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Abstract: This paper focuses on obtaining traveling wave solutions of the Fornberg–Whitham model
derived from Gilson–Pickering equations, which describe the prorogation of waves in crystal lattice
theory and plasma physics by some analytical techniques, i.e., the exp-function method (EFM), the
multi-exp function method (MEFM) and the multi hyperbolic tangent method (MHTM). We analyze
and compare them to show that MEFM is the optimum method.
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1. Introduction

Nonlinear partial differential equations (NPDEs) are a significant tool for the analysis
of nonlinear physical processes and natural phenomena. Indeed, NPDEs play a major
role in the description of the physical behavior of real-world processes and dynamical
phenomena such as in ocean engineering, physics, fluid mechanics, geochemistry, plasma
physics, optical fibers, geophysics, and many other scientific areas. Researchers have
focused on finding the analytical or exact solutions to problems which contributes to the
analysis of the actual system characteristics. A number of years ago, different efficient
and significant methods were developed to obtain solutions, including: the trial equation
method, the modified trial equation method [1], the direct algebraic method, the Sine-
Gordon expansion method [2], the first integral method, the functional variable method [3],
the rational (G′/G2)-expansion method [4,5], the Nucci’s reduction method, the extended
hyperbolic method [6], the generalized invariant subspace method [7], the new Kudryashov
approach [8], and many others [9–15].

The EFM [16] proposed by Ji-Huan He and Xu-Hong Wu in 2006 provides us with a
straightforward and effective method for obtaining generalized solitary wave solutions
and periodic solutions of NLEEs. The method has been applied to many kinds of equations
like the double sine-Gordon equation [17], Burger equations [18], Maccari’s system [19],
the Klein-Gordon equation [20], the combined KdV-mKdV equation [21], variant Boussi-
nesq equations [22], the Broer–Kaup–Kupershmidt equations [23], variable-coefficient
equations [24], high-dimensional equations, discrete equations and so on [25–27]. In 2009,
Dai et al. [28] generalized the EFM to solve stochastic equations. In 2010, Zhang [29]
improved the EFM to obtain not only generalized solitary wave solutions and periodic
solutions but also rational solutions. These studies show that the EFM is straightforward,
concise, and its applications are promising. The EFM is only concerned about the traveling
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wave solutions of NPDEs. It is clear that there are multiple wave solutions to NPDEs, for in-
stance, multiple solutions to several significant models like Hirota’s difference equation
and the Kdv equation. Thus, there should be a similar technique for obtaining multiple
wave solutions to NPDEs. In [30], the authors presented the MEFM, to compute the multi-
ple solutions to the (3+1)-dimensional potential-Yu-Toda-Sasa-Fukuyama equation. The
mentioned method is motivated because it is easy to use and also because of the capability
of computer algebra systems and the method provides a direct and systematic solution
procedure that generalizes Hirota’s perturbation method [31].

In this work, we analytically study the traveling wave solutions of the following
Gilson–Pickering equation (GPE) as a nonlinear third-order PDE as

ut − Auxxt + 2Bux − uuxxx − Cuux − Duxuxx = 0, (x, t) ∈ (a, b)× (0, T],

where u is an unknown function that should be determined, and the subscripts denote
the partial derivative, the parameters, A, B, and C are nonzero real numbers, and T is a
final time.

Gilson and Pickering [32] first introduced the GPE in 1995. There are three types of
special cases for the nonlinear GPE based on specific choices of its parameters. When
A = 1, C = −1, D = 3, and B = 0.5, the GPE converts to the Fornberg–Whitham model,
which was developed to analyze the qualitative characteristics of wave breakage and admits
a wave of the highest height [32]. For A = 1, C = −3 and D = 2, the GPE corresponds
to the Fuchssteiner-Fokas-Camassa-Holm model, which is a completely integrable NPDE
that arises at various levels of approximation in shallow water theory in [33], and when
A = 0, C = 1, D = 3, and B = 0, the GPE becomes the Rosenau-Hyman model, which
occurs in the study of the influence of nonlinear dispersion on the structure of patterns
in liquid drops [34]. The Camassa-Holm equation (CHE) constitutes the main form of
the GPE [33]. The CHE is an NPDE capable of modeling waves in shallow water [33].
This PDE was introduced by Camassa and Holm [33] and has been demonstrated to have
a robust mathematical structure. A significant property of this PDE is its acceptance of
non-smooth and smooth solitary wave solutions that are solitons. One can enforce non-
smooth or smooth solutions by twisting a parameter in the CHE. Peakons is the name
given to the non-smooth solutions, which are solitons that have sharp cusps (or peaks).
This leads to a discontinuous derivative of the soliton. Hence, these peakons are solutions
merely in the distributional or weak sense. Interested readers can find further analyses
regarding the physical and mathematical background of the CHE in the work [33]. Some
analytical and numerical methods are also available for finding the solutions of the GPE.
Irshad and Tauseef [35] employed the tanh-coth method for the numerical solution of GPE.
Fan et al. [36] applied the G′/G-expansion scheme for solving the GPE. Chen et al. [37]
adopted the qualitative theory of polynomial differential system to study travelling wave
solutions of the GPE, whereas Khakzad and Garshasbi [38] combined a meshfree technique
with the Crank–Nicolson scheme to simulate the CHE. Saffarian and Zabihi [39] used
a not-a-knot meshfree technique to approximate the GPE, while Ali and Mehanna [40]
implemented the finite difference (FD) method to solve the GPE. Bilal et al. [41] developed
the G′/G2-expansion and expansion function methods to derive new exact wave structures
of the GPE. Kamal Ali et al. [42] considered the 1/G′-expansion and generalized exponential
rational function approaches based on a homogeneous balance technique to construct
solitary wave solutions of the GPE. Yokuş et al. [43] constructed the soliton solutions of
the GPE with the help of the sinh-Gordon function. Rezazadeh et al. [44] considered the
exponential rational function and the Jacobi elliptic functions schemes to find new wave
surfaces of the GPE. Samir et al. [45] implemented a modified extended mapping technique
to obtain solitary wave solutions of the GPE.

The GP problem explains wave propagation in plasma physics and crystal lattice
theory. From the surface of the Sun to the heliopause, plasma fills the distance between the
planets. Without a doubt, plasma exists in low quantities around distant stars and across
much interstellar or intergalactic space. There are astrophysical plasmas in the accretion
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disks that surround stars and compact objects like white dwarfs, neutron stars, and black
holes in binary star systems. Since plasmas may exist in a wide variety of temperatures
and densities, they have many applications in the academic and industrial worlds. Plasma
spraying, etching in microelectronics, metal cutting, and welding are commonplace in
industrial and extractive metallurgy; fuel ignition and exhaust cleaning are used frequently
in cars; supersonic combustion engines are used in aerospace engineering [46–48].

In this paper, the authors develope several soliton wave solutions for the GP problem.
These sorts of solutions are required for the theory of crystal lattices and for studying wave
motion in plasma. On the researched model, several analytical techniques including the
exp function method, the multi-exp function method and the multi-hyperbolic tangent
method [49,50] will be effectively applied which formulate a solution algorithm for calcu-
lating multiple wave solutions to the GP model containing one-soliton, two-soliton and
three-soliton-type solutions.

2. Analysis of the MEFM, the EFM and the MHTM
2.1. The Procedure of EFM

Here, we propose the basic idea of the EFM as follows [49,50]:

• Step 1: Consider the general nonlinear partial differential equation of the type:

N(u, ux, ut, utt, uxx, uxxx, . . .) = 0. (1)

• Step 2: Let:

Ξ = αx + βt, u = U(Ξ), (2)

where β and α are fixed.

• Step 3: Rewrite (1) as

Ñ(U, U′, U′′, U′′′, . . .) = 0, (3)

where the prime denotes the derivative with respect to Ξ.

• Step 4: Consider the wave solutions as:

U(Ξ) =
∑d

n=−c anenΞ

∑
q
m=−p bmemΞ

=
acecΞ + . . . + a−de−dΞ

bpepΞ + . . . + b−qe−qΞ , (4)

in which q, d, c and p are positive integers and also an and bn are constants that are not
known and to be determined later.

• Step 5: To choose the value of p and c, (and similarly d and q), we should balance the
linear term of highest (lowest) order of Equation (4) with the highest (lowest) order
nonlinear term.

2.2. The Procedure of the MEFM

In this Subsection, we formulate the MEFM [49,50] by considering

N(x, t, ut, ux, utt, uxx, . . .) = 0, (5)

where u = u(x, t).

• Step 1: Assume

Ξi = cieΞi , Ξi = −ωit + Six, (6)

where Ξi = Ξi(x, t), i ∈ [1, n], and ωi, ci, and Si are wave frequencies, optional constants,
and angular wave numbers, accordingly. Notice
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Ξi,x = SiΞi, Ξi,t = −ωiΞi, i ∈ [1, n]. (7)

• Step 2: Now, let

u(x, t) :=
K(Ξ1, Ξ2, · · · , Ξn)

H(Ξ1, Ξ2, · · · , Ξn)
, (8)

K :=
n

∑
r,s=1

M

∑
i,j=0

Prs,ijΞi
rΞj

s,

H :=
n

∑
r,s=1

N

∑
i,j=0

Qrs,ijΞi
rΞj

s,

where Qrs,ij and Prs,ij are fixed to be determined from (5).
We now have

Ñ(t, x, Ξ1, Ξ2, · · · , Ξn) = 0. (9)

• Step 3: By dissolving a system of linear equations, we have

u(x, t) =
K(c1 exp(S1x − ω1t), · · · , cn exp(Snx − ωnt))
H(c1 exp(S1x − ω1t), · · · , cn exp(Snx − ωnt))

. (10)

2.3. The Procedure of the MHTM

Here, it is enough to replace the exp function presented in Section 2.2 by tanh.

3. Comparing the EFM, the MEFM and the MHTM to Solve Nonlinear PDEs

The aim of this section is to study and compare the results of the EFM with results
obtained from the MEFM, and then we present a comparison of the MEFM and the MHTM.

3.1. Mathematical Analysis of the EFM for the Fornberg–Whitham Model

Here, we implement the EFM to obtain analytic and approximate solutions for the
special case of the following Gilson–Pickering equation (GPE), i.e., a nonlinear third-order
PDE given by [51]

ut − Auxxt + 2Bux − uuxxx − Cuux − Duxuxx = 0, (x, t) ∈ (ϵ◦, ϵ•)× (0, T], (11)

with

u(x, 0) = ϖ(x), ϵ◦ ≤ x ≤ ϵ•,

u(ϵ◦, t) = u(ϵ•, t) = 0 t ∈ (0, T],

where u is an unknown function to be determined, the subscripts denote the partial
derivative, the parameters A, D, B and C are arbitrary constants, the function ϖ represents
a continuous function, and T is a final time.

We note three special cases for the nonlinear GPE based on particular choices of its
parameters:

◦ The Fornberg–Whitham model (A = 1, B = 0.5, C = −1, and D = 3 in (11)),
◦ The Fuchssteiner-Fokas-Camassa-Holm model (A = 1, C = −3, and D = 2 in (11)),
◦ The Rosenau-Hyman model (A = 0, B = 0, C = 1, and D = 3 in (11)).

Here, we only consider the first case. Then, by setting A = 1, B = 0.5, C = −1, and
D = 3 in the GPE (11) we obtain,

ut − uxxt + ux − uuxxx + uux − 3uxuxx = 0, (12)
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Now, by introducing Ξ defined in (2), then (12) becomes an ODE of the form:

βU′ − α2βU′′′ + αU′ − α3UU′′′ + αUU′ − 3α3U′U′′ = 0, (13)

or

(β + α − 3α3U′′ + αU)U′ + (−α2β − α3U)U′′′ = 0. (14)

Integrating Equation (14) and one has:

α

2
U2 + (α + β)U − α3(U′)2 − (αU + β)α2U′′ = 0. (15)

Based on Equation (4), it is possible to choose different values of c, d, p and q. It is
seen that when the equation has multiple solutions (like solitons) the Exp–function method
is able to give us these solutions with the aid of using different c, d, p and q. It is worth
mentioning that different parameters may lead to equivalent solutions. For convenience,
we examine the following cases:

• Case one (c = p = 1, and q = d = 1):

Now, Equation (4) reduces to

U(Ξ) =
a1eΞ + a0 + a−1e−Ξ

b1eΞ + b0 + b−1e−Ξ , (16)

Substituting Equation (16) in to Equation (15), and with the help of Maple, we obtain:

αa2
−1b2

−1 + 2αa−1b3
−1 + 2βa−1b3

−1 = 0,

2α3a2
−1b−1b0 − 2α3a−1a0b2

−1 + 2α2βa−1b2
−1b0

−2α2βa0b3
−1 + 2αa2

−1b−1b0 + 2αa−1a0b2
−1 + 6αa−1b2

−1b0

+2αa0b3
−1 + 6βa−1b2

−1b0 + 2βa0b3
−1 = 0,

8α3a2
−1b−1b1 − 4α3a2

−1b2
0 + 8α3a−1a0b−1b0

−8α3a−1a1b2
−1 − 4α3a2

0b2
−1 + 8α2βa−1b2

−1b1

−8α2βa1b3
−1 + 2αa2

−1b−1b1 + αa2
−1b2

0 + 4αa−1a0b−1b0

+2αa−1a1b2
−1 + 6αa−1b2

−1b1 + 6αa−1b−1b2
0

+αa2
0b2

−1 + 6αa0b2
−1b0 + 2αa1b3

−1 + 6βa−1b2
−1b1

+6βa−1b−1b2
0 + 6βa0b2

−1b0 + 2βa1b3
−1 = 0,

−14α3a2
−1b0b1 + 28α3a1a0b−1b1 − 2α3a−1a0b2

0

+4α3a−1a1b−1b0 + 2α3a2
0b−1b0 − 18α3a0a1b2

−1

+4α2βa−1b−1b0b1 − 2α2βa−1b3
0 + 10α2βa0b2

−1b1 + 2α2βa0b−1b2
0

−14α2βa1b2
−1b0 + 2αa2

−1b0b1 + 4αa−1a0b−1b1

+2αa−1a0b2
0 + 4αa−1a1b−1b0 + 12αa−1b−1b0b1 + 2αa−1b3

0

+2αa2
0b−1b0 + 2αa0a1b2

−1 + 6αa0b2
−1b1 + 6αa0b−1b2

0

+6αa1b2
−1b0 + 12βa−1b−1b0b1 + 2βa−1b3

0 + 6βa0b2
−1b1

+6βa0b−1b2
0 + 6βa1b2

−1b0 = 0,
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−16α3a2
−1b2

1 − 8α3a−1a0b0b1 + 32α3a−1a1b−1b1

+16α3a2
0b−1b1 − 8α3a0a1b−1b0 − 16α3a2

1b2
−1

−8α2βa−1b2
0b1 + 16α2βa0b−1b0b1 − 8α2βa1b−1b2

0

+αa2
−1b2

1 + 4αa−1a0b0b1 + 4αa−1a1b−1b1 + 2αa−1a1b2
0

+6αa−1b−1b2
1 + 6αa−1b2

0b1 + 2αa2
0b−1b1 + αa2

0b2
0

+4αa0a1b−1b0 + 12αa0b−1b0b1 + 2αa0b3
0 + αa2

1b2
−1

+6αa1b2
−1b1 + 6αa1b−1b2

0 + 6βa−1b−1b2
1

+6βa−1b2
0b1 + 12βa0b−1b0b1 + 2βa0b3

0

+6βa1b2
−1b1 + 6βa1b−1b2

0 = 0,

−18α3a−1a0b2
1 + 4α3a−1a1b0b1 + 2α3a2

0b0b1

+28α3a0a1b−1b1 − 2α3a0a1b2
0 − 14α3a2

1b−1b0

−14α2βa−1b0b2
1 + 10α2βa0b−1b2

1 + 2α2βa0b2
0b1

+4α2βa1b−1b0b1 − 2α2βa1b3
0 + 2αa−1a0b2

1

+4αa−1a1b0b1 + 6αa−1b0b2
1 + 2αa2

0b0b1 + 4αa0a1b−1b1

+2αa0a1b2
0 + 6αa0b−1b2

1 + 6αa0b2
0b1 + 2αa2

1b−1b0

+12αa1b−1b0b1 + 2αa1b3
0 + 6βa−1b0b2

1 + 6βa0b−1b2
1

+6βa0b2
0b1 + 12βa1b−1b0b1 + 2βa1b3

0 = 0,

−8α3a−1a1b2
1 − 4α3a2

0b2
1 + 8α3a0a1b0b1

+8α3a2
1b−1b1 − 4α3a2

1b2
0 − 8α2βa−1b3

1

+8α2βa1b−1b2
1 + 2αa−1a1b2

1 + 2αa−1b3
1

+αa2
0b2

1 + 4αa0a1b0b1 + 6αa0b0b2
1 + 2αa2

1b−1b1

+αa2
1b2

0 + 6αa1b−1b2
1 + 6αa1b2

0b1 + 2βa−1b3
1

+6βa0b0b2
1 + 6βa1b−1b2

1 + 6βa1b2
0b1 = 0,

Solving the system of algebraic equations, simultaneously yields:{
β = β, b−1 = b−1, a−1 = 0, b0 = b0, a0 = 0, b1 = b1, a1 = 0,

}
,

{
β = β, b−1 = 0, a−1 = a−1, b0 = 0, a0 = a0, b1 = 0, a1 = a1

}
,

{
β = β, b−1 = 0, a−1 = 0, b0 = −0.5

αa0

β + α
, a0 = a0, b1 = −0.5

a1α

β + α
a1 = a1

}
,

{
β = β, b−1 = 0, a−1 = 0, b0 = 0, a0 = 0, b1 = b1, a1 = a1

}
,

{
β = −α(2α2 − 1)

α2 − 1
, b−1 = b−1, a−1 =

2b−1α2

α2 − 1
, b0 = b0, a0 =

2α2b0

α2 − 1
, b1 = 0, a1 = 0

}
,

{
β =

α

α2 − 1
, b−1 = 0, a−1 = 0, b0 = b0, a0 = 0, b1 = b1, a1 =

6b1α2

4α4 − 5α2 + 1

}
,

and putting our obtained results into Equation (16), we obtain the following generalized
solution of Equation (15) as:

U(Ξ) = 0,
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U(Ξ) =
a1eΞ + a0

−0.5
a1α

β + α
eΞ − 0.5

αa0

β + α

,

U(Ξ) =

2α2b0

α2 − 1
+

2b−1α2

α2 − 1
e−Ξ

b0 + b−1e−Ξ ,

U(Ξ) =

6b1α2

4α4 − 5α2 + 1
eΞ

b1eΞ + b0
,

Substituting Equation (8) into our obtained results we obtain:

u(x, t) = 0,

u(x, t) =
a1eαx+βt + a0

−0.5
a1α

β + α
eαx+βt − 0.5

αa0

β + α

, (17)

u(x, t) =

2α2b0

α2 − 1
+

2b−1α2

α2 − 1
e
−(αx−

α(2α2 − 1)
α2 − 1

t)

b0 + b−1e
−(αx−

α(2α2 − 1)
α2 − 1

t)

, (18)

u(x, t) =

6b1α2

4α4 − 5α2 + 1
e

αx+
α

α2 − 1
t

b1e
αx+

α

α2 − 1
t
+ b0

, (19)

Figure 1, displays the 3D and 2D with the plots of Equation (18), for α = 0.5, b0 = 5,
and b−1 = 4.5.

(a) (b)

Figure 1. The 3D and 2D with the plots of Equation (18), for α = 0.5, b0 = 5, b−1 = 4.5. (a) 3D
with the plots of Equation (18), for α = 0.5, b0 = 5b−1 = 4.5. (b) 2D with the plots of Equation (18),
for α = 0.5, b0 = 5.
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• Case two (c = p = 2, and q = d = 2):

Here, Equation (4) reduces to

U(Ξ) =
a2e2Ξ + a1eΞ + a0 + a−1e−Ξ + a−2e−2Ξ

b2e2Ξ + b1eΞ + b0 + b−1e−Ξ + b−2e−2Ξ . (20)

There are some free parameters in Equation (20), we set b1 = 0, and b−1 = 0, for conve-
nience, and the trial function, Equation (20) is simplified as

U(Ξ) =
a2e2Ξ + a1eΞ + a0 + a−1e−Ξ + a−2e−2Ξ

b2e2Ξ + b0 + b−2e−2Ξ . (21)

Substituting Equation (21) into Equation (15), and with Maple, we obtain:

1
2

αa2
−2b2

−2 + αa−2b3
−2 + βa−2b3

2
= 0,

−α3a−2a−1b2
−2 − α2βa−1b3

−2 + αa−2a−1b2
−2 + αa−1b3

−2 + βa−1b3
−2 = 0,

αa0b3
−2 + βa0b3

−2 +
1
2

αa2
−1b2

−2 − 2α3a2
−1b2

−2

+4α2βa−2b2
−2b0 + 4α3a2

−2b−2b0 − 4α3a0b2
−2a−2

−4α2βa0b3
−2 + 3αa−2b2

−2b0 + 3βa−2b2
−2b0 + αa2

−2b−2b0 + αa−2a0b2
−2 = 0,

14α3a−2a−1b−2b0 − 9α3a−2a1b2
−2 − 9α3a−1a0b2

−2

+5α2βa−1b2
−2b0 − 9α2βa1b3

−2 + 2αa−2a−1b−2b0

+αa−2a1b2
−2 + αa−1a0b2

−2 + 3αa−1b2
−2b0 + αa1b3

−2

+3βa−1b2
−2b0 + βa1b3

−2 = 0,

αa2b3
−2 + βa2b3

−2 − 8α3a2
−2b2

0 − 8α3a2
0b2

−2

+
1
2

αa2
−2b2

0 +
1
2

αa2
0b2

−2 + 16α3a−2a0b−2b0

+16α2βa−2b2
−2b2 + 2αa−2a0b−2b0 + 16α3a2

−2b2b−2

−16α3a2b2
−2a−2 + 8α3a2

−1b−2b0 − 16α3a1b2
−2a−1

−16α2βa2b3
−2 + 3αa−2b2

−2b2 + 3αa−2b−2b2
0

+3αa0b2
−2b0 + 3βa−2b2

−2b2 + 3βa−2b−2b2
0 + 3βa0b2

−2b0

+αa2
−2b−2b2 + αa−2a2b2

−2 + αa2
−1b−2b0 + αa−1a1b2

−2 = 0,

46α3a−2a−1b−2b2 − 9α3a−2a−1b2
0 + 14α3a−2a1b−2b0

+14α3a−1a0b−2b0 − 25α3a−1a2b2
−2 − 25α3a0a1b2

−2

+21α2βa−1b2
−2b2 + 5α2βa−1b−2b2

0 − 11α2βa1b2
−2b0

+2αa−2a−1b−2b2 + αa−2a−1b2
0 + 2αa−2a1b−2b0

+2αa−1a0b−2b0 + αa−1a2b2
−2 + 3αa−1b2

−2b2 + 3αa−1b−2b2
0

+αa0a1b2
−2 + 3αa1b2

−2b0 + 3βa−1b2
−2b2 + 3βa−1b−2b2

0 + 3βa1b2
−2b0 = 0,
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2αa−2a0b−2b2 + 2αa−2a2b−2b0 + 6αa−2b−2b0b2 + 2αa−1a1b−2b0

+6βa−2b−2b0b2 + 56α3a0b2a−2b−2 + 8α3a−2a2b−2b0 + 8α3a−1a1b−2b0

+20α2βa0b2
−2b2 + 4α2βa0b−2b2

0 − 28α2βa2b2
−2b0

+αa2
−2b0b2 + αa−2a0b2

0 + αa2
−1b−2b2 + αa2

0b−2b0 + αa0a2b2
−2

+3αa0b2
−2b2 + 3αa0b−2b2

0 + 3αa2b2
−2b0

−28α3a2
−2b0b2 − 4α3a−2a0b2

0 + 28α3a2
−1b2b−2

+4α3a2
0b−2b0 − 36α3a2b2

−2a0 − 4α2βa−2b3
0

+3βa0b2
−2b2 + 3βa0b−2b2

0 + 3βa2b2
−2b0

+8α2βa−2b−2b0b2 + αa−2b3
0 + βa−2b3

0 − 2α3a2
−1b2

0 − 18α3a2
1b2

−2 = 0,

−34α3a−2a−1b0b2 + 62α3a−2a1b−2b2 − α3a−2a1b2
0 +

62α3a−1a0b−2b2 − α3a−1a0b2
0 − 2α3a−1a2b−2b0 − 2α3a0a1b−2b0

−49α3a1a2b2
−2 + 26α2βa−1b−2b0b2 − α2βa−1b3

0 + 13α2βa1b2
−2b2

−3α2βa1b−2b2
0 + 2αa−2a−1b0b2 + 2αa−2a1b−2b2 + αa−2a1b2

0

+2αa−1a0b−2b2 + αa−1a0b2
0 + 2αa−1a2b−2b0 + 6αa−1b−2b0b2

+αa−1b3
0 + 2αa0a1b−2b0 + αa1a2b2

−2 + 3αa1b2
−2b2 + 3αa1b−2b2

0

+6βa−1b−2b0b2 + βa−1b3
0 + 3βa1b2

−2b2 + 3βa1b−2b2
0 = 0,

1
2

αa2
0b2

0 +
1
2

αa2
2b2

−2 − 32α3a2
−2b2

2 + αa0b3
0 − 32α3a2

2b2
−2 +

1
2

αa2
−2b2

2 + βa0b3
0

−16α3a0a2b−2b0 + 64α3a2b2a−2b−2 + 64α3a1b2a−1b−2 − 16α2βa−2b2
0b2

−16α2βa2b−2b2
0 − 16α3a−2a0b0b2 + 2αa−2a0b0b2 + 2αa−2a2b−2b2

+2αa−1a1b−2b2 + 2αa0a2b−2b0 + 6αa0b−2b0b2 + 6βa0b−2b0b2

+32α2βa0b−2b0b2 + 3αa2b−2b2
0 + 3βa−2b−2b2

2 + 3βa−2b2
0b2 + 3βa2b2

−2b2

+3βa2b−2b2
0 − 8α3a2

−1b0b2 + 32α3a2
0b2b−2 − 8α3a2

1b−2b0

+3αa−2b−2b2
2 + 3αa−2b2

0b2 + 3αa2b2
−2b2 + αa2

−1b0b2

+αa−1a1b2
0 + αa2

0b−2b2 + αa2
1b−2b0 + αa−2a2b2

0 = 0,

−49α3a−2a−1b2
2 − 2α3a−2a1b0b2 − 2α3a−1a0b0b2 + 62α3a−1a2b−2b2

−α3a−1a2b2
0 + 62α3a0a1b−2b2 − α3a0a1b2

0 − 34α3a1a2b−2b0

+13α2βa−1b−2b2
2 − 3α2βa−1b2

0b2 + 26α2βa1b−2b0b2

−α2βa1b3
0 + αa−2a−1b2

2 + 2αa−2a1b0b2 + 2αa−1a0b0b2 + 2αa−1a2b−2b2

+αa−1a2b2
0 + 3αa−1b−2b2

2 + 3αa−1b2
0b2 + 2αa0a1b−2b2

+αa0a1b2
0 + 2αa1a2b−2b0 + 6αa1b−2b0b2 + αa1b3

0 + 3βa−1b−2b2
2

+3βa−1b2
0b2 + 6βa1b−2b0b2 + βa1b3

0 = 0,

−36α3a0b2
2a−2 + 4α3a2

0b0b2 − 4α3a0a2b2
0 + 28α3a2

1b2b−2 − 28α3a2
2b−2b0

−4α2βa2b3
0 + 2αa0a2b−2b2 + 6αa2b−2b0b2 + 6βa2b−2b0b2 + 2αa−2a2b0b2

+2αa−1a1b0b2 + 8α3a−2a2b0b2 + 8α3a−1a1b0b2 + 56α3a2b2a0b−2 − 28α2βa−2b0b2
2

+20α2βa0b−2b2
2 + 4α2βa0b2

0b2 + 3αa−2b0b2
2 + 3αa0b−2b2

2

+3αa0b2
0b2 + 3βa−2b0b2

2 + 3βa0b−2b2
2 + αa−2a0b2

2 + αa2
0b0b2

+αa0a2b2
0 + αa2

1b−2b2 + αa2
2b−2b0 + 3βa0b2

0b2 + 8α2βa2b−2b0b2 + αa2b3
0 + βa2b3

0

−18α3a2
−1b2

2 − 2α3a2
1b2

0 +
1
2

αa2
−1b2

2 +
1
2

αa2
1b2

0 = 0,
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−25α3a−2a1b2
2 − 25α3a−1a0b2

2 + 14α3a−1a2b0b2 + 14α3a0a1b0b2

+46α3a1a2b−2b2 − 9α3a1a2b2
0 − 11α2βa−1b0b2

2 + 21α2βa1b−2b2
2

+5α2βa1b2
0b2 + αa−2a1b2

2 + αa−1a0b2
2 + 2αa−1a2b0b2

+3αa−1b0b2
2 + 2αa0a1b0b2 + 2αa1a2b−2b2 + αa1a2b2

0

+3αa1b−2b2
2 + 3αa1b2

0b2 + 3βa−1b0b2
2 + 3βa1b−2b2

2 + 3βa1b2
0b2 = 0,

αa−2b3
2 + βa−2b3

2 − 8α3a2
0b2

2 − 8α3a2
2b2

0 +
1
2

αa2
0b2

2

+
1
2

αa2
2b2

0 + 16α3a0a2b0b2 + 16α2βa2b−2b2
2

+2αa0a2b0b2 + 3βa2b2
0b2 − 16α3a2b2

2a−2 − 16α3a1b2
2a−1 + 8α3a2

1b0b2

+16α3a2
2b2b−2 − 16α2βa−2b3

2 + 3αa0b0b2
2 + 3αa2b−2b2

2

+3αa2b2
0b2 + 3βa0b0b2

2 + 3βa2b−2b2
2 + αa2

1b0b2 + αa2
2b−2b2

+αa−2a2b2
2 + αa−1a1b2

2 = 0.

Solving the system of algebraic equations simultaneously yields:{
β =

α

4α2 − 1
, b−2 = 0, a−2 = 0, a−1 = 0, b0 = b0, a0 = 0,

b2 =
1
24

a2(64α4 − 20α2 + 1)
α2 , a2 = a2, a1 = 0,

}
,

{
β = β, b−2 = b−2, a−2 = 0, a−1 = 0, b0 = b0, a0 = 0, a1 = 0, b2 = b2, a2 = 0,

}
,

{
β = β, b−2 = 0, a−2 = 0, a−1 = 0, b0 = 0, a0 = 0, a1 = a1, b2 = b2, a2 = a2

}
,

{
β =

−1
2

α(a0 + 2b0)

b0
, b−2 = 0, a−2 = 0, a−1 = 0, b0 = b0, a0 = a0, a1 = 0, b2 = b2, a2 =

a0b2

b0

}
,

{
β = −α(8α2 − 1)

4α2 − 1
, b−2 = 0, a−2 = 0, a−1 = 0, b0 =

1
8

a0(4α2 − 1)
α2 ,

a0 = a0, a1 = 0, b2 =
1

16
a2(64α4 − 20α2 + 1)

α2(8α2 + 1)
, a2 = a2

}
,

{
β = −1

2
α(a2 + 2b2)

b2
, b−2 = b−2, a−2 =

a2b−2

b2
, a−1 = 0, , b0 = 0, a0 = 0, a1 = 0, b2 = b2, a2 = a2,

}
,

{
β = −1

2
α(a−2 + 2b−2)

b−2
, b−2 = b−2, a−2 = a−2, a−1 = 0, b0 = b0, b0 = b0, a1 = 0, b2 = b2a2 =

a−2b2

b−2

}
,

{
β = β, b−2 = 0, a−2 = a−2, a−1 = a−1, b0 = 0, a0 = a0, a1 = a1, b2 = 0, a2 = a2

}
,

and putting our obtained results into Equation (21), we obtain the generalized solution of
Equation (15) as follows:

U(Ξ) =
a2e2Ξ

1
24

a2(64α4 − 20α2 + 1)
α2 e2Ξ + b0

,

U(Ξ) = 0,
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U(Ξ) =
a2e2Ξ + a1eΞ

b2e2Ξ ,

U(Ξ) =

a0b2

b0
e2Ξ + a0

b2e2Ξ + b0
,

U(Ξ) =
a2e2Ξ + a0

1
16

a2(64α4 − 20α2 + 1)
α2(8α2 + 1)

e2Ξ +
1
8

a0(4α2 − 1)
α2

,

U(Ξ) =
a2e2Ξ +

a2b−2

b2
e−2Ξ

b2e2Ξ + b−2e−2Ξ ,

U(Ξ) =

a−2b2

b−2
e2Ξ +

a−2b0

b−2
+ a−2e−2Ξ

b2e2Ξ + b0 + b−2e−2Ξ ,

and putting Equation (8) into our obtained results we obtain:

u(x, t) =
a2e

2(αx+
α

4α2 − 1
t)

1
24

a2(64α4 − 20α2 + 1)
α2 e

2(αx+
α

4α2 − 1
t)
+ b0

, (22)

u(x, t) = 0,

u(x, t) =
a2e2(αx+βt) + a1eαx+βt

b2e2(αx+βt)
, (23)

u(x, t) =

a0b2

b0
e

2(αx−
1
2

α(a0 + 2b0)

b0
t)
+ a0

b2e
2(αx−

1
2

α(a0 + 2b0)

b0
t)
+ b0

, (24)

u(x, t) =
a2e

2(αx−
α(8α2 − 1)

4α2 − 1
t)
+ a0

1
16

a2(64α4 − 20α2 + 1)
α2(8α2 + 1)

e
2(αx−

α(8α2 − 1)
4α2 − 1

t)
+

1
8

a0(4α2 − 1)
α2

, (25)

u(x, t) =
a2e

2(αx−
1
2

α(a2 + 2b2)

b2
t)
+

a2b−2

b2
e
−2(αx−

1
2

α(a2 + 2b2)

b2
t)

b2e
2(αx−

1
2

α(a2 + 2b2)

b2
t)
+ b−2e

−2(αx−
1
2

α(a2 + 2b2)

b2
t)

, (26)

u(x, t) =

a−2b2

b−2
e

2(αx−
1
2

α(a−2 + 2b−2)

b−2
t)
+

a−2b0

b−2
+ a−2e

−2(αx−
1
2

α(a−2 + 2b−2)

b−2
t)

b2e
2(αx−

1
2

α(a−2 + 2b−2)

b−2
t)
+ b0 + b−2e

−2(αx−
1
2

α(a−2 + 2b−2)

b−2
t)

. (27)
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Figure 2 displays the 3D and 2D with the plots of Equation (26), for α = 0.5,
a2 = 2.5, b−2 = 3.5, and b2 = 3. And also, Figure 3 displays the 3D and 2D with the
plots of Equation (27), for α = 0.5, a−2 = 3, b−2 = 3.5, and b0 = 5.

(a) (b)

Figure 2. The 3D and 2D with the plots of Equation (26), for α = 0.5, a2 = 2.5, b−2 = 3.5, b2 = 3.
(a) The 3D with the plot of Equation (26). (b) The 2D with the plot of Equation (26).

(a) (b)

Figure 3. The 3D and 2D with the plots of Equation (27), for α = 0.5, a−2 = 3, b−2 = 3.5, b0 = 5.
(a) The 3D with the plot of Equation (27). (b) The 2D with the plot of Equation (27).

• Case three (c = p = 2, and q = d = 1):

Here, Equation (4) reduces to

U(Ξ) =
a2e2Ξ + a1eΞ + a0 + a−1e−Ξ

b2e2Ξ + b1eΞ + b0 + b−1e−Ξ . (28)

By the same manipulation as illustrated above, we obtain:{
β = β, b−1 = b−1, a−1 = 0, b0 = b0, a0 = 0, b1 = b1, a1 = 0, a2 = 0, b2 = b2

}
,

{
β =

α

α2 − 1
, b−1 = 0, a−1 = 0, b0 = 0, a0 = 0, b1 = b1, a1 = 0, b2 = b2, a2 = a2

}
,



Axioms 2024, 13, 74 13 of 38

{
β =

α

4α2 − 1
, b−1 = 0, a−1 = 0, b0 = b0, b1 = 0, a0 = 0,

a1 = 0, b2 =
1

24
a2(64α4 − 20α2 + 1)

α2 , a2 = a2

}
,

{
β = β, b−1 = 0, a−1 = 0, b0 = 0, a0 = 0, b1 = 0, a1 = a1, b2 = b2, a2 = a2

}
,

{
β = −1

2
α(a1 + 2b1)

b1
, b−1 = 0, a−1 = 0, b0 = 0, a0 = 0, b1 = b1, a1 = a1, b2 = b2, a2 =

a1b2

b1

}
,

{
β = −α(2α2 − 1)

α2 − 1
, b−1 = 0, a−1 = 0, b0 = 0, a0 = 0, b1 =

1
2

a1(α
2 − 1)
α2 , a1 = a1, b2 = b2, a2 = a2

}
,

{
β = −α(8α2 − 1)

4α2 − 1
, b−1 = 0, a−1 = 0, b0 =

1
8

a0(4α2 − 1)
α2 , a0 = a0,

b1 = 0, a1 = 0, b2 =
1
16

a2(64α4 − 20α2 + 1)
α2(8α2 + 1)

, a2 = a2

}
,

{
β = −1

2
α(a0 + 2b0)

b0
, b−1 = 0, a−1 = 0, b0 = b0, a0 = a0, b1 = b1, a1 =

a0b1

b0
, b2 = b2, a2 =

a0b2

b0

}
,

{
β = β, b−1 = 0, a−1 = a−1, b0 = 0, a0 = a0, b1 = 0, a1 = a1, b2 = 0, a2 = a2

}
,

{
β =

−1
2

α(a2 + 2b2)

b2
, b−1 = b−1, a−1 =

a2b−1

b2
, b0 = 0, a0 = 0, b1 = 0, a1 = 0, b2 = b2, a2 = a2

}
,

{
β =

−1
2

α(a−1 + 2b−1)

b−1
, b−1 = b−1, a−1 = a−1, b0 = b0, a0 =

a−1b0

b−1
,

b1 = b1, a1 =
a−1b1

b−1
, b2 = b2, a2 =

a−1b2

b−1

}
.

and putting our obtained results into Equation (28), we obtain the following generalized
solution of Equation (15) as:

U(Ξ) = 0,

U(Ξ) =
a2e2Ξ

b2e2Ξ + b1eΞ ,

U(Ξ) =
a2e2Ξ

1
24

a2(64α4 − 20α2 + 1)
α2 e2Ξ + b0

,

U(Ξ) =
a2e2Ξ + a1eΞ

b2e2Ξ ,

U(Ξ) =

a1b2

b1
e2Ξ + a1eΞ

b2e2Ξ + b1eΞ ,
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U(Ξ) =
a2e2Ξ + a1eΞ

b2e2Ξ +
1
2

a1(α
2 − 1)
α2 eΞ

,

U(Ξ) =
a2e2Ξ + a0

1
16

a2(64α4 − 20α2 + 1)
α2(8α2 + 1)

e2Ξ +
1
8

a0(4α2 − 1)
α2

,

U(Ξ) =

a0b2

b0
e2Ξ +

a0b1

b0
eΞ

b2e2Ξ + b1eΞ + b0
,

U(Ξ) =
a2e2Ξ +

a2b−1

b2
e−Ξ

b2e2Ξ + b−1e−Ξ ,

U(Ξ) =

a−1b2

b−1
e2Ξ +

a−1b1

b−1
eΞ +

a−1b0

b−1
+ a−1e−Ξ

b2e2Ξ + b1eΞ + b0 + b−1e−Ξ .

Substituting Equation (8) into our obtained results and we obtain:

u(x, t) = 0,

u(x, t) =
a2e

2(αx+
α

α2 − 1
t)

b2e
2(αx+

α

α2 − 1
t)
+ b1e

αx+
α

α2 − 1
t
, (29)

u(x, t) =
a2e

2(αx+
α

4α2 − 1
t)

1
24

a2(64α4 − 20α2 + 1)
α2 e

2(αx+
α

4α2 − 1
t)
+ b0

, (30)

u(x, t) =
a2e2(αx+βt) + a1eαx+βt

b2e2(αx+βt)
, (31)

u(x, t) =

a1b2

b1
e

2(αx−
1
2

α(a1 + 2b1)

b1
t)
+ a1e

αx−
1
2

α(a1 + 2b1)

b1
t

b2e
2(αx−

1
2

α(a1 + 2b1)

b1
t)
+ b1e

αx−
1
2

α(a1 + 2b1)

b1
t

, (32)

u(x, t) =
a2e

2(αx−
α(2α2 − 1)

α2 − 1
t)
+ a1e

αx−
α(2α2 − 1)

α2 − 1
t

b2e
2(αx−

α(2α2 − 1)
α2 − 1

t)
+

1
2

a1(α
2 − 1)
α2 e

αx−
α(2α2 − 1)

α2 − 1
t

, (33)

u(x, t) =
a2e

2(αx−
α(8α2 − 1)

4α2 − 1
t)
+ a0

1
16

a2(64α4 − 20α2 + 1)
α2(8α2 + 1)

e
2(αx−

α(8α2 − 1)
4α2 − 1

t)
+

1
8

a0(4α2 − 1)
α2

, (34)
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u(x, t) =

a0b2

b0
e

2(αx−
1
2

α(a0 + 2b0)

b0
t)
+

a0b1

b0
e

αx−
1
2

α(a0 + 2b0)

b0
t

b2e
2(αx−

1
2

α(a0 + 2b0)

b0
t)
+ b1e

αx−
1
2

α(a0 + 2b0)

b0
t
+ b0

, (35)

u(x, t) =
a2e

2(αx−
1
2

α(a2 + 2b2)

b2
t)
+

a2b−1

b2
e
−(αx−

1
2

α(a2 + 2b2)

b2
t)

b2e
2(αx−

1
2

α(a2 + 2b2)

b2
t)
+ b−1e

−(αx−
1
2

α(a2 + 2b2)

b2
t)

, (36)

u(x, t) = (37)

a−1b2

b−1
e

2(αx−
1
2

α(a−1 + 2b−1)

b−1
t)
+

a−1b1

b−1
e

αx−
1
2

α(a−1 + 2b−1)

b−1
t
+

a−1b0

b−1
+ a−1e

−(αx−
1
2

α(a−1 + 2b−1)

b−1
t)

b2e
2(αx−

1
2

α(a−1 + 2b−1)

b−1
t)
+ b1e

αx−
1
2

α(a−1 + 2b−1)

b−1
t
+ b0 + b−1e

−(αx−
1
2

α(a−1 + 2b−1)

b−1
t)

.

By modelling the propogation of waves in crystal lattice theory and plasma physics,
we were able to present analytical research on their propogation. Here, we have considered
only three case for the values of the positive integers c = d = p = q = 1, c = d = p =
q = 2, and c = p = 2, d = q = 1. If we consider the other values of c, p, d, q, then, we
can obtain more general solutions, which shows the novelty of our work. All the exact
solutions attained in this article have been checked by using Maple 18 to the Fornberg–
Whitham model and found to be appropriate. It has been shown that the applied method
is effective because it provides a lot of new solutions. The solutions obtained by Bariza
Boutarfa et al. [52] are re-derived when parameters are given some specific values.

We can similarly have a coth method (CHM) or tanh method (THM) for obtaining the
exact solutions of NPDEs. The obtained results in [53] prove that the EFM and THM are
effective and simple techniques to solve NPDEs, and by comparison, the authors detect that
the EFM is more effective in finding exact solutions than THM. Note, EFM is concerned
about travelling wave solutions to NPDEs. It is known that there exist multiple wave
solutions to NPDEs, for example, multi-soliton solutions to many physically important
equations like the Toda lattice equation, Hirota bilinear equations, the KdV equation and
multiple periodic wave solutions to the Boussinesq equation. In the following subsection
we formulate a solution algorithm for calculating multiple wave solutions to a (2+1)–
dimensional NPDE.

3.2. Mathematical Analysis of MEFM for a (2+1)-Dimensional Equation

In this subsection, we use the MEFM to obtain novel analytical solutions for the
following (2+1)-dimensional equation [54]

uyt + uxxxt + 3uxuxt + 3uxxut = 0. (38)

• One wave solutions for (38):

First, present Ξ1 = Ξ1(x, y, t) as

Ξ1 = ϖ1 exp(S1x + R1y − ω1t), (39)

where ϖ1, S1, R1, and ω1 are constants. Now, Ξ1 has the following relations

Ξ1,x = S1Ξ1, Ξ1,y = R1Ξ1, Ξ1,t = −ω1Ξ1. (40)
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Therefore, we assume

H(Ξ1) = Q0 + Q1Ξ1, (41)

K(Ξ1) = P0 + P1Ξ1, (42)

where P0, P1, Q0, and Q1 are fixed to be determined from (38). Thus, we obtain

u(x, t) =
K(Ξ1)

H(Ξ1)
=

P0 + P1Ξ1

Q0 + Q1Ξ1
. (43)

By inserting (43) in (38), we have:

P1 =
Q1P0

Q0
,

ω1 : arbitrary.

Therefore, we obtain

u(x, t) =
P0 +

Q1P0

Q0
exp(S1x + R1y − ω1t)

Q0 + Q1 exp(S1x + R1y − ω1t)
. (44)

Equation (44) is displayed in Figure 4 for S1 = Q1 = −0.70, R1 = −P0 = −0.90,
Q0 = 0.40, ω1 = 0.5, (a) is three dimensional with y = z = 2, (b) exploits the t-curve with
x = y = z = 2, and (c) and (d) are the contour plots.

(a) (b) (c) (d)

Figure 4. The 3D, 2D and the contour plots for (44). (a) The 3D plot for (44). (b) The 2D plot for (44).
(c) The contour plot for (44). (d) The contour plot for (44).

• Two wave solutions for (38):

Now, consider Ξi = Ξi(x, y, t), i = 1, 2, as

Ξi = ϖi exp(Six + Riy − ωit), i = 1, 2 (45)

where Si, ϖi, ωi, and Ri, are fixed. We have

Ξi,t = −ωiΞi, Ξi,y = RiΞ1, Ξi,x = SiΞi, i = 1, 2. (46)

Therefore, we assume

K(Ξ1, Ξ2) = 2(S1Ξ1 + S2Ξ2 + P12(S1 + S2)Ξ1Ξ2), (47)

H(Ξ1, Ξ2) = 1 + Ξ1 + Ξ2 + P12Ξ1Ξ2, (48)
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where P12 is a constant to be determined from (38). Therefore, we have

u(x, t) =
2(S1Ξ1 + S2Ξ2 + P12(S1 + S2)Ξ1Ξ2)

1 + Ξ1 + Ξ2 + P12Ξ1Ξ2
. (49)

Now, by inserting (49) into (38) and solving the system of linear equations, we have:

P12 : arbitrary,

S1 = −(−R1)
1
3 (−1)

1
3 ,

S2 = −(−R2)
1
3 (−1)

1
3 ,

S3 : arbitrary,

ω2 : arbitrary,

ω1 = ω2

[
− 2(−R1)

2
3 (−1)

1
3 (−R2)

2
3 − P12R1(−R2)

1
3 (−1)

1
3

+(−R1)
1
3 (−1)

1
3 P12R2 − R1(−R2)

1
3 (−1)

1
3 − (−R1)

1
3 (−1)

1
3 R2

]/
[
− 2(−R1)

2
3 (−1)

1
3 (−R2)

2
3 + P12R1(−R2)

1
3 (−1)

1
3

−(−R1)
1
3 (−1)

1
3 P12R2 − R1(−R2)

1
3 (−1)

1
3 − (−R1)

1
3 (−1)

1
3 R2

]
By setting the above values in (49),

u(x, t) =
2(S1Ξ1 − (−R2)

1
3 (−1)

1
3 Ξ2 + P12(−(−R1)

1
3 (−1)

1
3 − (−R2)

1
3 (−1)

1
3 )Ξ1Ξ2)

1 + Ξ1 + Ξ2 + P12Ξ1Ξ2
. (50)

where Ξi is defined in (45).
The real part of Equation (50) is displayed in Figure 5 with values R2 = −0.80,

R1 = 0.70, R3 = 0.50, P12 = 0.50, ω2 = 1.50, (a) is three dimensional with y = z = 2,
(b) exploits the t-curve with x = 2, and (c) and (d) are the contour plots.

(a) (b) (c) (d)

Figure 5. The (a–d) display the 3D, 2D and the contour plots for the real part of Equation (50).

The imaginary part of Equation (51) is displayed in Figure 6 with values R2 = −0.80,
R1 = 0.70, R3 = 0.50, P12 = 0.50, ω2 = 1.50, (a) is three dimensional with y = z = 2,
(b) exploits the t-curve with x = 2, and (c) and (d) are the contour plots.
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(a) (b) (c) (d)

Figure 6. The (a–d) display the 3D, 2D and the contour plots for the imaginary part of Equation (50).

Also, we obtain

P12 : arbitrary,

S1 = (−R1)
1
3 (−1)

2
3 ,

S2 = (−R2)
1
3 (−1)

2
3 ,

S3 : arbitrary,

ω2 : arbitrary,

ω1 = ω2

[
2(−R1)

2
3 (−1)

2
3 (−R2)

2
3 + P12R1(−R2)

1
3 (−1)

2
3

−(−R1)
1
3 (−1)

2
3 P12R2 + R1(−R2)

1
3 (−1)

2
3 + (−R1)

1
3 (−1)

2
3 R2

]/
[

2(−R1)
2
3 (−1)

2
3 (−R2)

2
3 − P12R1(−R2)

1
3 (−1)

2
3

+(−R1)
1
3 (−1)

2
3 P12R2 + R1(−R2)

1
3 (−1)

2
3 + (−R1)

1
3 (−1)

2
3 R2

]
By setting the above values in (49), we obtain

u(x, t) =
2(S1Ξ1 − (−R2)

1
3 (−1)

1
3 Ξ2 + P12(−(−R1)

1
3 (−1)

1
3 − (−R2)

1
3 (−1)

1
3 )Ξ1Ξ2)

1 + Ξ1 + Ξ2 + P12Ξ1Ξ2
. (51)

where Ξi is defined in (45).
The real part of Equation (51) is displayed in Figure 7 with values R2 = −0.80,

R1 = 0.70, R3 = 0.50, P12 = 0.50, ω2 = 1.50, (a) is three dimensional with y = z = 2,
(b) exploits the t-curve with x = 2, and (c) and (d) are the contour plots.

The imaginary part of Equation (51) is displayed in Figure 8 with values R2 = −0.80,
R1 = 0.70, R3 = 0.50, P12 = 0.50, ω2 = 1.50, (a) is three dimensional with y = z = 2,
(b) exploits the t-curve with x = 2, and (c) and (d) are the contour plots.

In addition, we have

P12 :
R1 − R2

R1 − 7R2

S1 = (−R2)
1
3 ,

S2 = (−R2)
1
3 ,

S3 : arbitrary,

ω2 : arbitrary,

ω1 = 0.
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By setting the above values in (49), we obtain

u(x, t) =
2((−R2)

1
3 Ξ1 + (−R2)

1
3 Ξ2 +

R1 − R2

R1 − 7R2
((−R2)

1
3 + (−R2)

1
3 )Ξ1Ξ2)

1 + Ξ1 + Ξ2 +
R1 − R2

R1 − 7R2
Ξ1Ξ2

. (52)

where Ξi is defined in (45).

(a) (b) (c) (d)

Figure 7. The (a–d) display the 3D, 2D and the contour plots for the real part of Equation (51).

(a) (b) (c) (d)

Figure 8. The (a–d) display the 3D, 2D and the contour plots for the imaginary part of Equation (51).

Equation (52) is displayed in Figure 9 with values R2 = −0.80, R1 = 0.70, R3 = 0.50,
P12 = 0.50, ω2 = 1.50, (a) is three dimensional with y = z = 2, (b) exploits the t-curve with
x = 2, and (c) and (d) are the contour plots.

In addition, we obtain

P12 :
3(−R2)

2
3 (−1)

2
3 S1 + 3S2

1(−R2)
1
3 (−1)

1
3 + S3

1 + R1

R1 + S3
1 − 3S2

1(−R2)
1
3 (−1)

1
3 + 3(−R2)

2
3 (−1)

2
3 S1

S1 = arbitrary,

S2 = −(−R2)
1
3 (−1)

1
3 ,

S3 : arbitrary,

ω2 : arbitrary,

ω1 = 0.

By letting the above values in (49),

u(x, t) =
2(S1Ξ1 +−(−R2)

1
3 (−1)

1
3 Ξ2 + P12(S1 +−(−R2)

1
3 (−1)

1
3 )Ξ1Ξ2)

1 + Ξ1 + Ξ2 + P12Ξ1Ξ2
. (53)
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where Ξi is defined in (45).

(a) (b) (c) (d)

Figure 9. The (a–d) display the 3D, 2D and the contour plots for Equation (52).

Equation (53) is displayed in Figure 10 with values R2 = −0.80, R1 = 0.70, R3 = 0.50,
P12 = 0.50, ω2 = 1.50, (a) is three dimensional with y = z = 2, (b) exploits the t-curve with
x = 2, and (c) and (d) are the contour plots.

(a) (b) (c) (d)

Figure 10. The (a–d) display the 3D, 2D and the contour plots for Equation (53).

• Three wave solutions for (38):

Consider Ξi = Ξi(x, y, t), i = 1, 2, 3, as

Ξi = ϖi exp(Six + Riy − ωit), i = 1, 2, 3 (54)

in which Ri, ϖi, ωi, and Si, are fixed. Now, Ξi has the following relations

Ξi,y = RiΞ1, Ξi,x = SiΞi, Ξi,t = −ωiΞi, i = 1, 2, 3. (55)

Therefore, we assume

K(Ξ1, Ξ2, Ξ3) = 2(S1Ξ1 + S2Ξ2 + S3Ξ3 + P12(S1 + S2)Ξ1Ξ2

+P13(S1 + S3)Ξ1Ξ3 + P23(S2 + S3)Ξ2Ξ3 + P12P13P23(S1 + S2 + S3)Ξ1Ξ2Ξ3),

and

H(Ξ1, Ξ2, Ξ3) = 1 + Ξ1 + Ξ2 + Ξ3 + P12Ξ1Ξ2 + P13Ξ1Ξ3 + P23Ξ2Ξ3

+P12P13P23Ξ1Ξ2Ξ3,
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where P12, P13, and P23 are fixed to be specified from (38). Thus,

u(x, t) =
[

2(S1Ξ1 + S2Ξ2 + S3Ξ3 + P12(S1 + S2)Ξ1Ξ2 (56)

+P13(S1 + S3)Ξ1Ξ3 + P23(S2 + S3)Ξ2Ξ3 + P12P13P23(S1 + S2 + S3)Ξ1Ξ2Ξ3)

]/
[

1 + Ξ1 + Ξ2 + Ξ3 + P12Ξ1Ξ2 + P13Ξ1Ξ3 + P23Ξ2Ξ3 + P12P13P23Ξ1Ξ2Ξ3

]
.

Now, by setting (56) into (38) and solving the system of linear equations, we have:

P12 = 0,

P13 =
S1S2 + S1S3 − S2S3S2

3P23

S1S2 − S1S3 + S2S3 − S2
3

,

P23 : arbitrary,

ω1 = − (P23S2 + P23S3 + S2 − S3)ω3
P23S2 + P23S3 − S2 + S3

,

ω2 = − (P23S2 + P23S3 + S2 − S3)ω3
P23S2 + P23S3 − S2 + S3

,

ω3 : arbitrary,

R1 = −S3
1,

R2 = −S3
2,

R3 = −S3
3.

Therefore, we obtain

u(x, t) =
[

2(S1Ξ1 + S2Ξ2 + S3Ξ3 (57)

+(
S1S2 + S1S3 − S2S3S2

3P23

S1S2 − S1S3 + S2S3 − S2
3
)(S1 + S3)Ξ1Ξ3 + P23(S2 + S3)Ξ2Ξ3

]/
[

1 + Ξ1 + Ξ2 + Ξ3 + (
S1S2 + S1S3 − S2S3S2

3P23

S1S2 − S1S3 + S2S3 − S2
3
)Ξ1Ξ3 + P23Ξ2Ξ3

]
,

where Ξi is defined in (54).
Equation (57) is displayed in Figure 11, with values P23 = 1.50, S2 = −0.70, S1 = 0.50,

S3 = −0.90, ω3 = 0.50, (a) is three dimensional with y = z = 2, (b) exploits the t-curve with
x = 2, and (c) and (d) are the contour plots.

Also, we obtain

P12 = 0,

P13 : arbitrary,

P23 :
S2

1 − S1S2 + S2S3 − S2
3

S2
1 − S1S2 − S2S3 − S2

3
,

ω1 = − (P13S1 + P13S3 + S1 − S3)ω3

P13S1 + P13S3 − S1 + S3
,

ω2 = 0,

ω3 : arbitrary,

R1 = −S3
1,

R2 = −3S2S2
1 + 3S2

2S1 − S3
2,

R3 = −S3
3.
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(a) (b) (c) (d)

Figure 11. The (a–d) display the 3D, 2D and the contour plots for Equation (57).

Therefore, we obtain

u(x, t) =
[

2(S1Ξ1 + S2Ξ2 + S3Ξ3 (58)

+P13(S1 + S3)Ξ1Ξ3 +
S2

1 − S1S2 + S2S3 − S2
3

S2
1 − S1S2 − S2S3 − S2

3
(S2 + S3)Ξ2Ξ3

]/
[

1 + Ξ1 + Ξ2 + Ξ3 + P13Ξ1Ξ3 +
S2

1 − S1S2 + S2S3 − S2
3

S2
1 − S1S2 − S2S3 − S2

3
Ξ2Ξ3

]
.

where Ξi is defined in (54).
Equation (58) is displayed in Figure 12, with values P23 = 1.50, S2 = −0.70, S1 = 0.50,

S3 = −0.90, ω3 = 0.50, (a) is three dimensional with y = z = 2, (b) exploits the t-curve with
x = 2, and (c) and (d) are the contour plots.

In addition, we obtain

P12 : arbitrary,

P13 = −S1 − S3
S1 + S3

,

P23 : −S2 − S3
S2 + S3

,

ω1 = 0,

ω2 = 0,

ω3 : arbitrary,

R1 = −S3
1,

R2 = −S3
2,

R3 = −S3
3.

Therefore, we obtain

u(x, t) =
[

2(S1Ξ1 + S2Ξ2 + S3Ξ3 + P12(S1 + S2)Ξ1Ξ2 (59)

+(P13)(S1 + S3)Ξ1Ξ3 + (−S2 − S3

S2 + S3
)(S2 + S3)Ξ2Ξ3

+P12(−
S1 − S3

S1 + S3
)(−S2 − S3

S2 + S3
)(S1 + S2 + S3)Ξ1Ξ2Ξ3)

]/
[

1 + Ξ1 + Ξ2 + Ξ3 + P12Ξ1Ξ2 + (−S1 − S3

S1 + S3
)Ξ1Ξ3

+(−S2 − S3

S2 + S3
)Ξ2Ξ3 + P12(−

S1 − S3

S1 + S3
)(−S2 − S3

S2 + S3
)Ξ1Ξ2Ξ3

]
.
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where Ξi is defined in (54).

(a) (b) (c) (d)

Figure 12. The (a–d) display the 3D, 2D and the contour plots for Equation (58).

Equation (59) is displayed in Figure 13, with values P23 = 1.50, S2 = −0.70, S1 = 0.50,
S3 = −0.90, ω3 = 0.50, (a) is three dimensional with y = z = 2, (b) exploits the t-curve with
x = 2, and (c) and (d) are the contour plots.

(a) (b) (c) (d)

Figure 13. The (a–d) display the 3D, 2D and the contour plots for Equation (59).

In addition, we obtain

P12 =
4S2

1 − 4S1S2 + S2
2 − S2

3
4S2

1 + 4S1S2 + S2
2 − S2

3
,

P13 =
4S2

1 − 4S1S3 − S2
2 + S2

3
4S2

1 + 4S1S3 − S2
2 + S2

3
,

P23 : arbitrary,

ω1 : arbitrary

ω2 = 0,

ω3 : 0,

R1 = −S3
1,

R2 = −1
4

S2(S2
2 + 3S2

3),

R3 = −1
4

S3(3S2
2 + S2

3).

Therefore, we obtain
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u(x, t) =
[

2(S1Ξ1 + S2Ξ2 + S3Ξ3 + (
4S2

1 − 4S1S2 + S2
2 − S2

3
4S2

1 + 4S1S2 + S2
2 − S2

3
)(S1 + S2)Ξ1Ξ2

+(
4S2

1 − 4S1S3 − S2
2 + S2

3
4S2

1 + 4S1S3 − S2
2 + S2

3
)(S1 + S3)Ξ1Ξ3

+P23(S2 + S3)Ξ2Ξ3 + (
4S2

1 − 4S1S2 + S2
2 − S2

3
4S2

1 + 4S1S2 + S2
2 − S2

3
)P13P23(S1 + S2 + S3)Ξ1Ξ2Ξ3)

]/
[

1 + Ξ1 + Ξ2 + Ξ3 + (
4S2

1 − 4S1S2 + S2
2 − S2

3
4S2

1 + 4S1S2 + S2
2 − S2

3
)Ξ1Ξ2

+(
4S2

1 − 4S1S3 − S2
2 + S2

3
4S2

1 + 4S1S3 − S2
2 + S2

3
)Ξ1Ξ3 + P23Ξ2Ξ3

+(
4S2

1 − 4S1S2 + S2
2 − S2

3
4S2

1 + 4S1S2 + S2
2 − S2

3
)(

4S2
1 − 4S1S3 − S2

2 + S2
3

4S2
1 + 4S1S3 − S2

2 + S2
3
)P23Ξ1Ξ2Ξ3

]
.

where Ξi is defined in (54).
Equation (60) is displayed in Figure 14, with values P23 = 1.50, S2 = −0.70, S1 = 0.50,

S3 = −0.90, ω1 = 0.50, (a) is three dimensional with y = z = 2, (b) exploits the t-curve with
x = 2, and (c) and (d) are the contour plots.

(a) (b) (c) (d)

Figure 14. The (a–d) display the 3D, 2D and the contour plots for Equation (60).

In addition, we have

P12 = −(P13S2
1S2 − P13S2

1S3 − P13S1S2
2 + 2P13S1S2S3 − P13S1S2

3 − P13S2
2S3

+P13S2S2
3 − P23S2

1S2 − P23S2
1S3 + P23S1S2

2 + 2P23S1S2S3 + P23S1S2
3

−P23S2
2S3 − P23S2S2

3)/((S1 + S2)(P13P23S1S2

+P13P23S1S3 + P13P23S2S3 + P13P23S2
3 − S1S2 + S1S3 + S2S3 − S2

3)),

P13 : arbitrary,

P23 : arbitrary,

ω1 =
ω2(P23S2 + P23S3 − S2 + S3)(S1P13 + S3P13 + S1 − S3)

(P23S2 + P23S3 + S2 − S3)(S1P13 + S3P13 − S1 + S3)

ω2 =: arbitrary,

ω3 = −ω2(P23S2 + P23S3 − S2 + S3)

P23S2 + P23S3 + S2 − S3
,

R1 = −S3
1,

R2 = −S3
2,

R3 = −S3
3.
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Therefore, we obtain

u(x, t) =
[

2(S1Ξ1 + S2Ξ2 + S3Ξ3 + P12(S1 + S2)Ξ1Ξ2 (60)

+P13(S1 + S3)Ξ1Ξ3 + P23(S2 + S3)Ξ2Ξ3 + P12P13P23(S1 + S2 + S3)Ξ1Ξ2Ξ3)

]/
[

1 + Ξ1 + Ξ2 + Ξ3 + P12Ξ1Ξ2 + P13Ξ1Ξ3 + P23Ξ2Ξ3 + P12P13P23Ξ1Ξ2Ξ3

]
.

where Ξi is defined in (54).
Equation (60) is displayed in Figure 15, with values P23 = 1.50, S2 = −0.70, S1 = 0.50,

S3 = −0.90, ω2 = 0.50, (a) is three dimensional with y = z = 2, (b) exploits the t-curve with
x = 2, and (c) and (d) are the contour plots.

(a) (b) (c) (d)

Figure 15. The (a–d) display the 3D, 2D and the contour plots for Equation (60).

Clearly, the MEFM in the case of i = 1 becomes the so-called the EFM presented by
Wu and He. We can similarly have a multiple coth method or a multiple tanh method for
obtaining multiple wave solutions to NPDEs. Now, we apply the MEFM and the MHTM to
obtain the exact solution of the following (2+1)–dimensional equation [54]

ut + 3ux + 3uy = 0. (61)

Next, for this particular case, we want to compare the two methods with each other.

3.3. Mathematical Analysis of the MEFM for (61)

In this Subsection, we use the MEFM to obtain novel solutions for (61).

• One wave solutions for (61):

In a similar way, we have

P1 =
P0Q1

Q0
,

S1 : arbitrary,

w1 : arbitrary.

With the above values, we have

u(x, t) =
P0 +

P0Q1

Q0
Ξ1

Q0 + Q1Ξ1
. (62)

where Ξ1 is defined in (65).
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• Two wave solutions for (61):

In a similar way, we have
P12 : arbitrary,

ω1 = 3S1 + 3R1,

ω2 = 3S2 + 3R2.

With the above values, we have

u(x, t) =
2(S1Ξ1 + S2Ξ2 + P12(S1 + S2)Ξ1Ξ2)

1 + Ξ1 + Ξ2 + P12Ξ1Ξ2
. (63)

where Ξi is defined in (45).

• Three wave solutions for (61):

In a similar way, we have

P12 = arbitrary,

P13 = arbitrary,

P23 : 0

ω1 = 3S1 + 3R1,

ω2 = 3S2 + 3R2,

ω3 = 3S3 + 3R3,

R1 = arbitrary,

R2 = arbitrary,

R3 = arbitrary,

S1 = arbitrary,

S2 = arbitrary,

S3 = arbitrary.

With the above values, we have

u(x, t) =
[

2(S1Ξ1 + S2Ξ2 + S3Ξ3 + P12(S1 + S2)Ξ1Ξ2 (64)

+P13(S1 + S3)Ξ1Ξ3)

]/
[

1 + Ξ1 + Ξ2 + Ξ3 + P12Ξ1Ξ2 + P13Ξ1Ξ3

]
,

where Ξi defined in (54).

3.4. Mathematical Analysis of the MHTM for (61)

In this Subsection, we use the MHTM to obtain novel analytical solutions for the
(2+1)-dimensional NPDE given by (61).

• One wave solutions for (61):

Consider Ξ1 = Ξ1(x, y, t) as

Ξ1 = ϖ1 tanh(S1x + R1y − ω1t), (65)

where ϖ1, S1, R1, and ω1 are fixed. Therefore, we assume
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K(Ξ1) = P0 + P1Ξ1, (66)

H(Ξ1) = Q0 + Q1Ξ1, (67)

where P0, P1, Q0, and Q1 are fixed to be determined from (38). Thus, we obtain

u(x, t) =
K(Ξ1)

H(Ξ1)
=

P0 + P1Ξ1

Q0 + Q1Ξ1
. (68)

By setting (68) into (61) and solving the system of linear equations, we have:

P1 =
Q1P0

Q0
,

ω1 : arbitrary.

Thus, we obtain

u(x, t) =
P0 +

Q1P0

Q0
tanh(S1x + R1y − ω1t)

Q0 + Q1 tanh(S1x + R1y − ω1t)
. (69)

Equation (69) is displayed in Figure 16 for S1 = −0.90, R1 = 0.90, Q1 = −0.70,
Q0 = 0.40, P0 = 0.90, ω1 = 0.5, in diverse domains.

• Two wave solutions for (61):

Consider Ξi = Ξi(x, y, t), i = 1, 2, as

Ξi = ϖi tanh(Six + Riy − ωit), i = 1, 2 (70)

where Si, ωi, ϖi, and Ri, are fixed. Therefore, we assume

K(Ξ1, Ξ2) = 2(S1Ξ1 + S2Ξ2 + P12(S1 + S2)Ξ1Ξ2), (71)

H(Ξ1, Ξ2) = 1 + Ξ1 + Ξ2 + P12Ξ1Ξ2, (72)

where P12 is a constant to be determined from (38). Therefore, we have

u(x, t) =
2(S1Ξ1 + S2Ξ2 + P12(S1 + S2)Ξ1Ξ2)

1 + Ξ1 + Ξ2 + P12Ξ1Ξ2
. (73)

By setting (73) into (61), we have:

P12 : arbitrary,

ω1 = 3S1 + 3R1,

ω2 = 3S2 + 3R2.

By inserting the above values in (49), we obtain

u(x, t) =
2(S1Ξ1 + S2Ξ2 + P12(S1 + S2)Ξ1Ξ2)

1 + Ξ1 + Ξ2 + P12Ξ1Ξ2
. (74)

where Ξi is defined in (70).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 16. The (a–f) display the 3D with the plots of Equation (69) in different domains. And the
(g–i) display the contour plots for Equation (69) in different domains.

The Equation (74) is displayed in Figure 17 with values R1 := 0.80, R2 = −0.50,
S1 = 0.60, S2 = −0.9, P12 = 0.70, in different domains.

• Three wave solutions for (61):

Consider Ξi = Ξi(x, y, t), i = 1, 2, 3, as

Ξi = ϖi tanh(Six + Riy − ωit), i = 1, 2, 3 (75)

in which ωi, Si, ϖi, and Ri, are fixed. Therefore, we assume

K(Ξ1, Ξ2, Ξ3) = 2(S1Ξ1 + S2Ξ2 + S3Ξ3 + P12(S1 + S2)Ξ1Ξ2

+P13(S1 + S3)Ξ1Ξ3 + P23(S2 + S3)Ξ2Ξ3 + P12P13P23(S1 + S2 + S3)Ξ1Ξ2Ξ3),
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and

H(Ξ1, Ξ2, Ξ3) = 1 + Ξ1 + Ξ2 + Ξ3 + P12Ξ1Ξ2 + P13Ξ1Ξ3 + P23Ξ2Ξ3

+P12P13P23Ξ1Ξ2Ξ3,

where P12, P13, and P23 are fixed to be specified from (61). Thus, we obtain

u(x, t) =
[

2(S1Ξ1 + S2Ξ2 + S3Ξ3 + P12(S1 + S2)Ξ1Ξ2 (76)

+P13(S1 + S3)Ξ1Ξ3 + P23(S2 + S3)Ξ2Ξ3 + P12P13P23(S1 + S2 + S3)Ξ1Ξ2Ξ3)

]/
[

1 + Ξ1 + Ξ2 + Ξ3 + P12Ξ1Ξ2 + P13Ξ1Ξ3 + P23Ξ2Ξ3 + P12P13P23Ξ1Ξ2Ξ3

]
.

(a) (b) (c)

(d) (e) (f)

Figure 17. The (a–f) display the 3D with the plots of Equation (74) in different domains.

By setting (76) into (61), we obtain:

P12 = arbitrary,

P13 = arbitrary,

P23 : 0

ω1 = 3S1 + 3R1,

ω2 = 3S2 + 3R2,

ω3 = 3S3 + 3R3,

R1 = arbitrary,

R2 = arbitrary,

R3 = arbitrary,

S1 = arbitrary,

S2 = arbitrary,

S3 = arbitrary.
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Therefore, we obtain

u(x, t) =
[

2(S1Ξ1 + S2Ξ2 + S3Ξ3 + P12(S1 + S2)Ξ1Ξ2 (77)

+P13(S1 + S3)Ξ1Ξ3)

]/
[

1 + Ξ1 + Ξ2 + Ξ3 + P12Ξ1Ξ2 + P13Ξ1Ξ3

]
.

where Ξi is defined in (75).
Equation (77) is displayed in Figure 18, with values P13 = −0.50, P12 = −3.50,

S1 = 0.60, S2 = −0.50, S3 = −0.90, R1 = −0.20, R2 = −0.90, R3 = 0.70, ω3 = 0.50, in
diverse domains.

(a) (b) (c)

(d) (e) (f)

Figure 18. The (a–f) display the 3D with the plots of Equation (77) in different domains.

3.5. Discussion

We now compare the MEFM and the MHTM for NPDE (61). First, we examine the
one wave solution for both methods. In this case, we obtain the following similar results
for the two mentioned methods:

P1 =
Q1P0

Q0
,

ω1 : arbitrary.

Now, we consider the following solutions :

5 − 35
2 exp(0.8x + 0.3y − 0.9t)

0.2 − 0.7 exp(0.8x + 0.3y − 0.9t)
, (78)
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and

5 − 35
2 tanh(0.8x + 0.3y − 0.9t)

0.2 − 0.7 tanh(0.8x + 0.3y − 0.9t)
. (79)

In Figure 19, the (a), (b), (c) display the 2D with the diagrams of Equation (79) and
the (d), (e), and (f) display the 2D with the diagrams of Equation (78) and also, the (g), (h),
(f) display the 2D with the diagrams of differences between the (a), (d), (b), (e), and (c),
(f). According to the (g), (h), (f), the differences obtained between the two methods is
minor. But as you can see, the MEFM has a more accurate behavior than the MHTM.
Figure 20 displays the 2D with the contour plots of Equations (78) and (79) and confirm the
recent claim.

(a) y = t = 3 (b) x = t = 3 (c) x = y = 3

(d) y = t = 3 (e) x = t = 3 (f) x = y = 3

(g) y = t = 3 (h) x = t = 3 (i) x = y = 3

Figure 19. The (a–c) display the 2D with the diagrams of Equation (79) and the (d–f) display the 2D
with the diagrams of Equation (78) and also, the (g–i) display the 2D with the diagrams of differences
between the (a,d), the (b,e), and the (c,f).
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(a) Fixed t (b) Fixed y (c) Fixed x

(d) Fixed t (e) Fixed y (f) Fixed x

Figure 20. The (a–c) display the 2D with the contour plots of Equation (79) and the (d–f) display the
2D with the contour plots of Equation (78).

Next, we examine the two wave solution for both methods. In this case, we obtain the
following similar results for the two mentioned methods:

P12 : arbitrary,

ω1 = 3S1 + 3R1,

ω2 = 3S2 + 3R2.

Now, we consider the following solutions:

[2(S1Ξ1 + S2Ξ2 + P12(S1 + S2)Ξ1Ξ2)]

/
[2(S1Ξ1 + S2Ξ2 + P12(S1 + S2)Ξ1Ξ2)] (80)

where

Ξi = ϖi exp(Six + Riy − ωit), i = 1, 2

and

[2(S1Ξ′
1 + S2Ξ′

2 + P12(S1 + S2)Ξ′
1Ξ′

2)]

/
[2(S1Ξ′

1 + S2Ξ′
2 + P12(S1 + S2)Ξ′

1Ξ′
2)] (81)

where

Ξ′
i = ϖi tanh(Six + Riy − ωit), i = 1, 2.

Here, we set S1 = 0.6, S2 = −0.9, R1 = 0.8, R2 = −0.5 and P12 = 0.7. Now, in Figure 21,
the (e),(f),(g) display the 3D with the diagrams of Equation (80) and the (a),(b),(c) display
the 3D with the diagrams of Equation (81). In Figure 22, the (d),(e),(f) display the contour
plots of (80) and the (a),(b),(c) display the contour plots of Equation (81). We can observe
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that the results gained by the MEFM have higher accuracy than those of the MHTM. Also,
the MEFM has a smoother behavior than the MHTM.

(a) Fixed x (b) Fixed y (c) Fixed t

(d) Fixed x (e) Fixed y (f) Fixed t

Figure 21. The (d–f) display the 3D with the diagrams of (80) and the (a–c) display the 3D with the
diagrams of (81).

(a) Fixed x (b) Fixed y (c) Fixed t

(d) Fixed x (e) Fixed y (f) Fixed t

Figure 22. The (d–f) display the contour plots of Equation (80) and the (a–c) display the contour plots
of Equation (81).
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Now, we examine the three wave solution for both methods. In this case, we obtain
the following similar results for the two mentioned methods:

P12 = arbitrary,

P13 = arbitrary,

P23 : 0

ω1 = 3S1 + 3R1,

ω2 = 3S2 + 3R2,

ω3 = 3S3 + 3R3,

R1 = arbitrary,

R2 = arbitrary,

R3 = arbitrary,

S1 = arbitrary,

S2 = arbitrary,

S3 = arbitrary.

With the above values, we have

u(x, t) =
[

2(S1Ξ1 + S2Ξ2 + S3Ξ3 + P12(S1 + S2)Ξ1Ξ2 (82)

+P13(S1 + S3)Ξ1Ξ3)

]/
[

1 + Ξ1 + Ξ2 + Ξ3 + P12Ξ1Ξ2 + P13Ξ1Ξ3

]
,

where

Ξi = ϖi exp(Six + Riy − ωit), i = 1, 2, 3

and

u(x, t) =
[

2(S1Ξ1 + S2Ξ2 + S3Ξ3 + P12(S1 + S2)Ξ1Ξ2 (83)

+P13(S1 + S3)Ξ1Ξ3)

]/
[

1 + Ξ1 + Ξ2 + Ξ3 + P12Ξ1Ξ2 + P13Ξ1Ξ3

]
,

where

Ξi = ϖi tanh(Six + Riy − ωit), i = 1, 2, 3.

Here, we set S1 = 0.6, S2 = −0.5, S3 = −0.9, R1 = −0.2, R2 = −0.9, R3 = 0.7 and
P13 = 0.5, P12 = −1.5. Now, in Figure 23, the (e), (f), (g) display the 3D with the diagrams
of Equation (82) and (a), (b), (c) display the 3D with the diagrams of Equation (83). In
Figure 24, the (g), (e), (f) display the contour plots of Equation (82) and the (a), (b), (c)
display the contour plots of Equation (83). As you can observe, the MEFM provides more
accurate and detailed results.

Now, according to Figures 19–24, we can conclude that the MEFM provides a bet-
ter description of NPDEs in specific domains. In addition, the numerical results of
Equations (78)–(83) are displayed in Table 1, and they confirm the recent claims.
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(a) Fixed x (b) Fixed y (c) Fixed t

(d) Fixed x (e) Fixed y (f) Fixed t

Figure 23. The (d–f) display the 3D with the diagrams of Equation (82) and (a–c) display the 3D with
the diagrams of Equation (83).

(a) Fixed x (b) Fixed y (c) Fixed t

(d) Fixed x (e) Fixed y (f) Fixed t

Figure 24. The (d–f) display the contour plots of Equation (82) and the (a–c) display the contour plots
of Equation (83).
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According to the Table 1, we calculate the differences between obtained solutions
for fixed t, y and different values of x, in Table 2. As you can observe, the range of
these differences obtained by MEFM changes between 0 and 0.003 for one-wave solutions.
And for MHTM, these changes are between 0.04 and 0.07. This means that in MEFM,
with small changes in the input, it causes small changes in the output and therefore we can
conclude in this situation that this method shows more stable behavior than MHTM. In the
same way, we have similar results for the three wave solutions.

Table 1. Numerical results of Equations (78)–(83).

One-Wave Solution Two-Wave Solution Three-Wave Solution
y = t = 0.20 x uMEFM uMHTM uMEFM uMHTM uMEFM uMHTM

0.20 24.99999999 25.00000000 0.17538519 0.94952115 0.18226002 0.02165664
0.30 25.00000002 25.00000000 0.17726173 0.87076905 0.18434795 0.03003873
0.40 25.00000001 25.00000001 0.17914924 0.79998766 0.18645254 0.03870608
0.50 25.00000000 24.99999999 0.18104754 0.73604704 0.18857376 0.04767017
0.60 24.99999999 25.00000000 0.18104754 0.67802134 0.19071154 0.05694300
0.70 24.99999999 25.00000000 0.18487583 0.62514465 0.19286584 0.06653706
0.80 25.00000001 25.00000001 0.18690543 0.57677795 0.19503658 0.07646545
0.90 25.00000000 25.00000000 0.18874510 0.53238384 0.19722370 0.08674179

Table 2. According to the Table 1, we calculate the differences between obtained solutions for fixed
t, y and different values of x.

One-Wave Solution Two-Waves Olution Three-Wave Solution
y = t = 0.20 x ∆uMEFM ∆uMHTM ∆uMEFM ∆uMHTM ∆uMEFM ∆uMHTM

0.20–0.30 0.00000001 0.00000000 0.00187654 0.07875210 0.00208793 0.00838209
0.30–0.40 0.00000001 0.00000001 0.00188751 0.07078139 0.00210459 0.00866735
0.40–0.50 0.00000001 0.00000002 0.00180983 0.06394062 0.00212122 0.00896409
0.50–0.60 0.00000001 0.00000001 0.00000000 0.05802570 0.00213778 0.00927283
0.60–0.70 0.00000000 0.00000000 0.003382829 0.05287669 0.00215430 0.00959406
0.70–0.80 0.00000001 0.00000001 0.00202960 0.04836670 0.00217074 0.00992839
0.80–0.90 0.00000001 0.00000000 0.00183967 0.04439411 0.00218712 0.01027634

4. Conclusions

In this present study, to solve the nonlinear PDEs that contain some high nonlinear
terms, several relatively novel analytical techniques entitled the “exp function method
(EFM)”, “multi-exp function method (MEFM)”, and “multi hyperbolic tangent method
(MHTM)” are applied, analyzed and compared to each other. In our situation we showed
that MEFM is a better method in comparison with the two other methods. The presented
methods have many merits and advantages. Calculations in the govering methods are
simple and straightforward. The reliability of the methods and the reduction in the size
of computation give these methods a wider applicability and the results show that the
MEFM is a powerful mathematical tool for solving systems of nonlinear partial differential
equations. Indeed, the MEFM is motivated because it is easy to use and also because of the
capability of computer algebra systems and the method provides a direct and systematic
solution procedure that generalizes Hirota’s perturbation scheme. With the help of Maple,
applying the approach to the NPDEs yield exact explicit one-wave, two-wave and three-
wave solutions, which include one-soliton, two-soliton and three-soliton-type solutions.
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