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Abstract: Migration or dispersal of population plays an important role in disease transmission during
an outbreak. In this work, we have proposed an SIRS compartmental epidemic model in order to
analyze the system dynamics in a two-patch environment. Both the deterministic and fractional order
systems have been considered in order to observe the impact of population dispersal. The following
analysis has shown that we can have an infected system even if the basic reproduction number in
one patch becomes less than unity. Moreover, higher dispersal towards a patch controls the infection
level in the other patch to a greater extent. In the optimal control problem (both integer order and
fractional), it is assumed that people’s dispersal rate will depend on the disease prevalence, and as
such will be treated as a time-dependent control intervention. The numerical results reveal that there
is a higher amount of recovery cases in both patches in the presence of optimal dispersal (both integer
order and fractional). Not only that, implementation of people’s awareness reduces the infection
level significantly even if people disperse at a comparatively higher rate. In a fractional system, it is
observed that there will be a higher amount of recovery cases if the order of derivative is less than
unity. The effect of fractional order is omnipotent in achieving a stable situation.

Keywords: two-patch compartmental epidemic model; fractional order; deterministic system; stability;
optimal control

MSC: 34A08; 92D30

1. Introduction

Mathematical models can play an important role in analyzing and studying different
epidemiological issues. From epidemiological models, one can predict not only the dy-
namics of a disease but also the long-term behavior derived from the dynamical nature
of early invasions, or, in fact, the influence of immunization on disease transmission. The
Susceptible-Infectious-Recovered model, popularly known as the SIR model, is a funda-
mental epidemiological model used to analyze and predict the spread of infectious diseases
within a population [1]. This model partitions the populace into three compartments:
people who are not yet infected but are in danger of contamination, people who are already
infected with the disease and spread the sickness, and recovered people who have either
endured contamination and acquired resistance or have capitulated to the illness.

Though the use of epidemiological models has skyrocketed with the growth of comput-
ing, there are a number of drawbacks when applying mathematical models. The SIR model
assumes that individuals move through these compartments based on a set of differential
equations capturing the dynamics of disease transmission. While the classic SIR model
provides valuable insights into the general trends of an epidemic, it may oversimplify
the complex spatial and temporal variations that often characterize real-world scenarios.

Axioms 2024, 13, 94. https://doi.org/10.3390/axioms13020094 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13020094
https://doi.org/10.3390/axioms13020094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-0690-9058
https://orcid.org/0000-0001-6512-9700
https://orcid.org/0000-0002-2956-6265
https://doi.org/10.3390/axioms13020094
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13020094?type=check_update&version=2


Axioms 2024, 13, 94 2 of 37

To address this limitation, the concept of patch transfer has been introduced. It is unde-
niable that the inclusion of population dispersal in an epidemiological model makes it
more realistic. Patch transfer extends the traditional SIR model by incorporating spatial
heterogeneity into the analysis. Instead of treating the entire population as a homogeneous
unit, the region under consideration is divided into patches, each representing a distinct
subpopulation with its own set of infection dynamics. This approach allows for a more
nuanced understanding of how infectious diseases spread across different geographical
areas or social groups.

Incorporating patch transfer into the SIR model involves accounting for the movement
of individuals between patches to reflect the mobility patterns observed in real-world
populations [2–4]. This addition enables researchers to explore how factors such as travel-
ing, migration, and social interactions contribute to the spatial transmission of infectious
diseases. By combining the classic SIR model with patch transfer, researchers can gain a
more accurate and realistic representation of the dynamics of disease spread in diverse and
interconnected populations. This enhanced model is particularly valuable for addressing
public health challenges in regions with complex geographical and social structures, pro-
viding a more comprehensive foundation for designing effective intervention strategies
and mitigating the impact of infectious diseases. A two-patch epidemic system refers to a
mathematical model which is used to study the spread and dynamics of infectious diseases
among two connected populations. In this system, two populations are connected by
migration or movement; the spread of an infectious disease in one population can impact
the other population. A two-patch epidemic system acts as a useful tool for studying
the transmission dynamics of infectious diseases in various contexts, including the global
spread of pandemics, the transmission of diseases between animal and human populations,
and the impact of vaccination programs on disease spread [5,6]. Let us consider a real-
life scenario of the cross-border spread of infectious diseases. Imagine that an infectious
disease outbreak occurs in two neighboring countries, Country A and Country B. These
countries have different population densities, healthcare infrastructures, and social behav-
ioral patterns. People frequently travel between these countries for work, tourism, and
other reasons. Features of both the countries are as follows:

Country A:

• Higher population density
• Advanced healthcare facilities
• Urban areas with dense social interactions

Country B:

• Lower population density
• Limited healthcare facilities
• Rural areas with less frequent social interactions

The infectious disease can spread within each country, with transmission rates influ-
enced by population density [7] and healthcare accessibility. People move between the
two countries, facilitating the cross-border spread of the disease. Individuals infected in
Country A may travel to Country B, introducing the disease to new areas. Conversely, indi-
viduals from Country B may travel to Country A, contributing to the spread of the disease
in more densely populated regions. The model helps public health officials understand
how the movement of people between different regions influences the overall spread of the
disease. Each nation can develop strategies in order to manage and contain the epidemic
while considering the distinct qualities of both urban and rural areas, as well as the effects
of cross-border exchanges.

On the other hand, fractional calculus is a branch of mathematics that deals with the
generalization of derivatives and integrals to non-integer orders [8]. In recent years, it has
been increasingly applied to epidemic models in order to capture the complex dynamics of
infectious diseases [9,10]. The use of fractional calculus in epidemic systems has shown
several effects, some of which are highlighted below:
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• Increased accuracy: the use of fractional calculus in epidemic models can provide a
more accurate representation of the dynamics of infectious diseases. This is because
it can capture long-term memory effects, which are not accounted for in traditional
integer-order differential equations.

• Increased complexity: fractional calculus introduces a new level of complexity to
epidemic models, making them more challenging to analyze. This complexity can lead
to the emergence of new behavioral patterns that are not present in traditional models.

• Improved control strategies: fractional calculus can help design more effective control
strategies for infectious diseases. This is because it can capture the impact of interven-
tions such as vaccination campaigns and social distancing measures on the long-term
dynamics of the disease [11].

• New insights into disease dynamics: the use of fractional calculus in epidemic models
can provide new insights into the dynamics of infectious diseases. For example, it can
help in order to explain why some diseases exhibit periodic outbreaks or why they
show complex oscillatory behavior.

In real-life examples, the patch transfer concept in the SIR model helps capture the
dynamics of an infectious disease spreading across borders while considering the dis-
tinct features of different regions and the movement of individuals between them. Using
mathematical models, researchers can better understand how diseases spread and how
interventions such as vaccination programs or travel restrictions can impact disease trans-
mission. Additionally, the two-patch epidemic system can help policymakers to make
informed decisions about how to allocate resources and respond to disease outbreaks in
different populations. Overall, the two-patch epidemic system is an important tool for
understanding the spread and dynamics of infectious diseases in interconnected popu-
lations and has the potential to inform public health interventions and policies aimed at
controlling and preventing the spread of infectious diseases.

Today, fractional calculus is becoming increasingly popular for model simulation and
for studying the complex nature of disease transmission. The use of fractional calculus in
epidemic models can provide a more accurate and nuanced understanding of the dynamics
of infectious diseases. It can help design more effective control strategies and offer new
insights into the behavior of infectious diseases. Considering all of the above facts, we
have constructed our model in the Caputo differential framework. In this context, the
works of Das and Samanta [9,12,13] on fractional order dynamics should be noted. Several
academics have recently made substantial additions to the numerous SIR models in both
integer and fractional order systems.

There are many examples of infectious diseases in which people’s movement has
played a key role in the spread of the virus [14,15]. Consider the example of SARS; it
had spread over almost all of China and several other regions of the world solely as a
result of human movement. Moreover, the world has recently witnessed the pandemic
situation caused by the COVID-19 coronavirus. Each and every country imposed strict
restrictions on non-pharmaceutical interventions and people’s migration, whether within
states or between countries. Numerous articles on COVID-19 have already been published,
demonstrating how control measures and public awareness have reduced the disease
load [16–18]. Epidemic models intended to explain the dynamic behavior of disease
propagation between patches have been presented and analyzed by Takeuchi et al. [19],
Wang and Wang [20], Wang and Mulone [21], and Wang and Zhao [22,23]. Other articles
have been published in which researchers focused on epidemiological models in a two-
patch environment under optimal treatment and vaccination [4,24]. Multi-city epidemic
models were suggested by Wan and Cui [25] and Arino and Vanden Driessche [26] in order
to investigate the dynamics of infectious illnesses. Another transport-related pandemic
model with entrance and exit checks was examined by Liu et al. [27]. In his study, Chen
proposed an epidemic model with adaptive dispersal rates in order to observe how proper
adaptation helps reduce disease load in connected groups or patches [28]. The impact of
population dispersal among ‘n’ patches on the transmission of a disease was examined by
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Arino and Driessche [26]. According to their numerical calculations, a disease that becomes
endemic will not become extinct in two patches. It becomes extinct in two patches when
people disperse within a certain range. Their simulation demonstrates how population
dispersal might help in the eradication of endemic illnesses in isolated patches if the basic
reproduction numbers of those patches are not very high and the contact rates between
the two patches are not high either. Chen et al. [29] presented an SIR model that includes
illnesses due to transport. Despite the publications mentioned above, further study is
required on epidemic models involving population dispersal. In the current study, we
have examined an epidemic model that accounts for population dispersal across different
locations. To keep things simple, we have merely taken into account the population
distribution between the two cities. It is considered that susceptible and recovered people
are free to move between these two regions, while there are strict restrictions on the people
who are diagnosed to be infected. The main aim of our work is to observe how the infection
level changes in each of the patches when people disperse at the optimal rate, which
is considered to be time-dependent. Moreover, we have not restricted ourselves to the
deterministic approach, and have also analyzed the fractional-order system.

We have organized this article into several sections. Model formations in both the
integer-order system and fractional system are presented in Section 2, followed by the
establishment of the positivity and boundedness of the solutions of the integer-order system.
Equilibrium analysis, sensitivity analysis, and stability analysis of the model are studied
in Sections 4, 5 and 6, respectively. Next, we have presented our numerical simulations
for the system (integer and fractional) in Sections 7 and 8, respectively. In Section 9, an
optimal control problem has been proposed for both fractional and traditional integer-order
systems, while the corresponding numerical studies of control problems are analyzed in
Sections 10 and 11, respectively. Finally, we have presented our conclusions in Section 12.

2. Model Formulation

This article deals with a compartmental SIRS model in a two-patch environment where
the population in each patch is infected with a disease. The susceptible and recovered
populations are allowed to disperse between the patches, while there are strict restrictions
for the infected population, who cannot leave their respective patches. It is assumed that
the infected individuals are advised to live in their own patches. The total population in
Patch-i (Ni(t)) for i = 1, 2 is subdivided into the three following compartments in each
patch: the susceptible population Si(t), infected population Ii(t), and recovered population
Ri(t) (see Figure 1).

Figure 1. Schematic diagram of system (1).
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It is considered that the interaction between individuals is a mass action type and the
population is homogeneously mixed in the environment; hence, the parameters β1 and
β2 represent the disease transmission rates from susceptible to infected people in Patch-1
and Patch-2, respectively. The recruitment rate in Patch-1 is denoted by Λ1, whereas for
Patch-2 it is Λ2. The natural mortality rates are parameterized by µ1 and µ2, respectively,
and are considered in each compartment of each patch. The parameters δ1 and δ2 denote
the disease-induced death rates of Patch-1 and Patch-2, respectively, which are considered
in the infected class of each patch only. The infected people gain immunity at a rate γi in
Patch-i (for i = 1, 2) either by natural immunity or by clinical treatment and then move to
recovered class; however, as it is considered that the recovery is only temporary, a portion
of the recovered people becomes susceptible again in Patch-i with a rate ηi for i = 1, 2.
The term m represents the dispersal speed of the population between two patches. The
parameters m1

12 and m1
21 are the probabilities of dispersion of the susceptible population

from Patch-2 to Patch-1 and from Patch-1 to Patch-2, respectively, while m2
12 and m2

21 are the
probabilities of dispersion of the recovered population from Patch-2 to Patch-1 and from
Patch-1 to Patch-2, respectively. A diagram in Figure 1 is provided to show the epidemic
model in a two-patch environment. It should be noted that in the absence of dispersal,
i.e., when m = 0, the population in each patch can evolve independently. Thus, the SIRS
epidemic model with population-dispersal dynamics is described as follows:

dS1

dt
= Λ1 − β1S1 I1 − µ1S1 + η1R1 + m(m1

12S2 − m1
21S1), S1(0) > 0,

dI1

dt
= β1S1 I1 − (µ1 + δ1)I1 − γ1 I1, I1(0) > 0,

dR1

dt
= γ1 I1 − µ1R1 − η1R1 + m(m2

12R2 − m2
21R1), R1(0) > 0,

dS2

dt
= Λ2 − β2S2 I2 − µ2S2 + η2R2 + m(m1

21S1 − m1
12S2), S2(0) > 0, (1)

dI2

dt
= β2S2 I2 − (µ2 + δ2)I2 − γ2 I2, I2(0) > 0,

dR2

dt
= γ2 I2 − µ2R2 − η2R2 + m(m2

21R1 − m2
12R2) R2(0) > 0.

Next, we consider the above SIRS model under the Caputo fractional order system
framework. The main reasons behind our consideration are: (1) observing the impact of
the long-term memory effect on the transmission dynamics of the SIRS model; (2) looking
for better numerical results; and (3) studying the effect of fractional order to achieve a
disease-free environment. When dealing with real-world problems, the Caputo derivative
is very useful because it allows traditional initial and boundary conditions to be included
in the formulation of the problem; moreover, the derivative of a constant is zero, which is
not the case with the Riemann–Liouville fractional derivative. For this reason, we intend to
consider the Caputo derivative.

C
0 DαS1 = Λα

1 − βα
1S1 I1 − µα

1S1 + ηα
1 R1 + mα(m1

12S2 − m1
21S1), S1(0) > 0

C
0 Dα I1 = βα

1S1 I1 − (µα
1 + δα

1 )I1 − γα
1 I1, I1(0) > 0

C
0 DαR1 = γα

1 I1 − µα
1 R1 − ηα

1 R1 + mα(m2
12R2 − m2

21R1), R1(0) > 0
C
0 DαS2 = Λα

2 − βα
2S2 I2 − µα

2S2 + ηα
2 R2 + mα(m1

21S1 − m1
12S2), S2(0) > 0 (2)

C
0 Dα I2 = βα

2S2 I2 − (µα
2 + δα

2 )I2 − γα
2 I2, I2(0) > 0

C
0 DαR2 = γα

2 I2 − µα
2 R2 − ηα

2 R2 + mα(m2
21R1 − m2

12R2), R2(0) > 0.
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Here, C
0 Dα is the Caputo fractional derivative operator of order α. The system (2) is

well balanced in the time dimension. For simplicity, we have omitted the power α in each
parameter containing α. The system we intend to study is mentioned below:

C
0 DαS1 = Λ1 − β1S1 I1 − µ1S1 + η1R1 + m(m1

12S2 − m1
21S1), S1(0) > 0

C
0 Dα I1 = β1S1 I1 − (µ1 + δ1)I1 − γ1 I1, I1(0) > 0

C
0 DαR1 = γ1 I1 − µ1R1 − η1R1 + m(m2

12R2 − m2
21R1), R1(0) > 0

C
0 DαS2 = Λ2 − β2S2 I2 − µ2S2 + η2R2 + m(m1

21S1 − m1
12S2), S2 > 0

C
0 Dα I2 = β2S2 I2 − (µ2 + δ2)I2 − γ2 I2, I2(0) > 0

C
0 DαR2 = γ2 I2 − µ2R2 − η2R2 + m(m2

21R1 − m2
12R2), R2(0) > 0. (3)

Here, S1(0), I1(0), R1(0), S2(0), I2(0), R2(0) are the initial stages of system (3).
For an absolutely continuous function g ∈ Cn([0, ∞+),IR), C

0 Dα is defined as

C
0 Dαg(t) =


1

Γ(n − α)

∫ t

0

g(n)(s)
(t − s)α−n+1 ds, α ∈ (n − 1, n), n ∈ N

dn

dtn g(t), α = n.

where, Γ(·) is the Gamma function, t ≥ 0, and n is a natural number. In particular, for
α ∈ (0, 1),

C
0 Dαg(t) =

1
Γ(1 − α)

∫ t

0

g
′
(s)

(t − s)α ds.

For α = 1, the model (2) is transformed into the model (1).

3. Positivity and Boundedness of System (1)

This section shows the biological relevance of the proposed deterministic system by
proving the positivity and boundedness of the system variables with time.

Theorem 1. Any solution of system (1) in R6
+ is positive for t > 0.

Proof. The right-hand side of the model (1) is continuous and locally Lipschitzian on
the domain R6

+, which implies that a solution (S1(t), I1(t), R1(t), S2(t), I2(t), R2(t)) of the
system including the initial conditions exists uniquely on [0, κ), where 0 < κ ≤ +∞. The
second equation of system (1) with the initial conditions provides

dI1

dt
= {β1S1 − (γ1 + µ1 + δ1)}I1

⇒ I1(t) = I1(0) exp[
∫ t

0
{β1S1(u)− (γ1 + µ1 + δ1)}du] > 0, for I1(0) > 0.

Similarly, we can show that I2(t) > 0 for all t > 0. Now, we want to show that R1(t) > 0,
∀ t ∈ [0, κ). If this does not hold, then ∃ t1 ∈ (0, κ) such that R1(t1) = 0, Ṙ1(t1) ≤ 0 and
R1(t) > 0, ∀ t ∈ [0, t1). Then, we need to show that R2(t) > 0, ∀ t ∈ [0, t1). If it does not
hold, then ∃ t2 ∈ (0, t1) such that R2(t2) = 0, Ṙ2(t2) ≤ 0 and R2(t) > 0, ∀ t ∈ [0, t2). From
the last equation of (1), we have

dR2

dt

∣∣∣∣
t=t2

= γ2 I2(t2)− (µ2 + η2)R2(t2) + m[m2
21R1(t2)− m2

12R2(t2)]

= γ2 I2(t2) + mm2
21R1(t2) > 0,

which contradicts Ṙ2(t2) ≤ 0. So, R2(t) > 0, ∀ t ∈ [0, t1), while from the third equation
we obtain
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dR1

dt

∣∣∣∣
t=t1

= γ1 I1(t1)− (µ1 + η1)R1(t1) + m[m2
12R2(t1)− m2

21R1(t1)]

= γ1 I1(t1) + mm2
12R2(t1) > 0,

which contradicts Ṙ1(t1) ≤ 0. Thus, R1(t) > 0, ∀ t ∈ [0, κ). From the previous steps, it
follows that R2(t) > 0, ∀ t ∈ [0, κ).

Next, we want to prove that S1(t) > 0, ∀ t ∈ [0, κ). If this statement is not true,
then ∃ t3 ∈ (0, κ) such that S1(t3) = 0, Ṡ1(t1) ≤ 0 and S1(t) > 0, ∀ t ∈ [0, t3). Thus, we
need to prove that S2(t) > 0, ∀ t ∈ [0, t3). If this is not true, then ∃ t4 ∈ (0, t3) such that
S2(t4) = 0, Ṡ2(t4) ≤ 0 and S2(t) 0, ∀ t ∈ [0, t4). From the fourth equation of (1), we have

dS2

dt

∣∣∣∣
t=t4

= Λ2 − β2S2(t4)I2(t4)− µ2S2(t4) + η2R2(t4) + m[m1
21S1(t4)− m1

12S2(t4)]

= Λ2 + η2R2(t4) + mm1
21S1(t4) > 0,

which contradicts Ṡ2(t4) ≤ 0. So, S2(t) > 0, ∀ t ∈ [0, t3). Lastly, from the first equation
we have

dS1

dt

∣∣∣∣
t=t3

= Λ1 − β1S1(t3)I1(t3)− µ1S1(t3) + η1R1(t3) + m[m1
12S2(t3)− m1

21S1(t3)]

= Λ1 + η1R1(t3) + mm1
12S2(t3) > 0,

which contradicts Ṡ1(t3) ≤ 0. Thus, S1(t) > 0, ∀ t ∈ [0, κ). From the above-mentioned
steps, we obtain S2(t) > 0, ∀ t ∈ [0, κ), where 0 < κ ≤ ∞, hence, the theorem.

Theorem 2. Any solution of system (1) initiating from R6
+ is bounded with time.

Proof. Let us consider the overall population as N(t) = N1(t) + N2(t) = (S1(t) + I1(t) +
R1(t)) + (S2(t) + I2(t) + R2(t)). Then the time derivative along the solution trajectories
for model (1) is obtained as follows:

dN
dt

= Λ1 + Λ2 − µ1(S1 + I1 + R1)− µ2(S2 + I2 + R2)− δ1 I1 − δ2 I2

≤ Λ1 + Λ2 − µ1N1 − µ2N2

≤ Λ − µN,

where Λ = Λ1 + Λ2 and µ = min{µ1, µ2}. Now, using the notion of differential inequality

for N(t), we can derive the following result: 0 < N(t) ≤ Λ
µ
+

(
N(0)− Λ

µ

)
e−µt, where

N(0) is the total population size at the initial time. Thus, 0 < lim
t→∞

N(t) ≤ Λ
µ
+ ϵ, for any

ϵ > 0.
The solutions of the system converge in the region Ω =

{
(S1, I1, R1, S2, I2, R2) ∈ R6

+ :

0 < N(t) ≤ Λ
µ
+ ϵ

}
.

4. Equilibrium Analysis

In this section, we first derive the basic reproduction numbers in both the presence
and absence of population dispersal, then analyze the endemic equilibrium states. In a
susceptible environment, the number of newly infected individuals generated from a single
infected person is represented by R0; in this work, we have followed the process developed
by van den Driessche and Watmough [30] to obtain R0. Let us denote pi = µi + δi + γi for
i = 1, 2 and pj+2 = µj + ηj for j = 1, 2.
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Case I: Consider the situation when there is no population dispersal between the patches
(m = 0). For m = 0, systems (1) and (2) possess a disease-free equilibrium (DFE)

E0
0(S

0
10, 0, 0, S0

20, 0, 0) where S0
10 =

Λ1

µ1
, S0

20 =
Λ2

µ2
. The basic reproduction numbers for

Patch-1 and Patch-2 in this case are found to be R0
10 =

β1S0
10

p1
and R0

20 =
β2S0

20
p2

, respectively.

The Patch-2 infection-free equilibrium in absence of population dispersal is noted

as E0
1(S

0
11, I0

11, R0
11, S0

21, 0, 0), where S0
11 =

p1

β1
, I0

11 =
µ1 p1 p3

β1(p1 p3 − η1γ1)
(R0

10 − 1), R0
11 =

γ1 I0
11

p3
, S0

21 =
Λ2

µ2
, while the Patch-1 infection-free equilibrium is E0

2(S
0
12, 0, 0, S0

22, I0
22, R0

22),

where S0
12 =

Λ1

µ1
, S0

22 =
p2

β2
, I0

22 =
µ2 p2 p4

β2(p2 p4 − η2γ2)
(R0

20 − 1), R0
22 =

γ2 I0
22

p4
. This shows

that feasibility of E0
1 and E0

2 occurs according to R0
10 > 1 and R0

20 > 1, respectively.
The endemic equilibrium point in absence of population dispersal is E0

∗(S0
1∗, I0

1∗, R0
1∗,

S0
2∗, I0

2∗, R0
2∗), where S0

1∗ =
p1

β1
, S0

2∗ =
p2

β2
, R0

1∗ =
γ1I0

1∗
p3

, R0
2∗ =

γ2I0
2∗

p4
, I0

1∗ =
µ1p1p3(R0

10 − 1)
β1(p1p3 − η1γ1)

and I0
2∗ =

µ2p2p4(R0
20 − 1)

β2(p2p4 − η2γ2)
. Thus, R10, R20 > 1 leads to the feasibility of I0

1∗ and I0
2∗,

respectively.
Case II: Next, we consider the situation in when people can disperse towards Patch-
2 from Patch-1 but cannot move back to Patch-1 (i.e., m1

12 = 0 = m2
12). In this case,

systems (1) and (2) possess a disease-free equilibrium (DFE) Em21
0 (Sm21

10 , 0, 0, Sm21
20 , 0, 0), where

Sm21
10 =

Λ1

µ1 + mm1
21

, Sm21
20 =

Λ1mm1
21 + Λ2(µ1 + mm1

21)

µ2(µ1 + mm1
21)

. Here, we obtain the basic repro-

duction number as Rm21
0 = max{Rm21

10 , Rm21
20 } = max

{
β1Sm21

1
p1

,
β2Sm21

2
p2

}
.

The Patch-2 infection-free equilibrium when m1
12 = m2

12 = 0 is noted as Em21
1 (Sm21

11 ,

Im21
11 , Rm21

11 , Sm21
21 , 0, Rm21

21 ), where Sm21
11 =

p1

β1
, Im21

11 =
p1(µ1 + mm1

21)(p3 + mm2
21)

β1{p1(p3 + mm2
21)− η1γ1}

(Rm21
10 − 1),

Rm21
11 =

γ1 I
m21
11

p3+mm2
21

, Rm21
22 =

mm2
21R

m21
11

p4
, Sm21

21 =
(Λ2+η2R

m21
22 +mm1

21S
m21
11 )

µ2
, while Patch-1 infection-

free equilibrium is Em21
2 (Sm21

12 , 0, 0, Sm21
22 , Im21

22 , Rm21
22 ), where Sm21

12 =
Λ1

µ1 + mm1
21

,

Sm21
22 = p2

β2
, Im21

22 = µ2 p2 p4
β2(p2 p4−η2γ2)

(Rm21
20 − 1), Rm21

22 =
γ2 I

m21
22

p4
. This shows that the feasibility of

Em21
1 and Em21

2 occurs according to Rm21
10 > 1 and Rm21

20 > 1, respectively.
Let us denote, K1 = [p1 p4mm2

21 + p4(p1 p3 − η1γ1)] and K2 = [µ2 p2β1(Rm21
20 − 1) +

p1β2mm1
21].

The endemic equilibrium point here is Em21∗ (Sm21
1 , Im21

1 , Rm21
1 , Sm21

2 , Im21
2 , Rm21

2 ), where

Sm21
1 =

p1

β1
, Sm21

2 =
p2

β2
, Rm21

1 =
γ1 Im21

1
p3 + mm2

21
, Rm21

2 =
mm2

21γ1 Im21
1 + (p3 + mm2

21)γ2 Im21
2

p4(p3 + mm2
21)

,

Im21
1 =

p1(µ1 + mm1
21)(p3 + mm2

21)(Rm21
10 − 1)

β1[p1(p3 + mm2
21)− η1γ1]

,

and Im21
2 =

K1K2 + η2γ1β2 p1(µ1 + mm1
21)(Rm21

10 − 1)mm2
21

β1β2(p2 p4 − η2γ2)[p1(p3 + mm2
21)− η1γ1]

.

Here, Im21
1 > 0 when Rm21

10 > 1 and Im21
2 > 0 when η2γ1β2 p1(µ1 + mm1

21)(Rm21
10 −

1)mm2
21 + [p1 p4mm2

21 + p4(p1 p3 − η1γ1)][µ2 p2β1(Rm21
20 − 1) + p1β2mm1

21] > 0. Thus, a
disease can invade in Patch-2 even if the corresponding reproduction number lies below
the unit value (Rm21

20 < 1).
Case III: In the next situation, people can disperse towards Patch-1 from Patch-2 but cannot
move back to Patch-2 (i.e., m1

21 = 0 = m2
21). In this case, systems (1) and (2) possess a disease-
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free equilibrium (DFE) Em12
0 (Sm12

10 , 0, 0, Sm12
20 , 0, 0), where Sm12

10 =
Λ1(µ2 + mm1

12) + Λ2mm1
12

µ1(µ2 + mm1
12)

,

Sm12
20 = Λ2

µ2+mm1
12

. We obtain the basic reproduction number as Rm12
0 = max{Rm12

10 , Rm12
20 } =

max

{
β1Sm12

1
p1

,
β2Sm12

2
p2

}
.

The Patch-2 infection-free equilibrium when m1
21 = m2

21 = 0 is noted as Em12
1 (Sm12

11 ,

Im12
11 , Rm12

11 , Sm12
21 , 0, 0), where Sm12

11 =
p1

β1
, Im12

11 =
µ1 p1 p3

β1(p1 p3 − η1γ1)
(Rm12

10 − 1), Rm12
11 =

γ1 Im12
11

p3
,

Sm12
21 = Λ2

µ2+mm1
12

, while the Patch-1 infection-free equilibrium is Em12
2 (Sm12

12 , 0, Rm12
12 , Sm12

22 , Im12
22 ,

Rm12
22 ), where Sm12

12 =
(Λ1 + η1Rm12

12 + mm1
12Sm12

22 )

µ1
, Rm12

12 =
mm2

12Rm12
22

p3
, Sm12

22 =
p2

β2
,

Im12
22 =

p2(µ2 + mm1
12)(p4 + mm2

12)

β2{p2(p4 + mm2
12)− η2γ2}

(Rm12
20 − 1), Rm12

22 =
γ2 Im12

22
p4 + mm2

12
. This shows that the

feasibility of Em12
1 and Em12

2 occurs according to Rm12
10 > 1 and Rm12

20 > 1, respectively.
Let us denote, K3 = [p2 p3mm2

12 + p3(p2 p4 − η2γ2)] and K4 = [µ1 p1β2(Rm12
10 − 1) +

p2β1mm1
12].

The endemic equilibrium point here is Em12∗ (Sm12
1 , Im12

1 , Rm12
1 , Sm12

2 , Im12
2 , Rm12

2 ), where

Sm12
1 =

p1

β1
, Sm12

2 =
p2

β2
, Rm12

1 =
(p4 + mm2

12)γ1 Im12
1 + mm2

12γ2 Im12
2

p3(p4 + mm2
12)

, Rm12
2 =

γ2 Im12
2

p4 + mm2
12

,

Im12
2 =

p2(µ2 + mm1
12)(p4 + mm2

12)(Rm12
20 − 1)

β2[p2(p4 + mm2
12)− η2γ2]

,

and Im21
1 =

K3K4 + η1γ2β1 p2(µ2 + mm1
12)(Rm12

20 − 1)mm2
12

β1β2(p1 p3 − η1γ1)[p2(p4 + mm2
12)− η2γ2]

.

Here, Im12
2 > 0 when Rm12

20 > 1 and Im12
1 > 0 when η1γ2β1 p2(µ2 + mm1

12)(Rm12
20 −

1)mm2
12 + [p2 p3mm2

12 + p3(p2 p4 − η2γ2)][µ1 p1β2(Rm12
10 − 1) + p2β1mm1

12] > 0. Thus, a
disease can invade in Patch-1 even if the corresponding reproduction number lies below
the unit value (Rm12

10 < 1).
Case IV: Lastly, we consider the situation where people from both patches can disperse (i.e., m ≠
0). In this case, systems (1) and (2) possess a disease-free equilibrium (DFE) Em

0 (S
m
10, 0, 0, Sm

20, 0, 0),

where Sm
10 =

Λ1(µ2 +mm1
12) +Λ2mm1

12
µ1(µ2 +mm1

12) + µ2mm1
21

, Sm
20 =

Λ1mm1
21 +Λ2(µ1 +mm1

21)

µ1(µ2 +mm1
12) + µ2mm1

21
.

Basic reproduction number (Rm
0 ): To obtain Rm

0 in the presence of population dispersal,
we can consider x ≡ (I1, I2). Then, we have dx

dt = F(x)− ν(x), where

F(x) =
(

β1S1 I1
β2S2 I2

)
, ν(x) =

(
p1 I1
p2 I2

)
.

Here, F(x) and ν(x) contain the compartment containing the new infection term and
the other terms, respectively; thus, at the disease-free equilibrium Em

0 we have

F = (DF(x))Em
0
=

(
β1Sm

10 0
0 β2Sm

20

)
; V = (Dν(x))Em

0
=

(
p1 0
0 p2.

)
The spectral radius of the next generation matrix FV−1 is R0, and is provided by

Rm
0 = max{Rm

10, Rm
20} = max

{
β1Sm

10
p1

,
β2Sm

20
p2

}
. (4)
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The endemic equilibrium point is Em
∗ (Sm

1 , Im
1 , Rm

1 , Sm
2 , Im

2 , Rm
2 ), where Sm

1 =
p1

β1
, Sm

2 =

p2

β2
, Rm

1 =
(p4+mm2

12)γ1 Im
1 +mm2

12γ2 Im
2

(p3+mm2
21)(p4+mm2

12)−m2m2
12m2

21
, Rm

2 =
mm2

21γ1 Im
1 + (p3 + mm2

21)γ2 Im
2

(p3 + mm2
21)(p4 + mm2

12)− m2m2
12m2

21
.

Let us consider A1 = (p3 + mm2
21)(p4 + mm2

12)− m2m2
21m2

12 > 0, B1 = Λ1 − µ1Sm
1 +

m(m1
12Sm

2 − m1
21Sm

1 ), B2 = Λ2 − µ2Sm
2 + m(m1

21Sm
1 − m1

12Sm
2 ), C1 = η1γ1(p4 + mm2

12) −

p1 A1, C2 = η2γ2(p3 + mm2
21)− p2 A1. Then, we have Im

1 =
A1B2η1γ2mm2

12 − A1B1C2

C1C2 − η1η2γ1γ2m2m2
21m2

12
and

Im
2 =

A1B1η2γ1mm2
21 − A1B2C1

C1C2 − η1η2γ1γ2m2m2
21m2

12
.

As C1C2 − η1η2γ1γ2m2m2
21m2

12 > 0, we have Im
1 > 0 when B2η1γ2mm2

12 − B1C2 > 0
and Im

2 > 0 when B1η2γ1mm2
21 − B2C1 > 0.

When the population disperses among two patches, several different scenarios may
occur: (IV.a), when Patch-1 shows SIRS epidemic dynamics but Patch-2 contains only the
susceptible population; (IV.b), when Patch-2 shows SIRS epidemic dynamics but Patch-1
contains only susceptible population; (IV.c), when Patch-1 shows a SIRS epidemic dynamics
but Patch-2 is infection-free; and (IV.d), when Patch-1 shows a SIRS epidemic dynamics but
Patch-2 is infection-free.
(IV.a) Patch-2 infection-free equilibrium E1(S11, I11, R11, S21, 0, R21), where, S11 =

p1

β1
,

R21 =
mm2

21R11
p4+mm2

12
, S21 = 1

µ2+mm1
12

[
Λ2 + mm1

21S11 +
η2mm2

21R11
p4+mm2

12

]
, I11 = A1R11

γ1(p4+mm2
12)

and R11 =

−(Rm
10 − 1)S11{(µ1 + mm1

21)(µ2 + mm1
12)− m2m1

12m1
21}

X1(µ2 + mm1
12)

.

Here, X1 = η1 +
η2m2m1

12m2
21

(µ2 + mm1
12)(p4 + mm2

12)
− p1 A1

γ1(p4 + mm2
12)

< 0. Thus, R11 > 0 only

when Rm
10 > 1.

(IV.b) Patch-1 infection-free equilibrium E2(S12, 0, R12, S22, I22, R22). where S22 =
p2

β2
, R12 =

mm2
12R22

p3 + mm2
21

, S12 =
[(Λ1 + mm1

12S22)(p3 + mm2
21) + η1mm2

12R22]

(µ1 + mm1
21)(p3 + mm2

21)
, I22 =

A1R22

γ2(p3 + mm2
21)

.

and

R22 =
−(Rm

20 − 1)S22{(µ1 + mm1
21)(µ2 + mm1

12)− m2m1
12m1

21}
X2(µ1 + mm1

21)
.

Here. X2 = η2 +
η1m2m1

21m2
12

(µ1 + mm1
21)(p3 + mm2

21)
− p2 A1

γ2(p3 + mm2
21)

< 0. Thus, R22 > 0 only

when Rm
20 > 1.

Altogether, we have come up with equilibrium points for different situations that may
occur due to population dispersal, before becoming infected or after recovery. It is observed
here that even if the basic reproduction number of one patch becomes less than 1, the whole
system may become infected. Moreover, it has been noted prominently from the model
(2) that almost all parameters contain α as a power which implies that the reproduction
number clearly depends on α for the fractional-order system.

5. Sensitivity Analysis

The basic reproduction number (R0) depends on system parameters such as the
disease transmission rates (β1, β2), dispersal speed (m), probabilities of susceptibles to
disperse between patches (m1

12, m1
21), etc. However, not all of the parameters can be

controlled, as they may depend only on environmental changes. A few parameters have
more impact on disease propagation compared to others; thus, in this section the effect of
β1, β2, m, m1

12, m1
21 on R0 is analyzed.
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Now, R0 = max{Rm
10, Rm

20} = max
{

β1Sm
10

p1
,

β2Sm
20

p2

}
, where pi = (µi + δi + γi) for

i = 1, 2 and Sm
10 =

Λ1(µ2 + mm1
12) + Λ2mm1

12
µ1(µ2 + mm1

12) + µ2mm1
21

, Sm
20 =

Λ1mm1
21 + Λ2(µ1 + mm1

21)

µ1(µ2 + mm1
12) + µ2mm1

21
. Let us

denote K = µ1µ2 + m(µ1m1
12 + µ2m1

21). Then, we have

∂Rm
10

∂β1
=

Sm
10

p1
> 0,

∂Rm
20

∂β2
=

Sm
20

p2
> 0,

∂Rm
10

∂m
=

β1µ2(Λ2µ1m1
12 − Λ1µ2m1

21)

p1K2 ,
∂Rm

20
∂m

=
β2µ1(Λ1µ2m1

21 − Λ2µ1m1
12)

p2K2 ,

∂Rm
10

∂m1
12

=
β1mµ2[Λ2µ1 + m(Λ1 + Λ2)m1

21]

p1K2 > 0,

∂Rm
20

∂m1
12

=
−β2mµ1[Λ2µ1 + m(Λ1 + Λ2)m1

21]

p2K2 < 0,

∂Rm
10

∂m1
21

=
−β1mµ2[Λ1µ2 + m(Λ1 + Λ2)m1

12]

p1K2 < 0,

∂Rm
20

∂m1
21

=
β2mµ1[Λ1µ2 + m(Λ1 + Λ2)m1

12]

p2K2 > 0.

Now, the normalized forward sensitivity index for a parameter say κ, is provided
as [31]:

Γκ =

[
κ

Rm
0

∂Rm
0

∂κ

]
Then, the normalized forward sensitivity index for the parameters β1, β2, m, m1

12, and
m1

21 is:

Γβ1 =
Rm

10
max(Rm

10, Rm
20)

, Γβ2 =
Rm

20
max(Rm

10, Rm
20)

,

Γ1
m =

mµ2(Λ2µ1m1
12 − Λ1µ2m1

21)

K[Λ1µ2 + m(Λ1 + Λ2)m1
12]

, Γ2
m =

mµ1(Λ1µ2m1
21 − Λ2µ1m1

12)

K[Λ2µ1 + m(Λ1 + Λ2)m1
21]

,

Γ1
m1

12
=

µ2mm1
12[Λ2µ1 + m(Λ1 + Λ2)m1

21]

K[Λ1µ2 + m(Λ1 + Λ2)m1
12]

, Γ2
m1

12
=

−µ1mm1
12

K
,

Γ1
m1

21
=

−µ2mm1
21

K
, Γ2

m1
21
=

µ1mm1
21[Λ1µ2 + m(Λ1 + Λ2)m1

12]

K[Λ2µ1 + m(Λ1 + Λ2)m1
21]

.

It is observed that Rm
10 and Rm

20 maintain monotonically increasing relation with β1
and β2, respectively which is evident as the disease transmission rates of each patch mainly
decide the invasion of infection on that patch. Moreover, the population dispersal speed
(m) can also be considered as a contributory factor in disease propagation in the patches.
Then it will be the movement probability of the population that will decide the infection
fatality. For example, an increased dispersal speed will help to spread the infection in
Patch-1 only when Λ2µ1m1

12 > Λ1µ2m1
21 holds. On the other hand, if Λ1µ2m1

21 > Λ2µ1m1
12

is satisfied, then an increasing dispersal speed will make Patch-2 infected. Moreover, if
more people start to disperse towards Patch-1, then the chance of people becoming infected
there will increase only and Patch-2 will remain safe. This holds the other way around also.
So from the analysis, it is observed that regulation on the population dispersal speed will
help to control the prevalence to a certain extent during a disease outbreak.
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6. Stability Analysis

The local stability conditions for the equilibrium points of systems (1) and (2) are dis-
cussed in this section. The Routh–Hurwitz criterion helps to derive the stability conditions
of the system (1), whereas the stability conditions for system (2) follow from the results
stated in Theorem A2 of Appendix B. According to this criterion, an equilibrium point is
said to be locally asymptotically stable (LAS) if its corresponding Jacobian matrix provides
eigenvalues with negative real parts. Let pi = µi + δi + γi for i = 1, 2 and let pj+2 = µj + ηj
for j = 1, 2.
Case I: Consider the case when the population at each patch is not allowed to disperse
from one patch to another (m = 0). Here, Patch-1 and Patch-2 act as independent regions.

Theorem 3. In the absence of population dispersal, the disease-free equilibrium (E0
0) of the proposed

system is locally asymptotically stable (LAS) for R0
10 < 1 for Patch-1 and R0

20 < 1 for Patch-2.

Proof. The Jacobian matrix of systems (1) and (2) in the absence of population dispersal is
provided as follows:

J|E0
0
=



−µ1 −β1S0
10 η1 0 0 0

0 β1S0
10 − p1 0 0 0 0

0 γ1 −p3 0 0 0
0 0 0 −µ2 −β2S0

20 η2
0 0 0 0 β2S0

20 − p2 0
0 0 0 0 γ2 −p4


This provides the eigenvalues λ1 = −µ1, λ2 = −p3, λ3 = −µ2, λ4 = −p4, which

are always negative; the other two eigenvalues are λ5 = β1S0
10 − p1 = 1

p1
(R0

10 − 1) and

λ6 = β2S0
20 − p2 = 1

p2
(R0

20 − 1). Thus, λ5 and λ6 will be negative only when R0
10 < 1,R0

20 < 1.

Moreover, the arguments of all eigenvalues will be π(> απ/2) if R0
10 < 1,R0

20 < 1. Hence,
E0

0 is locally asymptotically stable for both systems when R0
10 < 1 for Patch-1 and R0

20 < 1
for Patch-2.

Theorem 4. In the absence of population dispersal, the endemic equilibrium (E0
∗) of the proposed

system is locally asymptotically stable (LAS) for R0
10 > 1 for Patch-1 and R0

20 > 1 for Patch-2.

Proof. At E0
∗ = (S0

1∗, I0
1∗, R0

1∗, S0
2∗, I0

2∗, R0
2∗), the Jacobian matrix is

J|E0∗
=



−β1 I0
1∗ − µ1 −β1S0

1∗ η1 0 0 0
β1 I0

1∗ 0 0 0 0 0
0 γ1 −p3 0 0 0
0 0 0 −β2 I0

2∗ − µ2 −β2S0
2∗ η2

0 0 0 β2 I0
2∗ 0 0

0 0 0 0 γ2 −p4

.

The eigenvalues are roots of the following characteristic equation:

[λ3 + (β1 I0
1∗ + µ1 + p3)λ

2 + {β2
1S0

1∗ I0
1∗ + p3(β1 I0

1∗ + µ1)}λ + β1 I0
1∗(p1 p3 − η1γ1)]

[λ3 + (β2 I0
2∗ + µ2 + p4)λ

2 + {β2
2S0

2∗ I0
2∗ + p4(β2 I0

2∗ + µ2)}λ + β2 I0
2∗(p2 p4 − η2γ2)] = 0,

which means that

either [λ3 + (β1 I0
1∗ + µ1 + p3)λ

2 + {β2
1S0

1∗ I0
1∗ + p3(β1 I0

1∗ + µ1)}λ + β1 I0
1∗(p1 p3 − η1γ1)] = 0,

or [λ3 + (β2 I0
2∗ + µ2 + p4)λ

2 + {β2
2S0

2∗ I0
2∗ + p4(β2 I0

2∗ + µ2)}λ + β2 I0
2∗(p2 p4 − η2γ2)] = 0
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Thus, the eigenvalues have negative real parts if I0
1∗ > 0 and I0

2∗ > 0, and the argu-
ments of all the eigenvalues lie in the second or third quadrant, in this case as | arg λ| > απ

2 .
Consequently, it can be stated that E0

∗ is locally asymptotically stable in both system (1) and
system (2) when R0

10 > 1 and R0
20 < 1 hold.

Similarly, we can analyze the stability of the system around E0
1 and E0

2 using the nature
of eigenvalues of the corresponding Jacobian matrices.
Case II: Consider the case when the population from Patch-1 can disperse towards Patch-2
but cannot move back to Patch-1 again (m1

12 = m2
12 = 0).

Theorem 5. If people are not allowed to disperse to Patch-1, then the disease-free equilibrium
(Em21

0 ) of systems (1) and (2) is locally asymptotically stable (LAS) for Rm21
10 < 1 for Patch-1 and

Rm21
20 < 1 for Patch-2, i.e., Rm21

0 < 1.

Proof. The Jacobian matrix of systems (1) and (2) when people can not disperse to Patch-1
is provided as follows:

J|Em21
0

=



−µ1 − mm1
21 −β1Sm21

10 η1 0 0 0
0 β1Sm21

10 − p1 0 0 0 0
0 γ1 −p3 − mm2

21 0 0 0
mm1

21 0 0 −µ2 −β2Sm21
20 η2

0 0 0 0 β2Sm21
20 − p2 0

0 0 mm2
21 0 γ2 −p4



=



a11 a12 a13 0 0 0
0 a22 0 0 0 0
0 a32 a33 0 0 0

a41 0 0 a44 a45 a46
0 0 0 0 a55 0
0 0 a63 0 a65 a66

.

From the Jacobian matrix, we have the two eigenvalues λ1 = a22 = β1Sm21
10 − p1 =

p1(Rm21
10 − 1) and λ2 = a55 = β2Sm21

20 − p2 = p2(Rm21
20 − 1). The rest of the eigenvalues

are λ3 = a11 = −(µ1 + mm1
21), λ4 = a33 = −(p3 + mm2

21), λ5 = a44 = −µ2, and λ6 =
a66 = −p4, which are always negative. Thus, λ1 < 0 and λ2 < 0 when Rm21

10 < 1,Rm21
20 < 1,

respectively. For all eigenvalues, | arg λ| > απ
2 here; thus, Em21

0 is locally asymptotically
stable for both systems when Rm21

10 < 1 and Rm21
20 < 1 hold simultaneously, i.e., Rm21

0 =
max{Rm21

10 , Rm21
20 } < 1.

Theorem 6. The endemic equilibrium (Em21∗ ) of the proposed systems (1) and (2), if it exists, is
locally asymptotically stable (LAS).

Proof. The Jacobian matrix at endemic equilibrium point Em21∗ is provided as follows:

J|Em21∗
=



−β1 Im21
1 − µ1 − mm1

21 −β1Sm21
1 η1 0 0 0

β1 Im21
1 0 0 0 0 0

0 γ1 −p3 − mm2
21 0 0 0

mm1
21 0 0 −β2 Im21

2 − µ2 −β2Sm21
2 η2

0 0 0 β2 Im21
2 0 0

0 0 mm2
21 0 γ2 −p4



=



a11 a12 a13 0 0 0
a21 0 0 0 0 0
0 a32 a33 0 0 0

a41 0 0 a44 a45 a46
0 0 0 a54 0 0
0 0 a63 0 a65 a66

.
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The characteristic equation corresponding to J|Em21∗
is λ6 + G1λ5 + G2λ4 + G3λ3 + G4λ2 +

G5λ + G6 = 0, where

G1 = −(a11 + a33 + a44 − p4) > 0,

G2 = p1β1 Im21
1 + p2β2 Im21

2 + a11(a33 + a44 − p4) + a33a44 − p4(a33 + a44) > 0,

G3 = β1 Im21
1 [p1(mm2

21 − a44 + µ1 + p4) + η1(µ1 + δ1)] + β2 Im21
2 [µ2 p2 + η2(µ2 + δ2)− p2(a11 + a33)]

+ a11a33(p4 − a44) + p4a44(a11 + a33) > 0,

G4 = p1 p2β1β2 Im21
1 Im21

2 − a11a33a44 p4 + β1 Im21
1 [−a44 p1 p4 − (a44 + a66){µ1 p1 + η1(µ1 + δ1) + p1mm2

21}]
+ β2 Im21

2 [p2a11a33 − {µ2 p2 + η2(µ2 + δ2)}(a11 + a33)] > 0,

G5 = β1 Im21
1 [µ2 p4 + β2 Im21

2 (p2 + p4)][p1(µ1 + mm2
21) + η1(µ1 + δ1)] + β2 Im21

2 (p1β1 Im21
1 + a11a33){µ2 p2

+ η2(µ2 + δ2)} > 0,

G6 = β1β2 Im21
1 Im21

2 {p1(µ1 + mm2
21) + η1(µ1 + δ1)}{µ2 p2 + η2(µ2 + δ2)} > 0.

Here, the characteristic equation provides all of the eigenvalues with negative real
parts for feasible Im21

1 > 0 and Im21
2 > 0. In addition, the arguments of all the eigenvalues

lie in the second or third quadrant in this case, i.e., | arg λ| > απ
2 . Thus, it can be stated that

Em21∗ , whenever it exists, is locally asymptotically stable.

Similarly, we can analyze the stability of the system around Em21
1 and Em21

2 using the
nature of eigenvalues of the corresponding Jacobian matrices.
Case III: Consider the case when the population from Patch-2 can disperse towards Patch-1
but cannot move back to Patch-2 again (m1

21 = m2
21 = 0).

Theorem 7. If people are not allowed to disperse to Patch-2, then the disease-free equilibrium
(Em12

0 ) of systems (1) and (2) is locally asymptotically stable (LAS) for Rm12
10 < 1 for Patch-1 and

Rm12
20 < 1 for Patch-2, i.e., Rm12

0 < 1.

Proof. The Jacobian matrix of systems (1) and (2) when people can not disperse to Patch-2
is provided as follows:

J|Em12
0

=



−µ1 −β1Sm12
10 η1 mm1

12 0 0
0 β1Sm12

10 − p1 0 0 0 0
0 γ1 −p3 0 0 mm2

12
0 0 0 −µ2 − mm1

12 −β2Sm12
20 η2

0 0 0 0 β2Sm12
20 − p2 0

0 0 0 0 γ2 −p4 − mm2
12



=



a11 a12 a13 a14 0 0
0 a22 0 0 0 0
0 a32 a33 0 0 a36
0 0 0 a44 a45 a46
0 0 0 0 a55 0
0 0 0 0 a65 a66

.

Here, we have the two eigenvalues λ1 = a22 = β1Sm12
10 − p1 = p1(Rm12

10 − 1) and
λ2 = a55 = β2Sm12

20 − p2 = p2(Rm12
20 − 1). The rest of the eigenvalues are λ3 = a11 =

−µ1, λ4 = a33 = −p3, λ5 = a44 = −(µ2 + mm1
12), and λ6 = a66 = −(p4 + mm2

12), which
are always negative. The arguments of all the eigenvalues of the characteristic equation
lie in the second or third quadrant, i.e., | arg λ| > απ

2 in this case. Thus, Em12
0 is locally

asymptotically stable when Rm12
10 < 1 and Rm12

20 < 1 hold simultaneously for both system (1)
and system (2), i.e., Rm12

0 = max{Rm12
10 , Rm12

20 } < 1.
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Theorem 8. The endemic equilibrium (Em12∗ ) of the proposed systems (1) and (2), if it exists, is
locally asymptotically stable (LAS).

Proof. The Jacobian matrix at endemic equilibrium point Em12∗ is provided as follows:

J|Em12∗
=



−β1 Im12
1 − µ1 −β1Sm12

1 η1 mm1
12 0 0

β1 Im12
1 0 0 0 0 0

0 γ1 −p3 0 0 mm2
12

0 0 0 −β2 Im12
2 − µ2 − mm1

12 −β2Sm12
2 η2

0 0 0 β2 Im12
2 0 0

0 0 0 0 γ2 −p4 − mm2
12



=



a11 a12 a13 a14 0 0
a21 0 0 0 0 0
0 a32 a33 0 0 a36
0 0 0 a44 a45 a46
0 0 0 a54 0 0
0 0 0 0 a65 a66

.

The characteristic equation corresponding to J|Em12∗
is λ6 + H1λ5 + H2λ4 + H3λ3 + H4λ2 +

H5λ + H6 = 0, where

H1 = −(a11 + a44 + a66 − p3) > 0,

H2 = p1β1 Im12
1 + p2β2 Im12

2 + a11(a44 + a66 − p3) + a44a66 − p3(a44 + a66) > 0,

H3 = β1 Im12
1 [µ1 p1 + η1(µ1 + δ1)− p1(a44 + a66)] + β2 Im12

2 [p2(mm2
12 − a11 + µ2 + p3) + η2(µ2 + δ2)]

+ a11a44(p3 − a66) + p3a66(a11 + a44) > 0,

H4 = p1 p2β1β2 Im12
1 Im12

2 − a11a44a66 p3 + β1 Im12
1 [p1a44a66 − {µ1 p1 + η1(µ1 + δ1)}(a44 + a66)]

+ β2 Im12
2 [−a11 p2 p3 − (a11 + a33){µ2 p2 + η2(µ2 + δ2) + p2mm2

12}] > 0,

H5 = β1 Im12
1 (p2β2 Im12

2 + a44a66){µ1 p1 + η1(µ1 + δ1)}+ β2 Im12
2 [µ1 p3 + β1 Im12

1 (p1 + p3)][p2(µ2 + mm2
12)

+ η2(µ2 + δ2)] > 0,

H6 = β1β2 Im12
1 Im12

2 {p2(µ2 + mm2
12) + η2(µ2 + δ2)}{µ1 p1 + η1(µ1 + δ1)} > 0.

Here, the characteristic equation provides all of the eigenvalues with negative real parts
for feasible Im12

1 > 0 and Im12
2 > 0. Thus, all of the eigenvalues have negative real parts

and the arguments of all the eigenvalues lie in the second or third quadrant. Therefore,
| arg λ| > απ

2 , and it can be stated that Em12∗ , whenever it exists, is locally asymptotically
stable.

Similarly, we can analyze the stability of the system around Em12
1 and Em12

2 using the
nature of eigenvalues of the corresponding Jacobian matrices.
Case IV: Consider the case when the population is allowed to disperse between the patches.
Here, susceptible and recovered people can disperse among Patch-1 and Patch-2 (m ̸= 0).

Theorem 9. In the presence of population dispersal, the disease-free equilibrium (Em
0 ) of systems

(1) and (2) is locally asymptotically stable (LAS) for Rm
10 < 1 and Rm

20 < 1, i.e., Rm
0 < 1.

Proof. The Jacobian matrix of systems (1) and (2) in the presence of population dispersal is
provided as follows:
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J|Em
0
=



−µ1 − mm1
21 −β1Sm

10 η1 mm1
12 0 0

0 β1Sm
10 − p1 0 0 0 0

0 γ1 −p3 − mm2
21 0 0 mm2

12
mm1

21 0 0 −µ2 − mm1
12 −β2Sm

20 η2
0 0 0 0 β2Sm

20 − p2 0
0 0 mm2

21 0 γ2 −p4 − mm2
12



=



a11 a12 a13 a14 0 0
0 a22 0 0 0 0
0 a32 a33 0 0 a36

a41 0 0 a44 a45 a46
0 0 0 0 a55 0
0 0 a63 0 a65 a66

.

From the Jacobian matrix we have the two eigenvalues λ1 = a22 = β1Sm
10 − p1 =

p1(Rm
10 − 1) and λ2 = a55 = β2Sm

20 − p2 = p2(Rm
20 − 1). Thus, λ1 < 0 and λ2 < 0 hold when

Rm
10 < 1 and Rm

20 < 1, respectively. The other eigenvalues are roots of the equation

λ4 + P1λ3 + P2λ2 + P3λ + P4 = 0,

where P1 = −(a11 + a33 + a44 + a66) > 0,

P2 = (a11 + a44)(a33 + a66) + (a11a44 − a14a41) + (a33a66 − a36a63) > 0,

P3 = −(a11 + a44)(a33a66 − a36a63)− (a33 + a66)(a11a44 − a14a41) > 0,

P4 = (a11a44 − a14a41)(a33a66 − a36a63) > 0.

Here, all the roots will only have negative real parts, which leads to the conclusion
that the arguments of all the eigenvalues should be greater than απ/2. Consequently, Em

0 is
locally asymptotically stable when Rm

10 < 1 and Rm
20 < 1, i.e., Rm

0 = max{Rm
10, Rm

20} < 1.

Theorem 10. The endemic equilibrium (Em
∗ ) of the proposed system, if it exists, is locally asymp-

totically stable.

Proof. The Jacobian matrix at endemic equilibrium point Em
∗ is provided as follows:

J|Em∗ =



−β1 Im
1 − µ1 − mm1

21 −β1Sm
1 η1 mm1

12 0 0
β1 Im

1 0 0 0 0 0
0 γ1 −p3 − mm2

21 0 0 mm2
12

mm1
21 0 0 −β2 Im

2 − µ2 − mm1
12 −β2Sm

2 η2
0 0 0 β2 Im

2 0 0
0 0 mm2

21 0 γ2 −p4 − mm2
12



=



a11 a12 a13 a14 0 0
a21 0 0 0 0 0
0 a32 a33 0 0 a36

a41 0 0 a44 a45 a46
0 0 0 a54 0 0
0 0 a63 0 a65 a66

.

The characteristic equation corresponding to J|Em12∗
is λ6 + F1λ5 + F2λ4 + F3λ3 + F4λ2 +

F5λ + F6 = 0, where

F1 = −(a11 + a33 + a44 + a66) > 0,

F2 = a11(a33 + a44 + a66) + a33(a44 + a66) + a44a66 − a12a21 − a14a41 − a36a63 − a45a54 > 0,

F3 = −(a11a44 − a14a41)(a33 + a66)− (a11 + a44)(a33a66 − a36a63) + a11a45a54 + β1 Im
1 [µ1 p1 + η1(µ1 + δ1)

+ p1mm2
21 − p1(a44 + a66)] + β2 Im

2 [µ2 p2 + η2(µ2 + δ2) + p2mm2
12 − p2a33] > 0,
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F4 = {(β1 Im
1 + µ1)(β2 Im

2 + µ2 + mm1
12) + mm1

21(β2 Im
2 + µ2)}(a33a66 − a36a63) + β1 Im

1 [p1 p2β2 Im
2

+ (β2 Im
2 + µ2 + mm1

12){µ1 p1 + η1(µ1 + δ1) + p1(p4 + mm2
12 + mm2

21)}+ p1 p4mm2
21+

(p4 + mm2
12){µ1 p1 + η1(µ1 + δ1)}] + β2 Im

2 [(p3 + mm2
21){µ2 p2 + η2(µ2 + δ2)}+ p2 p3mm2

12] > 0,

F5 = β2 Im
2 (β1 Im

1 + µ1)[(p3 + mm2
21){µ2 p2 + η2(µ2 + δ2)}+ p2 p3mm2

12] + β2 Im
2 mm1

21[mm2
12{µ1 p2 + η1(µ2 + δ2)}

+ (p3 + mm2
21){µ2 p2 + η2(µ2 + δ2)}] + β1 Im

1 (β2 Im
2 + µ2)[(p4 + mm2

12){µ1 p1 + η1(µ1 + δ1)}+ p1 p4mm2
21]

+ β1 Im
1 mm1

12[(p4 + mm2
12){µ1 p1 + η1(µ1 + δ1)}+ mm2

21{µ2 p1 + η2(µ1 + δ1)}] + β1β2 Im
1 Im

2 [p1(p2 p4 − η2γ2)

+ p2(p1 p3 − η1γ1) + p1 p2m(m2
12 + m2

21)] > 0,

F6 = β1β2 Im
1 Im

2 [η1η2γ1γ2 + p1 p2{p3mm2
12 + γ1(p4 + mm2

12)}+ p1(p3 + mm2
21){µ2 p2 + η2(µ2 + δ2)}] > 0.

Here, the characteristic equation provides all of the eigenvalues with negative real
parts for feasible Im

1 > 0 and Im
2 > 0. Thus, it can be stated that Em

∗ , whenever it exists, is
locally asymptotically stable if Im

1 > 0 and Im
2 > 0, and the arguments of all the eigenvalues

lie in the second or third quadrant (i.e., | arg λ| > απ
2 ).

Theorem 11. The equilibrium point E1 of the proposed system is locally asymptotically stable for
β2S21 < p2.

Proof. The Jacobian matrix at endemic equilibrium point E1 is provided as follows:

J|E1 =



−β1 I11 − µ1 − mm1
21 −β1S11 η1 mm1

12 0 0
β1 I11 0 0 0 0 0

0 γ1 −p3 − mm2
21 0 0 mm2

12
mm1

21 0 0 −µ2 − mm1
12 −β2S21 η2

0 0 0 0 β2S21 − p2 0
0 0 mm2

21 0 γ2 −p4 − mm2
12



=



a11 a12 a13 a14 0 0
a21 0 0 0 0 0
0 a32 a33 0 0 a36

a41 0 0 a44 a45 a46
0 0 0 0 a55 0
0 0 a63 0 a65 a66

.

From the Jacobian matrix, we have one eigenvalue, λ1 = a55 = β2S21 − p2; thus, λ1 < 0
holds when β2S21 < p2. The other eigenvalues are roots of the characteristic equation
corresponding to J|E1 , which is λ5 + P1λ4 + P2λ3 + P3λ2 + P4λ + P5 = 0, where

P1 = −(a11 + a33 + a44 + a66) > 0,

P2 = a11(a33 + a66) + (a33 + a44)a66 + (a11a44 − a14a41)− a12a21 + (a33a66 − a36a63) > 0,

P3 = −(a11a44 − a14a41)(a33 + a66)− (a11 + a44)(a33a66 − a36a63) + a12a21(a44 + a66)

+ a21(a12a33 − a13a32) > 0,

P4 = A1[(µ1 + mm1
21)(µ2 + mm1

12)− m2m1
12m1

21] + β1 I11[(µ2 + mm1
12){µ1 p1 + η1(µ1 + δ1) + p1mm2

21}
+ A1(µ2 + mm1

12) + p1(µ2 + mm1
12)(p4 + mm2

12) + {µ1 p1 + η1(µ1 + δ1)}(p4 + mm2
12) + p1 p4mm2

21] > 0,

P5 = β1 I11[(µ2 + mm1
12)(p4 + mm2

12){µ1 p1 + η1(µ1 + δ1)}+ µ2 p1 p4mm2
21 + {µ2 p1 + η2(µ1 + δ1)}m2m1

12m2
21] > 0.

Here, the characteristic equation provides all of the eigenvalues with negative real
parts for a feasible equilibrium point. Thus, it can be stated that E1 is locally asymptotically
stable if β2S21 < p2, and the arguments of all the eigenvalues lie in the second or third
quadrant (i.e., | arg λ| > απ

2 ).

Theorem 12. The equilibrium point E2 of the proposed systems (1) and (2) is locally asymptotically
stable for β1S12 < p1.



Axioms 2024, 13, 94 18 of 37

Proof. The Jacobian matrix at endemic equilibrium point E2 is provided as follows:

J|E2 =



−µ1 − mm1
21 −β1S12 η1 mm1

12 0 0
0 β1S12 − p1 0 0 0 0
0 γ1 −p3 − mm2

21 0 0 mm2
12

mm1
21 0 0 −β2 I22 − µ2 − mm1

12 −β2S22 η2
0 0 0 β2 I22 0 0
0 0 mm2

21 0 γ2 −p4 − mm2
12



=



a11 a12 a13 a14 0 0
0 a22 0 0 0 0
0 a32 a33 0 0 a36

a41 0 0 a44 a45 a46
0 0 0 a54 0 0
0 0 a63 0 a65 a66

.

From the Jacobian matrix, we have one eigenvalue, λ1 = a22 = β1S12 − p1; thus,
λ1 < 0 holds when β1S12 < p1. The other eigenvalues are the roots of the characteristic
equation corresponding to J|E2 , which is λ5 + Q1λ4 + Q2λ3 + Q3λ2 + Q4λ+ Q5 = 0, where

Q1 = −(a11 + a33 + a44 + a66) > 0,

Q2 = (a33 + a66)(a11 + a44) + (a11a44 − a14a41)− a45a54 + (a33a66 − a36a63) > 0,

Q3 = −(a11a44 − a14a41)(a33 + a66)− (a11 + a44)(a33a66 − a36a63) + a45a54(a11 + a33)

+ a54(a45a66 − a46a65) > 0,

Q4 = A1[(µ1 + mm1
21)(µ2 + mm1

12)− m2m1
12m1

21] + β2 I22[(µ1 + mm1
21){µ2 p2 + η2(µ2 + δ2) + p2mm2

12}

+ A1(µ1 + mm1
21) + p2(µ1 + mm1

21)(p3 + mm2
21) + {µ2 p2 + η2(µ2 + δ2)}(p3 + mm2

21) + p2 p3mm2
12] > 0,

Q5 = a54[(µ1 + mm1
21)(p3 + mm2

21){µ2 p2 + η2(µ2 + δ2)}+ µ1 p2 p3mm2
12 + {µ1 p2 + η1(µ2 + δ2)}m2m1

21m2
12] > 0.

Here, the characteristic equation provides all of the eigenvalues with negative real
parts for a feasible equilibrium point. Thus, it can be stated that E2 is locally asymptotically
stable if β1S12 < p1, and the arguments of all the eigenvalues lie in the second or third
quadrant (i.e., | arg λ| > απ

2 ).

7. Numerical Simulation of System (1) without Implementation of Control Strategy

In this section, we validate the analytical results through numerical simulation. The
scenarios presented here can help to visualize the dynamical behavior of the system in
both the presence and absence of population dispersal. The parametric values used in this
section are listed below in Table 1.

Table 1. Parameter values used for numerical simulations of both inter-ordered and fractional-
ordered systems.

Parametric Values

Λ1 µ1 η1 δ1 γ1 m1
12 m2

12 Λ2

10 0.06 0.02 1/(65 × 365) 0.02 0.1 0.005 12

µ2 η2 γ2 δ2 m m1
21 m2

21 -

0.05 0.05 0.01 1/(65 × 365) 0.5 0.02 0.02 -

First, we discuss the situation when the population does not disperse between patches;
Figure 2 depicts this scenario. Choosing (β1, β2) = (0.0003, 0.00005), it is observed
that the system converges to an infection-free state for both the patches, we obtain a
stable E0

0(166.67, 0, 0, 240, 0, 0), and the basic reproduction number (R0) becomes 0.62
(see Figure 2a). Now, if β1 starts to increase, then E0

0 becomes a saddle point and we can
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observe that the infection invades Patch-1. In Figure 2b, we obtain the basic reproduction
number as R0 = max{6.25, 0.2} = 6.25 for β1 = 0.003 and obtain a stable steady state con-
taining an infection-free Patch-2 and infected Patch-1 E0

1(26.681, 111.923, 27.981, 240, 0, 0).
On the other hand, if β2 is increased instead of β1, then we can observe that the infection
invades Patch-2. In Figure 2c, we obtain the basic reproduction number as
R0 = max{0.625, 1.999} = 1.999 for β2 = 0.0005 and obtain a stable steady state containing
an infection-free Patch-1 and infected Patch-2 E0

2(166.67, 0, 0, 120.084, 108.931, 10.893). Now,
if both β1 and β2 increase, then we have an infected system even if people do not disperse
between the two patches. Figure 2d depicts the scenario at (β1, β2) = (0.003, 0.0005),
where both Patch-1 and Patch-2 are infected with the disease and we obtain a stable
E0
∗(26.681, 111.923, 27.981, 120.084, 108.931, 10.893) with R0 = 6.25(>1).
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Figure 2. Trajectory profiles of the populations in Patch-1 and Patch-2 around (a) E0

0 , (b) E0
1 , (c) E0

2 ,
and (d) E0

∗ in the absence of dispersal.

Next, we discuss the case when the population from Patch-1 can disperse towards
Patch-2 but cannot move back to Patch-1 again (m1

12 = m2
12 = 0); Figure 3 depicts this

scenario. Choosing (β1, β2) = (0.0003, 0.00005), it is observed that the system converges
to an infection-free state for both patches, we obtain a stable Em21

0 (142.857, 0, 0, 268.571, 0, 0),
and the basic reproduction number (R0) becomes 0.53 (see Figure 3a). From this situation,
if β1 starts to increase then Em21

0 becomes a saddle point and we can observe that the
infection invades in Patch-1. In Figure 3b, we obtain the basic reproduction number as
R0 = max{5.35, 0.22} = 6.25 for β1 = 0.003 and obtain a stable steady state containing an
infection-free Patch-2 and infected Patch-1 Em21

1 (26.681, 107.574, 23.905, 247.727, 0, 2.391).
On the other hand, if β2 is increased instead of β1, then we can observe that the infec-
tion invades in Patch-2, while Patch-1 remains infection-free. In Figure 3c, we obtain
the basic reproduction number as R0 = max{0.54, 2.24} = 1.999 for β2 = 0.0005 and
obtain a stable steady state containing an infection-free Patch-1 and infected Patch-2
Em21

2 (142.857, 0, 0, 120.084, 134.885, 13.488). If both β1 and β2 increase, then we have an
infected system even if people do not disperse between the two patches. Figure 3d depicts
the scenario at (β1, β2) = (0.003, 0.0005), where both Patch-1 and Patch-2 are infected with
the disease and we obtain a stable Em21∗ (26.681, 107.574, 23.905, 120.084, 115.950, 13.986) with
R0 = max{5.35, 2.24} = 5.35.
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Figure 3. Trajectory profiles of populations in Patch-1 and Patch-2 around (a) Em21

0 , (b) Em21
1 , (c) Em21

2 ,
and (d) Em21∗ when people disperse towards Patch-2 from Patch-1 but do not move back to Patch-1.

Next, we discuss the case when the population from Patch-2 can disperse towards
Patch-1 but cannot move back to Patch-2 again (m1

21 = m2
21 = 0); Figure 4 depicts this

scenario. Choosing (β1, β2) = (0.0003, 0.00005), it is observed that the system converges to
an infection-free state for both the patches, we obtain a stable Em12

0 (266.667, 0, 0, 120, 0, 0),
and the basic reproduction number (R0) becomes 0.999 (see Figure 4a). Now, increasing
the value of β1 leads to instability as Em21

0 becomes saddle, and we can observe that the
infection invades in Patch-1. In Figure 4b, we obtain the basic reproduction number as
R0 = max{9.99, 0.0999} = 9.994 for β1 = 0.003 and obtain a stable steady state contain-
ing an infection-free Patch-2 and infected Patch-1 Em12

1 (26.681, 191.881, 47.970, 120, 0, 0).
On the other hand, if β2 is increased instead of β1, then we can observe that the infec-
tion invades Patch-2 while Patch-1 remains infection-free. In Figure 4c, we obtain the
basic reproduction number as R0 = max{0.999, 1.599} = 1.599 for β2 = 0.0008 and
obtain a stable steady state containing an infection-free Patch-1 and infected Patch-2
Em12

2 (229.293, 0, 0.248, 75.053, 81.479, 7.949). Now, if both β1 and β2 increase, then we have
an infected system even if people do not disperse between the two patches. Figure 4d de-
picts the scenario at (β1, β2) = (0.003, 0.0008), where both Patch-1 and Patch-2 are infected
with the disease and we obtain a stable Em12∗ (26.681, 161.999, 40.748, 75.053, 81.479, 7.949)
with R0 = max{9.994, 1.599} = 9.994.

Figure 5, shows the scenario when the population disperses between Patch-1 and Patch-
2 (m ̸= 0). Choosing (β1, β2) = (0.0003, 0.00005), it is observed that the system converges
to an infection-free state for both patches, we obtain a stable Em

0 (246.154, 0, 0, 144.615, 0, 0),
and the basic reproduction number (R0) becomes 0.923 (see Figure 5a). Now, this sta-
ble behavior of Em

0 switches with increasing value of β1 as the equilibrium becomes
saddle, and we obtain a scenario where the infection invades in Patch-1. In Figure
5b, we obtain the basic reproduction number as R0 = max{9.223, 0.120} = 9.994 for
β1 = 0.003 and obtain a stable steady state containing an infection-free Patch-2 and in-
fected Patch-1 E1(26.681, 190.103, 42.360, 124.734, 0, 4.133). On the other hand, if β2 is
increased instead of β1, then we can observe that the infection invades Patch-2 while
Patch-1 remains infection-free. In Figure 5c, we obtain the basic reproduction number as
R0 = max{0.923, 1.204} = 1.204 for β2 = 0.0005 and obtain a stable steady state containing
an infection-free Patch-1 and infected Patch-2 Em12

2 (228.664, 0, 0.112, 120.084, 41.309, 4.041).
Now, if both β1 and β2 increase, then we have an infected system even if people do not dis-
perse between the two patches. Figure 5d depicts the scenario at (β1, β2) = (0.003, 0.0005),
where both Patch-1 and Patch-2 are infected with the disease and we obtain a stable
Em
∗ (26.681, 187.033, 41.699, 120.084, 8.371, 4.885) with R0 = max{9.223, 1.204} = 9.223.
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Moreover, from Figures 2d and 5d it can be observed that although the infected pop-
ulation count has increased slightly in Patch-1 in the presence of population dispersal, it has
significantly decreased in Patch-2. Moreover, the highest number of recovered individuals
is obtained in Patch-1 (R1) when people can disperse between the patches.
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Figure 4. Trajectory profiles of populations in Patch-1 and Patch-2 around (a) Em12

0 , (b) Em12
1 , (c) Em12

2 ,
and (d) Em12∗ when people disperse towards Patch-1 from Patch-2 but do not move back to Patch-2.
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Figure 5. Trajectory profiles of populations in Patch-1 and Patch-2 around (a) Em

0 , (b) E1, (c) E2, and
(d) Em

∗ when people disperse between Patch-1 and Patch-2.

In Figure 6, we have analyzed the sensitivity of some of the system parameters
in disease transmission, and have calculated corresponding sensitivity indices for the
parametric values in Table 1 with m = 0.005. The fact that the spread of the disease has
a greater ascendancy for β1 than β2 can be observed in Figure 6a. Moreover, an increase
in the disease transmission rates (β1, β2) actually proliferates the illness in a system, as
the chances of spreading the infection become higher. On the other hand, for the chosen
parametric values there is an inclination in the basic reproduction number for Patch-1
(Rm

10) and a declination for Patch-2 (Rm
20) with the increase in the population dispersal

speed (m). In addition, if more people move towards Patch-1 (m1
12), then the prevalence

of the illness in that patch is expanded, while in the other patch, the spread is somewhat
more controlled. Furthermore, the inversely proportional relationship of m1

21 with R10
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indicates that the epidemic situation in Patch-1 can be controlled by increasing people’s
movement towards Patch-2. However, the infectivity in Patch-2 will increase in this case.
Figure 6b contains the sensitivity indices for the parametric values in Table 1, which are
calculated as follows: Γβ1 = 1, Γβ2 = 0.130, Γ1

m = 0.149, Γ2
m = −0.304, Γ1

m1
12

= 0.226,

Γ2
m1

12
= −0.462,Γ1

m1
21

= −0.077 and Γ2
m1

21
= 0.157, Γ1

α = 0.3238, Γ2
α = 0.6290. On the other

hand, Figure 6c indicates that the spread of disease has an ascendency for increasing α.
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Figure 6. (a) Different plots of the basic reproduction number R0 with the variation of β1, β2, m, m1

12
and m1

21, (b) sensitivity index of the parameters β1, β2, m, m1
12, and m1

21 for R0, and (c) plots of the
basic reproduction number R0 with the variation of α

In Figure 7, we have plotted the count of infected people in Patch-1 (I1) and Patch-2
(I2) for different movement scenarios. We mainly considered three scenarios: (i) people
move to Patch-2 in larger numbers (m1

12 < m1
21, m2

12 < m2
21); (ii) people move to Patch-1

with larger probabilities (m1
12 > m1

21, m2
12 > m2

21); and (iii) the probabilities are same for
both patches (m1

12 = m1
21, m2

12 = m2
21). Figure 7a shows that the count of infected people

in Patch-1 is lowest when both susceptible and recovered people move to Patch-2, and
that this situation leads to an inclination in the infectivity there (see Figure 7b). In fact,
higher population dispersal probabilities (either of susceptible, recovered, or both) towards
Patch-1 suppress the infection level in Patch-2 even for smaller dispersal speeds.
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Figure 7. Count of infected population in (a) Patch-1 (I1) and (b) Patch-2 (I2) for different
dispersal probabilities.

8. Numerical Simulation of System (2) without Implementation of Control Strategy

The numerical simulation of the system (2) is described in this section. We have used
the FDE12 MatLab function, which is based on the Adams–Bashforth–Moulton algorithm
introduced by Roberto Garrappa ([32]), and used a predictor-corrector method.
Case 1: Consider the situation when there is no population dispersal between the patches
(m = 0)

To analyze the dynamical behavior of all people, the values of the parameters in
Table 1 are employed. The initial populations of both patches are taken in the following
manner: S1 = 50000, I1 = 2500, R1 = 50, S2 = 50000, I2 = 10000, R2 = 100. Here, we
are more concerned about the disease-free equilibrium. The population of the two patches
has been considered as 100,000 people per patch, and we have taken t = 1 day as the time
unit and Tf = 300. At first, we have considered µ1 = 0.06, µ2 = 0.05. From the direct
calculation, we have R0 = 0.1398 < 1; therefore, the disease-free equilibrium is stable (see
Figure 8).
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Figure 8. Time series of different populations of model (2) for different values of α when m = 0.

Case 2: Consider the situation when there is population dispersal between the patches
(m ̸= 0)

In this case, we fix m = 0.6 and consider Λ = 20, Λ2 = 25, µ1 = 0.19, µ2 = 0.15;
then, we have R0 = 0.1037 < 1. The time series in Figure 9 shows the stability of the
disease-free equilibrium.
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Figure 9. Trajectory profiles of (a) susceptible, (b) infected, and (c) recovered populations around
Em

0 , E1, E2, and Em
∗ when people disperse between Patch-1 and Patch-2 for different values of α when

m = 0.6.

9. Optimal Control Problem

The deterministic system (1) is further proposed with an effective control strategy to
reduce the infection load. People’s movement between the two patches plays an important
role in disease transmission. During an outbreak, people try to move back to their homes
as soon as possible, and this behavior induces the transmission rate only. Furthermore,
if people travel from a disease-prone area, it increases the chance of spreading the virus
only. Imposing strict restrictions sometimes becomes necessary to control the continuous
upsurge in transmission; thus, the dispersal speed of the population is considered as the
control policy in this work, as it depends on the eruption of the infection and changes
with time. Here, we study the characteristics of the applied time-dependent control policy
mathematically. As the public authorities usually take immediate actions and impose
strict restrictions only when the numbers of reported cases start to exceed the safe limit,
instead of constant values, time-dependent dispersal rate function m(t) is considered here
with 0 ≤ m(t) ≤ 1. By implementing this control policy, the overall chances of becoming
infected with the virus strain are lessened. Here, 1 indicates that people’s dispersal works
with its fullest intensity, while 0 denotes full disconnection between the patches.

Our main focus is to determine the optimal control intervention with minimum
implemented cost; hence, the region for the control intervention m(t) is provided as

Ψ =
{

m(t) : m(t) ∈ [0, 1], t ∈ [0, Tf ]
}

,

where Tf is the final time up to which the control policies are executed and m(t) is a
measurable and bounded function.

Deduction of Total Cost Which Needs to Be Minimized Due to Dispersal

The total cost incurred to manage people’s emigration (or immigration) from (or to) the

patches is provided by
∫ Tf

0
[w1 I1(t) + w2 I2(t) + w3m2(t)]dt. The term (w1 I1(t) + w2 I2(t))

denotes the cost incurred in lost manpower because of the infected population in the
patches. This is known as the opportunity loss, which includes productivity loss due to the
infection. The term w3m2(t) represents the cost associated with managing the dispersal of
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population among the patches, which includes spreading information about the disease
via different programs, informing the population about the importance of maintaining
the proposed rules and regulations, etc. As this includes the cost of associated efforts
towards convincing people, it is relatively higher. In this work, the nonlinearity term for
the mitigation strategy is chosen up to the second order [33]. This work analyzes how
the optimal control strategy representing people’s movement reduces the overall count of
infected people in the system.

The following control problem is considered based on previous discussions, along
with the cost functional J to be minimized [34]:

J[m(t)] =
∫ Tf

0

[
w1 I1(t) + w2 I2(t) + w3m2(t)

]
dt (5)

subject to the model system

dS1

dt
= Λ1 − β1S1 I1 − µ1S1 + η1R1 + m(t)(m1

12S2 − m1
21S1),

dI1

dt
= β1S1 I1 − (µ1 + δ1)I1 − γ1 I1,

dR1

dt
= γ1 I1 − µ1R1 − η1R1 + m(t)(m2

12R2 − m2
21R1),

dS2

dt
= Λ2 − β2S2 I2 − µ2S2 + η2R2 + m(t)(m1

21S1 − m1
12S2),

dI2

dt
= β2S2 I2 − (µ2 + δ2)I2 − γ2 I2,

dR2

dt
= γ2 I2 − µ2R2 − η2R2 + m(t)(m2

21R1 − m2
12R2) (6)

with initial conditions S1(0) > 0, I1(0) > 0, R1(0) > 0, S2(0) > 0, I2(0) > 0 and R2(0) > 0.
We have already considered pi = (µi + δi + γi) for i = 1, 2 and pj = (µj−2 + ηj−2) for
j = 3, 4. The functional J denotes the total incurred cost as stated, and the integrand

L(S1, I1, R1, S2, I2, R2, m(t)) = w1 I1(t) + w2 I2(t) + w3m2(t)

denotes the cost at time t. The positive parameters w1, w2 ,and w3 are weight constants
balancing the units of the integrand [33,35]. The optimal control interventions m∗ exist in
Ψ, and mainly minimize the cost functional J.

Theorem 13. The optimal control intervention m∗ in Ψ of the control systems (5) and (6) exists
such that J(m∗) = min[J(m)].

Proof. The proof is presented in Appendix A.

Theorem 14. For the optimal control m∗ and corresponding optimal states (Sm
1 , Im

1 , Rm
1 , Sm

2 , Im
2 , Rm

2 )
of system (6), there exist adjoint variables λ = (λ1, λ2, λ3, λ4, λ5, λ6) ∈ R6 satisfying the
canonical equations:

dλ1

dt
= λ1[β1 I1 + µ1 + mm1

21]− λ2[β1 I1]− λ4[mm1
21],

dλ2

dt
= −w1 + λ1[β1S1]− λ2[β1S1 − p1]− λ3[γ1],

dλ3

dt
= −λ1[η1] + λ3[p3 + mm2

21]− λ6[mm2
21], (7)

dλ4

dt
= −λ1[mm1

12] + λ4[β2 I2 + µ2 + mm1
12]− λ5[β2 I2],

dλ5

dt
= −w2 + λ4[β2S2]− λ5[β2S2 − p2]− λ6[γ2],
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dλ6

dt
= −λ3[mm2

12]− λ4[η2] + λ6[p4 + mm2
12],

with transversality conditions λi(Tf ) = 0 for i = 1, 2, . . . , 6. The corresponding optimal control
m∗ which minimizes J(m) in Ψ is provided as follows:

m∗ = min

{
max

{
0,

(λ4 − λ1)(m1
12Sm

2 − m1
21Sm

1 ) + (λ6 − λ3)(m2
12Rm

2 − m2
21Rm

1 )

2w3

}
, 1

}
. (8)

Proof. The proof is presented in Appendix A.

Now, the model system in the Caputo fractional system with the implemented control
intervention is as follows:

C
0 DαS1 = Λ1 − β1S1 I1 − µ1S1 + η1R1 + m(t)(m1

12S2 − m1
21S1),

C
0 Dα I1 = β1S1 I1 − (µ1 + δ1)I1 − γ1 I1,

C
0 DαR1 = γ1 I1 − µ1R1 − η1R1 + m(t)(m2

12R2 − m2
21R1),

C
0 DαS2 = Λ2 − β2S2 I2 − µ2S2 + η2R2 + m(t)(m1

21S1 − m1
12S2), (9)

C
0 Dα I2 = β2S2 I2 − (µ2 + δ2)I2 − γ2 I2,

C
0 DαR2 = γ2 I2 − µ2R2 − η2R2 + m(t)(m2

21R1 − m2
12R2)

with initial conditions S1(0) > 0, I1(0) > 0, R1(0) > 0, S2(0) > 0, I2(0) > 0, and
R2(0) > 0.

Theorem 15. For the optimal control m∗ and corresponding optimal states (Sm
1 , Im

1 , Rm
1 , Sm

2 , Im
2 , Rm

2 )
of system (9), there exist adjoint variables λ = (λ1, λ2, λ3, λ4, λ5, λ6) ∈ R6 satisfying the
canonical equations:

RL
0 Dαλ1 = λ1[β1 I1 + µ1 + mm1

21]− λ2[β1 I1]− λ4[mm1
21],

RL
0 Dαλ2 = −w1 + λ1[β1S1]− λ2[β1S1 − p1]− λ3[γ1],
RL
0 Dαλ3 = −λ1[η1] + λ3[p3 + mm2

21]− λ6[mm2
21], (10)

RL
0 Dαλ4 = −λ1[mm1

12] + λ4[β2 I2 + µ2 + mm1
12]− λ5[β2 I2],

RL
0 Dαλ5 = −w2 + λ4[β2S2]− λ5[β2S2 − p2]− λ6[γ2],
RL
0 Dαλ6 = −λ3[mm2

12]− λ4[η2] + λ6[p4 + mm2
12],

where RL
0 Dα is the α-ordered Riemann–Liouville derivative with initial point 0 and transversality

conditions λi(Tf ) = 0 for i = 1, 2, . . . , 6. The corresponding optimal control m∗ which minimizes
J(m) in Ψ is provided as follows:

m∗ = min

{
max

{
0,

(λ4 − λ1)(m1
12Sm

2 − m1
21Sm

1 ) + (λ6 − λ3)(m2
12Rm

2 − m2
21Rm

1 )

2w3

}
, 1

}
. (11)

Proof. The proof is similar to the proof of Theorem 14 mentioned in the Appendix A.2 of
Appendix A.

10. Numerical Simulation of the Optimal Control Problem (6)

In the proposed system (6), we have considered the population dispersal speed (m)
as the control intervention in order to analyze its impact on reducing the infection level.
The control intervention is assumed to be time-independent, as it changes according to the
disease prevalence, fatality, and governmental rules and restrictions. Through employing a
forward–backward sweep approach, numerical simulations have been carried out to demon-
strate the effects of different control strategies on the behavior of the system [36,37]. The
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parametric values are chosen from Table 1 along with β1 = 0.003, β2 = 0.005, m = 0.005,
and the positive weight constants are taken as w1 = 1, w2 = 25, and w3 = 100. Addition-
ally, it is presumed that the control techniques will be used consistently for two months,
or Tf = 21 days. The initial population size is chosen as follows: S1(0) = 300, I1(0) = 175,
R1(0) = 100, S2(0) = 100, I2(0) = 75, R2(0) = 75.

The dynamics of model (6) when the dispersal speed is chosen as a constant value
instead of a time-dependent control measure are shown in Figure 10. In this scenario, the
population size is (17.20, 194.74, 71.02, 125.56, 73.83, 15.66) at Tf = 21.
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Figure 10. Profiles of populations in the absence of time-dependent control intervention.

If the control strategy is properly implemented through people’s dispersal (or migra-
tion) strategy, the burden of the infection may be managed more effectively. Hence, we
have emphasized the fact that susceptible and recovered people move or disperse between
Patch-1 and Patch-2 according to disease severity, allowing the increased disease transmis-
sion to be curbed. The population trajectories in the presence of the control strategy are
shown in Figure 11, and at Tf = 21, the population is represented as (14.92, 229.11, 72.59,
106.01, 52.95, 19.34). In this situation, the count of the infected population increases in
Patch-1 and declines in Patch-2. Surprisingly, we find the highest number of recovery cases
in both patches. Higher recovery results in a slightly lower susceptible population count in
the patches than in the scenario where dispersal speed is not used as a control approach.
Figure 12b reveals the optimal graphs of the control intervention, where can be seen that its
intensity remains at the highest level for almost 10 days, then starts to diminish in the last
few days.

The significance of an implemented control measure is determined by how cost-
effective it is. Figures 12 and 13 illustrate the impact of the time-dependent control measure
(m(t)) on the cost design analysis (J) (Figure 12a) and the infected population count of
both patches (I1, I2) (Figure 13). Without the control measure, the cost is due to the impact
of the disease load on the production loss. When the control measure is not implemented,
the infected population in Patch-1 is high enough, as is that in Patch-2; in fact, it is at
its maximum count, which results in higher opportunity loss and leads to a rise in the
economic burden. It is shown in Figure 13a that although there is a small inclination in I1 in
the presence of optimal dispersal, we have the fewest number of infected people in Patch-2
in the presence of this control policy, and this situation makes the optimal cost much lower.
This finding indicates that implementing the control strategy results in a lower cost profile
than not implementing the intervention. Thus, it may be said that the control policy is
financially viable.
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Figure 11. Population profiles in the presence of time-dependent control intervention.
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Figure 12. (a) Cost distribution with time-dependent control policy and (b) profile of optimal
control m∗.
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Figure 13. Profiles of infected population in (a) Patch-1 and (b) Patch-2 under time-dependent
control policy.

10.1. Effect of the Weight Constant w3 on the Optimal Control Policy

When determining the weight that needs to be applied to a particular control, weight
constants are essential. Here, we vary the weight constant w3 in order to identify its ef-
fectiveness. Figure 14c illustrates that placing higher weight on migration results in an
upsurge in overall cost. Moreover, increasing w3 decreases the infection level in Patch-1
but spreads the infectivity in Patch-2 (see Figure 14a,b). It can be seen in Figure 14d that if
the related weight (w3) is larger, then more effort on the part of the control is needed to
lower the cost and total number of infected people.
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Figure 14. Impact of the weight constant w3 on (a) the infected population in Patch-1 (I1), (b) the
infected population in Patch-2 (I2), (c) the optimal cost (J), and (d) the profile of the optimal
control (m∗).

10.2. Effect of Behavioral Changes and People’s Awareness on Disease Transmission When m ̸= 0

In this work, we have mainly focused on the dynamical behavior of an SIRS model
in which the population disperses between two patches. In Figure 15, we have tried to
show how the infection level is affected when people’s behavioral changes, mainly the
population’s awareness towards preventive measures or precautionary measures, are taken
into consideration in the presence of optimal dispersal. It can be observed that the count
of the infected population in both patches (I1, I2) is reduced when people start to pay
attention to restrictions and precautions. Figure 15c shows that if people adopt proper
behavioral changes, then a comparatively lower effort in terms of the control policy is
required to reduce the count of infected individuals in the system.
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Figure 15. Impact of behavioral changes on disease transmission. Profiles of infected population
on (a) Patch-1 (I1), (b) Patch-2 (I2), and (c) the optimal control (m∗) are shown. For purple ( )
colored curves, disease transmission rates are (β1, β2), while for green ( ) colored curves disease
transmission rates are βi = βi ∗ (1 − p) for i = 1, 2.

11. Numerical Simulation of the Optimal Control Problem (9)

In this section, we discuss the effect of optimal control on the disease transmission
dynamics. We can set the dispersal rate (m) under the control such that the cost function is
minimized. Here, we have assumed that w1 = 10, w2 = 10, w3 = 100, and Λ1 = 12, Λ2 = 15.
All other parametric values are taken from Table 1. We performed the simulation for
α = 0.9, α = 0.99. We have assumed t = 1 day as a time unit and Tf = 400.
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We have developed a fractional order optimal control problem using an iterative
approach (Euler’s forward and backward) in the MatLab interface [32,38]. The procedure
is summarized below. A two-point boundary value problem with a set of fractional-order
differential equations defines the optimality of the system (9). The initial value system (9)
is an initial value problem and the adjoint system is a boundary value problem. The state
system is solved using the forward iteration approach, while the co-state system is solved
using the backward iteration method using the Matlab code presented below.

The state system (9) is solved using the following iterative scheme:

S1(i) = [Λ − βS1(i − 1)I1(i − 1)− µ1S1(i − 1) + η1R1(i − 1) + m(i − 1)(m1
12S2(i − 1)− m1

21S1(i − 1))]hα

−∑i
j=1 c(j)S(i − j)

I1(i) = [β1S1(i − 1)I1(i − 1)− (µ1 + δ1 + γ1)I1(i − 1)]hα − ∑i
j=1 c(j)I1(i − j)

R1(i) = [γ1 I1(i − 1)− µ1R1(i − 1)− η1R1(i − 1) + m(i − 1)(m2
12R2(i − 1)− m2

21R1(i − 1))]hα

−∑i
j=1 c(j)R1(i − j)

S2(i) = [Λ2 − β2S2(i − 1)I2(i − 1)− µ2S2(i − 1) + η2R2(i − 1) + m(i − 1)(m1
21S1(i − 1)− m1

12S2(i − 1))]hε

−∑i
j=1 c(j)S2(i − j)

I2(i − 1) = [β2S2(i − 1)I2(i − 1)− (µ2 + δ2)I2(i − 1)− γ2 I2(i − 1)]hα

−∑i
j=1 c(j)I2(i − j)

R2 = [γ2 I2 − µ2R2 − η2R2 + m(t)(m2
21R1 − m2

12R2)]hα

−∑i
j=1 c(j)R2(i − j)

where c(0) = 1, c(j) = (1 − 1+α
j )c(j − 1), j ≥ 1, and hα is the length of the time step;

moreover, S1(i) is the value of S1(t) at ith iteration. The last term of each of the above
system of equations stands for memory. The adjoint system (10) is solved using the
backward iteration method with terminal conditions λi(Tf ) = 0, i = 1, 2, 3, 4 with the
following iterative scheme:

λ1(i) = [λ1(i − 1)[β1 I1(i − 1) + µ1 + m(i − 1)m1
21]− λ2(i − 1)[β1 I1(i − 1)]− λ4(i − 1)[mm1

21]]h
α

−
i

∑
j=1

c(j)λ1(i − j)

λ2(i) = [−w1 + λ1(i − 1)[β1S1(i − 1)]− λ2[β1S1(i − 1)− p1]− λ3(i − 1)γ1]hα −
i

∑
j=1

c(j)λ2(i − j)

λ3(i) = [−λ1(i − 1)[η1] + λ3(i − 1)[p3 + m(i − 1)m2
21]− λ6(i − 1)[mm2

21]]h
α −

i

∑
j=1

c(j)λ3(i − j)

λ4(i) = [−λ1(i − 1)[m(i − 1)m1
12] + λ4[β2 I2 + µ2 + m(i − 1)m1

12]− λ5(i − 1)[β2 I2(i − 1)]]hα−
i

∑
j=1

c(j)λ4(i − j)

λ5(i) = [−w2 + λ4(i − 1)[β2S2(i − 1)]− λ5(i − 1)[β2S2(i − 1)− p2]− λ6(i − 1)[γ2]]hα −
i

∑
j=1

c(j)λ5(i − j)
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λ6(i) = [−λ3(i − 1)[m(i − 1)m2
12]− λ4(i − 1)[η2] + λ6(i − 1)[p4 + m(i − 1)m2

12]]h
α −

i

∑
j=1

c(j)λ6(i − j)

where pj = (µj−2 + ηj−2) for j = 3, 4. The system below updates the optimal control:

m∗(i) = min
{

max
{

0, (λ4(i−1)−λ1(i−1))(m1
12S2(i−1)−m1

21S1(i−1))+(λ6(i−1)−λ3(i−1))(m2
12R2(i−1)−m2

21R1(i−1))
2w3

}
, 1
}

.

We have developed MatLab code using the above algorithm and chose h = 0.02
throughout the numerical simulations. The number of infected people in both patches can
be gradually reduced by controlling m∗. The optimal value of the migration rate quickly
approaches 1 as the order of the derivative α increases. The effect of the other parameters
has already been mentioned in Section 10. In this section, we have only observed the impact
of the order of derivatives in the control system. Figure 16 depicts the time series of the S, I,
and R variables for α = 0.9, 0.99. Figure 17 provides a comparison of the time series of the
system variables along with the control variable and cost function. It is apparent that the
optimal stage can be archived quickly for a lower value of α.
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Figure 16. Time series of (a) susceptible, (b) infected and (c) recovered populations profile of model
(9) without control, with yellow ( ) colored curves for α = 0.99 and red ( ) colored curves for
α = 0.9.
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Figure 17. Comparison of time series of different population profiles (a) susceptible, (b) infected and
recovered , (c) control function and cost function of model (9) with optimal control for α = 0.99 and
α = 0.9.

12. Conclusions

When it comes to population dispersal, infectious diseases tend to be a cause for
concern. In densely populated areas, respiratory diseases such as flu or COVID-19 have
a tendency to be highly infectious, as they can spread very quickly. There are several
other aspects that causes high transmission. It includes mode of transmission, period of
infectivity, efficacy of implemented preventative measures, etc., which can be taken into
account. In order to control the spread of disease during population movement or traveling,
public health is essential. The migration of people, which has increased with time and
growing socioeconomic conditions, expanding tourism, etc., acts as a contributing factor.
This movement alleviates the spread of an infectious disease; thus, analyzing an epidemic
model in the presence of population dispersal is of utmost importance.

In this work, a compartmental SIRS model has been proposed in a two-patch environ-
ment, where it is assumed that only susceptible and recovered populations are allowed
to disperse between the patches. A deterministic model and a fractional-order system are
analyzed here in order to observe the detailed dynamical scenario. Four situations are taken
into consideration while analyzing the equilibrium points of the system: (i) no dispersal
between the patches; (ii) people can travel from Patch-1 to Patch-2 but cannot move back to
Patch-1; (iii) people can travel from Patch-2 to Patch-1 but cannot move back to Patch-2;
and (iv) people can freely disperse between the two patches. In these cases, we respectively
reach a disease-free equilibrium state, an infection-free Patch-2 and infected Patch-1 state,
an infection-free Patch-1 and infected Patch-2 state, and an infected state in which both
patches are infected. The numerical scenario shows that the disease transmission rates in
both patches play significant roles in the stability of the system, as adjusting these parame-
ters decides whether the disease will invade the patch or not. It is notable that although
the infected population count increases slightly in Patch-1 in the presence of population
dispersal, it significantly decreases in Patch-2. For the chosen parametric values, the results
depict that there is an inclination in the basic reproduction number for Patch-1 (Rm

10) and
a declination for Patch-2 (Rm

20) with the increase in the population dispersal speed (m).
In the later part of the paper, a corresponding optimal control problem is formulated in
which the dispersal speed of the population is considered to be time-dependent instead of
a constant value. The numerical scenario reveals that the count of the infected population
increases in Patch-1 and declines in Patch-2 in the presence of optimal dispersal, and that
the highest number of recovery cases has been obtained in both patches.

In the model simulation, fractional order has a noticeable impact. It is noteworthy
that when the derivative order decreases, the recovery rate increases. Both patches have
a comparable rise in the infected population, although at a lower derivative rate. In the
control situation, the order of derivatives is less, and the optimal state is reached faster.
These effects can be quite useful when trying to fit actual data into real-life scenarios.

While the model proposed here has shown some interesting dynamical behavior,
there are many remaining items that can be implemented later as an extension of this
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work. In this work, we have only dealt with the deterministic and fractional approaches;
environmental stochasticity has not been incorporated here. It would be interesting to
explore whether Gaussian noise plays a significant role in this dispersed epidemic model.
Secondly, we have only considered scenarios in which susceptible and recovered people
are allowed to move between two patches; any asymptomatic or pre-symptomatic stage
has not been considered here. It is quite evident that people belonging to these stages
shall also move between the patches, and so the future researchers can possibly observe
the impact of this movement on the dynamics of the system. Moreover, a certain amount
of time is required for a person to be infected with a certain type of virus. As it is not
an instantaneous process, consideration of a delay parameter can make the model more
realistic. The present work can be studied further by incorporating the facts mentioned
above in order to observe various realistic dynamical behaviors.
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Appendix A

Appendix A.1. Existence of Optimal Control Functions

Here, the existence of optimal control interventions which minimize the cost functional
within a finite time interval are provided.

Proof of Theorem 13. In model (6), the overall population N = N1(t) + N2(t) is assumed
to be N = S1 + I1 + R1 + S2 + I2 + R2.

Thus, we have
dN
dt

≤ (Λ1 + Λ2)− µ1N1 − µ2N2 ≤ Λ − µN

⇒ 0 < N(t) ≤ Λ
µ
+

(
N(0)− Λ

µ

)
e−µt

where Λ = Λ1 +Λ2, µ = min{µ1, µ2} and N(0) = S1(0)+ I1(0)+ R1(0)+ S2(0)+ I2(0)+

R2(0). Because t → ∞, 0 < N(t) ≤ Λ
µ
+ ϵ, for any ϵ > 0.

Here, system (6) has a bounded solution when control interventions are present in
the system and the right side functions of the system are Lipschitzian in Ψ. Thus, control
system (6) has a non-trivial solution in Ψ per the Picard-Lindelö f theorem [39].

Here, Ψ is a closed convex set within which the control variables lie, and system (6) can
be written as linear in control variable m with coefficients depending on the state variables.
Moreover, the integrand L(S1, I1, R1, S2, I2, R2, m) is convex because of the quadratic nature
of the control variables m. Now,

L(S1, I1, R1, S2, I2, R2, m) = w1 I1 + w2 I2 + w2m2 ≥ w3m2.
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Let h(m) = w3m2; then, we have h(m) as a continuous function and L(S1, I1, R1, S2, I2, R2,
m) ≥ h(m). Moreover, ||m||−1h(m) → ∞ when ||m|| → ∞. Thus, the results of [35,40] lead
us to conclude that there exists a control variable m∗ such that J(m∗) = min[J(m)].

Appendix A.2. Characterization of Control Interventions

Pontryagin’s Principle helps to find the control interventions of an optimal system [40,41].
Assuming that the Hamiltonian function is

H(S1, I1, R1, S2, I2, R2, m, λ) = L(S1, I1, R1, S2, I2, R2, m) + λ1
dS1

dt
+ λ2

dI1

dt
+ λ3

dR1

dt
+ λ4

dS2

dt
+ λ5

dI2

dt
+ λ6

dR2

dt

So, H =w1 I1 + w2 I2 + w3m2 + λ1[Λ1 − β1S1 I1 − µ1S1 + η1R1 + m(t)(m1
12S2 − m1

21S1)] + λ2[β1S1 I1 − p1 I1]

+ λ3[γ1 I1 − p3R1 + m(t)(m2
12R2 − m2

21R1)] + λ4[Λ2 − β2S2 I2 − µ2S2 + η2R2 + m(t)(m1
21S1 − m1

12S2)]

+ λ5[β2S2 I2 − p2 I2] + λ6[γ2 I2 − p4R2 + m(t)(m2
21R1 − m2

12R2)],

(A1)

where λ = (λ1, λ2, λ3, λ4, λ5, λ6) denotes the adjoint variables, we mainly intend to minimize
the cost functional by minimizing the Hamiltonian function using Pontryagin’s Principle.

Proof of Theorem 14. For system (6), let m∗ and (Sm
1 , Im

1 , Rm
1 , Sm

2 , Im
2 , Rm

2 ) be the ap-
plied optimal control intervention and corresponding optimal state variables, respectively,
which minimize the cost functional J mentioned in (5). We have the adjoint variables
(λ1, λ2, λ3, λ4, λ5, λ6), which satisfy the following canonical equations:

dλ1

dt
= − ∂H

∂S1
,

dλ2

dt
= −∂H

∂I1
,

dλ3

dt
= − ∂H

∂R1
,

dλ4

dt
= − ∂H

∂S2
,

dλ5

dt
= −∂H

∂I2
,

dλ6

dt
= − ∂H

∂R2
.

Thus, we have

dλ1

dt
= λ1[β1 I1 + µ1 + mm1

21]− λ2[β1 I1]− λ4[mm1
21],

dλ2

dt
= −w1 + λ1[β1S1]− λ2[β1S1 − p1]− λ3[γ1],

dλ3

dt
= −λ1[η1] + λ3[p3 + mm2

21]− λ6[mm2
21],

dλ4

dt
= −λ1[mm1

12] + λ4[β2 I2 + µ2 + mm1
12]− λ5[β2 I2],

dλ5

dt
= −w2 + λ4[β2S2]− λ5[β2S2 − p2]− λ6[γ2],

dλ6

dt
= −λ3[mm2

12]− λ4[η2] + λ6[p4 + mm2
12],

(A2)

with the transversality conditions λi(Tf ) = 0, for i = 1, 2, . . . , 6.

From the optimality conditions
∂H
∂m

∣∣∣∣
m=m∗

= 0, which provide

m∗ =
(λ4 − λ1)(m1

12Sm
2 − m1

21Sm
1 ) + (λ6 − λ3)(m2

12Rm
2 − m2

21Rm
1 )

2w3
=

M
2w3

, in Ψ we have

m∗ =



0, if M
2w3

< 0

M
2w3

, if 0 ≤ M
2w3

≤ 1

1, if M
2w3

> 1

which is the same as (8).
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Appendix A.3. Optimal System

The optimal system is stated below along with the optimal control policy m∗. The
optimal system at (Sm

1 , Im
1 , Rm

1 , Sm
2 , Im

2 , Rm
2 , λ1, λ2, λ3, λ4, λ5, λ6) along with the minimized

Hamiltonian H∗ is as follows:

dS1

dt
= Λ1 − β1Sm

1 Im
1 − µ1Sm

1 + η1Rm
1 + m∗(m1

12Sm
2 − m1

21Sm
1 ),

dI1

dt
= β1Sm

1 Im
1 − p1 Im

1 ,

dR1

dt
= γ1 Im

1 − p3Rm
1 + m∗(m2

12Rm
2 − m2

21Rm
1 ),

dS2

dt
= Λ2 − β2Sm

2 Im
2 − µ2Sm

2 + η2Rm
2 + m∗(m1

21Sm
1 − m1

12Sm
2 ),

dI2

dt
= β2Sm

2 Im
2 − p2 Im

2 ,

dR2

dt
= γ2 Im

2 − p4Rm
2 + m∗(m2

21Rm
1 − m2

12Rm
2 ) (A3)

with non-negative initial conditions Sm
1 (0) > 0, Im

1 (0) ≥ 0, Rm
1 (0) ≥ 0, Sm

2 > 0, Im
2 (0) ≥ 0,

Rm
2 (0) ≥ 0 and the associated adjoint model system

dλ1

dt
= λ1[β1 Im

1 + µ1 + m∗m1
21]− λ2[β1 Im

1 ]− λ4[m∗m1
21],

dλ2

dt
= −w1 + λ1[β1Sm

1 ]− λ2[β1Sm
1 − p1]− λ3[γ1],

dλ3

dt
= −λ1[η1] + λ3[p3 + m∗m2

21]− λ6[m∗m2
21],

dλ4

dt
= −λ1[m∗m1

12] + λ4[β2 Im
2 + µ2 + m∗m1

12]− λ5[β2 Im
2 ],

dλ5

dt
= −w2 + λ4[β2Sm

2 ]− λ5[β2Sm
2 − p2]− λ6[γ2],

dλ6

dt
= −λ3[m∗m2

12]− λ4[η2] + λ6[p4 + m∗m2
12]

with transversality conditions λi(Tf ) = 0 for i = 1, 2, . . . , 6. The control intervention m∗ is
similar to that provided in (8).

Appendix B

Appendix B.1. Some Results on Fractional Order Systems

Lemma A1 ([8]). Consider the system

C
0 Dαx(t) = g(t, x) (A4)

with initial condition x(0) = x0, where α ∈ (0, 1], g : [0, ∞)× Ω → IRn, Ω ⊆ IRn. If the local
Lipschitz condition is satisfied by g(t, x) with respect to x, then there exists a solution of (A4) on
[0, ∞)× Ω which is unique.

Definition A1 ([8]). One-parametric and two-parametric Mittag–Leffler functions are described
as follows:

Eα(w) =
∞

∑
k=0

wk

Γ(αk + 1)
and Eε1,α2(w) =

∞

∑
k=0

wk

Γ(α1k + α2)
, where α, α1, α2 ∈ R+. (A5)
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Theorem A1 ([42]). Let ε > 0, n − 1 < ε < n, n ∈ N. Assume that g(t) is a continuously
differentiable function up to order (n − 1) on [t0, ∞) and that the nth derivative of g(t) exists with
exponential order. If C

0 Dε
t g(t) is piece-wise continuous on [t0, ∞), then

L
{

C
t0

Dε
t g(t)

}
= sαF(s)−

n−1

∑
j=0

sα−j−1gj(t0),

where F(s) = L {g(t)} denotes the Laplace transform of g(t).

Theorem A2 ([43]). Consider the following fractional-order system:

C
0 DαX(t) = P(X), Xt0 = (x1

t0
, x2

t0
, . . . , xn

t0
), xi

t0
> 0, i = 1, 2, . . . , n (A6)

with 0 < ε < 1, X(t) = (x1(t), x2(t), . . . , xn(t)), and P(X) : [t0, ∞) → Rn×n. The equilibrium
points of this system can be evaluated by solving the following system of equations: P(X) =
O. These equilibrium points are locally asymptotically stable if and only if each eigenvalue λi

of the Jacobian matrix J(X) =
∂(P1, P2, . . . , Pn)

∂(x1, x2, . . . , xn)
calculated at the equilibrium points satisfies

|arg(λi)| >
απ

2
.
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