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Abstract: In this study, we present the generalized form of the higher-order nonlinear fractional
Bratu-type equation. In this generalization, we deal with a generalized fractional derivative, which is
quite useful from an application point of view. Furthermore, some special cases of the generalized
fractional Bratu equation are recognized and examined. To solve these nonlinear differential equations
of fractional order, we employ the homotopy perturbation transform method. This work presents a
useful computational method for solving these equations and advances our understanding of them.
We also plot some numerical outcomes to show the efficiency of the obtained results.
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1. Introduction

Numerous areas of pure and applied mathematics focus largely on fractional calculus,
which works with derivatives and integrals of arbitrary order [1–5]. Fractional differential
equations have been used more frequently in applied mathematics and physics, as well
as in the modeling and interpretation of various real-world issues. Biological science,
physical science, chemical engineering, and other fields of research indicate nonlinear
perspectives [6–9].

In mathematical modeling, the nonlinear fractional differential equations are quite
helpful. However, it becomes more challenging to solve nonlinear systems of equations.
It has been seen that there are many differential equations without an exact solution.
Various innovative numerical and analytical approaches have been established to solve
fractional differential equations, leading to numerical and analytical solutions to these
types of problems. These techniques consist of Adomian decomposition method [10–12],
homotopy analysis method [13–15]), generalized differential transform approach [16],
homotopy perturbation method [17,18], modified Laplace decomposition method [19],
homotopy perturbation transform method [20,21], and q-homotopy analysis transform
method [22,23], etc. The homotopy perturbation method is the most effective for solving
the differential equations of non-linear type because of its straightforward approach and
fastest convergence rate. This technique was developed by the famous mathematician
Mr. He [24–26]. Its main benefit is that the solution determined in series form approaches
its exact solution very quickly.

Many mathematicians have developed an appropriate definition and formula for
fractional calculus. Major contributions to the theory of fractional calculus with singular
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kernels have been made by Riemann, Caputo, Liouville, Weyl, Kilbas, and others. Goren-
glo, Miller–Ross, Yang—Abdel–Cattani, Atangana–Baleanu, Wiman, and many others
encouraged the study of fractional integrals and derivatives having nonsingular kernels.
Miller–Ross, Yang–Abdel–Cattani, Wiman, Atangana–Baleanu, and many others promoted
the study of fractional integrals and derivatives with non-singular kernels. Riemann-
Liouville and Caputo are the two fractional operators that are used most frequently. How-
ever, there are several problems that are not properly described by these operators. For
fractional derivatives, Caputo-Fabrizio developed a new operator in 2015 with a nonsingu-
lar kernel [27]. This nonsingular kernel makes the Caputo-Fabrizio fractional derivative
stronger than the Caputo derivative.

The calculus operators of fractional type have been divided into three groups by Gomez
and Atangana: weak, medium, and strong [28]. They suggest that the Riemann-Liouville
fractional derivative is significantly more useful in explaining physical difficulties than the
Caputo version. However, the Mittag-Leffler memory pattern of the Atangana-Baleanu frac-
tional operator provides a good clarification. Some authors have used fractional derivatives
of Atangana-Baleanu-Caputo to characterize fractional differential equations [29].

A numerical slab model of a combustion problem is examined using the Bratu-type
equation [30]. Several additional issues have been solved using Bratu’s problem, such as
the Chandrasekhar model, the fuel ignition model, the thermal response model, and the
framework for the electrospun nano-fiber creation method [31,32]. To solve the Bratu type
problem, Ghazanfari and Sephvandzadeh used the homotopy perturbation method [33], the
modified variational iteration method [34], and the Adomian decomposition method [35].
Recent studies have explored numerical approaches to addressing the fractional Bratu
initial value problem. Investigations have been conducted using the Bézier curve [36], the
fractional differential transform method [38], and a technique grounded in the CAS wavelet
scheme [37] for solving fractional Bratu-type differential equations.

Applications for nonlinear differential equations, like the Bratu-type equation, can
be found in many branches of science and engineering. It is used in heat transfer to
investigate temperature distributions in materials, in combustion theory to understand
flame propagation, and in chemical kinetics to replicate complex reaction kinetics. The
modeling of complex phenomena like population dynamics, material diffusion, reactor
neutron transport, electrochemical reactions, and pollutant spread is made possible by its
involvement in mathematical biology, material science, nuclear physics, electrochemistry,
and environmental science. In addition to having particular uses, the Bratu-type equation
is a basic mathematical model that provides an understanding of the characteristics of
nonlinear differential equations. Because of this, it is a flexible and essential instrument
for scientific analysis and study. The “Nonlinear Local Fractional Bratu-Type Equation”
is a delightful and theoretically complex differential equation that belongs to the field of
fractional calculus.

As mathematicians, physicists, and engineers grapple with issues related to non-
standard calculus, nonlinear dynamics, and complex systems, they are entranced by ongo-
ing research projects centered around the “Non-linear Local Fractional Bratu-type Equa-
tion”. Having a thorough grasp of the characteristics and solutions of this equation could
improve our understanding of a variety of real-world processes and possibly lead to useful
applications in fields including chemical kinetics, biological modeling, and combustion
theory. In the fields of science and engineering, the Bratu-type equation is quite useful. In
all domains where standard differentiable calculus is relevant, this article presents some
new insights into the concept of generalization. Other expansions of the differentiability
concept can be found in [39–41]. Very few researchers have studied the generalized form
of a fractional Bratu-type equation, so finding the solution of a generalized fractional
Bratu-type differential equation is a new thing in itself. Realizing how important it is, we
turn our attention to examining a generalized fractional Bratu-type equation.
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This study aims to define the generalized Bratu-type differential equation and expand
the application of the homotopy perturbation transform method for identifying specific
features of the generalized Bratu-type differential equation

D2nκ
t u(t) + δEβ(u) = 0, 0 < κ ≤ 1, 0 < t ≤ 1, (1)

where δ is constant and Eβ(u) is the Mittag-Leffler function defined as

Eβ(u) =
∞

∑
k=0

uk

Γ(βk + 1)
,

Γ indicates the gamma function and D2nκ = DκDκ ... Dκ(2n − times) where Dκu = dκu
dtκ .

The structure of this paper is divided into seven sections: We provide a brief introduc-
tion and some fundamental terminology in Section 1. The basic homotopy perturbation
transform approach is defined in Section 2. In Section 3, we discuss the existence and
uniqueness of the generalized fractional Bratu-type differential equation. In Section 4,
we describe the main findings of this work. In Section 5, we discuss the convergence
analysis. In Section 6, we describe some special cases of generalized Bratu-type equations
and provide a graphic representation of the solution. This paper is concluded in the last
section.

Basic Definitions

This section provides the definitions and foundational results essential for the content
presented in this paper.

A theory that deals with generalized fractional-order integration and differentiation
operators is called generalized fractional calculus. Using an analogy with the concept of
the Caputo and R–L fractional derivative, the analogous generalized fractional derivatives
are defined as [42]

C
0 Dκ

t f (t) =
t∫

0
ḟ (u)∆l(t − u)du,

0Dκ
t f (t) = d

dt

t∫
0

f (u)∆l(t − u)du,

where 0 < κ < 1 is the order of derivative, f : [0,+∞) → R is the absolute continuous
function with ḟ ∈ L1

loc (0,+∞), ∆l is known as the general kernel function,
also for f ∈ L1

loc (0,+∞),

0D−κ
t

[
C
0 Dκ

t f (t)
]
= f (t)− f (0),

where 0D−κ
t represent the general form of the Riemann-Liouville fractional integral de-

fined as

0D−κ
t f (t) =

t∫
0

f (u)∇l(t − u)du.

Definition 1. Caputo derivative of fractional order κ is denoted by C
a Dκ

t and defined by [43]

C
a Dκ

t f (t) =
1

Γ(n − κ)

t∫
a

(t − u)n−κ−1 f (n)(u)du, (2)

where 0 < κ < 1 and n − 1 < κ < n. Also f (n)(t) = dn f
dtn .
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Definition 2. Caputo-Fabrizio derivative is denoted by CF
a Dκ

t and defined by [44]

CF
a Dκ

t f (t) =
∆(κ)
(1 − κ)

t∫
a

exp
[
− κ

(1 − κ)
(t − u)

]
f ′(u)du, (3)

where ∆(κ) = Normalization function with ∆(0) = 1, ∆(1) = 1.

Definition 3. We have the Atangana-Baleanu derivative which is denoted by ABC
a Dκ

t and defined
by [45]

ABC
a Dκ

t f (t) =
∆(κ)
(1 − κ)

t∫
a

Eκ

[
− κ

(1 − κ)
(t − u)κ

]
f ′(u)du, (4)

where ∆(κ) = Normalization function with ∆(0) = 1, ∆(1) = 1 and Eκ is Mittag-leffler function.

Definition 4. If A = { f (t) | ∃ M, τ1, τ2 > 0, | f (t)| < M exp
(
|t|/

τj

)
, i f t ∈ (−1)j × [0, ∞)}

is the set of functions, then the Sumudu transform on A is defined as [46]

S[ f (t)](u) =
∞∫

0

e−t f (ut) dt. (5)

Definition 5. In accordance with the reference [47], we define the Sumudu transform for the
Caputo derivative of order κ > 0

S
[

C
0 Dκ

t f (t)
]
(s) =

S[ f ]− f (0)
sκ

. (6)

Definition 6. In accordance with the reference [47], we define the Sumudu transform for the
Caputo-Fabrizio derivative of order κ > 0

S
[

CF
0 Dκ

t f (t)
]
(s) =

∆(κ)
1 − κ + κs

(S[ f ]− f (0)), (7)

where ∆(κ) = Normalization function with ∆(0) = 1, ∆(1) = 1.

Definition 7. In accordance with the reference [47], we define the Sumudu transform for the
Atangana-Baleanu fractional derivative of order κ > 0

S
[

ABC
0 Dκ

t f (t)
]
(s) =

∆(κ)
1 − κ + κsκ

(S[ f ]− f (0)), (8)

where ∆(κ) = Normalization function with ∆(0) = 1, ∆(1) = 1.

2. Basic Homotopy Perturbation Transform Approach

This section covers the Homotopy Perturbation Transform Method (HPTM) procedure
for solving fractional differential equations using generalized fractional operators.

The Homotopy Perturbation Technique (HPT), incorporating He’s polynomials and a
transform algorithm, is formulated as the homotopy perturbation transform method. To
illustrate the fundamental workings of the homotopy perturbation transform method, we
apply it to a nonlinear fractional-order differential equation of the form

Dκ
t u(t) + Lu(t) + Nu(t) = f (t), 0 < κ ≤ 1, t > 0. (9)
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Here, u(t) represents the probability density function, Dκ
t denotes the generalized

fractional derivative with order κ, L stands for the linear differential operator with an order
less than that of D, and N represents the general nonlinear differential operator.

Apply the Sumudu transform on both sides of (9),

S[Dκ
t u(t)] + S[Lu(t)] + S[Nu(t)] = S[ f (t)],

as we know, Sumudu transform for generalized fractional derivatives [48],

S[Dκ
t u(t)](s) = ς−1

[
S[u(t)]−

n−1

∑
k=0

sk[uk(t)]t=0

]
, 0 < κ ≤ 1,

here,

ς = sκ ( f or Caputo f ractional derivative),

ς = 1−κ+κs
∆(κ) ( f or Caputo − Fabrizio f ractional derivative),

ς = 1−κ+κsκ

∆(κ) ( f or Atangana − Baleanu − Caputo f ractional derivative),

and ∆(κ) is the normalization function.
Hence

S[u(t)] =
n−1

∑
k=0

sk[uk(t)]t=0 − ς{S[Lu(t)] + S[Nu(t)]− S[ f (t)]}.

Now, applying the inverse Sumudu transform, we obtain

u(t) = ϕ(t)− S−1{ς(S[Lu(t)] + S[Nu(t)])},

where

ϕ(t) = S−1

{
n−1

∑
k=0

sk[uk(t)]t=0 + ςS[ f (t)]

}
.

Now, expanding u(t) into the series of power p as u(t) =
∞
∑

n=0
pnun(t) and consider

Nu(t) =
∞
∑

n=0
pnHn(u), here Hn(u) is He’s polynomial defined as

Hn(u0, u1, u2, ... , un) =
1
n!

∂

∂pn

[
N

(
∞

∑
k=0

pkuk

)]
p=0

, n = 0, 1, 2, 3, ... ,

and p ∈ (0, 1) is an embedding parameter.
Then

∞

∑
n=0

pnun(t) = ϕ(t)− pS−1

{
ς

(
S

[
L

∞

∑
n=0

pnun(t)

]
+ S

[
∞

∑
n=0

pn Hn(u)

])}
. (10)

This equation represents the combination of the homotopy perturbation method, He’s
polynomial, and Sumudu transform.



Axioms 2024, 13, 133 6 of 19

Now, by equating the coefficients corresponding to different powers of p, we obtain

p0 : u0(t) = ϕ(t),

p1 : u1(t) = −S−1{ς(S[Lu0(t)] + S[H0(u)])},

p2 : u2(t) = −S−1{ς(S[Lu1(t)] + S[H1(u)])},
.
.
.

The remaining elements of un(t), n ≥ 0 can be evaluated by applying a similar ap-
proach. As a result, the homotopy perturbation transforms method solutions are completely
computed.

Thus, the approximate analytical solution of (9) is

u(t) = lim
p→1

∞

∑
n=0

pnun(t) =
∞

∑
n=0

un(t).

3. Existence and Uniqueness of the Solution

Theorem 1. The solution of the generalized Bratu-type fractional differential equation defined by
(1) satisfies the Lipschitz condition and has the unique solution for 0 < b < 1, where b = ν|δ|

Γ(1+κ)
tκ

is known as the Lipschitz constant.

Proof. Firstly, we write Equation (1) in the following form

u(t) = − δ

Γ(1 + κ)

t∫
0

G(τ, u(τ)) (dτ)κ (11)

where

G(t, u(t)) =
(

1
Γ(1 + κ)

)(2n−1) t∫
0

t∫
0

...
t∫

0

Eβ(u(τ))

(2n−1)times

(dτ)κ(dτ)κ ...(dτ)κ (12)

The non-linear part G(t, u(t)) is Lipschitz continuous with the condition

∥G(t, u)− G(t, v)∥ ≤ ν∥u − v∥. (13)

Lipschitz constant can be evaluated by making use of maximum norm ∥G∥ = max
0≤t≤1

|G(t, u(t))|,
we have ∣∣Eβ(u)− Eβ(v)

∣∣ ≤ ∞

∑
k=0

∣∣∣uk − vk
∣∣∣

Γ(βk + 1)
,

≤
∞

∑
k=0

|u − v|
Γ(βk + 1)

∣∣∣uk−1 + uk−2v + ... + uvk−2 + vk−1
∣∣∣.

Since the series is convergent
∣∣∣uk−1 + uk−2v + ... + uvk−2 + vk−1

∣∣∣ is bounded for each k.
Thus, ∣∣∣uk−1 + uk−2v + ... + uvk−2 + vk−1

∣∣∣ ≤ M, k = 1, 2, 3, ...,

where M is some constant.
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Thus, ∣∣Eβ(u)− Eβ(v)
∣∣ ≤ |u − v|M

∞

∑
k=0

1
Γ(βk + 1)

,

≤ |u − v|M Eβ(1).

Now from (12), we obtain

∥G(t, u)− G(t, v)∥ ≤
(

1
Γ(1+κ)

)(2n−1)
M Eβ(1)∥u − v∥

t∫
0

t∫
0

...
t∫

0
(dτ)κ

(2n−1)times

(dτ)κ ...(dτ)κ ,

∥G(t, u)− G(t, v)∥ ≤
(

1
Γ(1+κ)

)(2n−1)
M Eβ(1)∥u − v∥ t(2n−1)κ

(2n−1)! ,

≤ M Eβ(1)

(2n−1)!(Γ(1+κ))(2n−1) ∥u − v∥.

Thus, we can select the Lipschitz constant as ν =
M Eβ(1)

(2n−1)!(Γ(1+κ))(2n−1) .

Hence, the solution of Equation (1) exists.
Now, suppose that Equation (1) has two different solutions u1 and u2, so then

∥u1 − u2∥ =

∥∥∥∥∥ (−δ)
Γ(1+κ)

t∫
0

G(τ, u1(τ))(dτ)κ − (−δ)
Γ(1+κ)

t∫
0

G(τ, u2(τ))(dτ)κ

∥∥∥∥∥,

≤ |δ|
Γ(1+κ)

ν∥u1 − u2∥tκ .

This produces the following inequality,

∥u1 − u2∥
(

1 − ν|δ|
Γ(1 + κ)

tκ

)
≤ 0

i.e., ∥u1 − u2∥(1 − b) ≤ 0, where b = ν|δ|
Γ(1+κ)

tκ .
Thus, ∥u1 − u2∥ ≤ 0 for 0 < b < 1 which shows that u1 = u2. This proves that the

solution of (1) is unique.

4. Main Result

The solution to the generalized Bratu-type equation using the homotopy perturbation
transform method is given in this section.

Theorem 2. The solution of the generalized Bratu-type fractional differential equation

D2nκ
t u(t) + δEβ(u) = 0, 0 < κ ≤ 1, 0 < t ≤ 1, (14)

is given by the series u =
∞
∑

n=0
un(t).

where δ is constant, Eβ(u) is the Mittag-Leffler function, and D2nκ is a generalized differential
operator with order 2n.

Proof. We have the generalized Bratu-type fractional differential equation

D2nκ
t u(t) + δEβ(u) = 0.

Applying Sumudu transform,

S
[

D2nκ
t u(t)

]
+ δS

[
Eβ(u)

]
= 0,
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or

ς−1

[
S[u(t)]−

n−1

∑
k=0

sk[uk(t)]t=0

]
= −δS

[
Eβ(u)

]
,

or

S[u(t)] =
n−1

∑
k=0

sk[uk(t)]t=0 − ς
(
δS
[
Eβ(u)

])
.

Here,

ς = s2nκ ( f or Caputo f ractional derivative),

ς = (1−2nκ+2nκs)
∆(2nκ)

( f or Caputo − Fabrizio f ractional derivative),

ς = (1−2nκ+2nκs2nκ)
∆(2nκ)

( f or Atangana − Baleanu − Caputo f ractional derivative),

where ∆(κ) is the normalization function.
Applying the inverse Sumudu transform

u(t) = S−1

{
n−1

∑
k=0

sk[uk(t)]t=0

}
− δS−1{ς

(
S
[
Eβ(u)

])}
. (15)

Now, using the homotopy perturbation transform method, Equation (15) becomes

∞

∑
n=0

pnun(t) = ϕ(t)− δpS−1

{
ς

(
S

[
∞

∑
n=0

pn Hn(u)

])}
, (16)

where ϕ(t) = S−1
{

n−1
∑

k=0
sk[uk(t)]t=0

}
.

We have the Taylor’s series expansion of Eβ(u),

Eβ(u) =
∞

∑
k=0

uk

Γ(βk + 1)
.

Also, we have,

H0(u) = 1 + 1
Γ(β+1)u0 +

1
Γ(2β+1)u0

2 + 1
Γ(3β+1)u0

3 + ...,

H1(u) = 1
Γ(β+1)u1 +

1
Γ(2β+1) (2u0u1) +

1
Γ(3β+1) (3u0

2u1) + ...,

H2(u) = 1
Γ(β+1)u2 +

1
Γ(2β+1) (u1

2 + 2u0u2) +
1

Γ(3β+1) (3u1
2u0) + ...,

.

.

.

(17)

Now comparing the coefficient of the power of p in (16), we obtain
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p0 : u0(t) = ϕ(t),

p1 : u1(t) = −δS−1{ς(S[H0(u)])},

p2 : u2(t) = −δS−1{ς(S[H1(u)])},

p3 : u3(t) = −δS−1{ς(S[H2(u)])},
.
.
.

The remaining elements of un(t), n ≥ 0 can be evaluated by applying a similar
approach through using (17) wherein the series solutions are completely determined.

We have

u(t) = lim
p→1

∞

∑
n=0

pnun(t)

u(t) = u0(t) + u1(t) + u2(t) + ... (18)

The generalized differential operator reduces into three well-known differential op-
erators, namely, the Atangana-Baleanu-Caputo, Caputo, and Caputo-Fabrizio fractional
operators. Here, we discuss all three cases of a generalized Bratu-type fractional differential
equation.

5. Convergence Analysis

In this section, we examine the convergence of the solution to Equation (1).

Theorem 3. Let un(t) and u(t) be defined in Banach space, B = (C[0, 1], ∥ . ∥), then the HPTM

series
∞
∑

n=0
un(t) converges to u(t) of Equation (1) if there exists ζ ∈ (0, 1) such that ∥un+1(t)∥ ≤

ζ ∀ n ∈ N.

Proof. Let us consider how the sequence of partial sums of series (18) is {Sn(t)}n≥0 de-
fined by

Sl(t) =
∞

∑
l=0

ul(t). (19)

Then

∥Sn+1(t)− Sn(t)∥ = ∥un+1(t)∥ ≤ ζ∥un(t)∥ ≤ ζ2∥un−1(t)∥ ≤ ... ≤ ζn+1∥u0(t)∥. (20)

Now, first we have to show that {Sn(t)} be a Cauchy sequence in Banach space
B = (C[0, 1], ∥ . ∥).∥∥Sq(t)− Sr(t)

∥∥ =
∥∥Sq(t)− Sq−1(t) + Sq−1(t)− Sq−2(t) + ... + Sr+1(t)− Sr(t)

∥∥,

≤
∥∥Sq(t)− Sq−1(t)

∥∥+ ∥∥Sq−1(t)− Sq−2(t)
∥∥+ ...∥Sr+1(t)− Sr(t)∥,

≤ ζq∥u0(t)∥+ ζq−1∥u0(t)∥+ ... + ζr+1∥u0(t)∥,

≤ ζr+1(1 + ζ + ζ2 + ... + ζq + ...
)
∥u0(t)∥,

≤ ζr+1
(

1−ζq−r

1−ζ

)
∥u0(t)∥.
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Since, ζ ∈ (0, 1), so 1 − ζq−r > 0, then

∥∥Sq(t)− Sr(t)
∥∥ ≤ ζr+1

1 − ζ
∥u0(t)∥. (21)

Thus,
∥∥Sq(t)− Sr(t)

∥∥
q,r→∞ → 0 as u0 is bounded.

This {Sn(t)} is a Cauchy sequence in Banach space and hence convergent.
Therefore, there exists u ∈ B such that

∞

∑
l=0

ul(t) = u(t).

We achieve the desired result.

6. Special Cases

We have the normal generalized fractional operator. However, it may be reduced into
three well-known fractional operators: Atangana-Baleanu-Caputo, Caputo, and Caputo-
Fabrizio. To derive the results, we separately discuss the cases for generalized operators.

If we take n = 1, then (1) becomes

D2κ
t u(t) + δEβ(u) = 0, 0 < κ ≤ 1, 0 < t ≤ 1. (22)

Moreover, consider the initial point u(0) = 0. This equation is known as a particular
form of the generalized fractional Bratu equation.

We offer the solution to the generalized fractional Bratu equation in this section by
using the process defined in Section 4.

Case 1. Consider generalized Bratu’s initial value problem for the Caputo fractional derivative,

CD2κ
t u(t) + δEβ(u) = 0, (23)

with u(0) = 0.
Applying Sumudu transform on (23),

S
[

CD2κ
t u(t)

]
+ δS

[
Eβ(u)

]
= 0,

or
s−2κ{S[u(t)]− u(0)} = −δS

[
Eβ(u)

]
,

or
S[u(t)] = u(0)− δs2κS

[
Eβ(u)

]
.

Applying the inverse Sumudu transform,

u(t) = u(0)− δS−1
{

s2κS
[
Eβ(u)

]}
. (24)

Now, using the homotopy perturbation transform method and expanding u(t) as u(t) =
∞
∑

n=0
pnun(t),

then (24) becomes

∞

∑
n=0

pnun(t) = u(0)− δpS−1

(
s2κS

[
∞

∑
n=0

pnHn(u)

])
. (25)

Now, we have the Taylor’s series expansion of Eβ(u),

Eβ(u) =
∞

∑
k=0

uk

Γ(βk + 1)
.
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Now, comparing the coefficients in (25), we obtain

p0 : u0(t) = u(0),

p1 : u1(t) = −δS−1(s2κS[H0(u)]
)
,

p2 : u2(t) = −δS−1(s2κS[H1(u)]
)
,

p3 : u3(t) = −δS−1(s2κS[H2(u)]
)
,

.

.

.

Using u(0) = 0, we have
p0 : u0(t) = 0,

p1 : u1(t) = −δS−1
(

s2κS[1]
)
= −δ

t2κ

Γ(2κ + 1)
,

p2 : u2(t) = − δ

Γ(β + 1)
S−1

[
s2κS

(
−δ

t2κ

Γ(2κ + 1)

)]
=

δ2

Γ(β + 1)
t4κ

Γ(4κ + 1)
,

p3 : u3(t) = −δS−1
(

s2κS
[

u2
Γ(β+1) +

u1
2

Γ(2β+1)

])
= (−δ)3

{
1

(Γ(β+1))2 + 1
Γ(2β+1)

Γ(4κ+1)
(Γ(2κ+1))2

}
t6κ

Γ(6κ+1) ,

.

.

.

Now, the solution is given by (18),

u(t) = (−δ) t2κ

Γ(2κ+1) +
(−δ)2

Γ(β+1)
t4κ

Γ(4κ+1)

+(−δ)3
{

1
(Γ(β+1))2 +

1
Γ(2β+1)

Γ(4κ+1)
Γ(2κ+1)2

}
t6κ

Γ(6κ+1) + ...

Now to plot the results by considering δ = 1.0, β = 0.7 for different values of κ as
illustrated in Figure 1.

Remark 1. If we put β = 1 in (23), then the equation becomes

CD2κ
t u(t) + δeu = 0,

and the solution is

u(t) = (−δ)
t2κ

Γ(2κ + 1)
+ (−δ)2 t4κ

Γ(4κ + 1)
+ (−δ)3

{
1 +

1
2

Γ(4κ + 1)

(Γ(2κ + 1) )2

}
t6κ

Γ(6κ + 1)
+ ...

This solution for the fractional Bratu’s differential equation exactly matches the result of the analytical
study of the fractional Bratu-type equation by Dubey et al. [49].

Now to plot the results by considering δ = 1.0, β = 1.0 for different values of, κ as
illustrated in Figure 2.
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Figure 1. Change in u for Case 1 with respect to time, for different values of κ.
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Figure 2. Change in u for remark of Case 1 with respect to time, for different values of κ.

Case 2. Consider generalized Bratu’s initial value problem for the Caputo-Fabrizio derivative,

CFD2κ
t u(t) + δEβ(u) = 0, (26)

with u(0) = 0.
Applying Sumudu transform on (28),

S
[

CFD2κ
t u(t)

]
+ δS

[
Eβ(u)

]
= 0,

or
∆(2κ)

(1 − 2κ + 2κs)
{S[u(t)]− u(0)} = −δS

[
Eβ(u)

]
,

or

S[u(t)] = u(0)− δ(1 − 2κ + 2κs)
∆(2κ)

S
[
Eβ(u)

]
.
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Applying the inverse Sumudu transform,

u(t) = u(0)− δ

∆(2κ)
S−1{(1 − 2κ + 2κs)S

[
Eβ(u)

]}
. (27)

Now, using the homotopy perturbation transform method and expanding u(t) as u(t) =
∞
∑

n=0
pnun(t),

we have

∞

∑
n=0

pnun(t) = u(0)− δp
∆(2κ)

S−1

(
(1 − 2κ + 2κs)S

[
∞

∑
n=0

pn Hn(u)

])
. (28)

Using the Taylor’s series expansion of Eβ(u) and comparing the coefficients in (28), we obtain

p0 : u0(t) = u(0),

p1 : u1(t) = − δ
∆(2κ)

S−1{(1 − 2κ + 2κs)S[H0(u)]},

p2 : u2(t) = − δ
∆(2κ)

S−1{(1 − 2κ + 2κs)S[H1(u)]},

p3 : u3(t) = − δ
∆(2κ)

S−1{(1 − 2κ + 2κs)S[H2(u)]},
.
.
.

Using u(0) = 0, we have

p0 : u0(t) = 0,

p1 : u1(t) = − δ
∆(2κ){(1 − 2κ) + 2κt},

p2 : u2(t) =
(
− δ

∆(2κ)

)2 1
Γ(β+1)

{
(1 − 2κ)2 + 4κ(1 − 2κ)t + 2κ2t2

}
,

p3 : u3(t) =
(
− δ

∆(2κ)

)3
{(

1
(Γ(β+1))2 +

1
Γ(2β+1)

)[
(1 − 2κ)3 + 6κ(1 − 2κ)2t

]

+2
(

3
(Γ(β+1))2 +

4
Γ(2β+1)

)
(1 − 2κ)κ2t2 + 8

3!

(
1

(Γ(β+1))2 +
2

Γ(2β+1)

)
κ3t3

}
,

.

.

.

Now, the solution is given by (18),

u(t) =
(
− δ

∆(2κ)

)
{(1 − 2κ) + 2κt}+

(
− δ

∆(2κ)

)2 1
Γ(β+1)

{
(1 − 2κ)2 + 4κ(1 − 2κ)t + 2κ2t2

}
+
(
− δ

∆(2κ)

)3
{(

1
(Γ(β+1))2 + 1

Γ(2β+1)

)[
(1 − 2κ)3 + 6κ(1 − 2κ)2t

]

+2
(

3
(Γ(β+1))2 + 4

Γ(2β+1)

)
(1 − 2κ)κ2t2 + 8

3!

(
1

(Γ(β+1))2 +
2

Γ(2β+1)

)
κ3t3

}
+ ...

Now to plot the results by considering δ = 1.0, β = 0.7 for different values of, κ as
illustrated in Figure 3.
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Figure 3. Change in u for Case 2 with respect to time, for different values of κ.

Remark 2. If we put β = 1 in (26), then the equation becomes

CFD2κ
t u(t) + δeu = 0,

and the solution is given by (18),

u(t) =
(
− δ

∆(2κ)

)
{(1 − 2κ) + 2κt}+

(
− δ

∆(2κ)

)2{
(1 − 2κ)2 + 4κ(1 − 2κ)t + 2κ2t2

}
+
(
− δ

∆(2κ)

)3{ 3
2 (1 − 2κ)3 + 9κ(1 − 2κ)2t + 10(1 − 2κ)κ2t2 + 8

3 κ3t3
}
+ ...

Now to plot the results by considering δ = 1.0, β = 1.0 for different values of, κ as
illustrated in Figure 4.
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Figure 4. Change in u for remark of Case 2 with respect to time, for different values of κ.
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Case 3. Consider generalized Bratu’s initial value problem for the Atangana-Baleanu-Caputo
derivative,

ABCD2κ
t u(t) + δEβ(u) = 0, (29)

with u(0) = 0.
Applying the Sumudu transform on (29),

S
[

ABCD2κ
t u(t)

]
+ δS

[
Eβ(u)

]
= 0,

or
∆(2κ)

(1 − 2κ + 2κs2κ)
{S[u(t)]− u(0)} = −δS

[
Eβ(u)

]
,

or

S[u(t)] = u(0)−
δ
(
1 − 2κ + 2κs2κ

)
∆(2κ)

S
[
Eβ(u)

]
.

Applying the inverse Sumudu transform,

u(t) = u(0)− δ

∆(2κ)
S−1

{(
1 − 2κ + 2κs2κ

)
S
[
Eβ(u)

]}
. (30)

Now, using the homotopy perturbation transform method, we have

∞

∑
n=0

pnun(t) = u(0)− δp
∆(2κ)

S−1

((
1 − 2κ + 2κs2κ

)
S

[
∞

∑
n=0

pnHn(u)

])
. (31)

Using the Taylor’s series expansion of Eβ(u) and comparing the coefficients in (30), we obtain

p0 : u0(t) = u(0),

p1 : u1(t) = − δ
∆(2κ)

S−1{(1 − 2κ + 2κs2κ
)
S[H0(u)]

}
,

p2 : u2(t) = − δ
∆(2κ)

S−1{(1 − 2κ + 2κs2κ
)
S[H1(u)]

}
,

p3 : u3(t) = − δ
∆(2κ)

S−1{(1 − 2κ + 2κs2κ
)
S[H2(u)]

}
,

.

.

.

Using u(0) = 0, we have

p0 : u0(t) = 0,

p1 : u1(t) = − δ
∆(2κ)

{
(1 − 2κ) + 2κ t2κ

Γ(2κ+1)

}
,

p2 : u2(t) =
(
− δ

∆(2κ)

)2 1
Γ(β+1)

{
(1 − 2κ)2 + 4κ(1 − 2κ) t2κ

Γ(2κ+1) + 4κ2 t4κ

Γ(4κ+1)

}
,

.

.

.

Now, the solution is given by (18),
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u(t) =
(
− δ

∆(2κ)

){
(1 − 2κ) + 2κ t2κ

Γ(2κ+1)

}
+
(
− δ

∆(2κ)

)2 1
Γ(β+1)

{
(1 − 2κ)2+

4κ(1 − 2κ) t2κ

Γ(2κ+1) + 4κ2 t4κ

Γ(4κ+1)

}
+ ...

Now to plot the results by considering δ = 1.0, β = 0.7 for different values of, κ as
illustrated in Figure 5.
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Figure 5. Change in u for Case 3 with respect to time, for different values of κ.

Remark 3. If we put β = 1 in (29), then the equation becomes

ABCD2κ
t u(t) + δeu = 0,

and the solution is given by (18),

u(t) =
(
− δ

∆(2κ)

){
(1 − 2κ) + 2κ t2κ

Γ(2κ+1)

}
+
(
− δ

∆(2κ)

){
(1 − 2κ)2+ 4κ(1 − 2κ) t2κ

Γ(2κ+1) + 4κ2 t4κ

Γ(4κ+1)

}
+ ...

Now to plot the results by considering δ = 1.0, β = 1.0 for different values of, κ as
illustrated in Figure 6.
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Figure 6. Change in u for remark of Case 3 with respect to time, for different values of κ.

7. Conclusions

In this investigation, we have introduced and addressed the generalized nonlinear
Bratu-type equation incorporating the generalized fractional derivatives operator. The
solution is derived by applying an innovative analytical technique known as the homotopy
perturbation transformation method. We have demonstrated the effectiveness of the
generalized fractional derivatives operator and presented reduced results expressed in well-
known fractional operators, including Caputo, Caputo-Fabrizio, and Atangana-Baleanu.
Furthermore, various special cases of the generalized fractional Bratu’s equation have been
identified and thoroughly examined. We also plot some numerical results to show the
behavior of the obtained results.
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