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Abstract: In this paper, we find conditions under which distribution functions of randomly stopped
minimum, maximum, minimum of sums and maximum of sums belong to the class of generalized
subexponential distributions. The results presented in this article complement the closure properties
of randomly stopped sums considered in the authors’ previous work. In this work, as in the
previous one, the primary random variables are supposed to be independent and real-valued, but not
necessarily identically distributed. The counting random variable describing the stopping moment
of random structures is supposed to be nonnegative, integer-valued and not degenerate at zero. In
addition, it is supposed that counting random variable and the sequence of the primary random
variables are independent. At the end of the paper, it is demonstrated how randomly stopped
structures can be applied to the construction of new generalized subexponential distributions.
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1. Introduction

Let {ξ1, ξ2, . . .} be a sequence of real-valued and independent random variables (r.v.s)
defined on a probability space (Ω,F ,P) with distribution functions (d.f.s) {Fξ1 , Fξ2 , . . .}.
Let η be a counting random variable, that is, an r.v. that is nonnegative, integer-valued
and not degenerate at zero r.v. In addition, we suppose that the r.v. η and the sequence
{ξ1, ξ2, . . .} are independent.

At first, let us define the main random objects under consideration: randomly stopped
minimum, randomly stopped maximum, randomly stopped minimum of sums and ran-
domly stopped maximum of sums.

• Let ξ(0) = 0, ξ(n) = min{ξ1, . . . , ξn} for n ∈ N, and let

ξ(η) =

{
0 if η = 0,
min{ξ1, . . . , ξη} if η ⩾ 1

be the randomly stopped minimum of r.v.s {ξ1, ξ2, . . .}.
• Let ξ(0) = 0, ξ(n) = max{ξ1, . . . , ξn} for n ∈ N, and let

ξ(η) =

{
0 if η = 0,
max{ξ1, . . . , ξη} if η ⩾ 1

be the randomly stopped maximum of r.v.s {ξ1, ξ2, . . .}.
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• For the sequence of r.v.s {ξ1, ξ2, . . .} and the counting r.v. η, let S0 := 0, Sn :=
ξ1 + . . . + ξn if n ∈ N, and in addition, let

Sη =
η

∑
k=1

ξk

be the randomly stopped sum of r.v.s {ξ1, ξ2, . . .},

S(η) =

{
0 if η = 0,
min{S1, . . . , Sη} if η ⩾ 1

be the minimum of randomly stopped sums of r.v.s {ξ1, ξ2, . . .}, and

S(η) =

{
0 if η = 0,
max{S1, . . . , Sη} if η ⩾ 1

be the maximum of randomly stopped sums of r.v.s {ξ1, ξ2, . . .}.

By FX , we denote the d.f. of an r.v. X, and by F, we denote the tail function (t.f.) of a
d.f. F, that is, F(x) = 1 − F(x) for x ∈ R. We observe that the following equalities hold for
positive x:

Fξ(η)
(x) =

∞

∑
n=1

P(ξ(n) > x)P(η = n),

Fξ(η)(x) =
∞

∑
n=1

P(ξ(n) > x)P(η = n),

FS(η)(x) =
∞

∑
n=1

P(S(n) > x)P(η = n),

FS(η)(x) =
∞

∑
n=1

P(S(n) > x)P(η = n).

In this paper, we consider a sequence {ξ1, ξ2, . . .} of independent, real-valued and
possibly non-identically distributed r.v.s. We suppose that some of the d.f.s of these r.v.s
belong to the class of generalized subexponential distributions OS , and we find conditions
under which the d.f.s Fξ(η)

, Fξ(η) , FS(η) and FS(η) remain in this class. The definition of class
OS and some of its properties are described in Section 2.

We use the following notations for the asymptotic relations of arbitrary positive
functions f and g: f (x) = o(g(x)) means that lim

x→∞
f (x)/g(x) = 0; f (x) ∼

x→∞
cg(x) with

c > 0 means that lim
x→∞

f (x)/g(x) = c; f (x) = O
(

g(x)
)

means that lim sup
x→∞

f (x)
g(x) < ∞; and

f (x) ≍
x→∞

g(x) means that

0 < lim inf
x→∞

f (x)
g(x)

⩽ lim sup
x→∞

f (x)
g(x)

< ∞.

The motivation for investigation of randomly stopped structures comes mainly from
insurance and finance, where questions related to extremal or rare events are traditionally
considered, see e.g., [1–3]. In particular, exponential, Pareto, gamma, lognormal and
loggamma distributions are extremely popular in actuarial mathematics. Mathematical
aspects of risk theory related to calculation of ruin probabilities are considered in a large
number of works; see [2–7] and references therein. From the mathematical point of
view, the success of any insurance business depends on the asymptotic behavior of the
distribution of Sη , S(η) and S(η). If the distribution of individual claim size Z is light-tailed,
i.e.,
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EeγZ < ∞

for some γ > 0, then the corresponding ruin probability is also small for large values of
the initial surplus and usually decreases with an exponential rate; see, e.g., [2,3,6,7]. If the
individual claim size is heavy-tailed, i.e.,

EeγZ = ∞

for all γ > 0, then the ruin probability decreases much more slowly with increasing initial
surplus; see, e.g., [7]. Therefore, it is worth finding out at the beginning of the investigation
whether the distribution of individual claim sizes is light-tailed or heavy-tailed. One of the
most significant research directions in risk theory is the investigation of the ruin probability
when the distribution of claim sizes is heavy-tailed. In this paper, we consider the class of
generalized subexponential distribution OS . From the description of this class given in
Section 2, it follows that part of the distributions of this class have heavy tails, and the other
part has light tails. However, even in the event that the random variable generating the
claim flow has the OS-class or similar regularity, it is possible to provide some considerable
information about ruin probability of the model [8–13]. Results on asymptotic behavior of
the ruin probability typically turn out to be different for different classes.

The closure properties in probability theory have a long history, back from the middle
of the previous century. They appear as substantial supports in reliability theory, queuing
theory, branching processes, risk theory, stochastic control, asset pricing and others. Bing-
ham, Goldie and Teugels [14], Seneta [15] and Resnick [16] were among the first researchers
to study closure problems. In the mentioned monographs, these authors fully explored the
properties of slowly varying, regularly varying, and O-regularly varying functions, which
are closely related to the closure properties of distribution functions. It is worth mentioning
that the majority of the initial results related to the closure problems were obtained for
the d.f.s of identically distributed r.v.s. Some of such results we describe in Section 4. A
detailed analysis of closure problems is given in the book by Leipus et al. [17]. The main
novelty of this paper is that not only identically distributed r.v.s are considered.

The rest of this paper is organized as follows. In Section 2, we describe a class of
generalized subexponential distributions. The main results of this paper are formulated in
Section 3. Section 4 consists of some results on closure under randomly stopped structures
for regularity classes related with generalized subexponential distributions. The proofs of
the main results are given in Sections 5 and 6. In Section 7, we present two examples to
expose the analytical usefulness of our results; and finally, we provide some concluding
remarks in Section 8.

2. Generalized Subexponentiality

Let ξ be an r.v. defined on a probability space (Ω,F ,P) with a d.f. Fξ .

• A d.f. Fξ of a real-valued r.v. is said to be generalized subexponential, denoted Fξ ∈ OS , if

lim sup
x→∞

Fξ ∗ Fξ(x)
Fξ(x)

< ∞,

where Fξ ∗ Fξ denotes the convolution of d.f. Fξ with itself, i.e.,

Fξ ∗ Fξ(x) = F∗2
ξ (x) :=

∫ ∞

−∞
Fξ(x − y)dFξ(y), x ∈ R,

and Fξ ∗ Fξ denotes the t.f. of Fξ ∗ Fξ , i.e.,

Fξ ∗ Fξ(x) = 1 − Fξ ∗ Fξ(x), x ∈ R.

For distributions of the nonnegative r.v.s, class OS was introduced by Klüppel-
berg [18], and later, for real-valued r.v.s, was studied by Yu and Wang [10], Shimura and
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Watanabe [9], Baltrūnas et al. [19], Watanabe and Yamamuro [20], Cheng and Wang [21], Lin
and Wang [22], Hägele and Lehtomaa [23], Konstantinides et al. [24],Yao and Taimre [25]
and Mikutavičius and Šiaulys [26], among others.

In [9], the class of distributions OS is considered together with other distribution
regularity classes. In that paper, several closedness properties of the class OS were proved.
For example, it is shown that class OS is not closed under convolution roots. This means
that there exists r.v. ξ such that n-fold convolution F∗n

ξ ∈ OS for all n ⩾ 2, but Fξ /∈ OS .
In [19], the simple conditions are provided under which the d.f. of the special form

Fξ(x) = 1 − exp
{
−

x∫
0

q(u)du
}

belongs to the class OS , where q is some integrable hazard rate function. For distributions
of class OS , the closure under tail-equivalence and the closure under convolution are
established in [20]. The detailed proofs of these closures for nonnegative r.v.s are presented
in [18] and for real-valued r.v.s in [10]. The closure under convolution means that in the case
of independent r.v.s ξ1, ξ2 conditions Fξ1 ∈ OS , Fξ2 ∈ OS imply that Fξ1 ∗ Fξ2 = Fξ1+ξ2 ∈
OS . The closure under tail-equivalence means that conditions Fξ1 ∈ OS , Fξ1(x) ≍

x→∞
Fξ2(x)

imply Fξ2 ∈ OS .
A counterexample, showing that Fξ1 , Fξ2 ∈ OS for independent r.v.s ξ1, ξ2 does not

imply that Fξ1∨ξ2 ∈ OS can be found in [22]. Moreover, in that paper, the closure under
minimum is established, which means that Fξ1 , Fξ2 ∈ OS for independent r.v.s ξ1, ξ2 imply
Fξ1∧ξ2 ∈ OS . The authors of articles [24,26] consider when the distribution of the product
of two independent random variables ξ, θ belongs to the class OS . For instance, in [26], it
is proved that d.f. Fξθ is generalized subexponential if Fξ ∈ OS and θ is independent of ξ,
nonnegative and not degenerated at zero.

3. Main Results

In this section, we formulate three theorems, which are the main assertions of this
paper. It is easy to see that the results of this article complement the results obtained in [27].
The first theorem deals with the closure under the randomly stopped minimum.

Theorem 1. Let {ξ1, ξ2, . . .} be a sequence of independent real-valued r.v.s, and let η be a counting
r.v. independent of {ξ1, ξ2, . . .}. If Fξk ∈ OS for each k, then Fξ(η)

and FS(η) belong to the class
OS , and it holds the following asymptotic relations:

Fξ(η)
(x) ≍

x→∞
Fξ(κ)(x) =

κ
∏
k=1

Fξk (x), (1)

FS(η)(x) ≍
x→∞

FS(κ)(x) (2)

where κ = min{k ⩾ 1 : P(η = k) > 0}.

The second theorem states the conditions for the maximum of randomly stopped,
possibly differently distributed random variables to belong to the class OS .

Theorem 2. Let {ξ1, ξ2, . . .} be a sequence of independent real-valued r.v.s such that Fξ1 ∈ OS ,
and let η be a counting r.v. independent of {ξ1, ξ2, . . .} with finite expectation Eη. If

0 < lim inf
x→∞

inf
n⩾1

1
n

n

∑
k=1

Fξk (x)
Fξ1(x)

⩽ lim sup
x→∞

sup
n⩾1

1
n

n

∑
k=1

Fξk (x)
Fξ1(x)

< ∞, (3)

then Fξ(η) ∈ OS and Fξ(η)(x) ≍
x→∞

Fξ1(x).
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The third-last theorem describes the conditions under which the d.f. of the randomly
stopped maximum of sums is generalized subexponential.

Theorem 3. Let {ξ1, ξ2, . . .} be a sequence of independent real-valued r.v.s such that Fξ1 ∈ OS
and conditions (3) are satisfied. Let η be a counting r.v. independent of {ξ1, ξ2, . . .} such that
Eeλη < ∞ for all λ > 0. Then FS(η) ∈ OS and FS(η)(x) ≍

x→∞
Fξ1(x).

We will present the proofs of all theorems in Section 6. According to the statements of
these theorems, many random variables with generalized subexponential distributions can
be constructed. We will demonstrate such constructions in Section 7.

4. Results for Other Regularity Classes

In this section, we will describe classes of distributions related to the class OS . For the
described classes, we will present some results on their closure with respect to a randomly
stopped structures. Section 4 of paper [27] lists many results on the closure of regularity
classes with respect to a randomly stopped sum. Meanwhile, there are only a few similar
results about the properties of other randomly stopped structures. We present below some
of such results.

• A d.f. Fξ of a real-valued r.v. ξ is said to be dominatedly varying, denoted Fξ ∈ D, if

lim sup
x→∞

Fξ(yx)
Fξ(x)

< ∞

for all (or, equivalently, for some) y ∈ (0, 1).

The class of dominatedly varying d.f.s D was introduced by Feller [28] and later
considered in [14,20,29–32], among others. We remark only that D ⊂ OS . The following
assertion on FSη

∈ D is presented in Theorem 4 of [33].

Theorem 4. Let {ξ1, ξ2, . . .} be a sequence of independent real-valued r.v.s with common d.f.
Fξ ∈ D, and let η be a counting r.v. independent of {ξ1, ξ2, . . .}. Then FSη

∈ D if Eηp+1 < ∞
for some

p > J+Fξ
:= − lim

y→∞

1
log y

log lim inf
x→∞

Fξ(xy)
Fξ(x)

.

In the inhomogeneous case, when summands are not necessary identically distributed,
the following statement is obtained in Theorem 2.1 of [34].

Theorem 5. Let {ξ1, ξ2, . . . } be a sequence of independent nonnegative r.v.s, and let η be a counting
r.v. independent of {ξ1, ξ2, . . . }. Then, FSη

∈ D if the following three conditions are satisfied:

(i) Fξκ ∈ D for some κ ∈ supp(η) := {n ∈ N0 : P(η = n) > 0},

(ii) lim sup
x→∞

sup
n>κ

1
nFξκ (x)

n
∑

i=1
Fξi (x) < ∞,

(iii) Eηp+1 < ∞ for some p > J+Fξκ
.

• A d.f. Fξ of a real-valued r.v. ξ is said to be consistently varying, denoted Fξ ∈ C, if

lim
y↗1

lim sup
x→∞

F(xy)
F(x)

= 1, or, equivalently, lim
y↘1

lim inf
x→∞

F(xy)
F(x)

= 1.

A class of consistently varying distributions was introduced by Cline [35] as a gener-
alization of regularly varying distributions, and subsequently has been considered in the
various contexts; see, for instance, [31,36–45]. It follows from definitions that C ⊂ D ⊂ OS .
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The following two assertions on Fξ(η) ∈ C and FS(η) ∈ C are presented in Theorem 4 and 5
of [43].

Theorem 6. Let {ξ1, ξ2, . . . } be a sequence of independent real-valued r.v.s, and let η be a counting
r.v. independent of {ξ1, ξ2, . . . }. Then, d.f. Fξ(η) belongs to the class C if the following three
conditions hold:

(i) Fξκ ∈ C for some κ ∈ supp(η),

(ii) for each k ̸= κ, either Fξk ∈ C or Fξk (x) = o
(

Fξκ (x)
)
,

(iii) lim sup
x→∞

sup
n⩾κ

1
φ(n)Fξκ (x)

n
∑

k=1
Fξk (x) < ∞,

where
{

φ(n)
}∞

n=1 is a positive sequence such that E
(

φ(η)I[1,∞)(η)
)
< ∞.

Theorem 7. Let {ξ1, ξ2, . . . } be a sequence of independent real-valued r.v.s, and let η be a counting
r.v. independent of {ξ1, ξ2, . . . }. Then, FS(η) ∈ C if the following three conditions are satisfied:

(i) Fξk ∈ C for each k ∈ N,

(ii) lim sup
x→∞

sup
n⩾1

1
nFξ1

(x)

n
∑

k=1
Fξk (x) < ∞,

(iii) Eηp+1 < ∞ for some p > J+Fξ1
.

• A d.f. Fξ of a real-valued r.v. ξ is said to be regularly varying with index α ⩾ 0, denoted
Fξ ∈ Rα, if

lim sup
x→∞

F(xy)
F(x)

= y−α f or any y > 0.

By R :=
⋃

α⩾0
Rα we denote all regularly varying d.f.s.

The standard properties of regularly varying d.f.s and some historical notes on such
functions can be found in [14,16,46–48]. We remark only that R ⊂ C ⊂ D ⊂ OS . The
following assertion on d.f. Fξ(η) is presented in Theorem 5.1(i) of [49].

Theorem 8. Let {ξ1, ξ2, . . . } be a sequence of independent real-valued r.v.s, and let η be a counting
r.v. independent of {ξ1, ξ2, . . . } such that Eη < ∞. Then, Fξ(η)(x) ∼

x→∞
EηFξ1(x), and hence,

Fξ(η) ∈ Rα if and only if Fξ1 ∈ Rα.

The assertion bellow on d.f. Fξ(η)
can be found in Theorem 4 of [50].

Theorem 9. Let {ξ1, ξ2, . . . } be a sequence of independent real-valued r.v.s. Then, d.f. Fξk belongs
to the class R for all k ∈ N if and only if Fξ(η)

∈ R for every counting r.v. independent of
{ξ1, ξ2, . . . }.

• A d.f. Fξ of a real-valued r.v. ξ is said to belong to the class of generalized long-tailed
distributions OL if for any (equivalently, for some) y > 0

lim sup
x→∞

F(x − y)
F(x)

< ∞.

The class of d.f.s OL was proposed by Shimura and Watanabe in [9]. The main
properties of the functions from this class are discussed in [9,51–57], among others. We note
only that OS ⊂ OL. In Theorem 2.4 of [54], the assertion below on FS(η) ∈ OS is presented.

Theorem 10. Let {ξ1, ξ2, . . . } be a sequence of independent real-valued r.v.s, and let η be a
counting r.v. independent of {ξ1, ξ2, . . . }. Then, the d.f. of the randomly stopped maximum of
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random sums FS(η) belongs to the class OL if Fξ1 ∈ OL and r.v. η satisfies the following two
requirements:

lim sup
n→∞

P(η > n)
max

1⩽k⩽n
P(η = k)

< ∞, lim sup
n→∞

P(η ⩾ n)
P(η = n)

< ∞.

5. Auxiliary Lemmas

In this section, we will present some auxiliary lemmas that will be applied to the
derivations of the main Theorems 1–3. The first lemma is a collection of the basic properties
of d.f.s from class OS .

Lemma 1. Let X and Y be two real-valued r.v.s with corresponding d.f.s FX and FY. Then, the
following statements are correct:

(i) FX ∈ OS if and only if sup
x∈R

FX∗FX(x)
FX(x)

< ∞.

(ii) If FX ∈ OS and FY(x) ≍
x→∞

FX(x), then FY ∈ OS .

(iii) If FX ∈ OS and FY ∈ OS , then FX ∗ FY ∈ OS .

(iv) If FX ∈ OS , then FX ∈ OL i.e., lim sup
x→∞

FX(x−1)
FX(x)

< ∞.

(v) If FX ∈ OS and FY(x) = O
(

FX(x)
)
, then FX ∗ FY ∈ OS and FX ∗ FY(x) ≍

x→∞
FX(x).

The complete proof of the lemma is presented in Lemma 1 of [27], and proofs of the
separate parts of the lemma can be found in [9,10,18,20].

The next lemma is a refined version of Lemma 2 from [27]. As a result, we present this
lemma together with a modified proof.

Lemma 2. Let {ξ1, ξ2 . . .} be a sequence of independent real-valued r.v.s, for which Fξ1 ∈ OS ,
and for other indices k ⩾ 2, either Fξk ∈ OS or Fξk (x) = O(Fξ1(x)). Then,

FSn(x) ≍
x→∞ ∏

k∈An

∗ Fξk (x) (4)

where An :=
{

k ∈ {1, 2, . . . , n} : Fξk ∈ OS
}

, and hence, FSn ∈ OS for all n ∈ N.

Proof. If n = 1,then the statement is obvious because S1 = ξ1. If n = 2, then two options
are possible: Fξ2 ∈ OS or Fξ2(x) = O(Fξ1(x)). In the first case, FS2 = Fξ1 ∗ Fξ2 In the second
case, FS2(x) ≍

x→∞
Fξ1(x) by part (v) of the Lemma 1. The asymptotic relation of the lemma

holds for both cases.
Let us suppose that the asymptotic relation (4) is valid for some n = N, i.e.,

FSN (x) ≍
x→∞ ∏

k∈AN

∗ Fξk (x)= Fξ1 ∗ Fξk1
∗ . . . Fξkr

(x) (5)

where AN = {1, k1, . . . , kr} =
{

k ∈ {1, 2, . . . , N} : Fξk ∈ OS
}

.
The above relation and parts (ii), (iii) of Lemma 1 imply that FSN ∈ OS . The tail of any

d.f. from class OS remains positive throughout the set of real numbers. Hence, relation (5)
implies that

0 < inf
x∈R

FSN (x)

∏
k∈AN

∗ Fξk (x)
⩽ sup

x∈R

FSN (x)

∏
k∈AN

∗ Fξk (x)
< ∞. (6)

For n = N + 1, we have two possibilities: either FξN+1 ∈ OS , or FξN+1(x) = O
(

Fξ1(x)
)
.

If FξN+1 ∈ OS , then according to (6), it holds that
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FSN+1(x) =
∫ ∞

−∞
FSN (x − y)dFξN+1(y)

⩽ c1N

∫ ∞

−∞
∏

k∈AN

∗ Fξk (x − y)dFξN+1(y)

= c1N ∏
k∈AN+1

∗ Fξk (x), x ∈ R

for some positive quantity c1N not depending on x and AN+1 = AN ∪ {N + 1}. Similarly,

FSN+1(x) ⩾ c2N ∏
k∈AN+1

∗ Fξk (x), x ∈ R

for some positive quantity c2N .
The above two estimates imply the asymptotic relation (4) in the case n = N + 1.
If FξN+1 = O

(
Fξ1(x)

)
, then according to (6), for positive x, we have that

FξN+1(x)

FSN (x)
⩽

1
c2N

FξN+1(x)

∏
k∈AN

∗ Fξk (x)
⩽

1
c2N ∏

k∈AN\{1}
Fξk (0)

FξN+1(x)

Fξ1(x)

because

Fξ1(x) ∏
k∈AN\{1}

Fξk (0) = P
(
ξ1 > x, ξk1 > 0, . . . , ξkr > 0

)
⩽ P

(
ξ1 + ξk1 + . . . + ξkr > x

)
,

where
{

k1, . . . , kr
}
= AN \ {1}. Consequently, FξN+1(x) = O

(
FSN (x)

)
, and according to

the part (v) of Lemma 1, we obtain that

FSN+1(x) = FSN ∗ FξN+1(x) ≍
x→∞

FSN (x) ≍
x→∞ ∏

k∈AN+1

∗ Fξk (x)

with AN+1 = AN in the case.
We derived the asymptotic relation (4) for n = N + 1 by supposing that this relation

holds for n = N. Due to the induction principle, the asymptotic relation (4) is valid for all
n ∈ N. The assertion FSn ∈ OS follows from (4) after using part (ii) and (iii) of Lemma 1.
This finishes the proof of the lemma.

The following technical assertion is Lemma 3 in [27].

Lemma 3. Let {ξ1, ξ2, . . .} be a sequence of independent real-valued r.v.s, for which Fξ1 ∈ OS and

lim sup
x→∞

sup
k⩾1

Fξk (x)
Fξ1(x)

< ∞

Then, there exists a constant c3, for which

FSn(x) ⩽ c n−1
3 Fξ1(x) (7)

for all x ∈ R and for all n ∈ N.

For maximum of sums S(n) = max{S1, S2, . . . , Sn} it holds the following similar
statement.
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Lemma 4. Under condition of Lemma 3, there exists a constant c4 such that

FS(n)(x) ⩽ c n
4 Fξ1(x)

for all x ∈ R and n ∈ N.

Proof. If x ∈ R and n ∈ N, then

FS(n)(x) = P
(

max{S1, S2, . . . Sn} > x
)

= P
( n⋃

k=1

{Sk > x}
)

⩽
n

∑
k=1

P{Sk > x}.

Let us suppose c4 = max{c3, 2}. According to estimate (7) from Lemma 3, we have that

FS(n)(x) ⩽
n

∑
k=1

c k−1
3 Fξ1(x) ⩽ Fξ1(x)

c n
4 − 1

c4 − 1

⩽ c n
4 Fξ1(x).

The estimate of the lemma is proved.

The next lemma is on the minimum X(n) = min{X1, . . . , Xn} of a collection of in-
dependent r.v.s {X1, . . . , Xn}. The similar assertion is presented in Lemma 3.1 of [22].
Unfortunately, the proof presented there is suitable for nonnegative absolutely continuous
r.v.s. Hence, we present the detailed proof of the lemma below.

Lemma 5. Let {X1, X2, . . . Xn}, n ∈ N be a collection of independent real-valued r.v.s with
d.f.s {FX1 , FX2 , . . . FXn}. If FXk ∈ OS for all k ∈ {1, 2, . . . n}, then d.f. FX(n)

of X(n) =

min{X1, X2, . . . , Xn} belongs to the class OS as well.

Proof. If n = 1, then assertion of the lemma is trivial. If n ⩾ 2, then

min{X1, X2, . . . , Xn} = min
{

min{X1, X2, . . . , Xn−1}, Xn
}

.

It follows from this equality that it is sufficient to prove the statement of the lemma for
the case n = 2, i.e., it is sufficient for us to prove such a statement:

X, Y independent r.v.s FX ∈ OS , FY ∈ OS ⇒ FX∧Y ∈ OS . (8)

• At first, let us suppose that X and Y are absolutely continuous r.v.s. In such a case,

Fmin(X,Y)(x) = FX∧Y(x) = FX(x)FY(x)

=

∞∫
x

fX(y)dy
∞∫

x

fY(y)dy

with density functions fX and fY. For x ∈ R, we have
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F∗2
X∧Y(x)

FX∧Y(x)
=

1
FX∧Y(x)

∞∫
−∞

FX∧Y(x − y)dFX∧Y(y)

= − 1
FX(x)FY(x)

∞∫
−∞

FX(x − y)FY(x − y)dFX(y)FY(y)

=

∞∫
−∞

FX(x − y)FY(x − y)FY(y) fX(y)dy
FX(x)FY(x)

+

∞∫
−∞

FX(x − y)FY(x − y)FX(y) fY(y)dy
FX(x)FY(x)

. (9)

If Y1 and Y2 are independent copies of Y, then

FY(x − y)FY(y) = P(Y1 > x − y)P(Y2 > y) ⩽ P(Y1 + Y2 > x) = F∗2
Y (x).

for all x, y ∈ R. Hence, condition FY ∈ OS implies that

sup
x,y∈R

FY(x − y)FY(y)
FY(x)

⩽ sup
x∈R

F∗2
Y (x)

FY(x)
⩽ c5

for some constant c5 according to Lemma 1(i). Similarly for r.v. X, we obtain that

sup
x,y∈R

FX(x − y)FX(y)
FX(x)

⩽ sup
x∈R

F∗2
X (x)

FX(x)
⩽ c6

for some another constant c6. Hence, according to the decomposition (9),

sup
x∈R

F∗2
X∧Y(x)

FX∧Y(x)
⩽ max{c5, c6} sup

x∈R

 ∞∫
−∞

FX(x − y) fX(y)dy
FX(x)

+

∞∫
−∞

FY(x − y) fY(y)dy
FY(x)


= max{c5, c6} sup

x∈R

(
F∗2

X (x)
FX(x)

+
F∗2

Y (x)
FY(x)

)
⩽ max{c5, c6}(c5 + c6),

which implies that FX∧Y ∈ OS due to Lemma 1(i) again.
• Now, let us suppose that r.v.s X and Y are not necessarily absolutely continuous.

At first, let us consider r.v. X. Since OS ⊂ OL (see Lemma 1(iv)), we have that
FX ∈ OL. If function FX belongs to OL, then the function FX(log x), x > 0, is
nonincreasing O-regularly varying, according to Bingham [14], because

lim sup
x→∞

FX(log xy)
FX(log x)

= lim sup
x→∞

FX(log x + log y)
FX(log x)

< ∞.

for an arbitrary y > 0.
From the representation Theorem-see Theorem 2.2.7 in [14], or Theorem A.1 together
with Definition A.4 and Remark in page 100 of [15]-we have that

FX(log x) = exp
{

a(x)−
x∫

A

b(t)
t

dt
}
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for all x ⩾ A. Here, A is a positive number, a and b ⩾ 0 are bounded integrable
functions. Therefore, for all x ⩾ log A

FX(x) = exp
{

a∗(x)−
x∫

log A

b∗(u)du
}

(10)

with bounded and integrable functions a∗ and b∗ ⩾ 0. Since b∗ is a positive-bounded
and integrable function, function

G(x) =

(
1 − exp

{
−

x∫
log A

b∗(u)du
})

I[log A,∞)(x)

is an absolutely continuous d.f. from class OL with tail function

G(x) = I(−∞, log A)(x) + exp

{
−

x∫
log A

b∗(u)du

}
I[log A,∞)(x)

In addition, the boundedness of function a∗ in (10) implies that

FX(x) ≍
x→∞

G(x)

In a similar way, we derive that

FY(x) ≍
x→∞

H(x)

for some absolutely continuous d.f. H ∈ OL. According to Lemma 1(ii) and the first
part of the proof d.f., 1 − GH belongs to the class OS , and from Lemma 1(ii), again,
we obtain FX∧Y ∈ OS because

FX∧Y(x) = FX(x)FY(x) ≍
x→∞

G(x)H(x).

It follows from both parts of the proof that relation (8) holds. At the same time, the
assertion of the lemma is proved.

The last technical lemma is necessary for the examination of randomly stopped maxi-
mum of sums. For the proof of the lemma below, we use the revised episodes of proof of
Theorem 2 from article [27].

Lemma 6. Let {ξ1, ξ2, . . .} be a sequence of independent real-valued r.v.s such that d.f.
Fξ1 ∈ OS and

lim inf
x→∞

inf
n⩾1

1
n

n

∑
k=1

Fξk (x)
Fξ1(x)

> 0,

Then,

inf
x∈R

FS(n)(x)
Fξ1(x)

⩾ inf
x∈R

FSn(x)
Fξ1(x)

⩾ c n−1
7 (11)

for all n ⩾ 1 and some c7 > 0, where Sn = ξ1 + . . . + ξn and S(n) = max{S1, S2, . . . Sn}.

Proof. Conditions of the lemma give that

inf
k⩾1

Fξk (x)
Fξ1(x)

⩾ ∆ (12)
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for all x ⩾ x∆ and some positive ∆. If x < x∆, then

inf
k⩾1

Fξk (x)
Fξ1(x)

⩾ inf
k⩾1

Fξk (x∆) = inf
k⩾1

Fξk (x∆)

Fξ1(x∆)
Fξ1(x∆)

⩾ ∆ Fξ1(x∆) := c8 > 0

due to the assumption Fξ1 ∈ OS . The derived inequalities imply that

Fξk (x) ⩾ c8 Fξ1(x)

for all x ∈ R and k ∈ {1, 2, . . .}. Using the last estimate, we obtain

FS2(x) =
∞∫

−∞

Fξ2(x − y)
Fξ1(x − y)

Fξ1(x − y) dFξ1(y)

⩾ c8 Fξ1 ∗ Fξ1(x)

⩾ c8 Fξ1(0)Fξ1(x), x ∈ R.

Similarly,

FS3(x) =
∞∫

−∞

FS2(x − y)
Fξ1(x − y)

Fξ1(x − y)dFξ3(y) ⩾ c8Fξ1(0)
∞∫

−∞

Fξ1(x − y)dFξ3(y)

= c8 Fξ1(0)
∞∫

−∞

Fξ3(x − y)dFξ1(y) ⩾ c2
8 Fξ1(0)

∞∫
−∞

Fξ1(x − y)dFξ1(y)

= c2
8 Fξ1(0)Fξ1 ∗ Fξ1(x) ⩾ c2

8
(

Fξ1(0)
)2 Fξ1(x), x ∈ R.

Continuing tbe process, we obtain

FSn(x) ⩾
(
c8Fξ1(0)

)n−1 Fξ1(x)

for all x ∈ R and n ∈ N. Hence, the second estimate in (11) holds with c7 = c8 Fξ1(0). The
first inequality in (11) is obvious because

FSn(x) = P(Sn > x) ⩽ P(max (S1, S2, ..Sn) > x) = FS(n)(x)

for an arbitrary real number x. Lemma 6 is proved.

6. Proofs of the Main Results

In this section, we prove all main results of the paper.

6.1. Proof of Theorem 1

Proof. At first, let us consider the first part of the theorem. Due to Lemma 1(ii), it is enough
to prove the asymptotic relations (1) because Fξ(κ) ∈ OS by Lemma 5. By definition of the
randomly stopped minimum for positive x, we have
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Fξ(η)
(x) =

∞

∑
n=1

Fξ(n)
(x)P(η = n)

= Fξ(κ)(x)P(η = κ) +
∞

∑
n=κ+1

Fξ(n)
(x)P(η = n)

= Fξ(κ)(x)P(η = κ) + Fξ(κ)(x)
∞

∑
n=κ+1

P(η = n)
n

∏
k=κ+1

Fξk (x)

= Fξ(κ)(x)P(η = κ)
(

1 +
1

P(η = κ)

∞

∑
n=κ+1

P(η = n)
n

∏
k=κ+1

Fξk (x)
)

⩽ Fξ(κ)(x)P(η = κ)
(

1 + Fξκ+1(x)
P(η ⩾ κ + 1)
P(η = κ)

)
.

On the other hand, for all x > 0,

Fξ(η)
(x) ⩾ Fξ(κ)(x)P(η = κ).

On this basis, we can assert that

0 < lim inf
x→∞

Fξ(η)
(x)

Fξ(κ)(x)
⩽ lim sup

x→∞

Fξ(η)
(x)

Fξ(κ)(x)
< ∞.

Hence, relation (1) holds, and by Lemma 5, it follows that Fξ(η)
∈ OS .

Let us consider the second part of the theorem. By Lemma 2, we have that FSk ∈ OS
for each k ∈ N, and by Lemma 5, we have that FS(κ) ∈ OS . Hence, it suffices to prove the
asymptotic relation (2) in order to obtain FS(η) ∈ OS . Similar to the first part of the proof,
we obtain that

FS(η)(x) ⩽ FS(κ)(x)P(η = κ)
(

1 + FSκ+1(x)
P(η ⩾ κ + 1)
P(η = κ)

)
,

and
FS(η)(x) ⩾ FS(κ)(x)P(η = κ)

for all positive x. Therefore,

0 < lim inf
x→∞

FS(η)(x)

FS(κ)(x)
⩽ lim sup

x→∞

FS(η)(x)

FS(κ)(x)
< ∞,

and the desired relation (2) follows. This finishes the proof of the theorem.

6.2. Proof of Theorem 2

Proof. For x > 0, we have

Fξ(η)(x) =
∞

∑
n=1

P(ξ(n) > x)P(η = n)

=
∞

∑
n=1

P
( n⋃

k=1

{ξk > x}
)
P(η = n)

=
∞

∑
n=1

P
(

n⋃
k=1

(
ξk > x,

k−1⋂
j=1

{ξ j ≤ x}
))

P(η = n).
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Therefore,
Fξ(η)(x)

Fξ1(x)
=

∞

∑
n=1

P(η = n)
n

∑
k=1

Fξk (x)
Fξ1(x)

k−1

∏
j=1

Fξ j(x). (13)

Condition (3) implies that
n

∑
k=1

Fξk (x)
Fξ1(x)

⩽ c9n

for all n ∈ N, some c9 and sufficiently large x, say x > x1. Hence,

lim sup
x→∞

Fξ(η)(x)

Fξ1(x)
⩽ c9

∞

∑
n=1

P(η = n)n = c9Eη. (14)

In a similar way from (3), we derive that there exists c10 > 0, such that

n

∑
k=1

Fξk (x)
Fξ1(x)

⩾ c10 n

for all n and sufficiently large x, say x > x2. Decomposition (13) implies that for each
N ⩾ 1,

lim inf
x→∞

Fξ(η)(x)

Fξ1(x)
⩾ lim inf

x→∞

N

∑
n=1

P(η = n)
n

∑
k=1

Fξk (x)
Fξ1(x)

k−1

∏
j=1

Fξ j(x)

=
N

∑
n=1

P(η = n) lim inf
x→∞

n

∑
k=1

Fξk (x)
Fξ1(x)

k−1

∏
j=1

Fξ j(x)

⩾
N

∑
n=1

P(η = n) lim inf
x→∞

n

∑
k=1

Fξk (x)
Fξ1(x)

lim inf
x→∞

n−1

∏
j=1

Fξ j(x)

⩾ c10

N

∑
n=1

nP(η = n).

By passing N to infinity, we obtain

lim inf
x→∞

Fξ(η)(x)

Fξ1(x)
⩾ c10Eη. (15)

Since 0 < Eη < ∞, the derived relations (14) and (15) imply that Fξ(η)(x) ≍
x→∞

Fξ1(x),
and hence, Fξ(η) ∈ OS due to Lemma 1(ii). Theorem 2 is proved.

6.3. Proof of Theorem 3

Proof. For x > 0, we have

FS(η)(x) =
∞

∑
n=1

P(S(n) > x)P(η = n).

Therefore, for such x,
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FS(η)(x)

Fξ1(x)
=

∞

∑
n=1

FS(n)(x)
Fξ1(x)

P(η = n)

⩽
∞

∑
n=1

sup
x>0

FS(n)(x)
Fξ1(x)

P(η = n)

⩽
∞

∑
n=1

(
c11
) nP(η = n)

⩽ E
(
c11
)η

< ∞

with c11 ⩾ 2 due to conditions of the theorem and Lemma 4. Consequently,

lim sup
x→∞

FS(η)(x)

Fξ1(x)
< ∞. (16)

Now, we check if

lim inf
x→∞

FS(η)(x)

Fξ1(x)
> 0. (17)

For positive x, it holds that

FS(η)(x)

Fξ1(x)
=

∞

∑
n=1

FS(n)(x)
Fξ1(x)

P(η = n)

⩾
∞

∑
n=1

(
c12
)n−1P(η = n) > 0.

with a positive constant c12 according to conditions of the theorem and Lemma 6.
The derived estimates (16) and (17) imply that FS(η)(x) ≍

x→∞
Fξ1(x). Hence, FS(η) ∈ OS

due to Lemma 1(ii). Theorem 3 is proved.

7. Construction of Generalized Subexponential Distributions

In this section, we present two examples showing how using Theorems 1, 2 and 3 it
is possible to construct new distributions belonging to the class OS . It is quite difficult
to write the analytical expression of d.f.s Fξ(η)

, Fξ(η) , FS(η) and FS(η) in the general case, but
according to Theorems 1–3, we can establish whether the constructed distributions are
generalized subexponential.

Example 1. Let {ξ1, ξ2, . . . , } be a sequence of independent and identically distributed r.v.s
such that

Fξk (x) = I(−∞,0)(x) +
e−x

(1 + x)3

(
1 +

sin x
3

)
I[0,∞)(x), k ∈ N.

According to the results of [55], the d.f. Fξ1 belongs to the edge of the class OS . In addition,
requirement (3) is certainly satisfied. Therefore, Theorems 1–3 can be applied for sequence of
independent and identically distributed r.v.s {ξ1, ξ2, . . . , }.

Theorem 1 gives that d.f.s Fξ(η)
and FS(η) belong to OS for each counting r.v. η inde-

pendent of {ξ1, ξ2, . . .}. In particular, if

P(η = n) = (1 − p)pn−2, n ∈ {2, 3, . . .}, p ∈ (0, 1), (18)

then d.f.s Fξ(η)
and FS(η) with tails

Fξ(η)
(x) =

(1 − p)
(

Fξ1(x)
)2

1 − pFξ1(x)
, FS(η)(x) = Fξ1(x), x ⩾ 0,
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belong to the class of generalized subexponential distributions.
Theorem 2 implies that d.f. Fξ(η) belongs to the class OS for each counting r.v. η

independent of {ξ1, ξ2, . . .} such that Eη < ∞. In a special case, when the counting
random variable is defined by the equality (18), according to Theorem 2, we obtain that the
distribution function with tail

Fξ(η)(x) =
1 − p

p2 Fξ1(x)
∞

∑
n=2

pn
n

∑
k=1

(
Fξ1(x)

)k−1, x ⩾ 0,

belongs to the class OS .
Finally, by Theorem 3, we obtain that d.f. FS(η) is generalized subexponential if

counting r.v. η is independent of {ξ1, ξ2, . . .} and E e λη < ∞ for each λ > 0. In particular, if

P(η = n) =
1

c13
e−n2

, n ∈ N, c13 =
∞

∑
n=1

e−n2
,

then d.f. FS(η) with tail

FS(η)(x) =
1

c13

∞

∑
n=1

e−n2
n

∏
k=1
∗ Fξk (x), x ⩾ 0,

belongs to the class OS .

Example 2. Let {ξ1, ξ2, . . .} be independent r.v.s such that

Fξ1(x) = I(−∞,1)(x) +
e1−x

x2 I[1,∞)(x),

Fξk (x) = I(−∞,1)(x) +
(

e − 1
k − 1

)e−x

x2 I[1,∞)(x), k ∈ {2, 3, . . .}.

According to the results of [58,59] d.f.s Fξk belongs to the class OS for all k ∈ N. In addition,

lim sup
x→∞

sup
n⩾1

1
n

n

∑
k=1

Fξk (x)
Fξ1(x)

= 1,

and

lim inf
x→∞

inf
n⩾1

1
n

n

∑
k=1

Fξk (x)
Fξ1(x)

= 1 − 1
2e

.

Hence, the sequence of r.v.s {ξ1, ξ2, . . . , } also satisfies the conditions of Theorems 1–3.

Theorem 1 gives that d.f.s Fξ(η)
and FS(η) belong to OS for each counting r.v. η inde-

pendent of {ξ1, ξ2, . . .}. In a particular case, when r.v. η is distributed according to the
geometric law (18) d.f.s Fξ(η)

and FS(η) with tails

Fξ(η)
(x) = I(−∞,1)(x) +

(1 − p) e
p2

∞

∑
n=2

( e−x p
x2

)n n

∏
k=2

(
e − 1

k − 1

)
I[1,∞)(x),

FS(η)(x) = Fξ1(x)

belongs to the class OS .
Similarly, Theorem 2 implies that d.f. Fξ(η) belongs to class OS for each counting r.v. η

independent of {ξ1, ξ2, . . .} such that Eη < ∞. If the counting random variable is defined
by equality (18), then by Theorem 2, we obtain that the distribution function with tail
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Fξ(η)(x) = I(−∞,1)(x) +
1 − p

p2

∞

∑
n=2

pn
n

∑
k=1

Fξk (x)
k−1

∏
j=1

Fξ j(x) I[1,∞)(x)

belongs to the class OS .
Theorem 3 gives that d.f. FS(η) belongs to class OS if the counting r.v. η is independent

of {ξ1, ξ2, . . .} and E e λη < ∞ for each λ > 0. In particular, if η is distributed according to
the Poisson law

P(η = n) =
µn

n!
e−µ, n ∈ N0 = {0, 1, 2, . . .}, µ > 0,

then d.f. FS(η) with tail

FS(η)(x) = e−µ
∞

∑
n=1

µn

n!

n

∏
k=1
∗ Fξk (x), x ⩾ 1,

belongs to class OS .

8. Concluding Remarks

In this paper, we study distribution functions obtained by randomly stopping mini-
mum, maximum, minimum of sums and maximum of sums of random variables. Primary
random variables are considered to be real-valued, independent and possibly differently
distributed. The random variable defining the stopping moment is integer-valued, non-
negative and not degenerate at zero. We find conditions when the distribution functions
of these randomly stopped structures belong to the class of generalized subexponential
distributions. The belonging of the distributions of randomly stopped structures to the class
of generalized subexponential distributions can be determined either by primary random
variables or by counting random variables. In this paper, we consider the case where a
set of primary random variables has a decisive value. Our main results are formulated in
Theorems 1–3. The primary random variables considered in all theorems can be differently
distributed. But the additional conditions of all theorems are satisfied in the case where the
primary random variables are identically distributed.

In the future, it would be interesting to study the case when some randomly stopped
structure belongs to the class of generalized subexponential distributions due to the specific
properties of the counting random variable. In this case, primary random variables should
probably have significantly lighter tails compared to the counting random variable tail.

On the other hand, it would be interesting to study the closure properties of randomly
stopped structures that are not related to the sum or maximum, but related to the product of
random variables, as was performed in paper [60], for instance. In the class of generalized
subexponential distributions, this would be easier compared to other classes due to the
results obtained in article [26].
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