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Abstract: In this paper, we apply two different methods, namely, the G′

G -expansion method and the
G′

G2 -expansion method to investigate the nonlinear time fractional Harry Dym equation in the Caputo
sense and the symmetric regularized long wave equation in the conformable sense. The mentioned
nonlinear partial differential equations (NPDEs) arise in diverse physical applications such as ion
sound waves in plasma and waves on shallow water surfaces. There exist multiple wave solutions to
many NPDEs and researchers are interested in analytical approaches to obtain these multiple wave
solutions. The multi-exp-function method (MEFM) formulates a solution algorithm for calculating
multiple wave solutions to NPDEs and at the end of paper, we apply the MEFM for calculating
multiple wave solutions to the (2 + 1)-dimensional equation.

Keywords: Harry Dym equation; SRLW equation; multi-exp-function method; G′

G -expansion method;
G′

G2 -expansion method
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1. Introduction

The study of nonlinear physical models relies on the analysis of wave solutions for
nonlinear equations. Recently, numerous and varied methods have been applied to solve
NPDEs, such as the Trial equation method [1], functional variable method [2], Sine–Gordon
expansion method [3], first integral method [4], and so on [5–12].

The objective of the present paper is to apply two methods, namely, the G′
G -expansion

method and the G′

G2 -expansion method [13], to construct new solutions for the nonlinear
time fractional Harry Dym (HD) equation and the symmetric regularized long wave
(SRLW) equation.

The nonlinear time fractional Harry Dym equation is given by [14]

Dα
t u(x, t) = u3(x, t)uxxx(x, t), 0 < α ≤ 1,

u(x, 0) =

(
a − 3

√
b

2
x
) 2

3

,
(1)

where Dα is the fractional derivative of order α in the Caputo sense.
For α = 1, (1) reduces to the classical nonlinear Harry Dym equation

ut = u3uxxx, (2)

and the exact solution of (2) is given by
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u(x, t) =
(

a − 3
√

b
2

(x + bt)
) 2

3

.

Equation (2) was presented by Harry Dym while trying to shift several results about
isospectral flow to the string equation. The relation between the classical string problem
and the HD, with variables springy parameter, was introduced in 1979 and the HD equation
could be considered as a particular case of a broad class of NPDEs, and also the relation
between Korteweg de Vries (KdV) equations and the HD equations was considered. The
HD equation describes a system in which nonlinearity and dispersion are coupled together.
It has an infinite number of conservation laws and does not have the Painleve property.
Many authors used numerical and analytical techniques to solve the HD equation. Singh,
Kumar, and Kiliman considered the HD equation by means of the homotopy perturbation
Sumudu transform technique and the Adomian decomposition technique in Ref. [15] and
to obtain the solution of the HD equation with approximate analysis, Saleh and Ghiasi
applied the homotopy analysis technique in Ref. [16]. Mokhtari used variational iteration,
power series, and direct integration to obtain exact solutions for traveling waves of the HD
equation [17], and this equation was solved by Fonseca through the Lattice–Boltzmannn
technique in Ref. [18]. Rawashdeh applied the fractional reduced differential transform
technique to calculate the solutions to the HD equation in Ref. [19], and the q-homotopy
analysis technique is used to find analytical solutions of the HD equation in Ref. [20].
Mukherij and Assabaai applied the Lie group technique to present the numerical solutions
of the HD equation in Refs. [21,22], and Shunmugarajan used the homotopy analysis
technique to obtain a solution that could approximate the HD equation. The homotopy
perturbation technique along with the reconstruction of the variational iteration technique
were applied by Khorshidi and Soltani to get the analytical solution of the HD equation in
Ref. [23].

The SRLW equation is given as follows [24]:

D2γ
t u + D2γ

x u + uDγ
t (Dγ

x u) + Dγ
x uDγ

t u + D2γ
t (D2γ

x u) = 0, 0 < γ ⩽ 1, (3)

where Dγ, is the conformable derivative of order γ.
Equation (3) arises in diverse physical applications such as ion sound waves in plasma.

For γ = 1, this equation was noted to depict space-charge waves and weekly nonlinear
ion acoustic and the real part of u(x, t) is related to the dimensionless fluid velocity with a
decay condition.

The abovementioned methods are usually about traveling wave solutions of NPDEs.
However, there are multiple wave solutions (MWSs) to many NPDEs, for instance, multi
soliton solutions to several significant models such as the Harris–Benedict equation [25,26],
and the KDV equation [27]. Thus, one is interested in presenting a method for obtaining
MWSs to NPDEs and the MEFM formulates a solution algorithm for calculating MWSs
to NPDEs.

At the end of the article, we apply the MEFM [28] for calculating MWSs to the following
(2 + 1)-dimensional equation [29]

uyt + αuxx + βuyy + uxy = 0, α, β ∈ C.

for the following special cases

uyt + 5uxx + (−1)
2
3 5uyy + uxy = 0, (4)

and
uyt − 5uxx − 5uyy + uxy = 0. (5)

We get multi classes of solutions including one, two, and triple-soliton solutions. All
the computations have been performed applying the software package Maple 15. The
gained solutions contain three classes of soliton wave solutions in terms of one, two,
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and three wave solutions, which are displayed graphically, highlighting the effects of
non-linearity. Besides, the multiple soliton solutions are proposed with more arbitrary
autocephalous parameters, in which the one, two, and triple solutions are localized in every
direction in space. The obtained results have shown a major impact on wave behavior and
can be applied in different branches of science, especially in fluid dynamics, to investigate
the understanding of complex physical phenomena.

The MEFM applied by some of the powerful authors for different nonlinear equations
such as the (3 + 1)-dimensional generalized KP and BKP equations [30], the nonlinear
evolution equations [31], the generalized (1 + 1)-dimensional, and (2 + 1)-dimensional Ito
equations [32], the new (2 + 1)-dimensional KdV equation [33], the (2 + 1)-dimensional
Calogero–Bogoyavlenskii–Schiff equation [34], and a new generalization of the associated
Camassa–Holm equation [35], and so on [36]. Additionally, in Ref. [33], the authors utilized
the MEFM for the KdV equation, and obtained one, two, and three-soliton-type solutions
with interpretations for the gained soliton solutions.

2. Algorithm for the G′

G2 -Expansion, the G′
G -Expansion, and the Multi-Exp-Function Method

2.1. The Basic Idea of the G′

G2 -Expansion Method

In this subsection, we consider the algorithm of the G′

G2 -expansion method for a nonlin-
ear fractional PDE as follows:

• Consider the general nonlinear fractional PDE of the type:

N(u, Dα
t u, Dα

xu, Dβ
x u, Dα

x Dβ
x u, Dα

t Dβ
t u, · · · ) = 0, 0 < α, β ⩽ 1, (6)

where u = u(x, t).
• Convert the nonlinear PDE (6) into an ODE through the following transformation,

ε =
dxdβ

Γ(1 + β)
+

cxcα

Γ(1 + α)
, u(x, t) = u(ε), (7)

where d and c are constants and Γ(.) is the Gamma function defined in Ref. [3].
• Rewrite Equation (6) as

Ñ(u, u′, u′′, u′′′, . . .) = 0. (8)

• Assume the general solution of (8) can be expressed in terms of G′

G2 as

u(ε) = a0 +
N

∑
i=1

[
ai

(
G′(ε)

G2(ε)

)i

+ bi

(
G′(ε)

G2(ε)

)−i ]
, (9)

where G(ε) satisfies the following Riccati equation:(
G′(ε)

G2(ε)

)′
= η + λ

(
G′(ε)

G2(ε)

)2

, (10)

in which η ̸= 1, λ ̸= 0. The constants bN or aN may be zero, but both of them cannot
be zero simultaneously. Also, bi, ai, i = 1, . . . , N, are constants to be determined in the
next step. In addition, the value of N ∈ N can be computed through the homogeneous
balance principle [37].
Notice that (10) results in

G′′(ε) =
ηG4 + (G′)2(2G + λ)

G2 , (11)

G′′′(ε) = G′(6Gη + 2λη) +
(G′)3

G2 (6 + 6λ
1
G

+ 2λ2 1
G2 ). (12)
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• Insert (9), along with (10), into (8). Collect all coefficients of the same power of(
G′(ε)
G2(ε)

)±i

for i = 1, . . . , N. Then, set all of the obtained coefficients to zero. Then solve

the system of algebraic equations on variables a0, bi, ai, η, λ, c and d, for i = 1, . . . , N.
• Depending on the values of η and λ, the general solutions of (10) can be separated

into the following cases:
Case 1: λη > 0;

G′(ε)

G2(ε)
=

√
η

λ

(
C cos(

√
ηλε) + D sin(

√
ηλε)

D cos(
√

ηλε)− C sin(
√

ηλε)

)
, (13)

Case 2: λη < 0;

G′(ε)

G2(ε)
= −

√
|ηλ|
λ

(
C sinh(2

√
|ηλ|ε) + C cosh(2

√
|ηλ|ε) + D

C sinh(2
√
|ηλ|ε) + C cosh(2

√
|ηλ|ε)− D

)
, (14)

Case 3: λ ̸= 0, η = 0;
G′(ε)

G2(ε)
= − C

λ(Cε + D)
, (15)

where C, D ̸= 0.
• By substituting the obtained values of a0, bi, ai, η, λ, c, d and the solutions (13)–(15)

into (9) with the transformation (7), the exact traveling wave solutions of (6) can
be obtained.

2.2. The Basic Idea of the G′
G -Expansion Method

In this subsection, we present the algorithm of the G′
G -expansion method for a nonlinear

fractional PDE as follows:

• Consider the general nonlinear fractional PDE of the type (6).
• Convert the nonlinear PDE (6) into an ODE through the transformation defined in (7).
• Rewrite (6) as the NODE (8).
• Assume the general solution of (8) can be expressed in terms of G′

G as

u(ε) =
N

∑
i=0

[
ai

(
G′(ε)

G(ε)

)i]
, (16)

where G(ε) satisfies the following second order ODE:

G′′(ε) + λG′(ε) + ηG(ε) = 0, (17)

in which η, λ and ai, i = 1, · · · , N, are constants to be determined later.
Notice that we can obtain the value of N by the homogeneous balance principle.

• Insert (16), along with (17), into (8). Collect all coefficients of the same power of(
G′(ε)
G(ε)

)i

. Then set all of the obtained coefficients to zero. Then solve the system of

algebraic equations on variables ai, η, λ, c.
• Depending on the values of η and λ, the general solutions of (17) can be separated

into the following cases:
Case 1: λ2 − 4η > 0;

G′(ε)

G(ε)
= 0.5

√
λ2 − 4η

(
C cosh(0.5

√
λ2 − 4ηε) + D sinh(0.5

√
λ2 − 4ηε)

C sinh(0.5
√

λ2 − 4ηε) + D cosh(0.5
√

λ2 − 4ηε)

)
, (18)
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Case 2: λ2 − 4η < 0;

G′(ε)

G(ε)
= 0.5

√
λ2 − 4η

(
−C sin(0.5

√
−λ2 + 4ηε) + D cos(0.5

√
−λ2 + 4ηε)

C cos(0.5
√
−λ2 + 4ηε) + D sin(0.5

√
−λ2 + 4ηε)

)
, (19)

Case 3: λ2 − 4η = 0;
G′(ε)

G(ε)
=

D
Dε + C

− λ

2
, (20)

where C, D ̸= 0.
• By substituting the obtained values of ai, η, λ, c and the solutions (18), (19), and (78)

into (16) with the transformation (7), the exact traveling wave solutions of (6) can
be obtained.

2.3. The Basic Idea of the Multi-Exp-Function Method

In this subsection, we formulate the MEFM by considering

N(x, t, ut, ux, . . .) = 0, (21)

where u = u(x, t).

• Step 1: Assume that

εi = cieεi , εi = Six − ωit, εi = kix − ωit, i ∈ [1, n], (22)

in which ki, ci, and ωi are angular wave numbers, arbitrary constants, and wave
frequencies, respectively. Notice that

εi,x = kiεi, εi,t = −ωiεi, i ∈ [1, n]. (23)

• Step 2: Assume
u(x, t) :=

K(ε1, ε2, · · · , εn)

H(ε1, ε2, · · · , εn)
,

K :=
n

∑
r,s=1

M

∑
i,j=0

Prs,ijε
i
rε

j
s,

H :=
n

∑
r,s=1

N

∑
i,j=0

Qrs,ijε
i
rε

j
s,

(24)

where Qrs,ij and Prs,ij are fixed to be determined from (21).
We now get

Ñ(x, t, ε1, ε2, · · · , εn) = 0. (25)

• Step 3: When we solve a system of algebraic equations on variables wi, ki, Qrs,ij and
Prs,ij, we get the MWSs u as

u(x, t) =
K(c1 exp(k1x − ω1t), · · · , cn exp(knx − ωnt))
H(c1 exp(k1x − ω1t), · · · , cn exp(knx − ωnt))

. (26)

3. Application of the G′

G2 -Expansion Method

Example 1. Assume the nonlinear time fractional Harry Dym Equation (1). where Dα is the
fractional derivative of order α in the Caputo sense and for a given function f : R+ −→ R is
defined by

Dα f (t) = In−αDn f (t) =
1

Γ(n − α)

∫ t

0

f (n)(s)
(t − s)α−n+1 ds, n − 1 < α < n ∈ N, t > 0,
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and the Riemann–Liouville fractional integral operator Iβ
t of order β is defined by

Iβ
t f (t) =

1
Γ(β)

∫ t

0
(t − s)β−1 f (s)ds, β > 0, t > 0.

Now, we employ the following transformations, which represents a new dependent variable

X =
∫ x

−∞

ds
u(s, t)

,

T = − tα

Γ(1 + α)
,

Ξ(X, T) = u
(

x(X, T), t(X, T)
) (27)

where x = x(X, T) and t = t(X, T).
We shall employ the fact that u(x, t) and its spatial derivative tends to zero as |x| → ∞. Then

∂α

∂tα
=

∂

∂X
∂αX
∂tα

+
∂

∂T
∂αT
∂tα

= − ∂

∂T
−

(
ΞΞXX − 3

2 Ξ2
X

Ξ2

)
∂

∂X
.

Also,
∂

∂x
=

1
Ξ(X, T)

∂

∂X
.

Therefore, (1) can be expressed as

ΞT +
ΞXXXΞ2 − 3ΞXXΞXΞ + 3

2 Ξ3
X

Ξ2 = 0. (28)

Now consider the following transformation

ψ(X, T) =
ΞX
Ξ

. (29)

From (28) and (30), we get the following KdV equation

ψT − 3
2

ψ2ψX + ψXXX = 0. (30)

Now, let
ψ(X, T) = ψ(ε),
ε = ε(X, T) = X − cT,

(31)

where c is constant.
Inserting (31) in (30), we get

−cψ′ − 3
2

ψ2ψ′ + ψ′′′ = 0. (32)

Integration of (32) yields

−cψ − 1
2

ψ3 + ψ′′ = 0. (33)

Here, we get the balancing number 3N = N + 2 or N = 1.
Suppose the solution of (33) can be given by

ψ(ε) = a0 + a1

(
G′

G2

)
+ b1

(
G′

G2

)−1

, (34)
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in which a0, b1, a1 are constant to be determined later.
Inserting Equation (34) into Equation (33), we have

−ca0 − ca1
G′(ε)

G2(ε)
− cb1

G2(ε)

G′(ε)
− 1

2
a3

0 −
3
2

a2
0a1

G(ε)

G2(ε)
− 3

2
a2

0b1
G2(ε)

G′(ε)
− 3

2
a0a2

1
(G′(ε))2

G4(ε)

−3a0a1b1 −
3
2

a0b2
1

G4(ε)

(G′(ε))2 − 1
2

a3
1
(G′(ε))3

G6(ε)
− 3

2
a2

1b1
G′(ε)

G2(ε)
− 3

2
a1b2

1
G2(ε)

G′(ε)
− 1

2
b3

1G6(ε)

(G′(ε))3

+a1
G′′′(ε)

G2(ε)
− 6a1

G′′(ε)G′(ε)

G3(ε)
+ 6a1

(G′(ε))3

G4(ε)
+ 2b1

G2(ε)G′′(ε)

(G′(ε))3 − 2b1
G(ε)G′′(ε)

G′(ε)

−b1
G2(ε)G′′′(ε)

(G′(ε))2 + 2b1G′(ε) = 0.

Note 1. Making use of (10), we get

G′′(ε) =
ηG4(ε) + 2(G′(ε))2G(ε) + λ(G′(ε))2

G2(ε)
, (35)

and

G′′′(ε) = 6ηG(ε)G′(ε) + 6
(G′(ε))3

G2(ε)
+ 6λ

(G′(ε))3

G3(ε)
+ 2ληG′(ε) + 2λ2 (G

′(ε))3

G4(ε)
. (36)

Using (10), (35), and (36), and then inserting
G′

G2 := X, and
(

G′

G2

)−1

:= Y, we have that

−ca1X − cb1Y − 3
2

a2
0a1X − 3

2
a2

0b1Y − 3
2

a0a2
1X2 − 3

2
a0b2

1Y2 − 3
2

a2
1b1X − 3

2
a1b2

1Y

+2a1ληX + 2b1ηλY + 2a1λ2X3 + 2b1η2Y3 − 1
2

a3
1X3 − 3a0a1b1 −

1
2

b3
1Y3 − 1

2
a3

0 − ca0 = 0.

By collecting all terms with the same power of X and Y and then equating each coefficients of
this polynomial to zero, we get the following system of algebraic equations:

Y3 : 2b1η2 − 1
2

b3
1 = 0,

Y2 : −3
2

a0b2
1 = 0,

Y : −cb1 −
3
2

a2
0b1 −

3
2

a1b2
1 + 2b1ηλ = 0,

X0Y0 : −3a1a0b1 −
1
2

a3
0 − ca0 = 0,

X : −ca1 −
3
2

a2
0a1 −

3
2

a2
1b1 + 2a1λη = 0,

X2 : −3
2

a0a2
1 = 0,

X3 : 2a1λ2 − 1
2

a3
1 = 0.
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Solving the above system of nonlinear algebraic equation, we get

c = −1
2

a2
0, η = η, λ = λ, a0 = a0, a1 = 0, b1 = 0, (37)

c = c, η = η, λ = λ, a0 = 0, a1 = 0, b1 = 0, (38)

c = 2λη, η = η, λ = λ, a0 = 0, a1 = 0, b1 = 2η, (39)

c = 2λη, η = η, λ = λ, a0 = 0, a1 = 0, b1 = −2η, (40)

c = 2λη, η = η, λ = λ, a0 = 0, a1 = 2λ, b1 = 0, (41)

c = 2λη, η = η, λ = λ, a0 = 0, a1 = −2λ, b1 = 0, (42)

c = −4λη, η = η, λ = λ, a0 = 0, a1 = 2λ, b1 = 2η, (43)

c = 8λη, η = η, λ = λ, a0 = 0, a1 = −2λ, b1 = 2η, (44)

c = 8λη, η = η, λ = λ, a0 = 0, a1 = 2λ, b1 = −2η, (45)

c = −4λη, η = η, λ = λ, a0 = 0, a1 = −2λ, b1 = −2η. (46)

Inserting (43) and (46) in (34), we get

ψ(ε) = ±2λ

(
G′

G2

)
± 2η

(
G′

G2

)−1

. (47)

Therefore, we get three types of travelling wave solutions as follows:

• if λη > 0;
u1,2(x, t) = ±2λξ1 ± 2η(ξ1)

−1, (48)

in which

ξ1 :=
√

η

λ

( C cos(
√

ηλ(x − −4ληtα

Γ(1+α)
) + D sin(

√
ηλ(x − −4ληtα

Γ(1+α)
))

D cos(
√

ηλ(x − −4ληtα

Γ(1+α)
))− C sin(

√
ηλ(x − −4ληtα

Γ(1+α)
))

)
,

• if λη < 0;
u1,2(x, t) = ±2λξ2 ± 2η(ξ2)

−1, (49)

in which

ξ2 := −
√
|ηλ|
λ

(C sinh(2
√
|ηλ|(x − −4ληtα

Γ(1+α)
)) + C cosh(2

√
|ηλ|(x − −4ληtα

Γ(1+α)
)) + D

C sinh(2
√
|ηλ|(x − −4ληtα

Γ(1+α)
)) + C cosh(2

√
|ηλ|(x − −4ληtα

Γ(1+α)
))− D

)
,

• if λ ̸= 0, η = 0;
u1,2(x, t) = ±2λξ3 ± 2η(ξ3)

−1,

in which
ξ3 := − C

λ(C(x − −4ληtα

Γ(1+α)
) + D)

,

where C, D ̸= 0.

Inserting (44) and (45) in (34), we get

ψ(ε) = ±2λ

(
G′

G2

)
∓ 2η

(
G′

G2

)−1

. (50)

Therefore, we get three types of travelling wave solutions as follows:

• if λη > 0;
u3,4(x, t) = ±2λξ1 ∓ 2η(ξ1)

−1, (51)

in which
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ξ1 :=
√

η

λ

( C cos(
√

ηλ(x − 8ληtα

Γ(1+α)
) + D sin(

√
ηλ(x − 8ληtα

Γ(1+α)
))

D cos(
√

ηλ(x − 8ληtα

Γ(1+α)
))− C sin(

√
ηλ(x − 8ληtα

Γ(1+α)
))

)
,

• if λη < 0;
u3,4(x, t) = ±2λξ2 ∓ 2η(ξ2)

−1, (52)

in which

ξ2 := −
√
|ηλ|
λ

(C sinh(2
√
|ηλ|(x − 8ληtα

Γ(1+α)
)) + C cosh(2

√
|ηλ|(x − 8ληtα

Γ(1+α)
)) + D

C sinh(2
√
|ηλ|(x − 8ληtα

Γ(1+α)
)) + C cosh(2

√
|ηλ|(x − 8ληtα

Γ(1+α)
))− D

)
,

• if λ ̸= 0, η = 0;
u3,4(x, t) = ±2λξ3 ∓ 2η(ξ3)

−1,

in which
ξ3 := − C

λ(C(x − 8ληtα

Γ(1+α)
) + D)

,

where C, D ̸= 0.

Inserting (41) and (42) in (34), we get

ψ(ε) = ±2λ

(
G′

G2

)
. (53)

Therefore, we get three types of travelling wave solutions as follows:

• if λη > 0;
u5,6(x, t) = ±2λξ1, (54)

in which

ξ1 :=
√

η

λ

( C cos(
√

ηλ(x − 2ληtα

Γ(1+α)
) + D sin(

√
ηλ(x − 2ληtα

Γ(1+α)
))

D cos(
√

ηλ(x − 2ληtα

Γ(1+α)
))− C sin(

√
ηλ(x − 2ληtα

Γ(1+α)
))

)
,

• if λη < 0;

u5,6(x, t) = ±2λξ2, (55)

in which

ξ2 := −
√
|ηλ|
λ

(C sinh(2
√
|ηλ|(x − 2ληtα

Γ(1+α)
)) + C cosh(2

√
|ηλ|(x − 2ληtα

Γ(1+α)
)) + D

C sinh(2
√
|ηλ|(x − 2ληtα

Γ(1+α)
)) + C cosh(2

√
|ηλ|(x − 2ληtα

Γ(1+α)
))− D

)
,

• if λ ̸= 0, η = 0;
u3,4(x, t) = ±2λξ3,

in which
ξ3 := − C

λ(C(x − 2ληtα

Γ(1+α)
) + D)

,

where C, D ̸= 0.

Inserting (39) and (40) in (34), we get

ψ(ε) = ∓2η

(
G′

G2

)−1

. (56)

Therefore, we get three types of travelling wave solutions as follows:
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• if λη > 0;
u7,8(x, t) = ∓2η(ξ1)

−1, (57)

in which

ξ1 :=
√

η

λ

( C cos(
√

ηλ(x − 2ληtα

Γ(1+α)
) + D sin(

√
ηλ(x − 2ληtα

Γ(1+α)
))

D cos(
√

ηλ(x − 2ληtα

Γ(1+α)
))− C sin(

√
ηλ(x − 2ληtα

Γ(1+α)
))

)
,

• if λη < 0;
u7,8(x, t) = ∓2η(ξ2)

−1, (58)

in which

ξ2 := −
√
|ηλ|
λ

(C sinh(2
√
|ηλ|(x − 2ληtα

Γ(1+α)
)) + C cosh(2

√
|ηλ|(x − 2ληtα

Γ(1+α)
)) + D

C sinh(2
√
|ηλ|(x − 2ληtα

Γ(1+α)
)) + C cosh(2

√
|ηλ|(x − 2ληtα

Γ(1+α)
))− D

)
,

• if λ ̸= 0, η = 0;
u7,8(x, t) = ∓2η(ξ3)

−1,

in which
ξ3 := − C

λ(C(x − 2ληtα

Γ(1+α)
) + D)

,

where C, D ̸= 0.

The plots of u1, · · · , u4 are displayed in Figures 1–5, for two different cases λη > 0 and
λη < 0, for specific values η = 3, λ = 2, α = 2

5 , D = 2, C = 3, and η = 3, λ = −2, α = 2
5 ,

D = 2, C = 3, respectively.

(a) (b)

(c) (d)

Figure 1. The (a–d) display the 3D, 2D and the contour plots of u1,2, for λη > 0.
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(a) (b)

(c) (d)

Figure 2. The (a–d) display the 3D, 2D and the contour plots of u1,2, for ηλ < 0.

(a) (b)

Figure 3. The (a,b) display the 3D plots of u3,4, for λη > 0 and λη < 0.
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(a) (b)

Figure 4. The (a,b) display the 3D plots of u5,6, for λη < 0 and λη > 0.

(a) (b) (c)

(d) (e) (f)

Figure 5. The (a–f) display the 3D, 2D and the contour plots of u7,8, for λη > 0 and λη < 0.

Example 2. Here, we consider the SRLW Equation (3), where Dγ is the conformable derivative of
order γ, given by

Dγ
ξ (ϖ) = lim

ϵ−→0

ϖ(ξ + ϵξ1−γ)− ϖ(ξ)

ϵ
, ξ > 0, 0 < γ ⩽ 1,

in which ϖ : [0, ∞) −→ R is a given function.
If the above limit exists, then ϖ is called γ-differentiable. Assume 0 < γ ⩽ 1, and ϖ and ϖ′

be γ-differentiable at point ξ > 0, then Dγ has the following properties:

◦ Dγ(cϖ + dϖ′) = cDγ(ϖ) + dDγ(ϖ′) where c, d ∈ R,
◦ Dγ(ξn) = nξn−γ, where n ∈ R,
◦ Dγ(χ) = 0 =⇒ ϖ(ξ) = χ(is a constant),
◦ Dγ(ϖϖ′) = ϖDγ(ϖ′) + ϖ′Dγ(ϖ),

◦ Dγ(ϖ)(ξ) = ξ1−γ dϖ

dξ
(ξ),
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◦ Dγ

(
ϖ

ϖ′

)
=

ϖ′Dγ(ϖ)− ϖDγ(ϖ′)

(ϖ′)2 .

Now, using the following transformation

ε =
αxγ

Γ(1 + γ)
+

βtγ

Γ(1 + γ)
, u(x, t) = u(ε), (59)

Equation (3) turns into

β2u′′ + α2u′′ + βαuu′′ + βα(u′)2 + β2α2u(iv) = 0. (60)

Integrating (60) twice yields

β2α2u′′ + (β2 + α2 + k)u +
1
2

βαu2 + ϑ = 0,

where k and ϑ are integral constants. For simplicity, we set ϑ = 0. therefore, we get

β2α2u′′ + (β2 + α2 + k)u +
1
2

βαu2 = 0. (61)

Here, we get the balancing number 2N = N + 2 or N = 2.
Suppose the solution of (61) can be given by

u(ε) = a0 + a1

(
G′

G2

)
+ b1

(
G′

G2

)−1

+ a2

(
G′

G2

)2

+ b2

(
G′

G2

)−2

, (62)

in which a0, b1, a1, b2, a2 are constant to be determined later.
Inserting Equation (62) with Equation (10) into Equation (61) and collecting all terms with

the same power of G′

G2 , and then equating each coefficients of this polynomial to zero, we get the
following system of algebraic equations:(

G′

G2

)−4

:
1
2

βαb2
2 + 6β2α2b2η2 = 0,(

G′

G2

)−3

: 2α2β2η2b1 + αβb1b2 = 0,(
G′

G2

)−2

:
1
2

βαb2
1 + 8β2α2b2λη + βαa0b2 + b2k + b2α2 + b2β2 = 0,(

G′

G2

)−1

: 2α2β2ηλb1 + αβa0b1 + αβa1b2 + α2b1 + β2b1 + kb1 = 0,(
G′

G2

)0

: βαa1b1 + βαa2b2 + 2α2β2a2η2 + 2β2α2b2λ2 + a0α2 + a0β2 + a0k +
1
2

βαa2
0,(

G′

G2

)1

: 2α2β2ηλa1 + αβa0a1 + αβa2b1 + α2a1 + β2a1 + ka1 = 0,(
G′

G2

)2

:
1
2

βαa2
1 + 8β2α2a2λη + βαa0a2 + a2α2 + a2β2 + a2k = 0,(

G′

G2

)3

: 2α2β2λ2a1 + αβa1a2 = 0,(
G′

G2

)4

:
1
2

βαa2
2 + 6β2α2a2λ2 = 0.
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Solving the above system of nonlinear algebraic equation, we get

η = η, k = −1
2

a0αβ − α2 − β2, λ = λ, a0 = a0, a1 = 0, a2 = 0, b1 = 0, b2 = 0, (63)

η = η, k = k, λ = λ, a0 = 0, a1 = 0, a2 = 0, b1 = 0, b2 = 0, (64)

η = η, k = 16α2β2ηλ − α2 − β2, λ = λ, a0 = −24ληαβ, a1 = 0, (65)

a2 = −12λ2αβ, b1 = 0, b2 = −12η2αβ,

η = η, k = −16α2β2ηλ − α2 − β2, λ = λ, a0 = 8ληαβ, a1 = 0, (66)

a2 = −12λ2αβ, b1 = 0, b2 = −12η2αβ,

η = η, k = 4ληα2β2 − α2 − β2, λ = λ, a0 = −12ληαβ, a1 = 0, (67)

a2 = 0, b1 = 0, b2 = −12η2αβ,

η = η, k = −4ληα2β2 − α2 − β2, λ = λ, a0 = −4ληαβ, a1 = 0, (68)

a2 = 0, b1 = 0, b2 = −12η2αβ,

η = η, k = 4ληα2β2 − α2 − β2, λ = λ, a0 = −12ληαβ, a1 = 0, (69)

a2 = −12λ2αβ, b1 = 0, b2 = 0,

η = η, k = −4ληα2β2 − α2 − β2, λ = λ, a0 = −4ληαβ, a1 = 0, (70)

a2 = −12λ2αβ, b1 = 0, b2 = 0.

Inserting (65) in (62), we get

u(ε) = −24ληαβ − 12λ2αβ

(
G′

G2

)2

− 12η2αβ

(
G′

G2

)−2

, (71)

Therefore, we get three types of travelling wave solutions as follows:

• if λη > 0;
u1 = −24ληαβ − 12λ2αβ(ξ1)

2 − 12η2αβ(ξ1)
−2, (72)

where

ξ1 =

√
η

λ

(C cos(
√

ηλ(
αxγ

Γ(1 + γ)
+

βtγ

Γ(1 + γ)
)) + D sin(

√
ηλ(

αxγ

Γ(1 + γ)
+

βtγ

Γ(1 + γ)
))

D cos(
√

ηλε)− C sin(
√

ηλ(
αxγ

Γ(1 + γ)
+

βtγ

Γ(1 + γ)
))

)
,

• if λη < 0;
u2 = −24ληαβ − 12λ2αβ(ξ2)

2 − 12η2αβ(ξ2)
−2, (73)

where

ξ2 = −
√
|ηλ|
λ

(C sinh(2
√
|ηλ|( αxγ

Γ(1 + γ)
+

βtγ

Γ(1 + γ)
)) + C cosh(2

√
|ηλ|( αxγ

Γ(1 + γ)
+

βtγ

Γ(1 + γ)
)) + D

C sinh(2
√
|ηλ|( αxγ

Γ(1 + γ)
+

βtγ

Γ(1 + γ)
)) + C cosh(2

√
|ηλ|( αxγ

Γ(1 + γ)
+

βtγ

Γ(1 + γ)
))− D

)
,

• if λ ̸= 0, η = 0;

u3 = −24ληαβ − 12λ2αβ(ξ3)
2 − 12η2αβ(ξ3)

−2, (74)

where
ξ3 = − C

λ(C(
αxγ

Γ(1 + γ)
+

βtγ

Γ(1 + γ)
) + D)

,

where C, D ̸= 0.
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The plots of (72) and (73) are displayed in Figures 6 and 7, for η = 2, λ = 3, α = 1
2 , β = 1

3 ,
γ = 1

2 , D = 2, C = 3, and η = −2, λ = 3, α = 1
2 , β = 1

3 , γ = 1
2 , D = 2, C = 3, respectively.

(a) (b)

(c) (d)

Figure 6. The (a–d) display the 3D, 2D and the contour plots of (72).

(a) (b)

(c) (d)

Figure 7. The (a–d) display the 3D, 2D and the contour plots of (73).
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4. Application of the G′
G -Expansion Method

Example 3. Assume the nonlinear time fractional Harry Dym Equation (1).
Now, we employ the transformations (27), which represents a new dependent variable.
In a similar way presented in Example 1 in Section 3, we consider the ODE (33). Here, we get

the balancing number 3N = N + 2 or N = 1.
Suppose that the solution of (33) can be given by

ψ(ε) = a0 + a1

(
G′

G

)
, (75)

in which a0, a1 are constants to be determined later.
Inserting Equation (75) with Equation (17) into Equation (33) and collecting all terms with

the same power of
G′

G
, and then equating each coefficient of this polynomial to zero, we get the

following system of algebraic equations:(
G′

G

)3

: −
a3

1
2
+ 2a1 = 0,(

G′

G

)2

: −3
2

a0a2
1 + 3a1λ = 0,(

G′

G

)1

: −ca1 −
3
2

a2
0a1 + a1λ2 + 2a1η = 0,(

G′

G

)0

: −ca0 + a1ηλ −
a3

0
2

= 0.

Solving the above system of nonlinear algebraic equation, we get

a0 = ∓λ, a1 = ∓2, c = −0.5(λ2 − 4η). (76)

Inserting (76) in (75), we get

ψ(ε) = ±2
(

G′

G

)
± λ. (77)

Therefore, we get three types of travelling wave solutions as follows:
Case 1: λ2 − 4η > 0;

u1,2(x, t) = ±
√

2(−0.5(λ2 − 4η)).

( iC cos(
√

(−0.5(λ2−4η))
2 (x − (−0.5(λ2−4η))tα

Γ(1+α)
)) + D sin(

√
(−0.5(λ2−4η))

2 (x − (−0.5(λ2−4η))tα

Γ(1+α)
))

−iC sin(
√

(−0.5(λ2−4η))
2 (x − (−0.5(λ2−4η))tα

Γ(1+α)
)) + D cos(

√
(−0.5(λ2−4η))

2 (x − (−0.5(λ2−4η))tα

Γ(1+α)
))

)
,

Case 2: λ2 − 4η < 0;

u1,2(x, t) = ±i
√

2(−0.5(λ2 − 4η)).

(−C sin(
√

(−0.5(λ2−4η))
2 (x − (−0.5(λ2−4η))tα

Γ(1+α)
)) + D cos(

√
(−0.5(λ2−4η))

2 (x − (−0.5(λ2−4η))tα

Γ(1+α)
))

C cos(
√

(−0.5(λ2−4η))
2 (x − (−0.5(λ2−4η))tα

Γ(1+α)
)) + D sin(

√
(−0.5(λ2−4η))

2 (x − (−0.5(λ2−4η))tα

Γ(1+α)
))

)
,

Case 3: λ2 − 4η = 0;
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u1,2(x, t) = ± D

D(x − (−0.5(λ2−4η))tα

Γ(1+α)
) + C

, (78)

where C, D ̸= 0.
The plots of u1, · · · , u4 are displayed in Figures 8 and 9, for two different cases λ2 − 4η > 0

and λ2 − 4η < 0, for specific values η = −3, λ = 2, α = 2
5 , D = 2, C = 3, and η = 3, λ = 2,

α = 2
5 , D = 2, C = 3, respectively.

(a) (b)

Figure 8. The (a,b) display the 3D and the contour plots of u1,2, for λ2 − 4η > 0.

(a) (b)

Figure 9. The (a,b) display the plots of real and imaginery part of u1,2, for λ2 − 4η < 0.

5. Comparing the G′
G -Expansion and the G′

G2 -Expansion Methods

Here, diverse values of the solutions of (1) obtained through the G′

G2 -expansion method

and the G′
G -expansion method are presented in Tables 1 and 2.

As you can see, the obtained solutions through the G′

G2 -expansion method present a bet-

ter description of Equation (1) than the obtained solutions through the G′
G -expansion method.
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Table 1. Diverse values of the solutions of (1) obtained through the G′

G2 -expansion method.

λη > 0 λη < 0

x = t u1,2(x, t) u3,4(x, t) u5,6(x, t) u7,8(x, t) u1,2(x, t) u3,4(x, t) u5,6(x, t) u7,8(x, t)
0.001 ±10.8391 ±5.1739 ±3.0254 ±7.9327 ±0.0069 ±9.7979 ±4.9993 ±4.8005
0.010 ±11.4354 ±3.9987 ±3.0052 ±7.9859 0.0000 ±9.7979 ±4.8991 ±4.8988
0.100 ±15.5875 ±0.9025 ±1.6523 ±14.5247 0.0000 ±9.7979 ±4.8989 ±4.8989
1.001 ±16.1931 ±15.2886 ±9.8816 ±2.4287 0.0000 ±9.7979 ±4.8989 ±4.8989
1.010 ±13.5703 ±10.6300 ±33.0590 ±0.7259 0.0000 ±9.7979 ±4.8989 ±4.8989
1.100 ±18.5057 ±4.9848 ±1.4733 ±13.7668 0.0000 ±9.7979 ±4.8989 ±4.8989

Table 2. Diverse values of the solutions of (1) obtained through G′

G -expansion method.

λ2 − 4η > 0 λ2 − 4η < 0

x = t u1,2(x, t) u1,2(x, t)
0.001 ±4.1671 0.0000
0.010 ±4.0050 0.0000
0.100 ±4.0000 0.0000
1.001 ±4.0000 0.0000
1.010 ±4.0000 0.0000
1.100 ±4.0000 0.0000

The G′

G2 -expansion method and the G′
G -expansion method are related to traveling wave

solutions of NPDEs only. As mentioned before, there exist MWSs to NPDEs. We are
interested in a novel approach for obtaining MWSs to NPDEs, and the MEFM formulates a
solution algorithm for calculating MWSs to NPDEs. In Section 6, we present two different
examples of the MEFM.

6. Application of the Multi-Exp-Function-Method
6.1. Example 1

Here, we apply the MEFM to obtain the novel analytical solutions for (4).

• One wave solutions for (4):
First, consider ε1 = ε1(x, y, t) as

ε1 = ϖ1 exp(S1x + R1y − ω1t), (79)

where ϖ1, S1, R1, and ω1 are constants. Now, ε1 has the following relations

ε1,x = S1ε1, ε1,y = R1ε1, ε1,t = −ω1ε1. (80)

Therefore, we assume

K(ε1) = P0 + P1ε1, (81)

H(ε1) = Q0 + Q1ε1, (82)

where P0, P1, Q0, and Q1 are fixed to be determined from (4). Thus, we get

u(x, t) =
K(ε1)

H(ε1)
=

P0 + P1ε1

Q0 + Q1ε1
. (83)

By setting (83) into (4), we get:

P1 = arbitrary,

ω1 :
1
2

5i
√

3R2
1 + 10S2

1 + 2S1R1 − 5R2
1

R1
.

(84)

By inserting (84) in (83), the one wave solutions can be presented by u1.
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The real part of u1 is displayed in Figure 10 for S1 = 7, R1 = −5, Q1 = −0.70,
Q0 = 0.40, P0 = 0.90, P1 = 3, (a) is three dimensional with y = 2. Here, (b), (c), and
(d) exploit the z, y, x–axis orientation, respectively. Additionally, (e) is the contour
plot. In addition, the imaginary part of equation u1 is displayed in Figure 11 for
S1 = 7, R1 = −5, Q1 = −0.70, Q0 = 0.40, P0 = 0.90, P1 = 3, (a) is three dimensional
with y = 2. Here, (b), (c), and (d) exploit the z, y, x–axis, orientation, respectively.
Additionally, (e) is the contour plot.

• Two wave solutions for (4):
Consider εi = εi(x, y, t), i = 1, 2, such that

εi = ϖi exp(Six + Riy − ωit), i = 1, 2 (85)

in which Si, ϖi, Ri, and ωi are fixed. Now, we have

εi,y = Ri, εi,x = Siεi, εi,t = −ωiεi, i = 1, 2. (86)

Then, we assume

K(ε1, ε2) = 2(S1ε1 + S2ε2 + P12(S1 + S2)ε1ε2), (87)

H(ε1, ε2) = 1 + ε1 + ε2 + P12ε1ε2, (88)

where P12 is a constant to be determined from (4). Therefore, we have

u(x, t) =
2(S1ε1 + S2ε2 + P12(S1 + S2)ε1ε2)

1 + ε1 + ε2 + P12ε1ε2
. (89)

Using (89) into (4), we get:

P12 = 1,

ω1 =
1
2

5i
√

3R2
1 + 10S2

1 + 2S1R1 − 5R2
1

R1
,

ω2 =
1
2

5i
√

3R2
2 + 10S2

2 + 2S2R2 − 5R2
2

R2
.

Using (89), we can show that the two wave solutions can be presented by u2.
The real part of u2 is displayed in Figure 12 for S1 = 3, S2 = −5, R1 = 2, R2 = −7,
(a) is three dimensional with y = 2. Here, (b), (c), and (d) exploit the z, y, x–axis,
respectively. Additionally, (e) is the contour plot. In addition, the imaginary part of
equation u2 is displayed in Figure 13 for S1 = 3, S2 = −5, R1 = 2, R2 = −7, (a) is
three dimensional with y = 2. Here, (b), (c), and (d) exploit the z, x, y–axis orientation,
respectively. Additionally, (e) is the contour plot.

• Three wave solutions for (4):
Consider εi = εi(x, y, t), i = 1, 2, 3, such that

εi = ϖi exp(Six + Riy − ωit), i = 1, 2, 3 (90)

where Si, ϖi, and ωi are fixed. Now, εi has the following relations

εi,x = Siεi, εi,y = Riε1, εi,t = −ωiεi, i = 1, 2, 3. (91)

Therefore, we assume

K(ε1, ε2, ε3) = 2(S1ε1 + S2ε2 + S3ε3 + P12(S1 + S2)ε1ε2

+P13(S1 + S3)ε1ε3 + P23(S2 + S3)ε2ε3 + P12P13P23(S1 + S2 + S3)ε1ε2ε3),
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and

H(ε1, ε2, ε3) = 1 + ε1 + ε2 + ε3 + P12ε1ε2 + P13ε1ε3 + P23ε2ε3

+P12P13P23ε1ε2ε3,

where P12, P13, and P23 are fixed to be determined from (4). Thus, we get

u(x, t) =
[

2(S1ε1 + S2ε2 + S3ε3 + P12(S1 + S2)ε1ε2

+P13(S1 + S3)ε1ε3 + P23(S2 + S3)ε2ε3 + P12P13P23(S1 + S2 + S3)ε1ε2ε3)

]/
[

1 + ε1 + ε2 + ε3 + P12ε1ε2 + P13ε1ε3 + P23ε2ε3 + P12P13P23ε1ε2ε3

]
.

(92)

Now, by setting (92) into (4) and solving the system of algebraic equations, we have:

P12 = 1,
P13 = 1,
P23 = 1,

ω1 =
1
2

5i
√

3R2
1 + 10S2

1 + 2S1R1 − 5R2
1

R1
,

ω2 =
1
2

5i
√

3R2
2 + 10S2

2 + 2S2R2 − 5R2
2

R2
,

ω3 =
1
2

5i
√

3R2
3 + 10S2

3 + 2S3R3 − 5R2
3

R3
,

P12 = 1,
P13 = 1,
P23 = 1,

R3 =
S3R2

S2
,

ω1 =
1
2

5i
√

3R2
1 + 10S2

1 + 2S1R1 − 5R2
1

R1
,

ω2 =
1
2

5i
√

3R2
2 + 10S2

2 + 2S2R2 − 5R2
2

R2
,

ω3 =
1
2

S3(5i
√

3R2
2 + 10S2

2 + 2S2R2 − 5R2
2)

R2S2
,

P12 = 1,
P13 = 1,
P23 = 1,

R1 =
S1R3

S3
,

ω1 =
1
2

S1(5i
√

3R2
3 + 10S2

3 + 2S3R3 − 5R2
3)

R3S3
,

ω2 =
1
2

5i
√

3R2
2 + 10S2

2 + 2S2R2 − 5R2
2

R2
,

ω3 =
1
2

5i
√

3R2
3 + 10S2

3 + 2S3R3 − 5R2
3

R3
,
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P12 = 1,
P13 = arbitrary,
P23 = arbitrary,

R1 =
S1R2

S2
,

R3 =
S3R2

S2
,

ω1 =
1
2

S1(5i
√

3R2
2 + 10S2

2 + 2S2R2 − 5R2
2)

R2S2
,

ω2 =
1
2

5i
√

3R2
2 + 10S2

2 + 2S2R2 − 5R2
2

R2
,

ω3 =
1
2

S3(5i
√

3R2
2 + 10S2

2 + 2S2R2 − 5R2
2)

R2S2
,

P12 = arbitrary,
P13 = 1,
P23 = 1,

R2 =
S2R1

S1
,

ω1 =
1
2

5i
√

3R2
1 + 10S2

1 + 2S1R1 − 5R2
1

R1
,

ω2 =
1
2

S2(5i
√

3R2
1 + 10S2

1 + 2S1R1 − 5R2
1)

R1S1
,

ω3 =
1
2

5i
√

3R2
3 + 10S2

3 + 2S3R3 − 5R2
3

R3
,

and
P12 = arbitrary,
P13 = arbitrary,
P23 = arbitrary,

R2 =
S2R1

S1
,

R3 =
S3R1

S1
,

ω1 =
1
2

5i
√

3R2
1 + 10S2

1 + 2S1R1 − 5R2
1

R1
,

ω2 =
1
2

S2(5i
√

3R2
1 + 10S2

1 + 2S1R1 − 5R2
1)

R1S1
,

ω3 =
1
2

S3(5i
√

3R2
1 + 10S2

1 + 2S1R1 − 5R2
1)

R1S1
.

Thus, the three wave solutions can be presented by u3,1, u3,2, u3,3, u3,4, u3,5,
u3,6, respectively.

The real part of u3,1 is displayed in Figure 14 for S1 = 0.5, S2 = −0.7, k3 = 1.20,
R1 = −1.50, R2 = 2, R3 = 1.50, (a) is three dimensional with y = 2. Here, (b), (c), and (d)
exploit the z, y, x–axis, orientation. Additionally, (e) is the contour plot.

The imaginary part of equation u3,1 is displayed in Figure 15 for S1 = 0.5,
S2 = −0.7, k3 = 1.20, R1 = −1.50, R2 = 2, R3 = 1.50, (a) is three dimensional with
y = 2. Here, (b), (c), and (d) exploit the z, y, x–axis, orientation. Additionally, (e) is the
contour plot.

The real part of u3,2 is displayed in Figure 16 for S1 = 3.50, S2 = −3.70, k3 = 1.20,
R1 = 5, R2 = 2.30, R3 = 3, P23 = 3, (a) is three dimensional with y = 2. Here, (b), (c), and
(d) exploit the z, x, y–axis, orientation. Additionally, (e) is the contour plot.

The imaginary part of equation u3,2 is displayed in Figure 17 for S1 = 3.50, S2 = −3.70,
k3 = 1.20, R1 = 5, R2 = 2.30, R3 = 3, P23 = 3, (a) is three dimensional with y = 2. Here, (b),
(c), and (d) exploit the z, y, x–axis, orientation. Additionally, (e) is the contour plot.
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The real part of u3,3 is displayed in Figure 18 for S1 = 3.50, S2 = −3.70, k3 = 1.20,
R2 = 2.30, R3 = 3, P13 = 3, (a) is three dimensional with y = 2. Here, (b), (c), and (d) exploit
the z, y, x–axis, orientation. Additionally, (e) is the contour plot.

The imaginary part of equation u3,3 is displayed in Figure 19 for S1 = 3.50, S2 = −3.70,
k3 = 1.20, R2 = 2.30, R3 = 3, P13 = 3, (a) is three dimensional with y = 2. Here, (b), (c), and
(d) exploit the z, y, x-axis, orientation. Additionally, (e) is the contour plot.

The real part of u3,4 is displayed in Figure 20 for S1 = 3.50, S2 = −3.70, S3 = 1.20,
R2 = 2.30, P23 = 5, P13 = 7, (a) is three dimensional with y = 2. Here, (b), (c), and (d)
exploit the z, y, x–axis, orientation. Additionally, (e) is the contour plot.

The imaginary part of equation u3,4 is displayed in Figure 21 for S1 = 3.50, S2 = −3.70,
S3 = 1.20, R2 = 2.30, P23 = 5, P13 = 7, (a) is three dimensional with y = 2. Here, (b), (c),
and (d) exploit the z, y, x–axis, orientation. Additionally, (e) is the contour plot.

The real part of u3,5 is displayed in Figure 22 for S1 = 3.50, S2 = −3.70, S1 = 3.50,
S3 = 1.20, R1 = 11, R3 = 13, P23 = 5, P12 = 9, (a) is three dimensional with y = 2. Here, (b),
(c), and (d) exploit the z, y, x–axis, orientation. Additionally, (e) is the contour plot.

The imaginary part of equation u3,5 is displayed in Figure 23 for S1 = 3.50, S2 = −3.70,
S1 = 3.50, S3 = 1.20, R1 = 11, R3 = 13, P23 = 5, P12 = 9, (a) is three dimensional with y = 2.
Here, (b), (c), and (d) exploit the z, y, x–axis, orientation. Additionally, (e) is the contour
plot.

The real part of u3,6 is displayed in Figure 24 for S1 = 3.50, S2 = −3.70, S1 = 3.50,
S3 = 1.20, R1 = 11, P23 = −11, P13 = 13, P12 = 9, (a) is three dimensional with y = 2. Here,
(b), (c), and (d) exploit the z, y, x–axis, orientation. Additionally, (e) is the contour plot.

The imaginary part of equation u3,6 is displayed in Figure 25 for S1 = 3.50, S2 = −3.70,
S1 = 3.50, S3 = 1.20, R1 = 11, P23 = −11, P13 = 13, P12 = 9, (a) is three dimensional with
y = 2. Here, (b), (c), and (d) exploit the z, y, x–axis orientation. Additionally, (e) is the
contour plot.

(a) (b)

(c) (d)

Figure 10. Cont.
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(e)

Figure 10. The (a–e) display the 2D, 3D and the contour plots of the real part of u1.

(a) (b)

(c) (d)

(e)

Figure 11. The (a–e) display the 2D, 3D and the contour plots of the imaginary part of u1.
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(a) (b)

(c) (d)

(e)

Figure 12. The (a–e) display the 2D, 3D and the contour plots of the real part of u2.

(a) (b)

Figure 13. Cont.
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(c) (d)

(e)

Figure 13. The (a–e) display the 2D, 3D and the contour plots of the imaginary part of u2.

(a) (b)

(c) (d)

Figure 14. Cont.
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(e)

Figure 14. The (a–e) display the 2D, 3D and the contour plots of the real part of u3,1.

(a) (b)

(c) (d)

(e)

Figure 15. The (a–e) display the 2D, 3D and the contour plots of the imaginary part of u3,1.
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(a) (b)

(c) (d)

(e)

Figure 16. The (a–e) display the 2D, 3D and the contour plots of the real part of u3,2.

(a) (b)

Figure 17. Cont.
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(c) (d)

(e)

Figure 17. The (a–e) display the 2D, 3D and the contour plots of the imaginary part of u3,2.

(a) (b)

(c) (d)

Figure 18. Cont.
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(e)

Figure 18. The (a–e) display the 2D, 3D and the contour plots of the real part of u3,3.

(a) (b)

(c) (d)

(e)

Figure 19. The (a–e) display the 2D, 3D and the contour plots of the imaginary part of u3,3.
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(a) (b)

(c) (d)

(e)

Figure 20. The (a–e) display the 2D, 3D and the contour plots of the real part of u3,4.

(a) (b)

Figure 21. Cont.
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(c) (d)

(e)

Figure 21. The (a–e) display the 2D, 3D and the contour plots of the imaginary part of u3,4.

(a) (b)

(c) (d)

Figure 22. Cont.
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(e)

Figure 22. The (a–e) display the 2D, 3D and the contour plots of the real part of u3,5.

(a) (b)

(c) (d)

(e)

Figure 23. The (a–e) display the 2D, 3D and the contour plots of the imaginary part of u3,5.
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(a) (b)

(c) (d)

(e)

Figure 24. The (a–e) display the 2D, 3D and the contour plots of the real part of u3,6.

(a) (b)

Figure 25. Cont.
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(c) (d)

(e)

Figure 25. The (a–e) display the 2D, 3D and the contour plots of the imaginary part of u3,6.

6.2. Example 2

In this subsection, we use the MEFM to get the novel analytical solutions for (5).

• One wave solutions for (5):
In a similar way, we get

P1 = arbitrary,

ω1 : −
5S2

1 − S1R1 + 5R2
1

R1
.

(93)

By inserting (93) in (83), the one wave solutions can be presented by v1.
v1 is displayed in Figure 26 for S1 = 7, R1 = −5, Q1 = −0.70, Q0 = 0.40,
P0 = 0.90, P1 = 3, (a) is three dimensional with y = 2. Here, (b), (c), and (d) ex-
ploit the z, y, x–axis orientation. Additionally, (e) is the contour plot.

• Two wave solutions for (5):
In a similar way, we get

P12 = 1,

ω1 = −
5S2

1 − S1R1 + 5R2
1

R1
,

ω2 = −
5S2

2 − S2R2 + 5R2
2

R2
.

By setting the above values in (89), the two wave solutions can be presented by v2.
v2 is displayed in Figure 27 for S1 = 3, S2 = −5, R1 = 2, R2 = −7, (a) is three dimen-
sional with y = 2. Here, (b), (c), and (d) exploit the z-axis, y-axis, x-axis orientation,
respectively. Additionally, (e) is the contour plot.

• Three wave solutions for (5):
In a similar way, we get
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P12 = 1,
P13 = 1,
P23 = 1,

ω1 = −
5S2

1 − S1R1 + 5R2
1

R1
,

ω2 = −
5S2

2 − S2R1 + 5R2
2

R2
,

ω3 = −
5S2

3 − S3R3 + 5R2
3

R3
,

P12 = 1,
P13 = arbitrary,
P23 = arbitrary,

R1 =
S1R2

S2
,

R3 =
S3R2

S3
,

ω1 = −
S1(5S2

2 − S2R2 + 5R2
2)

R1S2
,

ω2 = −
5S2

2 − S2R2 + 5R2
2

R2
,

ω3 = −
S3(5S2

2 − S2R2 + 5R2
2)

R2S2
,

P12 = 1,
P13 = arbitrary,
P23 = 1,

R1 =
S1R3

S3
,

R3 =
S3R2

S3
,

ω1 = −
S1(5S2

3 − S3R3 + 5R2
3)

R3S3
,

ω2 = −
5S2

2 − S2R2 + 5R2
2

R2
,

ω3 = −
5S2

3 − S3R3 + 5R2
3

R3
,

and
P12 = arbitrary,
P13 = 1,
P23 = 1,

R2 =
S2R1

S1
,

ω1 = −
5S2

1 − S1R1 + 5R2
1

R1
,

ω2 = −
S2(5S2

1 − S1R1 + 5R2
1)

R1S1
,

ω3 = −
5S2

3 − S3R3 + 5R2
3

R3
.

Thus, the three wave solutions can be presented by v3,1, v3,2, v3,3, v3,4, respectively.

v3,1 is displayed in Figure 28 for S1 = 0.5, S2 = −0.7, S3 = 1.20, R1 = −1.50,
R2 = 2, R3 = 1.50, (a) is three dimensional with y = 2. Here, (b), (c), and (d) exploit
the z, y, x–axis orientation. Additionally, (e) is the contour plot.
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v3,2 is displayed in Figure 29 for S1 = 3.5, S2 = −3.7, S3 = 1.20, R2 = 2.30,
P13 = 3

7 , P23 = − 5
2 , (a) is three dimensional with y = 2. Here, (b), (c), and (d) exploit

the z, y, x–axis orientation. Additionally, (e) is the contour plot.
v3,3 is displayed in Figure 30 for S1 = 3.5, S2 = −3.7, S3 = 1.20, R2 = 2, R3 = 3,

P23 = 5
2 , (a) is three dimensional with y = 2. Here, (b), (c), and (d) exploit the z, y, x–axis

orientation. Additionally, (e) is the contour plot.
v3,4 is displayed in Figure 31 for S1 = 3.5, S2 = −3.7, S3 = 4.20, R1 = −0.50,

R3 = 0.90, P12 = 11
5 , (a) is three dimensional with y = 2. Here, (b), (c), and (d) exploit the

z, y, x–axis orientation. Additionally, (e) is the contour plot.
Although the MEFM can obtain the MWSs to nonlinear equations, calculating each

wave solution separately takes a lot of time and this can be one of the shortcomings of
this method.

(a) (b)

(c) (d)

(e)

Figure 26. The (a–e) display the 2D, 3D and the contour plots of v1.
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(a) (b)

(c) (d)

(e)

Figure 27. The (a–e) display the 2D, 3D and the contour plots of v2.

(a) (b)

Figure 28. Cont.
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(c) (d)

(e)

Figure 28. The (a–e) display the 2D, 3D and the contour plots of v3,1.

(a) (b)

(c) (d)

Figure 29. Cont.
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(e)

Figure 29. The (a–e) display the 2D, 3D and the contour plots of v3,2.

(a) (b)

(c) (d)

(e)

Figure 30. The (a–e) display the 2D, 3D and the contour plots of v3,3.
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(a) (b)

(c) (d)

(e)

Figure 31. The (a–e) display the 2D, 3D and the contour plots of v3,4.

7. Concluding Remarks

In this paper, we applied three different methods, namely, the G′
G -expansion method,

the G′

G2 -expansion method, and the MEFM to investigate the nonlinear time fractional Harry
Dym equation in the Caputo sense and the symmetric regularized long wave equation
in the conformable sense. In particular, we calculated the multiple wave solutions to
(2 + 1)-dimensional equations by means of operating the MEFM, containing one, two, and
triple-soliton-type solutions. It is obvious that this new technique has plenty of families
of solutions, including rational exponential functions by choosing special parameters.
Thus, the present paper provides encouragement for future research in soliton topics. The
behaviors of the solutions for the known nonlinear equations gained via the MEFM by
choosing the suitable values are cited in Figures 10 and 31. Besides, numerical simulations
involving the determination of the coefficients have been carried out to prove that the
projected algorithm is efficient and applicable. An analytical study was performed for the
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solutions obtained using employing the aforementioned technique, revealing one, two,
and triple-soliton-type solutions. The obtained results are beneficial for the study of wave
propagation. The computations in the present paper were made with the aid of Maple.
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