1

)2 − 2
√
(t2 + 1)(5t6 + 24t5 + 15t4 − 80t3 + 15t2 + 24t + 5)

8 · (t4 + 6t2 − 8t − 3)
, b2(t)

}
,

It’s shown in Figure 14.
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Figure 14. The curve K(2) at µ = 1/8.

When µ = −1/8, the curve

K(1) =
{

A(1)
1 = b1(t) + δ1(t)µ, A2 = b2(t)

}
=

{
−

9t
(
t2 + 1

)
4(t + 1)(t2 − 4t + 1)

−
−3
(
t2 + 1

)2
+ 2
√
(t2 + 1)(5t6 + 24t5 + 15t4 − 80t3 + 15t2 + 24t + 5)

8 · (t4 + 6t2 − 8t − 3)
, b2(t)

}

is shown in Figure 15.

Figure 15. The curve K(1) at µ = −1/8.

and the curve

K(2) =
{

A(2)
1 = b1(t) + δ2(t)µ, A2 = b2(t)

}
=

{
−

9t
(
t2 + 1

)
4(t + 1)(t2 − 4t + 1)

+
3
(
t2 + 1

)2
+ 2
√
(t2 + 1)(5t6 + 24t5 + 15t4 − 80t3 + 15t2 + 24t + 5)

8 · (t4 + 6t2 − 8t − 3)
, b2(t)

}

is shown in Figure 16.
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The curves of Figures 13 and 14 correspond to A3 = 7/8 and are similar to the curves
of Figure 13 of [23], showing the section of the variety Ω by the plane A3 = 1. The curves
of Figures 15 and 16 correspond to A3 = 5/8 and they are similar to the curves of Figure 14
of [23], showing the cross section of Ω by the plane A3 = 5/8. This confirms the correctness
of the calculated expansions.

In Figures 13, 15 and 16, there are discontinuities in the curves at the places of the
roots (43) of the denominators δ1(t) and δ2(t) in (42). They can be eliminated by substituting

A1 = b1(t) + ε, A2 = b2(t) + ε

instead of substitution (35) and calculate the corresponding expansion.

Figure 16. The curve K(2) at µ = −1/8.

• Result of Section 3

Theorem 2. Near the curve H of singular points the variety Ω has two singular parametric
expansions (47), (49) and (48), (49). They represent parts of branches G+

2 and G−
3 correspondingly.

At A3 = 3/4 they coincide with curve H.

4. The Structure of the Variety Ω near the Curve F of Singular Points

We take the polynomial Q(s) = Q(s1, s2, s3), where s1 = a1 + a2 + a3, s2 = a1 · a2 +
a1 · a3 + a1 · a3, s3 = a1 · a2 · a3 are elementary symmetric polynomials, and we substitute
a1 = a2. Then the polynomial Q(s) takes the form

Q̃(a1, a3) = −(1 + 2a3)
(

8a1a3 + 8a2
3 − 4a1 − 4a3 + 1

)(
16a3

1 + 16a2
1a3 − 4a1 − 2a3 + 1

)3
.

Let’s write the polynomial 16a3
1 + 16a2

1a3 − 4a1 − 2a3 + 1 in A coordinates, substituting

a1 =
1 +

√
3

6
A1 +

1 −
√

3
6

A1 +
1
3

A3, a3 = −1
3

A1 −
1
3

A1 +
1
3

A3

with A1 = A2.
Then we get a polynomial − 1

27
(
16A3

1 − 48A1 A2
3 − 32A3

3 + 54A3 − 27
)
. We put

F (A1, A3) = 16A3
1 − 48A1 A2

3 − 32A3
3 + 54A3 − 27.
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The curve F = 0 consists of singular points, has genus 0, and parameterization

[A1, A3] =

[
b1(t) = − (5t + 2)(t + 4)2

6t(t2 − 16t − 8)
, b2(t) =

11t3 − 48t2 − 48t − 16
6t(t2 − 16t − 8)

]
. (50)

The curve is shown in Figure 17.

Figure 17. The curve F (A1, A3) = 0.

In [23] (Figure 3), the components f±1 , f2, f±3 of this curve are shown in gray. The
scales on the axes are different there. In the polynomial R(A) = Q(s) we substitute

A1 = B1, A2 = B1 + B2, A3 = B3, (51)

and we get a polynomial depending on three variables,

K(B1, B2, B3) =
12

∑
l=0

Kl(B1, B3)Bl
2. (52)

We factorize Kl for l = 0, 1, 2, 3 because they are need for our computation and get

− 531441K0(B1, B3) = (−2B3 − 3 + 4B1)
(

16B2
1 − 40B1B3 + 16B2

3 + 12B1 − 24B3 + 9
)

×
(

16B3
1 − 48B1B2

3 − 32B3
3 + 54B3 − 27

)3
=

= (−2B3 − 3 + 4B1)
(

16B2
1 − 40B1B3 + 16B2

3 + 12B1 − 24B3 + 9
)
F 3(B1, B3).

and

−177147K1(B1, B3) = 8B1

(
16B3

1 − 48B1B2
3 − 32B3

3 + 54B3 − 27
)2

×
(

256B4
1 − 704B3

1B3 + 96B2
1B2

3 + 736B1B3
3 − 320B4

3 + 378B1B3 − 432B2
3 − 189B1 + 216B3

)
= 8B1

(
256B4

1 − 704B3
1B3 + 96B2

1B2
3 + 736B1B3

3 − 320B4
3 + 378B1B3 − 432B2

3 − 189B1 + 216B3

)
F 2(B1, B3).
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Then

K2(B1, B3) = −45056
729

B7
1B3 +

1856
27

B4
1B3 −

131072
19683

B10
1 − 467

27
B4

1 +
22528

729
B7

1 +
1310720
177147

B10
3

−32768
2187

B8
3 +

16384
2187

B7
3 −

128
3

B3
3 +

2048
81

B4
3 +

1024
81

B5
3 −

1024
81

B6
3 +

64
3

B2
3 −

32
9

B3 −
65536

729
B2

1B5
3

+
106496
2187

B3
1B4

3 +
136192

729
B4

1B3
3 +

512
27

B2
1B2

3 +
2048
81

B3
1B3 −

212992
2187

B3
1B5

3 −
40960

729
B5

1B2
3

−177152
2187

B6
1B3 +

131072
729

B2
1B6

3 +
81920
729

B5
1B3

3 −
272384

729
B4

1B4
3 +

354304
2187

B6
1B2

3 +
3080192
177147

B9
1B3

−1638400
19683

B7
1B3

3 −
5472256
59049

B6
1B4

3 +
2621440

19683
B5

1B5
3 +

2768896
19683

B4
1B6

3 +
671744
19683

B8
1B2

3 −
1441792
19683

B2
1B8

3

−3407872
59049

B3
1B7

3 +
2048
27

B2
1B4

3 +
8192
81

B3
1B3

3 −
1856

27
B4

1B2
3 −

8192
81

B3
1B2

3 −
2048
27

B2
1B3

3,

K3(B1, B3) =
1024

27
B1B4

3 +
65536
729

B1B6
3 −

1024
27

B1B3
3 −

32768
729

B1B5
3 +

256
27

B1B2
3 −

1952
243

B3
1

+
336896
6561

B6
1 −

3276800
531441

B9
1 −

917504
531441

B9
3 −

90112
6561

B7
3 +

3424
243

B3
3 −

5632
243

B4
3 +

5632
243

B5
3 +

45056
6561

B6
3

−112
9

B2
3 +

56
3

B3 −
720896
19683

B1B8
3 −

28
27

− 851968
59049

B2
1B7

3 +
23953408
177147

B3
1B6

3 +
655360
6561

B4
1B5

3

−6324224
59049

B5
1B4

3 −
13991936
177147

B6
1B3

3 +
1015808
59049

B8
1B3 −

53248
2187

B2
1B5

3 −
2772992

6561
B3

1B4
3 +

20480
243

B4
1B3

3

−2048
81

B2
1B2

3 +
7808
243

B3
1B3 +

604160
2187

B5
1B2

3 −
673792

6561
B6

1B3 +
720896
19683

B7
1B2

3 +
512
81

B2
1B3 +

26624
2187

B2
1B4

3

+
1386496

6561
B3

1B3
3 −

10240
243

B4
1B2

3 −
302080

2187
B5

1B3 −
7808
243

B3
1B2

3 +
2048
81

B2
1B3

3.

The multiplier F (B1, B3) enters in K0(B1, B3) in the third degree, in K1(B1, B3) in the
second degree, in K2(B1, B3), and in K3(B1, B3) it does not enter. Then K0 is divisible by F 3,
K1 is divisible by F 2, and K2 and K3 are not divisible by F . The curve F (B1, B3)= 0 has
genus 0, parameterization (50).

The curve F = 0 goes to infinity at

t1 = 0, t2 = 2
(

4 + 3
√

2
)
≈ 16.48528137, t3 = 2

(
4 − 3

√
2
)
≈ −0.485281372.

Into the polynomials Kl(B1, B3) we substitute

B1 = b1(t) + ε, B3 = b2(t) (53)

according to (50). Then the polynomial (52) will become a polynomial

K(B1, B3, B2) = u(ε, B2) = ∑
p,q≥0

upq(t)εpBq
2, whereby upq =

1
p!

·
∂pKq

∂Bp
1
(b1(t), b2(t)), (54)

where B1 = b1(t), B3 = b2(t) according to (50). In particular, we obtain

u00 =u10 = u01 ≡ 0, u20(t) =
1
2
·
(

∂2K0

∂B2
1

)
(b1(t), b2(t)) = 0,

u11(t) =
(

∂K1

∂B1

)
(b1(t), b2(t)) = 0, u02(t) =K2(b1(t), b2(t)) =

64(5t + 2)2(t + 4)4(t − 2)4(t + 1)4

t2(t2 − 16t − 8)6 .

(55)
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u30 =
1
6
· ∂3K0

∂B3
1

==
40960

81
B2

1B3
3 +

14417920
59049

B8
1B3 +

10240
81

B2
1B3 − 286720

729
B4

1B2
3 − 57671680

531441
B9

1

+
360448

6561
B7

3 +
4259840

6561
B3

1B3
3 +

3670016
531441

B9
3 +

22528
243

B4
3 − 22528

243
B5

3 − 180224
6561

B6
3

+
1835008

2187
B5

1B2
3 +

102400
243

B3
1B3 +

2621440
6561

B7
1B2

3 − 2981888
6561

B6
1B3 −

150470656
177147

B6
1B3

3

− 2883584
19683

B1B8
3 +

4096
27

B1B4
3 − 4096

27
B1B3

3 − 131072
729

B1B5
3 +

262144
729

B1B6
3 +

573440
729

B4
1B3

3

+
1490944

6561
B6

1 −
224

9
B3 −

13696
243

B3
3 +

448
9

B2
3 − 25600

243
B3

1 +
112
27

− 917504
2187

B5
1B3

−102400
243

B3
1B2

3 −
17039360

59049
B2

1B7
3 +

103546880
177147

B3
1B6

3 +
1024
27

B1B2
3 − 40370176

59049
B5

1B4
3

−1064960
2187

B2
1B5

3 +
18350080

19683
B4

1B5
3 +

532480
2187

B2
1B4

3 − 40960
81

B2
1B2

3 −
8519680

6561
B3

1B4
3

= −
8192(5t + 2)(t + 4)2(t − 2)2(t + 1)3(8t3 − 3t2 + 24t + 8

)3

6561t5(t2 − 16t − 8)6 .

(56)

From the Formulas (55) and (57), we can see that the Newton’s polygon Γ of the
polynomial u(ε, B2) given by (54) in the plane p, q has an edge Γ(1)

1 , containing the points
(3, 0), (0, 2) (Figure 18) with external normal N1 = (−2,−3).

Figure 18. Bottom left of the polygon Γ.

A truncated polynomial corresponds to this edge

ε3u30(t) + B2
2u02(t) = 0 (57)

According to [11] we find the unimodular matrix α =

(
3 −1
−2 1

)
for N1 such that

N1α = (0,−1). Therefore, we need to do a power transformation

(ln δ, ln D) = (ln ε, ln B2) · α,

where δ and D are new variables, i.e.,

(ln ε, ln B2) = (ln δ, ln D) · α−1.
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Since α−1 =

(
1 1
2 3

)
, then ε = δD2, B2 = δD3. Hence we can write

K(B1, B3, B2) = u(ε, B2) = ∑ upq(t)εpBq
2 = ∑ upq(t)δp+qD2p+3q = δ2D6V(δ, D).

Then the polynomial u(ε, B2) becomes a polynomial

δ2D6V(δ, D) = δ2D6 ∑ Vrs(t)δrDs = u(ε, B2),

where Vr,s(t) = Vp+q,2p+3q(t) = up,q(t). Thus the polygon Γ of Figure 18 takes the form
shown in Figure 19. For the polynomial V(δ, D) the polygon is shown in Figure 20. The
truncated Equation (57) takes the form of

δ2D6(u30(t)δ + u02(t)) = 0.

From where

δ0(t) = c0(t) = −u02(t)
u30(t)

=
6561(5t + 2)·(t + 4)2 · (t − 2)2(t + 1)t3

128(8t3 − 3t2 + 24t + 8)3 .

The only real root of the denominator is

t4 = −
3
(

13 + 16
√

2
) 1

3

8
+

21

8
(

13 + 16
√

2
) 1

3
+

1
8
≈ −0.3111842957. (58)

Figure 19. The Newton’s polygon of the polynomial δ2D6V(δ, D).
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Figure 20. Newton’s polygon of the polynomial V(δ, D).

In this case.
Vg,h(t) = Vp+q−2,2p+3q−6(t) = up,q(t).

After substitution δ = δ0(t) + ξ, into the polynomial V(δ, D), we obtain

W(ξ, D) = V(δ0(t) + ξ, D).

When ξ = 0, the polynomial W(0, D) is calculated using the command coe f f (M(0, D), 0) [27].
The quotient at D of degree zero is zero. The coefficient on the first degree of D is ob-
tained by

a(t) = coe f f (M(0, D), D, 1) =
1594323t6(5t + 2)2(t + 4)4(t − 2)4(t + 1)4

2
.

Therefore, Theorem 1 in [1] is applied to equation W(ξ, D) = 0, and according to it a
solution is

ξ =
∞

∑
k=1

ck(t)Dk. (59)

When we get the truncated equation u30(t) · ξ + a(t) · D = 0, then it follows

ξ = − a(t)
u30(t)

· D =
10460353203t11(t + 1)(5t + 2)(t + 4)2(t − 2)2(t2 − 16t − 8

)6

16384(8t3 − 3t2 + 24t + 8)3 · D = c1(t)D.

Now let’s go back and get an approximation

ε = δD2 = (δ0(t) + ξ)D2 ≈ δ0(t)D2 + c1(t)D3, (60)

B2 = (δ0(t) + ξ)D3 ≈ δ0(t)D3 + c1(t)D4. (61)

Therefore, from the formula (51) we get

A1 = B1 = b1(t) + δ0(t)D2 + c1(t)D3, (62)
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A2 = B1 + B2 = b1(t) + δ0(t)D2 + (c1(t) + δ0(t))D3 + c1(t)D4,

A3 = B3 = b2(t) =
11t3 − 48t2 − 48t − 16

6t(t2 − 16t − 8)
. (63)

The curves (62) and (63) at D = ±0.1 are shown in Figures 21 and 22, respectively. The
gaps in these curves are the neighborhoods of the point t4 of (58). They can be filled in if
instead of substituting (51) we do

B1 = b1(t) + ε, B3 = b2(t) + ε.

Figure 21. Curve (62) and (63) at D = 1/10.

Figure 22. Curve (62) and (63) at D = −1/10.
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The closeness of these curves to the curve of Figure 17 confirms the correctness of the
found parametric expansion of the (59) of the variety Ω near the curve of singular points.

According to (61) and (62) branches Fi intersect curve F with singularity of type√
A1 − b1(t)

δ0(t)
≈
(

B2

δ0(t)

)1/3
.

• Result of Section 4

Theorem 3. Near the curve F of singular points the variety Ω has one singular parametric
expansions (59)–(61) and (63). They represent parts of branches F±

1 , F2, F±
3 . At A1 = A they

coincide with curve F , having points of curve F as singular points.

5. The Variety Ω at Infinity

The number of branches of the variety Ω at infinity exceeds their number near its sin-
gularities. Their complete study would exceed 7 sections on branches in the finite domain
(4 Section in [1] and 3 Section here). Therefore, we study here only those branches corre-
sponding to the first nonlinear polynomial multiplier included in the truncated polynomial
in degree one.

5.1. Reducing the Study at Infinity to the Study in the Finite Domain

In the polynomial S(A) = Q(s), we do a power transformation

A1 = B1B3, A2 = B2B3, A3 = B3. (64)

The resulting polynomial is divided by B12
3 and factorized, we get

S(B1B3, B2B3, B3)/B12
3 = − 1

531441
T̃(B1, B2, B3).

In the sum T̃(B1, B2, B3), which is not a polynomial, we substitute

B1 = C1, B2 = C2, B3 = C−1
3 . (65)

The resulting polynomial is J(C1, C2, C3) = T̃(B1, B2, B3). Let us explain the meaning
of these transformations for the two-dimensional case, restricting ourselves to coordinates
A2 and A3. The polyhedron of the original polynomial S(A) has the form shown in
Figure 23.

Figure 23. Projection of the polyhedron of the polynomial S(A) onto the plane ordA2, ordA3.



Axioms 2024, 13, 106 32 of 63

After replacing (64), it takes the form shown in Figure 24.

Figure 24. Projection of the polyhedron of the polynomial S(B1B3, B2B3, B3) in coordinates
ordB2, ordB3.

The polyhedron of sum T(B) is shown in Figure 25.

Figure 25. Projection of the polyhedron of sum T(B).

After substituting (65), we get the polynomial J(C), whose polyhedron is shown in
Figure 26.

In Figures 23–26, the edge that corresponds to infinity in coordinates A is bolded.
Now we need to study the polynomial J(C) at C1, C2 −→ const, C3 → 0. For this

purpose, we compute the Newton’s polyhedron Γ8 of the polynomial J(C). Its graph is
shown in Figure 27.
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Figure 26. Projection of the polyhedron of the polynomial J(C).

Figure 27. Graph of polyhedron Γ8.

It has 4 two-dimensional faces with external normals

N53 = (1, 1, 1), N71 = (−1, 0, 0), N77 = (0,−1, 0), N79 = (0, 0,−1).

Since C1 and C2 → const, and C3 → 0, we select the only normal N79 = (0, 0,−1),
which has only the third coordinate negative. After factorization, the corresponding
truncated polynomial f tr79 has the form:

f tr79 = 1024
(

C2
1 − 4C1C2 + C2

2 − 2C1 − 2C2 − 2
)2

×
(

C2
1 − 4C1C2 + C2

2 + 4C1 + 4C2 − 8
)2

(C1 + C2 + 2)2(C1 + C2 − 1)2. (66)
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We will devote a separate subsection to each of its multipliers.

5.2. The First Multiplier in (66)

Multiplier
f1 = C2

1 − 4C1C2 + C2
2 − 2C1 − 2C2 − 2

does not factorize in the field of rational numbers, but does factorize in the extension of that
field with α =

√
3. It is the product of two linear forms f1 = D1D2, and we will consider

the whole thing as a coordinate substitution, where

D1 = C1 − C2

(√
3 + 2

)
−
(√

3 + 1
)

,

D2 = C1 + C2

(√
3 − 2

)
+
(√

3 − 1
)

,

D3 = C3.

and put D = (D1, D2, D3). Its inverse substitution is

C1 =
(−2 +

√
3)
√

3
6

D1 +
(2 +

√
3)
√

3
6

D2 − 1,

C2 = −
√

3
6

D1 +

√
3

6
D2 − 1, C3 = D3. (67)

We substitute it into the polynomial J(C) and get the polynomial S1(D) = J(C). For
the polynomial S1(D), we compute its Newton’s polyhedron Γ9.

Its graph is shown in Figure 28. It has 11 two-dimensional faces with external normals

N5645 = (−1, 0,−1), N6101 = (−1,−1,−1), N13631 = (0,−1,−1), N116147 = (1, 1, 1),

N122463 = (−1, 0, 0), N122607 = (0, 3, 2), N124121 = (0, 1, 0), N133225 = (0, 0,−1),

N150921 = (3, 0, 2), N164051 = (1, 0, 0), N175461 = (0,−1, 0).

Since D1, D2 and D3 → 0, we select the only normal that has all coordinates negative.
This is N6101 = (−1,−1,−1). It corresponds to the truncated polynomial

f tr6101 = −23328(−2 + α)(288αD4
1D2

3 − 128αD3
1D3

2 + 256αD2
1D4

2 − 288αD2
1D2

2D2
3

+1728αD1D3
2D2

3 − 1782αD1D2D4
3 − 4320αD4

2D
2
3 + 4212αD2

2D4
3 − 2916αD6

3 + 64D4
1D2

2

−576D4
1D2

3 − 256D3
1D3

2 + 432D3
1D2D2

3 + 448D2
1D4

2 − 576D2
1D2

2D2
3 + 1053D2

1D4
3

+3024D1D3
2D2

3 − 3564D1D2D4
3 − 7488D4

2D2
3 + 7371D2

2D4
3 − 5832D6

3).

After the power transformation

D1 = M1M3, D2 = M2M3, D3 = M3, (68)

we get f tr6101 = F10(M1, M2) · M6
3, where

F10(M1, M2) = (−128αM3
1 M3

2 + 256αM2
1 M4

2 + 64M4
1 M2

2 − 256M3
1 M3

2 + 448M2
1 M4

2 + 288αM4
1

−288αM2
1 M2

2 + 1728αM1M3
2 − 4320αM4

2 − 576M4
1 + 432M3

1 M2 − 576M2
1 M2

2 + 3024M1M3
2

−7488M4
2 − 1782αM1M2 + 4212αM2

2 + 1053M2
1 − 3564M1M2 + 7371M2

2 − 2916α − 5832)M6
3.
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Figure 28. Graph of polyhedron Γ9.

The curve F10 = 0 has genus 0, and parameterization

M1 = b1(t) = −(3(35677231 + 53951067α)(226041519229686484434944000αt3

+ 312865218289492809482240000t4 + 29692450221454838768025600αt2+

2752150186688110972108800t3 + 19470907467358707865979520αt

+ 205018459636432060173312000t2 + 431078468622082108802982α

+ 552278881165356491537664t + 2976481999975581125816265))/

(81242985303506296261120t×
× (2346560t + 357378 + 757301α)(56960αt + 204800t2 − 26880t + 25527)), (69)
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M2 = b2(t) = −((−327921327 + 145854781α)(84568711555214157742080000αt3

+ 15278292434425670008832320000t4 − 582100343712291111321600αt2

− 8379475635071933625131392000t3 + 22597125012513902404916160αt

+ 129684691757394325122969600t2 + 862156937244164217605964α

+ 7644517497617158949374080t + 4294936642585162134439377))/

(123980512928512598138
(

56960αt + 204800t2 − 26880t + 25527
)

(56960t + 8509α)(−8509 + 8960t)),

(70)

and is shown in Figure 29.

Figure 29. Curve F10 = 0.

In (70), the denominator has 2 real roots

t1 = 0, t2 ≈ −0.7112802609. (71)

In (70), the denominator has 2 real roots

t3 =
8509
8960

≈ 0.9496651786, t4 = −8509
√

3
56960

≈ −0.2587433343 (72)

In fact, the parametric expansion of the variety Ω can also be calculated here. To do
this, we perform a power transformation (68) to the polynomial S1(D) and similarly to (16)
get the polynomial

−T(M)

M6
3

=
6

∑
k=0

Tk(M1, M2)Mk
3,

where M = (M1, M2, M3). We substitute into the polynomials Tk(M1, M2) according to
(69) and (70)

M1 = b1(t) + ε, M2 = b2(t) + ε. (73)
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We obtain the polynomial u(ε, M3) = −T(M1, M2, M3)/M6
3 with coefficients depend-

ing on t via b1(t) and b2(t). In this polynomial.

u(ε, M3) =
6

∑
k=0

Tk(b1 + ε, b2 + ε)Mk
3 = ∑

p,q≥0
upqεp Mq

3,

where

upq = ∑
p1+p2=p≥1

1
p1!p2!

·
∂pTq

∂Mp1
1 ∂Mp2

2
, (74)

when Mi = bi(t), i = 1, 2, p1, p2 ≥ 0, p ≥ 1,
Specifically

u00 ≡0,

u10 =
∂T0(M1, M2)

∂M1
+

∂T0(M1, M2)

∂M2
=

2985984αM4
1 M2 + 5971968αM3

1 M2
2 − 5971968αM2

1 M3
2 − 2985984αM1M4

2

− 5971968M4
1 M2 − 2985984M3

1 M2
2 − 2985984M2

1 M3
2 − 5971968M1M4

2

− 97417728αM3
1 + 30233088αM2

1 M2 − 30233088αM1M2
2 + 97417728αM3

2

+ 167961600M3
1 − 47029248M2

1 M2 − 47029248M1M2
2 + 167961600M3

2

+ 49128768αM1 − 49128768αM2 − 56687040M1 − 56687040M2
def
= H(b1(t), b2(t)),

u01 =T1(b1(t), b2(t))
def
= G(b1(t), b2(t)).

Here the sign def
= means new notation.

Indeed functions u10(t) and u01(t) have very complicated forms. So we omit them
and give only some their properties.

The function u10(t) has two multiple roots

t5 =− 5553288233
√

3
11245663040

− 1415395569
2811415760

+
6443874209

√
6

22491326080
+

828223515
√

2
2249132608

≈ −0.1361976710,

t6 =− 5553288233
√

3
11245663040

− 1415395569
2811415760

− 6443874209
√

6
22491326080

− 828223515
√

2
2249132608

≈ −2.581322779

(75)

of multiplicity 6, and the function u01(t) has the same roots of multiplicity 8. The denomi-
nators of the functions u10(t) and u01(t) each have four multiple roots of (71) and (72). By
the implicit function theorem [1] (Theorem 1), the equation u(ε, M3) = 0 has a solution as a
power series on M3

ε =
∞

∑
k=1

ck(t)Mk
3, (76)

where ck(t) are the rational functions of t, which are expressed through the coefficients
upq(t), which in turn are expressed through b1(t) and b2(t) according to (74). This expansion
is valid for all values of t, except maybe the neighborhood of the roots of (75). In particular,
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c1(t) = −u01

u10
= − G

H
=
(

3
(

5000596138840425
√

3 − 6061042284824999
)(

7108208938240
√

3t + 15394617958400t2+

1623856300668
√

3 − 1613861867520t + 6311014555365)
(

7108208938240
√

3t + 7197224345600t2

+541285433556
√

3 + 7246825313280t + 1592795378919)
)

/(42266280808032016×

×
(

69374221130894188740608000
√

3t2 + 303911073479526952468480000t4 − 9161742964858347934924800
√

3t2

− 168426828577166939652096000t3 + 21223516032095931917445120
√

3t

+ 80511690505906612625817600t2 + 2536997119105720789608561
√

3

+21428792681795614620161280t + 5952963999951162251632530))

where the denominator has no real roots. According to (76) approximately.

ε ≈ c1(t)M3.

By the sequence of substitutions (64), (65), (67), (68) and (73), we return to the original
coordinates, which at small |M3| by Ω are approximated with

D1 = (b1(t) + c1(t)M3)M3, D2 = (b2(t) + c1(t)M3)M3, D3 = M3;

C1 =−

(
2
√

3 − 3
)

6
·
(
−2c1(t)

(
2
√

3 + 3
)

M2
3 +

(
b1(t)− 4

√
3b2(t)− 7b2(t)

)
M3 + 4

√
3 + 6

)
,

C2 =−
√

3
6

·
(

b1(t)M3 − b2(t)M3 + 2
√

3
)

,

C3 =M3;

According to (65)

B1 = C1, B2 = C2, B3 =
1

C3
=

1
M3

.

According to (64)

A1 = B1B3 = b1(t)

(
1
2
−

√
3

3

)
+ b2(t)

(
1
2
+

√
3

3

)
+ c1(t)M3 −

1
M3

, (77)

A2 = B2B3 = −
√

3
6

· b1(t) +
√

3
6

· b2(t)−
1

M3
, (78)

A3 =
1

M3
.

When M3 = −0.1, the curve (77) and (78) is shown in Figure 30.
At M3 = 0.1, the curve (77) and (78) is shown in Figure 31.
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Figure 30. Curve (77) and (78) at M3 = −0.1.

Figure 31. Curve (77), (78) at M3 = 0.1.

5.3. Second Multiplier in (66)

Polynomial
f2 = C2

1 − 4C1C2 + C2
2 + 4C1 + 4C2 − 8

does not factorize in the field of rational numbers, but does factorize in the extension of
that field with α =

√
3. It is the product of two linear forms f2 = D1 · D2, which we treat as

coordinate substitutions
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D1 = C1 − C2

(√
3 + 2

)
+
(

2
√

3 + 2
)

, D2 = C1 + C2

(√
3 − 2

)
−
(

2
√

3 − 2
)

, D3 = C3.

Its inverse substitution is

C1 =
(−2 +

√
3)
√

3
6

D1 +
(2 +

√
3)
√

3
6

D2 + 2,

C2 =−
√

3
6

D1 +

√
3

6
D2 + 2,

C3 =D3.

(79)

We substitute it into the polynomial J(C) and get the polynomial S2(D) = J(C). For
the polynomial S2(D), we calculate Newton’s polyhedron Γ10.

Its graph is shown in Figure 32. It has 11 two-dimensional faces with external normals

N2049 = (−2,−2,−1), N6293 = (−2, 0,−1), N52673 = (0,−2,−1),

N117443 = (1, 1, 1), N122283 = (−2, 1, 0), N122987 = (0, 1, 0), N123867 = (−1, 0, 0),

N132855 = (0,−1, 0), N150911 = (1, 0, 0), N158011 = (0, 0,−1), N164049 = (1,−2, 0).

Figure 32. Graph of Polyhedron Γ10.
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Since D1, D2 and D3 → 0, we select the only normal that has all coordinates negative.
This is the normal N2049 = (−2,−2,−1). It corresponds to the truncated polynomial

f tr2049 = 26244(3αD2
3 + 3D2

3 − 8D1)
2
(3αD2

3 − 3D2
3 + 8D2)

2
.

Assume

x1 = −8D1 + (3α + 3)D2
3, x2 = 8D2 + (3α − 3)D2

3, x3 = D3.

The inverse transformation is

D1 = −1
8

x1 +
(3 + 3α)

8
x2

3, D2 =
1
8

x2 +
(3 − 3α)

8
x2

3, D3 = x3. (80)

We substitute it into the polynomial S2(D) = J(C) and get the polynomial S3(x) =
J(C). For the polynomial S3(x), we compute Newton’s polyhedron Γ11.

Its graph is shown in Figure 33. It has 9 two-dimensional faces with external normals

N1919 = (−2, 0,−1), N2049 = (−2,−2,−1), N4559 = (0,−2,−1),

N12467 = (2, 2, 1), N14571 = (−1, 0, 0), N15095 = (0, 1, 0),

N15335 = (1, 0, 0), N18043 = (0, 0,−1), N19131 = (0,−1, 0).

Figure 33. Graph of polyhedron Γ11.

Since x1, x2, and x3 → 0, we select the only normal that has all coordinates negative.
This is N2049 = (−2,−2,−1). According to results of our program, it corresponds to the
truncated polynomial
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f tr2049 = −13695130288521216α2x8
3 − 126806761930752α2x2

1x4
3 − 507227047723008α2x1x2x4

3

−126806761930752α2x2
2x4

3 + 41085390865563648x8
3 + 380420285792256x2

1x4
3

+1521681143169024x4
3x1x2 + 380420285792256x2

2x4
3 + 7044820107264x2

1x2
2.

Doing the power transformation

x1 = y1y2
3, x2 = y2y2

3, x3 = y3 (81)

and factorize we get

f tr2049 = −7044820107264
(

18α2y2
1 + 72α2y1y2 + 18α2y2

2 − y2
1y2

2 + 1944α2 − 54y2
1 − 216y1y2 − 54y2

2 − 5832
)

y8
3.

If we substitute α =
√

3, into the polynomial in parentheses, it is equal to −y2
1y2

2.
Therefore, the power transformation (81) is substituted into the large polynomial S3(x)
and divided by (−7 + 4

√
3)y8

3 we get the polynomial S4(y). We compute its Newton
polyhedron Γ12.

Its graph is shown in Figure 34. It has 11 two-dimensional faces with external normals

N4367 = (−1, 0, 0), N5643 = (−1, 0,−1), N6099 = (−1,−1,−1),

N13629 = (0,−1,−1), N57365 = (0,−1, 0), N111755 = (2, 2,−1), N122609 = (0, 1, 0),

N124119 = (0, 2,−1), N150923 = (1, 0, 0), N162019 = (0, 0, 1), N164049 = (2, 0,−1).

Figure 34. Graph of polyhedron Γ12.
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Since y1, y2, and y3 → 0, we select the only normal that has all coordinates negative.
This is N6099 = (−1,−1,−1). The corresponding shortening

f tr6099 = −28179280429056y2
1y2

2α + 63403380965376y2
1y2y3α − 31701690482688y2

1y2
3α

+232479063539712y1y2
2y3α − 507227047723008y1y2y2

3α + 285315214344192y1y3
3α

−475525357240320y2
2y2

3α + 1046155785928704y2y3
3α − 570630428688384y4

3α

−49313740750848y2
1y2

2 + 105672301608960y2
1y2y3 − 63403380965376y2

1y2
3

+401554746114048y1y2
2y3 − 887647333515264y1y2y2

3 + 475525357240320y1y3
3

−824243952549888y2
2y2

3 + 1806996357513216y2y3
3 − 998603250204672y4

3

Doing the power transformation.

y1 = z1z3, y2 = z2z3, y3 = z3. (82)

and we get

f tr6099pow = −1761205026816z4
3(16αz2

1z2
2 − 36αz2

1z2 − 132αz1z2
2 + 28z2

1z2
2 + 18αz2

1

+288αz1z2 + 270αz2
2 − 60z2

1z2 − 288z1z2
2 − 162αz1 − 594αz2 + 36z2

1 + 504z1z2 + 468z2
2 + 324α

−270z1 − 1026z2 + 567) = −1761205026816z4
3 · F20(z1, z2),

where addition “pow” indicate that it is after power transformation.
If we substitute α =

√
3 inside the brackets, we get the factorization

F20(z1, z2) =
(4
√

3 + 7)(3
√

3 − 2z1 + 3)
2
(−2z2 + 3

√
3 − 3)

2

4
.

The power transformation (82) we do in the polynomial S4(y), we get the polynomial
z4

3S5(z) = S4(y).
In S5(z), we substitute, introducing new variables Li,

z1 = L1 +
3(
√

3 + 1)
2

, z2 = L2 +
3(
√

3 − 1)
2

, z3 = L3. (83)

We get the polynomial S6(L) = S5(z) and for it we calculate Newton’s polyhedron Γ13.
Its graph is shown in Figure 35. The computer computed the polyhedron Γ13 in 87 h

and 23 min. It has 9 two-dimensional faces with exterior normals

N2165 = (0,−1, 0), N5047 = (0, 0, 1), N5649 = (3, 1,−1),

N6083 = (1, 0, 0), N11169 = (1, 3,−1), N13283 = (−1, 0, 0),

N14775 = (−1,−1,−1), N17273 = (3, 3,−1), N17669 = (0, 1, 0).

Since L1, L2, and L3 → 0, we select the only normal that has all coordinates negative.
This is N14775 = (−1,−1,−1). The corresponding truncation

f tr14775 = −440301256704(α + 1)(384αL2
1L2

2 + 672αL2
1L2L3 − 315αL2

1L2
3 + 2688αL1L2

2L3

+ 5778αL1L2L2
3 + 756αL1L3

3 − 2880αL3
2L3 − 3465αL2

2L2
3 + 3024αL2L3

3 + 972αL4
3 − 192L3

1L3

+ 640L2
1L2

2 + 1344L2
1L2L3 − 315L2

1L2
3 + 4704L1L2

2L3 + 9630L1L2L2
3 + 1512L1L3

3

− 4992L3
2L3 − 5985L2

2L2
3 + 5292L2L3

3 + 1620L4
3)
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Figure 35. Graph of polyhedron Γ13.

We do a power transformation.

L1 = M1M3, L2 = M2M3, L3 = M3. (84)

Then

f tr14775pow = −440301256704(α + 1)(384αM2
1 M2

2 + 672αM2
1 M2 + 2688αM1M2

2 − 2880αM3
2

+ 640M2
1 M2

2 − 315αM2
1 + 5778αM1M2 − 3465αM2

2 − 192M3
1 + 1344M2

1 M2 + 4704M1M2
2

− 4992M3
2 + 756αM1 + 3024αM2 − 315M2

1 + 9630M1M2 − 5985M2
2 + 972α + 1512M1 + 5292M2 + 1620)M4

3

= −440301256704(α + 1)M4
3 · F40.

The curve F40 = 0 has genus 0, and parameterization

[M1, M2] = [b1(t), b2(t)] =

=
{
(5 − 3

√
3)(1344

√
3t2 + t3 + 2352t2 − 345047040

√
3 − 597639168)/(256t2),

(265 − 153
√

3)(−t3 + 3612672
√

3t + 1380188160
√

3 + 6257664t + 2390556672)/(49152t)
}

(85)

and is shown in Figure 36.
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Figure 36. Curve F40(M1, M2) = 0.

Figure 36 shows the limiting values of t = −∞,−0,+0,+∞, when the branch goes to
infinity. The approximate values of the zeros of the numerators in (85) are. t1 ≈ 481, 241, t2 ≈
−4623, 972, t3 ≈ −537, 144 for b1(t) and t4 ≈ 3715, 095, t5 ≈ −3328, 446, t6 ≈ −386, 649
for b2(t).

We do a power transformation (84) to S6(L), and we get

−M4
3E(M) = S6(L) = −M4

3 ∑
k=0

Ek(M1, M2)Mk
3,

where

E0 = 440301256704(1 + α)(384αM2
1 M2

2 + 672αM2
1 M2 + 2688αM1M2

2 − 2880αM3
2 + 640M2

1 M2
2

−315αM2
1 + 5778αM1M2 − 3456αM2

2 − 192M3
1 + 1344M2

1 M2 + 4704M1M2
2 − 4992M3

2 + 756αM1

+3024αM2 − 315M2
1 + 9630M1M2 − 5985M2

2 + 972α + 1512M1 + 5292M2 + 1620),

E1 = −2641807540224(1 + α)(112αM2
1 M2 + 448αM1M2

2 − 480αM3
2 − 105αM2

1 + 1926αM1M2

−1155αM2
2 − 32M3

1 + 224M2
1 M2 + 784M1M2

2 − 832M3
2 + 378αM1 + 1512αM2 − 105M2

1 + 3210M1M2

−1995M2
2 + 648α + 756M1 + 2646M2 + 1080),

E2 = −55037657088(1 + α)(7680αM2
1 M2

2 + 7728αM2
1 M2 + 30912αM1M2

2 − 21600αM3
2 + 12800M2

1 M2
2

+4599αM2
1 − 32778αM1M2 + 50589αM2

2 − 1440M3
1 + 15456M2

1 M2 + 54096M1M2
2 − 37440M3

2

−17766αM1 − 71064αM2 + 4599M2
1 − 54630M1M2 + 87381M2

2 − 52002α − 35532M1 − 124362M2 − 86670).

(86)

Into the polynomial E(M) we substitute

M1 = b1(t), M2 = b2(t) + ε (87)

according to (85). Then the polynomial E(M) becomes a polynomial

u(ε, M3) = ∑
p,q≥0

upq(t)εp Mq
3,

whereby

upq =
1
p!

·
∂pEq

∂Mp
2
(b1(t), b2(t)), (88)
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where M1 = b1(t), M2 = b2(t) according to (85). In particular, from (86)–(88) we obtain

u00 = E(b1(t), b2(t)) ≡ 0,

u10(M1, M2) =
∂E0

∂M2
=

u10(M1, M2) =
∂E0

∂M2
= 1761205026816(7 + 4α)

(
168αM2

1 + 336αM1M2 − 432αM2
2 + 128M2

1 M2

−315αM2 − 168M2
1 + 336M1M2 − 720M2

2 + 189α + 963M1 − 630M2 + 189)
)

=
69984(571α − 989)

(
384αt − t2 − 516096α + 672t − 893952

)3
(t + 672 + 384α)3

t5 ,

u01 = E1(b1(t), b2(t)) = ((729(151316α − 262087)
(

2304αt + t2 + 516096α + 4032t + 893952
)

(384αt − t2 − 516096α + 672t − 893952)
3
(t + 672 + 384α)4)/(256t6)),

u11(M1, M2) =
∂E1

∂M2
= −5283615080448(5 + 3α)(112αM1M2 − 192αM2

2 + 321αM1 − 315αM2

+56M2
1 + 224M1M2 − 336M2

2 + 189α + 321M1 − 525M2 + 378) =
1
t4 (209952(571α − 989)·

·(−3333609787974746112 − 18912215826432t2 + 14958900893712384t + t6 + 1792t5 + 2681856t4

+1024αt5 + 1548288αt4 − 4600627200αt3 − 1924660508460318720α − 10918972882944αt2

+8636525457702912αt − 7968522240t3)(t + 672 + 384α)2),

u20(M1, M2) =
1
2

(
∂2E0

∂M2
2

)
= 880602513408(7 + 4α)

(
336αM1 − 864αM2 + 128M2

1 − 315α

+336M1 − 1440M2 − 630) = (6879707136(α − 2)(144αt − t2 − 69120α + 240t − 119808)×

×
(

528αt + t2 + 963072α + 912t + 1668096
)
(t + 240 + 144α)(−t + 912 + 528α)/t4).

According to [1] (Theorem 1), the solution to the equation u(ε, M3) = 0 has the form,
ε = ∑∞

k=1 ck(t)Mk
3, where

c1(t) = −u01(t)
u10(t)

=
(−265 + 153α)

(
2304αt + t2 + 516096α + 4032t + 893952

)
(t + 672 + 384α)

49152t
.

The denominators in c1(t) and in (85) have root t = 0.
Now let’s go back and approximately from (84) obtain

L1 = b1(t)M3, L2 = (b2(t) + c1(t)M3)M3 = b2(t)M3 = b2(t)M3 + c1(t)M2
3, L3 = M3.

Substitute that into (83).

z1 = b1(t)M3 +
3(
√

3 + 1)
2

, z2 = b2(t)M3 + c1(t)M2
3 +

3(
√

3 − 1)
2

, z3 = M3. (89)

We substitute the values of (89) into (82) and obtain

y1 =b1(t)M2
3 +

3(
√

3 + 1)
2

M3,

y2 =c1(t)M3
3 + b2(t)M2

3 +
3(
√

3 − 1)
2

M3,

y3 =M3.

(90)
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We substitute the values of (90) into (81) and obtain

x1 =y1y2
3 = b1(t)M4

3 +
3(
√

3 + 1)
2

M3
3,

x2 =y2y2
3 = c1(t)M5

3 + b2(t)M4
3 +

3(
√

3 − 1)
2

M3
3,

x3 =y3 = M3.

(91)

We substitute the values of (91) into (80) and obtain

D1 =− 1
8

x1 +
(3 + 3α)

8
x2

3 = −1
8

b1(t)M4
3 −

3
(√

3 + 1
)

16
M3

3 +

(
3 + 3

√
3
)

8
M2

3,

D2 =
1
8

x2 +
(3 − 3α)

8
x2

3 =
1
8

c1(t)M5
3 + b2(t)M4

3 +
3(
√

3 − 1)
16

M3
3 +

(3 − 3
√

3)
8

M2
3,

D3 =M3.

(92)

We substitute the values of (92) into (79) and obtain

C1 =

(
−2 +

√
3
)√

3

6
D1 +

(
2 +

√
3
)√

3

6
D2 + 2 =

(
2
√

3 + 3
)

48

(
c1(t)M5

3 − 4
√

3b1(t)M4
3

+7b1(t)M4
3 + 8b2(t)M4

3 − 9M3
3 + 6

√
3M3

3 + 18M2
3 − 12

√
3M2

3 − 96 + 64
√

3
)

,

C2 = −
√

3
6

D1 +

√
3

6
D2 + 2 =

√
3

48

(
c1(t)M5

3 + b1(t)M4
3 + 8b2(t)M4

3 + 3
√

3M3
3 − 6

√
3M2

3 + 32
√

3
)

,

C3 = M3.

(93)

We substitute the values of (93) into (65) and obtain

B1 =C1 =

(
2
√

3 + 3
)

48
(c1(t)M5

3 − 4
√

3b1(t)M4
3 + 7b1(t)M4

3 + 8b2(t)M4
3 − 9M3

3

+ 6
√

3M3
3 + 18M2

3 − 12
√

3M2
3 − 96 + 64

√
3),

B2 =C2 =

√
3

48

(
c1(t)M5

3 + b1(t)M4
3 + 8b2(t)M4

3 + 3
√

3M3
3 − 6

√
3M2

3 + 32
√

3
)

,

B3 =C−1
3 =

1
M3

.

(94)

Finally, we substitute the values of (94) into (64) and obtain values A1, A2, A3:

A1 =B1B3 =

(
2
√

3 + 3
)

48
(c1(t)M4

3 − 4
√

3b1(t)M3
3 + 7b1(t)M3

3 + 8b2(t)M3
3

− 9M2
3 + 6

√
3M2

3 + 18M3 − 12
√

3M3 −
96
M3

+
64
√

3
M3

), (95)

A2 =B2B3 =

√
3

48
(c1(t)M4

3 + b1(t)M3
3 + 8b2(t)M3

3 + 3
√

3M2
3 − 6

√
3M3 +

32
√

3
M3

, (96)

A3 =B3 =
1

M3
.

We need them to drive figures. Figures 37 and 38 show the curves of (95) and (96) at
M3 = 0.1 and M3 = −0.1, respectively.
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Figure 37. Curve (95) and (96) for M3 = 0.1.

Figure 38. Curve (95) and (96) for M3 = −0.1.

5.4. Third Multiplier in (66)

It is a linear multiplier defined with

f3 = C1 + C2 + 2.

The substitution is

D1 = C1 + C2 + 2, D2 = C2, D3 = C3.

Its inverse substitution is

C1 = D1 − D2 − 2, C2 = D2, C3 = D3. (97)
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Let’s consider all of this as a coordinate substitution in the polynomial J(C). We
substitute it into the polynomial J(C) and get the polynomial S7(D) = J(C). For the
polynomial S7(D), we compute Newton’s polyhedron Γ14.

Its graph is shown in Figure 39. It has 7 two-dimensional faces with external normals

N701 = (−2, 0,−1), N1403 = (1, 1, 1), N1537 = (0, 0,−1),

N1679 = (0,−1, 0), N1935 = (−2, 1, 0), N2009 = (0, 1, 0), N2085 = (−1, 0, 0).

Figure 39. Graph of polyhedron Γ14.

Since D1 → 0, D2 → const, and D3 → 0, we select the only normal whose first and
third coordinates are negative. This is the normal N701 = (−2, 0,−1). It corresponds to a
truncated polynomial

f tr701 = 186624(D2 + 1)2
(

D2
2 + 2D2 − 2

)2
×

×
(
−48D1D2

2D2
3 + 64D2

1D2
2 − 96D1D2D2

3 + 27D4
3 + 128D2

1D2 − 48D1D2
3 + 64D2

1

)
.

Do a power transformation.

D1 = x1x2
3, D2 = x2, D3 = x3. (98)

Then ftr701 after the power transformation (98) is
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f tr701pow = 186624(x2 + 1)2
(

x2
2 + 2x2 − 2

)2
x4

3

(
64x2

1x2
2 + 128x2

1x2 − 48x1x2
2 + 64x2

1 − 96x1x2 − 48x1 + 27
)

= 186624(x2 + 1)2
(

x2
2 + 2x2 − 2

)2
x4

3 · F30(x1, x2),

where F30(x1, x2) = 64x2
1x2

2 + 128x2
1x2 − 48x1x2

2 + 64x2
1 − 96x1x2 − 48x1 + 27. The curve

F30 = 0 has genus 0, and parameterization

{x1, x2} = {b1(t), b2(t)} =

{
81(29t + 3)2

4(23283t2 + 5466t + 499)
,−27459t2 + 8682t + 787

48(3t + 2)(29t + 3)

}
(99)

and is shown in the Figure 40.

Figure 40. Curve F30(x1, x2) = 0.

The curve F30 = 0 goes to infinity x2 = ±∞ at

t1 = − 3
29

≈ −0.1034482759, t2 = −2
3
≈ −0.6666666667. (100)

We do a power transformation of (98) to the polynomial S7(D) and get the polynomial

x4
3W(x) = S7(D)=x4

3 ∑
k=0

Wk(x1, x2)xk
3.

where

W0 =186624(x2 + 1)2
(

x2
2 + 2x2 − 2

)2(
64x2

1x2
2 + 128x2

1x2 − 48x1x2
2 + 64x2

1 − 96x1x2 − 48x1 + 27
)

,

W1 =559872(x2 + 1)2
(

x2
2 + 2x2 − 2

)2(
8x1x2

2 + 16x1x2 + 8x1 − 9
)

,

W2 =− 15552(x2
2 + 2x2 − 2)(512x3

1x6
2 + 6144x3

1x5
2 + 19968x3

1x4
2 − 2304x2

1x5
2 + 24064x3

1x3
2

− 10080x2
1x4

2 + 6144x3
1x2

2 − 13824x2
1x3

2 − 7680x3
1x2 − 8352x2

1x2
2 + 972x1x3

2 − 81x4
2 − 4096x3

1

− 4032x2
1x2 + 4860x1x2

2 − 324x3
2 − 1728x2

1 + 5832x1x2 − 243x2
2 + 1944x1 + 162x2 − 1296).

(101)
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Into the polynomial W(x) we substitute

x1 = b1(t), x2 = b2(t) + ε (102)

according to (99). Then the polynomial W(x) becomes a polynomial

u(ε, x3) = ∑
p,q≥0

upq(t)εpxq
3,

whereby

upq =
1
p!

·
∂pWq

∂xp
2
(x1, x2), (103)

where x1 = b1(t), x2 = b2(t) according to (99). In particular, from (101)–(103) we obtain

u00 = W(b1(t), b2(t)) ≡ 0,

u10(x1, x2) =
∂W0

∂x2
= 373248(x2 + 1)

(
x2

2 + 2x2 − 2
)

×
(

256x2
1x4

2 + 1024x2
1x3

2 − 192x1x4
2 + 1152x2

1x2
2−

−768x1x3
2 + 256x2

1x2 − 864x1x2
2 − 128x2

1 − 192x1x2 + 81x2
2 + 96x1 + 162x2)

)
=

81(23283t2 + 5466t + 499)
(
22131t2 + 3930t − 13

)4

2048(29t + 3)5(3t + 2)5 ,

u01 = W1(b1(t), b2(t)) =
27
(
23283t2 + 5466t + 499

)2(22131t2 + 3930t − 13
)5

8388608(29t + 3)6(3t + 2)8 .

According to Theorem 1 of [1], the solution of equation u(ε, x3) = 0 is
ε = ∑∞

k=1 ck(t)xk
3, where

c1(t) = −u01(t)
u10(t)

= −
(
23283t2 + 5466t + 499

)(
22131t2 + 3930t − 13

)
12288(29t + 3)(3t + 2)3 .

The denominator in c1(t) has roots (100).
Now let’s go back and approximate from (102) obtain

x1 = b1(t), x2 = b2(t) + c1(t)x3.

Substitute that into (98) and we get

D1 = b1(t)x2
3, D2 = b2(t) + c1(t)x3, D3 = x3. (104)

We substitute the expression (104) into (97) and obtain

C1 =D1 − D2 − 2 = b1(t)x2
3 − b2(t)− c1(t)x3 − 2,

C2 =b2(t) + c1(t)x3,

C3 =x3.

(105)

We substitute (105) into (65) and we get

B1 = C1 = b1(t)x2
3 − b2(t)− c1(t)x3 − 2, B2 = C2 = b2(t) + c1(t)x3, B3 = C−1

3 =
1
x3

.

Finally, according to (64)
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A1 =B1B3 =
(

b1(t)x2
3 − b2(t)− c1(t)x3 − 2

)
/x3 = b1(t)x3 − c1(t)− (b2(t) + 2)/x3, (106)

A2 =B2B3 = c1(t) + b2(t)/x3, (107)

A3 =B3 = 1/x3.

In Figures 41–44, are shown the curves of (106) and (107) for values x3 = −1, −0.1, 1,
0.1, respectively.

Figure 41. Curve (106) and (107) at x3 = −1.

Figure 42. Curve (106) and (107) at x3 = −0.1.
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Figure 43. Curve (106) and (107) when x3 = 1.

Figure 44. Curve of (106) and (107) at x3 = 0.1.

The another branch is symmetric to this one with respect to the line A1 = A2.

5.5. Fourth Multiplier in (66)
5.5.1. Preliminary Calculations

The 4th multiplier is a linear multiplier f4 = C1 + C2 − 1. Let’s do the substitution
D1 = C1 + C2 − 1, D2 = C2, D3 = C3. Its inverse substitution is

C1 = D1 − D2 + 1, C2 = D2, C3 = D3. (108)

We treat it all as a coordinate transformation in the polynomial J(C). We substitute
it into the polynomial J(C) and get the polynomial S8(D) = J(C). For the polynomial
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S8(D), we compute Newton’s polyhedron Γ15, with graph given in Figure 45. It has 7
two-dimensional faces with external normals

N593 =(−1, 0,−1), N1295 = (1, 1, 1), N1645 = (0, 0,−1),

N1941 =(−1, 0, 0), N1989 = (0, 3, 2), N2111 = (0,−1, 0), N2171 = (0, 1, 0).

Figure 45. Graph of Polyhedron Γ15.

Since D1 → 0, D2 → const, and D3 → 0, we select the only normal that has neg-
ative first and third coordinates. This is N593 = (−1, 0,−1) and it corresponds to the
truncated polynomial

f tr593 = 186624
(

2D2
2 − 2D2 − 1

)4
(2D1 − 3D3)(2D1 + 3D3).

Let’s do the substitution x1 = 2D1 − 3D3, x2 = D2, x3 = 2D1 + 3D3. Its inverse
substitution is

D1 =
1
4

x1 +
1
4

x3, D2 = x2, D3 = −1
6

x1 +
1
6

x3, (109)

and treat it all as a coordinate change in the polynomial S8(D). Substitute it into the
polynomial S8(D) and get the polynomial S9(x) = S8(D). For the polynomial S9(x), we
calculate Newton’s polyhedron Γ17.

Its graph is shown in Figure 46. It has 8 two-dimensional faces with external normals

N593 = (−1, 0,−2), N1923 = (−2, 0,−1), N3725 = (1, 1, 1), N4561 = (0, 0,−1),

N4601 = (0, 1,−2), N5649 = (−1, 0, 0), N6363 = (0, 1, 0), N6485 = (0,−1, 0).
(110)



Axioms 2024, 13, 106 55 of 63

Figure 46. Graph of polyhedron Γ17.

Since x1 → 0, x2 → const, and x3 → 0, we select two normals whose first and third
coordinates are negative. These are N593 = (−1, 0,−2) and N1923 = (−2, 0,−1). We will
deal with them in separate subsubsections.

5.5.2. The Normal N593 = (−1, 0,−2)

According to result of our program it corresponds to a truncated polynomial

f tr593 = 764411904x1

(
2x2

2 − 2x2 − 1
)3

(32x2
2x3 + x2

1 − 32x2x3 − 16x3).

Making a power transformation

x1 = y1, x2 = y2, x3 = y2
1y3, (111)

We get a polynomial

f tr593pow = 764411904y3
1

(
2y2

2 − 2y2 − 1
)3(

32y2
2y3 − 32y2y3 − 16y3 + 1

)
=

= 764411904y3
1

(
2y2

2 − 2y2 − 1
)3

· F50(y2, y3),

where F50 = 32y2
2y3 − 32y2y3 − 16y3 + 1. The curve F50 = 0 has genus 0, parameterization

{y2, y3} = {b2(t), b3(t)} =

{
t,− 1

16(2t2 − 2t − 1)

}
(112)

and is shown in Figure 47.
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Figure 47. Curve F50(y2, y3) = 0.

In (112), the denominator in b2(t) has 2 real roots

t1 =
1
2
+

√
3

2
≈ 1.366025404, t2 =

1
2
−

√
3

2
≈ −0.3660254040. (113)

In fact, here we can also compute the parametric expansion of the Ω manifold. To do
this, we do the power transformation (110) in the polynomial S9(x) and get the polynomial

y3
1U(y) = S9(x) = y3

1 ∑
k=0

Uk(y2, y3)yk
1.

In the polynomials Uk(y2, y3) according to (112) we substitute

y2 = b1(t) + ε, y3 = b2(t) + ε.

We obtain the polynomial u(ε, y1) = U(y1, y2, y3) with coefficients depending on t
through b1(t) and b2(t). In this polynomial

u(ε, y1) =
m

∑
k=0

Uk(b1 + ε, b2 + ε)yk
1 = ∑

p,q≥0
upqεpyq

1,

where upq = ∑p1+p2=p≥1
1

p1!p2! ·
∂pUq

∂y
p1
2 ∂yp2

3
when yi = bi(t), i = 2, 3, p1, p2 ≥ 0, p ≥ 1.

Specifically,

u00 ≡ 0, u10 =
∂U0(y2, y3)

∂y2
+

∂U0(y2, y3)

∂y3

= 1528823808
(

2y2
2 − 2y2 − 1

)2(
32y4

2 + 256y3
2y3 − 64y3

2 − 384y2
2y3 + 38y2 + 64y3 + 5

)
= 1528823808(2t − 3)

(
16t3 − 8t2 − 12t − 3

)(
2t2 − 2t − 1

)2 def
= H(b1(t), b2(t)),

u01 = U1(b1, b2) = 31850496(2t + 5)(2t − 1)
(

2t2 − 2t − 1
)2 def

= G(b1(t), b2(t)).
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The function u10(t) has real roots

t1 =
3
2
= 1.5,

t2 =
1
2
+

√
3

2
≈ 1.366025404 2-multiple,

t3 =
1
2
−

√
3

2
≈ −0.3660254040, 2-multiple,

t4 ≈1.232176060,

(114)

and the function u01(t) has 2-multiple roots t2, t3 and

t5 = −5
2
= −2.5, t6 =

1
2

.

By the Implicit Function Theorem [1] (Theorem 1), the equation u(ε, y1) = 0 has a
solution as a power series on y1

ε =
∞

∑
k=1

ck(t)yk
1,

where ck(t) are rational functions of t, which are expressed through the coefficients upq(t),
which in turn are expressed through b1(t) and b2(t) according to (110). This expansion is
valid for all values of t, except maybe the neighborhood of the roots of (114). In particular,

c1(t) = −
(

u01

u10

)
= − G

H
= − (2t + 5)(2t − 1)

48(2t − 3)(16t3 − 8t2 − 12t − 3)
,

where the denominator has 2 real roots t1 and t4 of (114). Approximately we get

ε ≈ c1(t)y1.

Let’s return to the previous coordinates, which are approximated to be equal for small
|y3| on the manifold Ω

y2 = b1(t) + c1(t)y1, y3 = b2(t) + c1(t)y1.

x1 = y1, x2 = y2 = b1(t) + c1(t)y1, x3 = y2
1y3 = b2(t)y2

1 + c1(t)y3
1. (115)

We substitute the expressions (115) into the transformation (109) and get

D1 =
1
4

x1 +
1
4

x3 =
1
4

y1 +
1
4

b2(t)y2
1 +

1
4

c1(t)y3
1,

D2 =x2 = b1(t) + c1(t)y1,

D3 =− 1
6

x1 +
1
6

x3 = −1
6

y1 +
1
6

b2(t)y2
1 +

1
6

c1(t)y3
1.

(116)

We substitute the expressions (116) into the transformation (109) and obtain variables
defind in (108)

C1 =D1 = b1(t) + c1(t)y1,

C2 =D1 − D2 + 1 =
1
4

y1 +
1
4

b2(t)y2
1 +

1
4

c1(t)y3
1 − b1(t)− c1(t)y1 + 1,

C3 =D3 = −1
6

y1 +
1
6

b2(t)y2
1 +

1
6

c1(t)y3
1.

(117)
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Substitute (117) into (65) and obtain

B1 =C1 = b1(t) + c1(t)y1,

B2 =C2 =
1
4

c1(t)y3
1 +

1
4

b2(t)y2
1 +

1
4

y1 − c1(t)y1 − b1(t) + 1,

B3 =C−1
3 =

1
C3

=
1

− 1
6 y1 +

1
6 b2(t)y2

1 +
1
6 c1(t)y3

1
.

(118)

Finally, we substitute the expressions (118) into the transformation (64) and obtain

A1 = B1B3 =
b1(t) + c1(t)y1

− 1
6 y1 +

1
6 b2(t)y2

1 +
1
6 c1(t)y3

1
= − 6(b1(t) + c1(t)y1)

y1 − b2(t)y2
1 − c1(t)y3

1
, (119)

A2 = B2B3 =
1
4 c1(t)y3

1 +
1
4 b2(t)y2

1 +
1
4 y1 − c1(t)y1 − b1(t) + 1

− 1
6 y1 +

1
6 b2(t)y2

1 +
1
6 c1(t)y3

1

= −
3
2 c1(t)y3

1 +
3
2 b2(t)y2

1 +
3
2 y1 − 6c1(t)y1 − 6b1(t) + 6

y1 − b2(t)y2
1 − c1(t)y3

1
,

(120)

A3 = B3 = − 6
y1 − b2(t)y2

1 − c1(t)y3
1

.

Figures 48 and 49, show the curves (119) and (120) for values y3 = 1 and −1, respectively.

Figure 48. Curve (119) and (120) at y1 = 1.

Figure 49. Curve (119) and (120) at y1 = −1.
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5.5.3. The Normal N1923 = (−2, 0,−1) from (110)

It corresponds to a truncated polynomial

f tr1923 = 254803968x3

(
2x2

2 − 2x2 − 1
)3(

4x2
2x2

3 + 96x1x2
2 − 4x2x2

3 − 96x1x2 + x2
3 − 48x1

)
.

By the power transformation

x1 = y1y2
3, x2 = y2, x3 = y3. (121)

We have

f tr1923pow = 254803968y3
3

(
2y2

2 − 2y2 − 1
)3(

96y1y2
2 − 96y1y2 + 4y2

2 − 48y1 − 4y2 + 1
)
=

= 254803968y3
3

(
2y2

2 − 2y2 − 1
)3

· F60(y1, y2),

where F60(y1, y2) = 96y1y2
2 − 96y1y2 + 4y2

2 − 48y1 − 4y2 + 1. The curve F60 = 0 has genus
0, and parameterization

{y1, y2} = {b1(t), b2(t)} = {− (2t − 1)2

48(2t2 − 2t − 1)
, t}. (122)

It is shown in Figure 50.

Figure 50. Curve F60(y1, y2) = 0.

In (122), the denominator in b1(t) has 2 real roots t1, t2 given by (113). In fact, the
parametric expansion of the manifold Ω can also be calculated here. To do this, we do a
power transformation (121) in the polynomial S9(x) and get the polynomial

−y3
3P(y) = S9(x) = −y3

3 ∑
k=0

Pk(y1, y2)yk
3.

Into the polynomials Pk(y1, y2) we substitute

y1 = b1(t) + ε, y2 = b2(t) + ε = t + ε
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according to (122).
We obtain the polynomial u(ε, y3) = P(y1, y2, y3) with coefficients depending on t

through b1(t) and b2(t). In this polynomial

u(ε, y3) =
m

∑
k=0

Pk(b1 + ε, b2 + ε)yk
3 = ∑

p,q≥0
upqεpyq

3,

where upq = ∑p1+p2=p≥1
1

p1!p2! ·
∂pPq

∂y
p1
1 ∂yp2

2
where yi = bi = bi(t), i = 1, 2, p1, p2 ≥ 0, p ≥ 1.

Specifically

u00 ≡0,

u10 =
∂P0(y1, y2)

∂y1
+

∂P0(y1, y2)

∂y2
= −509607936

(
2y2

2 − 2y2 − 1
)2

×

×
(

768y1y3
2 + 96y4

2 − 1152y1y2
2 − 160y3

2 − 48y2
2 + 192y1 + 114y2 + 23

)
=

=− 1528823808(2t − 3)
(

16t3 − 8t2 − 12t − 3
)(

2t2 − 2t − 1
)2 def

= H(b1(t), b2(t)),

u01 =P1(b1, b2) = −31850496(2t + 5)(2t − 1)
(

2t2 − 2t − 1
)2 def

= G(b1(t), b2(t)).

(123)

The function u10(t) has real roots (114). By the Implicit Function Theorem [1] (Theo-
rem 1), the equation u(ε, y3) = 0 has a solution as a power series on y3

ε =
∞

∑
k=1

ck(t)yk
3,

where ck(t) are rational functions of t, which are expressed through the coefficients upq(t),
which in turn are expressed through b1(t) and b2(t) according to (122). This expansion is
valid for all values of t, except maybe the neighborhood of the roots of the polynomial
(123). In particular,

c1(t) = −
(

u01

u10

)
= − G

H
= − (2t + 5)(2t − 1)

48(2t − 3)(16t3 − 8t2 − 12t − 3)
,

where the denominator has 2 real roots t1 and t4 of (114). We get an approximation

ε ≈ c1(t)y3.

Let’s return to the previous coordinates, which, for small |y3| on Ω, are approximately
equal to

y1 = b1(t) + c1(t)y3, y2 = b2(t) + c1(t)y3. (124)

We substitute the expressions (124) into the transformation (121) and get

x1 = y1y2
3 = b1(t)y2

3 + c1(t)y3
3, x2 = y2 = b2(t) + c1(t)y3, x3 = y3. (125)

We substitute the expressions (125) into the transformation (109) and obtain

D1 =
1
4

x1 +
1
4

x3 =
1
4

b1(t)y2
3 +

1
4

c1(t)y3
3 +

1
4

y3,

D2 =x2 = b2(t) + c1(t)y3,

D3 =− 1
6

x1 +
1
6

x3 = −1
6

b1(t)y2
3 −

1
6

c1(t)y3
3 +

1
6

y3.

(126)

We substitute the expressions (126) into the transformation (108) and get the follow-
ing results
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C1 =D2 = b2(t) + c1(t)y3,

C2 =D1 − D2 + 1 =
1
4

b1(t)y2
3 +

1
4

c1(t)y3
3 +

1
4

y3 − b2(t)− c1(t)y3 + 1,

C3 =D3 = −1
6

b1(t)y2
3 −

1
6

c1(t)y3
3 +

1
6

y3.

(127)

We substitute the expressions (127) into the transformation (65) and obtain

B1 =C1 = b2(t) + c1(t)y3,

B2 =C2 =
1
4

c1(t)y3
3 +

1
4

b1(t)y2
3 +

1
4

y3 − c1(t)y3 − b2(t) + 1,

B3 =C−1
3 =

1
C3

=
1

− 1
6 b1(t)y2

3 −
1
6 c1(t)y3

3 +
1
6 y3

.

(128)

Finally, we substitute the expressions (128) into the transformation of (64) and obtain

A1 =B1B3 =
b2(t) + c1(t)y3

− 1
6 b1(t)y2

3 −
1
6 c1(t)y3

3 +
1
6 y3

= − 6(b2(t) + c1(t)y3)

c1(t)y3
3 + b1(t)y2

3−y3
, (129)

A2 =B2B3 =
1
4 c1(t)y3

3 +
1
4 b1(t)y2

3 +
1
4 y3 − c1(t)y3 − b2(t) + 1

− 1
6 b1(t)y2

3 −
1
6 c1(t)y3

3 +
1
6 y3

(130)

=−
3
2 c1(t)y3

3 +
3
2 b1(t)y2

3 +
3
2 y3 − 6c1(t)y3 − 6b2(t) + 6

c1(t)y3
3 + b1(t)y2

3−y3
, (131)

A3 =B3 = − 6
c1(t)y3

3 + b1(t)y2
3−y3

.

In Figures 51 and 52, show the curves (129) and (131) for values y3 = 1 and y3 = −1,
respectively.

Figure 51. Curve (129) and (131) at y1 = 1.
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Figure 52. Curve of (129) and (131) at y1 = −1.

6. Conclusions

In the paper we show that all parametric expansions of variety Ω near its singularities
and infinity can be computed with any accuracy and compute their first terms. We consider
a very rich set of cases and find the ways to finish computations in all of them.

We do not intend to explain our results for original problems of Ricci flows and Ein-
stein’s metrics. Let it will be done by authors of [14–22], who are specialists in the problem.
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