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Abstract: Nonlinear equations are frequently encountered in many areas of applied science and
engineering, and they require efficient numerical methods to solve. To ensure quick and precise
root approximation, this study presents derivative-free iterative methods for finding multiple zeros
with an ideal fourth-order convergence rate. Furthermore, the study explores applications of the
methods in both real-life and academic contexts. In particular, we examine the convergence of the
methods by applying them to the problems, namely Van der Waals equation of state, Planck’s law
of radiation, the Manning equation for isentropic supersonic flow and some academic problems.
Numerical results reveal that the proposed derivative-free methods are more efficient and consistent
than existing methods.
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1. Introduction

Diverse areas of numerical analysis and optimization present challenges for the de-
velopment of derivative-free methods for solving nonlinear equations with simple roots
and multiple roots. Conventional iterative methods use only first-order derivatives for
multi-point classes, or higher-order derivatives altogether, to direct the search for the
best solutions [1–4]. However, in real-world scenarios, generating derivatives could be
computationally costly, impractical, or even impossible due to the absence of formal mathe-
matical formulations. This limitation makes it challenging to apply traditional approaches
to complex systems and real-world problems. Derivative-free techniques, which merely
depend on function evaluations, deal with such challenges. Constructing such algorithms
with high efficiency, robustness and convergence remains a significant challenge. This
means that new approaches that effectively address optimization problems without the
need for explicit derivatives must be developed. The one-point modified Traub–Steffensen
method [5,6] is one of the most well-known derivative-free methods for multiple roots,
which is given by

tk+1 = tk − n
𭟋(tk)

𭟋[uk, tk]
, (1)

where n is the known multiplicity of the root α, i.e., 𭟋(j)(α) = 0, j = 0, 1, 2, . . . , n − 1
and 𭟋(n)(α) ̸= 0. Here, uk = tk + b 𭟋(tk), b ∈ R− {0} and 𭟋[uk, tk] =

𭟋(uk)−𭟋(tk)
uk−tk

is a
divided difference.

Multiple roots can also be used to assess the stability of a system. A dynamical system
with several roots will have multiple equilibrium points, and figuring out which of these

Axioms 2024, 13, 143. https://doi.org/10.3390/axioms13030143 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13030143
https://doi.org/10.3390/axioms13030143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-8471-5139
https://orcid.org/0000-0002-4627-2795
https://orcid.org/0000-0001-8524-743X
https://doi.org/10.3390/axioms13030143
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13030143?type=check_update&version=1


Axioms 2024, 13, 143 2 of 12

points are stable can help you figure out how the system acts in different situations. The
use of multiple roots of nonlinear equations can provide valuable information in a variety
of disciplines, such as stability analysis, system analysis and optimization. Finding several
roots helps us to better understand the issue and develop better solutions.

Very recently, some methods with derivatives or without derivatives have been pre-
sented in the literature (see [7–30]). In this article, we devise a two-step derivative-free
technique that attains the fourth order of convergence. The suggested approach uses
just three function evaluations per iteration, making it optimal in the sense of the Kung–
Traub hypothesis [31]. The methodology is based on the Traub–Steffensen method (1) and
is further modified in the second stage by using a Traub–Steffensen-like iteration. The
methods are applied to real-life problems, i.e., Planck’s law of radiation [1], the Van der
Waals [1] equation of state, the Manning equation of isentropic supersonic flow [2] and
some academics problems [32,33].

2. Development of Method

Based on the Traub–Steffensen method (1), we propose the following iterative scheme
for n > 1:

vk = tk − n
𭟋(tk)

𭟋[uk, tk]

tk+1 = vk − nQ(xk)
𭟋(tk)

𭟋[vk, tk] +𭟋[vk, uk]
, k = 0, 1, 2, . . .

(2)

where uk = tk + b 𭟋(tk), b ∈ R− {0}, Q : C → C is a weight function and xk = n
√

𭟋(vk)
𭟋(tk)

.
Note that xk is a one-to-n multi-valued function, so we consider its principal analytic
branches. Hence, it is convenient to treat them as the principal root. For example, let
us consider the case of xk. The principal root is given by xk = exp

[ 1
n log

(𭟋(vk)
𭟋(tk)

)]
, with

log
(𭟋(vk)
𭟋(tk)

)
= log

∣∣𭟋(vk)
𭟋(tk)

∣∣+ i Arg
(𭟋(vk)
𭟋(tk)

)
for −π < Arg

(𭟋(vk)
𭟋(tk)

)
≤ π.

The convergence is discussed separately for different cases depending upon the multi-
plicity n. First, we will look at case n = 2 and show that the following is true.

Theorem 1. Suppose t = α is a multiple zero of 𭟋 with n = 2 and t0 is sufficiently close to the
root α. Suppose 𭟋 : D ⊂ C → C is analytic in a region enclosing the zero α. Then, Scheme (2) has
a convergence order of four if Q(0) = 0, Q′(0) = 1 and Q′′(0) = 4.

Proof. Assume that at the k-th stage, the error is ek = tk − α. Using the Taylor expansion of
𭟋(tk) about α and 𭟋(α) = 0, 𭟋′(α) = 0 and 𭟋(2)(α) ̸= 0, we have

𭟋(tk) =
𭟋(2)(α)

2!
e2

k
(
1 + M1ek + M2e2

k + M3e3
k + M4e4

k + · · ·
)
, (3)

where Mm = 2!
(2+m)!

𭟋(2+m)(α)

𭟋(2)(α)
for m ∈ N.

Similarly, 𭟋(uk) about α

𭟋(uk) =
𭟋(2)(α)

2!
e2

uk

(
1 + M1euk + M2e2

uk
+ M3e3

uk
+ M4e4

uk
+ · · ·

)
, (4)

where euk = uk − α = ek +
b𭟋(2)(α)

2! e2
k
(
1 + M1ek + M2e2

k + M3e3
k + · · ·

)
.

Then, the first step of (2) yields

evk = vk − α

=
1
2

( b𭟋(2)(α)

2
+ M1

)
e2

k −
1

16
(
(b𭟋(2)(α))2 − 8b𭟋(2)(α)M1 + 12M2

1 − 16M2
)
e3

k + O(e4
k).

(5)
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Expanding 𭟋(vk) about α, it follows that

𭟋(vk) =
𭟋(2)(α)

2!
e2

vk

(
1 + M1evk + M2e2

vk
+ M3e3

vk
+ · · ·

)
. (6)

Using (3) and (6) in the expression of xk and simplifying, we have

xk =
1
2

( b𭟋(2)(α)

2
+ M1

)
ek −

1
16
(
(b𭟋(2)(α))2 − 6b𭟋(2)(α)M1 + 16(M2

1 − M2)
)
e2

k

+
1

64
(
(b𭟋(2)(α))3 − 22b𭟋(2)(α)M2

1 + 4
(
29M3

1 + 14b𭟋(2)(α)M2
)

− 2M1
(
3(b𭟋(2)(α))2 + 104M2

)
+ 96M3

)
e3

k + O(e4
k).

(7)

The Taylor expansion of the weight function Q(xk) in the neighborhood of origin up
to third-order terms is given by

Q(xk) ≈ Q(0) + xkQ′(0) +
1
2

x2
k Q′′(0) +

1
6

x3
k Q′′′(0). (8)

Inserting (3)–(8) in the last step of (2) and then performing some simple calculations
yield

ek+1 = − Q(0)ek +
1
4
(
b𭟋(2)(α)(1 + 2Q(0)− Q′(0)) + 2(1 + Q(0)− Q′(0))M1

)
e2

k

− 1
32
(
(b𭟋(2)(α))2(2 + 10Q(0)− 6Q′(0) + Q′′(0))− 4b𭟋(2)(α)(4 + 4Q(0)

− Q′′(0))M1 + 4(6 + 8Q(0)− 10Q′(0) + Q′′(0))M2
1 − 32(1 + Q(0)− Q′(0))M2

)
e3

k

+ ψe4
k + O(e5

k),

(9)

where ψ = ψ(b, Q(0), Q′(0), Q′′(0), Q′′′(0), M1, M2, M3). Here, the expression of ψ is not
being produced explicitly since it is very lengthy.

If we equate the coefficients of ek and e2
k and e3

k to zero at the same time and solve the
resulting equations, one obtains

Q(0) = 0, Q′(0) = 1 and Q′′(0) = 4. (10)

Now, by using (10) in (9), we have

ek+1 = − 1
384

(
b𭟋(2)(α) + 2M1

)(
(b𭟋(2)(α))2(Q′′′(0)− 3) + 4b𭟋(2)(α)(Q′′′(0)− 9)M1

+ 4(Q′′′(0)− 27)M2
1 + 48M2

)
e4

k + O(e5
k).

Hence, we prove Theorem 1.

Now, we state Theorem 2 for the case n = 3 without proof since it is similar to the
proof of Theorem 1.

Theorem 2. By adopting the statement of Theorem 1, method (2) for n = 3 has at least a conver-
gence order of four if Q(0) = 0, Q′(0) = 2

3 and Q′′(0) = 8
3 . Then, the error equation corresponding

to n = 3 is given by

ek+1 = − 1
108

(
(Q′′′(0)− 24)N3

1 + 12N1N2
)
e4

k + O(e5
k).

where Nm = n!
(n+m)!

𭟋(n+m)(α)

𭟋(n)(α)
for m ∈ N.
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Remark 1. It is important to note that the parameter b, used in uk = tk + b 𭟋(tk), appears in the
error equation for the case n = 2. On the other hand, we have observed that for n = 3, it occurs in
the terms of order e5

k and higher. We need not obtain the terms of order e5
k and higher to prove the

fourth-order convergence of a method. We shall prove these facts in the next section as a generalized
result.

3. Generalized Result

For the multiplicity n ≥ 3, we state the following theorem for Scheme (2):

Theorem 3. Using the statement of Theorem 1, Scheme (2) for the case n ≥ 3 has at least a
convergence order of four if Q(0) = 0, Q′(0) = 2

n and Q′′(0) = 8
n . Moreover, the error equation

of Scheme (2) is given by

ek+1 =
1

12n2

(
(n2 + 8n − 9 − (n − 2)Q′′′(0))T3

1 − 12(n − 2)T1T2
)
e4

k + O(e5
k), (11)

where Tm = n!
(m+n)!

𭟋(m+n)(α)

𭟋(n)(α)
for m ∈ N.

Proof. Keeping in mind that 𭟋(j)(α) = 0, j = 0, 1, 2, . . . , n − 1 and 𭟋n(α) ̸= 0, then
expansion of 𭟋(tk) about α is

𭟋(tk) =
𭟋n(α)

n!
en

k
(
1 + T1ek + T2e2

k + T3e3
k + T4e4

k + · · ·
)
. (12)

Similarly, 𭟋(uk) about α is

𭟋(uk) =
𭟋n(α)

n!
en

uk

(
1 + T1euk + T2e2

uk
+ T3e3

uk
+ T4e4

uk
+ · · ·

)
, (13)

where euk = uk − α = ek +
b𭟋n(α)

n! en
k
(
1 + T1ek + T2e2

k + T3e3
k + · · ·

)
.

From the first step of Equation (2)

σvk = vk − α

=
T1

n
e2

k +
1
n2

(
2nT2 − (1 + n)T2

1
)
e3

k +
1
n3

(
(1 + n)2T3

1 − n(4 + 3n)T1T2 + 3n2T3
)
e4

k + O(e5
k).

(14)

Expansion of 𭟋(vk) around α yields

𭟋(vk) =
𭟋n(α)

n!
en

vk

(
1 + T1evk + T2e2

vk
+ T3e3

vk
+ T4e4

vk
+ · · ·

)
. (15)

Using (12) and (15) in the expressions of xk, we have that

xk =
T1

n
ek +

1
n2

(
2nT2 − (2 + n)T2

1
)
e2

k +
1

2n3

(
(7 + 7n + 2n2)T3

1 − 2n(7 + 3n)T1T2 + 6n2T3
)
e3

k + O(e4
k). (16)

Inserting (8) and (12)–(16) in the second step of (2), we then have

ek+1 = − nQ(0)
2

ek +
1

2n
(
2 + nQ(0)− nQ′(0)

)
T1e2

k −
1

4n2

(
(4(n + 1) + 2n(n + 1)Q(0)− 2n(n + 3)Q′(0)

+ nQ′′(0))T2
1 − 4n(2 + nQ(0)− nQ′(0))T2

)
e3

k + Re4
k + O(e5

k),
(17)

where ϕ = ϕ(Q(0), Q′(0), Q′′(0), Q′′′(0), T1, T2, T3).
Set coefficients of ek, e2

k and e3
k equal to zero. Then, solving the resulting equations, we

obtain
Q(0) = 0, Q′(0) =

2
n

and Q′′(0) =
8
n

. (18)
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Then, error Equation (17) is given by

ek+1 =
1

12n2

(
(n2 + 8n − 9 − (n − 2)Q′′′(0))T3

1 − 12(n − 2)T1T2
)
e4

k + O(e5
k). (19)

Thus, the theorem is proved.

Remark 2. The proposed Scheme (2) reaches at a fourth convergence order provided that the
conditions of Theorems 1–3 are satisfied. Only three functional evaluations, 𭟋(tk), 𭟋(uk) and
𭟋(vk), are used per iteration to achieve this convergence rate. As a result, the Kung–Traub
hypothesis [31] determines that Scheme (2) is the optimal scheme.

Some Special Cases

Based on the forms of weight function Q(xk) that meet the requirements of Theorems
1–3, we can develop numerous iterative methods as the special cases of the family (2).
We are, however, limited to selecting only simple forms such as low-degree polynomials
or straightforward rational functions. These choices should be such that methods can
converge on the root with the fourth order for n ≥ 2. Keeping this in view, the following
are some simple forms:

(1) Q(xk) =
2xk(1 + 2xk)

n
, (2) Q(xk) =

2xk
n − 2nxk

, (3) Q(xk) =
2xk(1 + 2xk)

n − 4x2
k

.

The corresponding method to each of the aforementioned forms is as follows:

Method 1 (M1) :

tk+1 = vk − 2xk(1 + 2xk)
𭟋(tk)

𭟋[vk, tk] +𭟋[vk, uk]
.

Method 2 (M2) :

tk+1 = vk −
2xk

1 − 2xk

𭟋(tk)

𭟋[vk, tk] +𭟋[vk, uk]
.

Method 3 (M3) :

tk+1 = vk −
2nxk(1 + 2xk)

n − 4x2
k

𭟋(tk)

𭟋[vk, tk] +𭟋[vk, uk]
.

Note that in all the above cases, we have

vk = tk − n
𭟋(tk)

𭟋[uk, tk]
, uk = tk + b 𭟋(tk), b ∈ R− {0}.

4. Numerical Results

The proposed methods M1, M2 and M3 are applied to solve some practical and
academic problems displayed in Table 1, which not only demonstrate the methods in
practice, but also serve to verify the validity of theoretical results that we have developed.
The chosen practical problems are Van der Waals equation of state [1], Planck’s law of
radiation [1] and the Manning equation for isentropic supersonic flow [2]. Let us describe
them briefly. An equation of state known as the van der Waals equation aims to clarify the
differences between the behavior of real gas molecules and ideal gas molecules. Planck’s
law, a foundational equation in quantum physics, describes the spectrum distribution of
energy radiated by a black body at a given temperature. It serves as an explanation for the
radiation from an observed black body and how temperature influences it. The empirical
Manning equation in open-channel flow is used to calculate the flow rate of a fluid through
a channel. The form, slope and roughness of the channel are all taken into account when
calculating the fluid flow rate. This equation is primarily utilized in isentropic supersonic
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flow, where the fluid is traveling at a high velocity and the pressure waves it generates are
moving at or above the speed of sound.

Table 1. Problems for numerical experiment.

Problems Root Initial Guess

Van der Waals problem [1]
𭟋1(t) = t3 − 5.22t2 + 9.0825t − 5.2675 1.75 2.3
Planck’s law radiation problem [1]

𭟋2(t) =
(

e−t − 1 + t
5

)3
4.9651142317. . . 5.4

Manning problem for isentropic supersonic flow [2]

𭟋3(t) =
[

tan−1 (√5
2
)
− tan−1(

√
t2 − 1) +

√
6
(

tan−1 (√ t2−1
6
)

− tan−1 ( 1
2

√
5
6
))

− 11
63
]4 1.8411294068. . . 1.5

Complex root problem

𭟋4(t) = t(t2 + 1)(2et2+1 + t2 − 1) cosh3
(

πt
2

)
i 1.1 i

Academic problem [33]
𭟋5(t) = (t − 2)15(t − 4)5(t − 3)10(t − 1)20 1 0.8
Non-differential problem [32]

𭟋6(t) =
(t2+t−1)(t−3)4

et−1 3 1.1

New methods are tested by taking the parameter values b = −0.5 and −1. To verify the
theoretical order of convergence, we use the following formula to obtain the approximated
computational order of convergence (ACOC) (see [34]):

ACOC =
ln |(tk+2 − α)/(tk+1 − α)|

ln |(tk+1 − α)/(tk − α)| , for each k = 1, 2, . . . (20)

Performance is compared with some well-known optimal fourth-order methods with and
without first derivatives. In all the considered methods, multiplicity is known a priori. For
ready reference, these methods are expressed as follows:
Method by Li et al. [23] (LLC):

vk = tk −
2n

n + 2
𭟋(tk)

𭟋′(tk)
,

tk+1 = tk −
n(n − 2)

( n
n+2
)−n𭟋′(vk)− n2𭟋′(tk)

𭟋′(tk)−
( n

n+2
)−n𭟋′(vk)

𭟋(tk)

2𭟋′(tk)
.

Method by Li et al. [24] (LCN):

vk = tk −
2n

n + 2
𭟋(tk)

𭟋′(tk)
,

tk+1 = tk − α1
𭟋(tk)

𭟋′(vk)
− 𭟋(tk)

α2𭟋′(tk) + α3𭟋′(vk)
,

where

α1 = − 1
2

( n
n+2
)nn(n4 + 4n3 − 16n − 16)

n3 − 4n + 8
,

α2 = − (n3 − 4n + 8)2

n(n4 + 4n3 − 4n2 − 16n + 16)(n2 + 2n − 4)
,

α3 =
n2(n3 − 4n + 8)( n

n+2
)n
(n4 + 4n3 − 4n2 − 16n + 16)(n2 + 2n − 4)

.
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Method by Sharma and Sharma [26] (SSM):

vk = tk −
2n

n + 2
𭟋(tk)

𭟋′(tk)
,

tk+1 = tk −
n
8

[
(n3 − 4n + 8)− (n + 2)2

( n
n + 2

)n 𭟋′(tk)

𭟋′(vk)

×
(

2(n − 1)− (n + 2)
( n

n + 2

)n 𭟋′(tk)

𭟋′(vk)

)] 𭟋(tk)

𭟋′(tk)
.

Method by Zhou et al. [30] (ZCS):

vk = tk −
2n

n + 2
𭟋(tk)

𭟋′(tk)
,

tk+1 = tk −
n
8

[
n3
(n + 2

n

)2n(𭟋′(vk)

𭟋′(tk)

)2
− 2n2(n + 3)

(n + 2
n

)n 𭟋′(vk)

𭟋′(tk)

+ (n3 + 6n2 + 8n + 8)
] 𭟋(tk)

𭟋′(tk)
.

Method by Kansal et al. [16] (KKB):

vk = tk −
2n

n + 2
𭟋(tk)

𭟋′(tk)
,

tk+1 = tk −
n
4
𭟋(tk)

(
1 +

n4 p−2n
(

pn−1 − 𭟋′(vk)
𭟋′(tk)

)2
(pn − 1)

8(2pn + n(pn − 1))

)

×
(4 − 2n + n2(p−n − 1)

𭟋′(tk)
− p−n(2pn + n(pn − 1))2

𭟋′(tk)−𭟋′(vk)

)
,

where p = n
n+2 .

Method by Sharma et al. [27] (SKJ):

vk = tk − n
𭟋(tk)

𭟋[uk, tk]
,

tk+1 = vk −
(
xk + n x2

k + (n − 1)wk + n wk xk
) 𭟋(tk)

𭟋[uk, tk]
.

Method by Behl et al. [14] (BAM):

vk = tk − n
𭟋(tk)

𭟋[uk, tk]
,

tk+1 = vk − n
wk + xk

2(1 − 2xk)

𭟋(tk)

𭟋[uk, tk]
,

where wk =
n
√

𭟋(vk)
𭟋(uk)

.
Method by Kumar et al. [20] (KKS):

vk = tk − n
𭟋(tk)

𭟋[uk, tk]
,

tk+1 = vk −
(n + 2)xk
1 − 2xk

𭟋(tk)

𭟋[uk, tk] +𭟋[vk, uk]
.

Multiple-precision arithmetic is used in all computations using the programming tool
Mathematica [35]. Tables 2–8 present numerical data such as the following:

(1) The multiplicity n of the relevant function in Table 2.
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(2) The number of iterations (k) needed to obtain a solution where |tk − tk−1|+ |𭟋(tk)| <
10−100.

(3) The estimated error |tk − tk−1| in the last three iterations.
(4) The approximated computational order of convergence (ACOC) utilizing (20).
(5) “D” represents divergent nature of the iterative methods in Table 8.

Table 2. Multiplicity of problems taken into consideration in Table 1.

Problems Multiplicity

𭟋1(t) 2
𭟋2(t) 3
𭟋3(t) 4
𭟋4(t) 5
𭟋5(t) 20
𭟋6(t) 4

Table 3. Numerical results of methods for 𭟋1(t).

Methods k |tk−2 − tk−3| |tk−1 − tk−2| |tk − tk−1| ACOC

LLC 6 3.77 (−6) 2.81 (−18) 8.64 (−67) 4.000
LCN 6 3.77 (−6) 2.81 (−18) 8.64 (−67) 4.000
SSM 6 5.32 (−6) 1.20 (−17) 3.15 (−64) 4.000
ZCM 6 1.09 (−5) 2.60 (−16) 8.49 (−59) 4.000
KKB 6 2.49 (−6) 3.99 (−19) 2.63 (−70) 4.000
SKJ 6 1.86 (−4) 3.01 (−15) 2.10 (−54) 4.000
BAM 6 2.96 (−7) 5.35 (−23) 5.70 (−86) 4.000
KKS 5 2.36 (−3) 1.22 (−7) 1.03 (−24) 4.000
M1 (b = −0.5) 6 8.99 (−7) 1.36 (−20) 7.16 (−76) 4.000
M1 (b = −1) 5 2.98 (−4) 1.56 (−10) 1.23 (−35) 4.000
M2 (b = −0.5) 5 1.45 (−3) 1.07 (−8) 3.02 (−29) 4.000
M2 (b = −1) 5 1.15 (−4) 4.08 (−13) 6.49 (−47) 4.000
M3 (b = −0.5) 6 1.92 (−7) 1.57 (−33) 7.03 (−88) 4.000
M3 (b = −1) 5 2.09 (−4) 2.16 (−11) 2.52 (−39) 4.000

Table 4. Numerical results of methods for 𭟋2(t).

Methods k |tk−2 − tk−3| |tk−1 − tk−2| |tk − tk−1| ACOC

LLC 4 1.95 (−5) 1.17 (−22) 1.51 (−91) 4.000
LCN 4 1.95 (−5) 1.17 (−22) 1.51 (−91) 4.000
SSM 4 1.95 (−5) 1.17 (−22) 1.53 (−91) 4.000
ZCM 4 1.96 (−5) 1.18 (−22) 1.58 (−91) 4.000
KKB 4 1.95 (−5) 1.16 (−22) 1.44 (−91) 4.000
SKJ 3 4.35 (−1) 2.76 (−6) 8.00 (−27) 4.000
BAM 3 4.35 (−1) 2.41 (−6) 3.85 (−27) 4.000
KKS 3 4.35 (−1) 2.42 (−6) 3.93 (−27) 4.000
M1 (b = −0.5) 3 4.35 (−1) 2.38 (−6) 4.45 (−27) 4.000
M1 (b = −1) 3 4.35 (−1) 2.02 (−6) 2.29 (−27) 4.000
M2 (b = −0.5) 3 4.35 (−1) 2.15 (−6) 2.44 (−27) 4.000
M2 (b = −1) 3 4.35 (−1) 1.87 (−6) 1.40 (−27) 4.000
M3 (b = −0.5) 3 4.35 (−1) 2.30 (−6) 3.68 (−27) 4.000
M3 (b = −1) 3 4.35 (−1) 1.97 (−6) 1.96 (−27) 4.000

The following formula,

n =
tk − t0

dk − d0
, where dk =

𭟋(tk)

gk
, gk =

𭟋(tk +𭟋(tk))−𭟋(tk)

𭟋(tk)
,
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is used to compute the multiplicity of the functions that were previously considered. Using
the new method M1, we applied this formula to acquire the multiplicity shown in Table 2.
We can also utilize M2 and M3.

Table 5. Numerical results of methods for 𭟋3(t).

Methods k |tk−2 − tk−3| |tk−1 − tk−2| |tk − tk−1| ACOC

LLC 4 1.07 (−3) 1.14 (−14) 1.46 (−58) 4.000
LCN 4 1.07 (−3) 1.13 (−14) 1.43 (−58) 4.000
SSM 4 1.07 (−3) 1.12 (−14) 1.35 (−58) 4.000
ZCS 4 1.07 (−3) 1.10 (−14) 1.23 (−58) 4.000
KKB 4 1.07 (−3) 1.19 (−14) 1.82 (−58) 4.000
SKJ 4 2.64 (−5) 6.95 (−21) 3.34 (−83) 4.000
BAM 4 2.63 (−5) 4.59 (−21) 4.23 (−84) 4.000
KKS 4 2.63 (−5) 4.57 (−21) 4.18 (−84) 4.000
M1 (b = −0.5) 4 3.94 (−5) 3.44 (−20) 2.00 (−80) 4.000
M1 (b = −1) 4 5.23 (−5) 1.07 (−19) 1.87 (−78) 4.000
M2 (b = −0.5) 4 3.91 (−5) 2.23 (−20) 2.34 (−81) 4.000
M2 (b = −1) 4 5.16 (−5) 6.76 (−20) 2.00 (−79) 4.000
M3 (b = −0.5) 4 3.93 (−5) 3.13 (−20) 1.26 (−80) 4.000
M3 (b = −1) 4 5.21 (−5) 9.68 (−20) 1.15 (−78) 4.000

Table 6. Numerical results of methods for 𭟋4(t).

Methods k |tk−2 − tk−3| |tk−1 − tk−2| |tk − tk−1| ACOC

LLC 4 2.15 (−5) 7.98 (−20) 1.50 (−77) 4.000
LCN 4 2.15 (−5) 8.01 (−20) 1.53 (−77) 4.000
SSM 4 2.16 (−5) 8.08 (−20) 1.59 (−77) 4.000
ZCS 4 2.16 (−5) 8.19 (−20) 1.68 (−77) 4.000
KKB 4 2.14 (−5) 7.62 (−20) 1.23 (−77) 4.000
SKJ 4 9.91 (−6) 1.90 (−21) 2.57 (−84) 4.000
BAM 4 7.65 (−6) 4.15 (−22) 3.58 (−87) 4.000
KKS 4 7.59 (−6) 4.01 (−22) 3.15 (−87) 4.000
M1 (b = −0.5) 4 1.43 (−5) 8.16 (−21) 8.74 (−82) 4.000
M1 (b = −1) 4 1.98 (−5) 3.00 (−20) 1.60 (−79) 4.000
M2 (b = −0.5) 4 9.31 (−6) 9.09 (−22) 8.28 (−86) 4.000
M2 (b = −1) 4 1.07 (−5) 1.60 (−21) 7.90 (−85) 4.000
M3 (b = −0.5) 4 1.33 (−5) 5.65 (−21) 1.85 (−82) 4.000
M3 (b = −1) 4 1.79 (−5) 1.89 (−20) 2.31 (−80) 4.000

Table 7. Numerical results of methods for 𭟋5(t).

Methods k |tk−2 − tk−3| |tk−1 − tk−2| |tk − tk−1| ACOC

LLC 4 2.58 (−4) 2.16 (−10) 1.09 (−38) 4.000
LCN 4 2.58 (−4) 2.16 (−10) 1.09 (−38) 4.000
SSM 4 2.59 (−4) 2.19 (−10) 1.14 (−38) 4.000
ZCS 4 2.59 (−4) 2.19 (−10) 1.16 (−38) 4.000
KKB 4 2.51 (−4) 1.88 (−10) 6.10 (−39) 4.000
SKJ 4 3.05 (−3) 5.24 (−10) 4.67 (−37) 4.000
BAM 4 8.98 (−4) 7.29 (−13) 3.17 (−49) 4.000
KKS 4 8.98 (−4) 7.29 (−13) 3.17 (−49) 4.000
M1 (b = −0.5) 4 3.05 (−3) 5.24 (−10) 4.67 (−37) 4.000
M1 (b = −1) 4 3.05 (−3) 5.24 (−10) 4.68 (−37) 4.000
M2 (b = −0.5) 4 8.98 (−4) 7.29 (−13) 3.17 (−49) 4.000
M2 (b = −1) 4 8.98 (−4) 7.29 (−13) 3.17 (−49) 4.000
M3 (b = −0.5) 4 2.95 (−3) 4.40 (−10) 2.23 (−37) 4.000
M3 (b = −1) 4 2.95 (−3) 4.40 (−10) 2.23 (−37) 4.000
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Table 8. Numerical results of methods for 𭟋6(t).

Methods k |tk−2 − tk−3| |tk−1 − tk−2| |tk − tk−1| ACOC

LLC D D D D D
LCN D D D D D
SSM D D D D D
ZCS D D D D D
KKB D D D D D
SKJ D D D D D
BAM D D D D D
KKS D D D D D
M1 (b = −0.5) 35 8.94 (−4) 4.62 (−15) 3.29 (−60) 4.000
M1 (b = −1) D D D D D
M2 (b = −0.5) D D D D D
M2 (b = −1) D D D D D
M3 (b = −0.5) 6 1.23 (−2) 1.39 (−10) 2.29 (−60) 4.000
M3 (b = −1) 7 4.15 (−6) 1.82 (−24) 6.70 (−98) 4.000

It can be seen from the numerical results displayed in Tables 3–8 that the new methods
exhibit consistent behavior in all six problems, while the existing methods do not show
such behavior. The existing approaches may either converge slowly to the root or fail
to converge. Since our methods M1 (b = −0.5), M3 (b = −0.5) and M3 (b = −1) provide
outcomes in many circumstances where the existing methods fail, they can therefore be
regarded as superior in this regard. It should be noted that new methods use first-divided
differences in the denominator; therefore, a drawback of the methods is that if at some stage
the denominator is very small or zero, then the methods may fail to converge. However,
such instances are rare in practice.

5. Conclusions

In this study, we have proposed an optimal derivative-free fourth-order numerical
approach for solving nonlinear equations with multiple roots. The convergence has been
investigated using standard hypotheses, and the order of convergence has been determined
to be four. Nonlinear equations, such as those arising in real-life situations, are solved
using the new algorithms. Comparison is made with existing methods of the same order.
Numerical results show that the new derivative-free methods are strong rivals to the well-
known fourth-order methods. There is much more to be done in the future. For example,
our future scope of work will include exploring efficient iterative methods of further higher
orders of convergence and their analyses. The other area is to develop efficient methods
for solving systems of nonlinear equations and their applications in diverse domains of
applied science and engineering.
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