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Abstract: Vague influence graphs (VIGs) are well articulated, useful and practical tools for managing
the uncertainty preoccupied in all real-life difficulties where ambiguous facts, figures and explorations
are explained. A VIG gives the information about the effect of a vertex on the edge. In this paper,
we present the domination concept for VIG. Some issues and results of the domination in vague
graphs (VGs) are also developed in VIGs. We defined some basic notions in the VIGs such as the
walk, path, strength of In-pair , strong In-pair, In-cut vertex, In-cut pair (CP), complete VIG and
strong pair domination number in VIG. Finally, an application of domination in illegal drug trade
was introduced.

Keywords: vague graph; vague influence graph; strong influence pair; influence path; influence pair
domination numbers
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1. Introduction

Graphs are a common method to visually illustrate relationships in data. The pur-
pose of a graph is to present data that are too numerous or complicated to be described
adequately in the text and in less space. The fuzzy graph (FG) theory is an important
area of research that is the backbone of representations of any network with ambiguity.
Crisp graphs are not sufficient to capture the uncertainty of parameters in networks, for
example, strong relationships and effective, influential or popular persons. Zadeh [1]
introduced the subject of a fuzzy set (FS) in 1995. Rosenfeld [2] proposed the subject of
FGs. The definitions of FGs from the Zadeh fuzzy relations in 1973 were presented by
Kaufmann [3]. Bhutani and Rosenfeld [4] explained the concept of strong edge (SE) in
FGs. FGs and their generalizations have played an essential role in dealing with real-life
problems involving uncertainties. Gau and Buehrer [5] proposed the concept of a vague set
(VS) by replacing the value of an element in a set with a sub interval of [0, 1]. Moreover, a
VG can concentrate on determining the uncertainties coupled with the inconsistent and
indeterminate information of any real-world problems where FGs may not lead to adequate
results. Ramakrishna in [6] proposed a new concept of VGs, belonging to the FGs family,
which had good capabilities when faced with problems that could not be expressed by
FGs. The notion of a VG is a new mathematical attitude to model the ambiguity and
uncertainty in decision-making issues. Study on VG and results from these graphs were
introduced by Kosari et al. [7–10]. Furthermore, a review was carried out on different types
of FGs, and the new results were studied [11–13]. In graph theory, a dominating set (DS)
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for a graph G is a subset D of its vertices, such that any vertex of G is either in D or has
a neighbor in D. The domination number γ(G) is the number of vertices in a smallest
DS for G. DSs are of practical interest in several areas. In wireless networking, DSs are
used to find efficient routes within ad hoc mobile networks. They have also been used in
document summarization and in designing secure systems for electrical grids. The concept
of DS in FGs, both theoretically and practically, is very valuable. A DS in FGs is used for
solving problems of different branches in applied sciences such as location problems. In
this way, the study of new concepts such as DS is essential in FG. Domination in VGs
has applications in several fields. Domination emerges in the facility location problems,
where the number of facilities is fixed and one endeavors to minimize the distance that a
person needs to travel to get to the closest facility. Selvam et al. [14] proposed the issue
of domination in the join of FGs using SE. Domination in the join of incidence FGs using
strong pairs was defined by Nazeer et al. [15]. Notes on domination and strong domination
and total domination in FGs were introduced by Manjusha and Sunitha [16–18].

FGs are unable to give information about the impact of vertices on the edges. This
shortage in FGs was the basic problem which is covered by In-FGs. It was Dinesh who
introduced the extension of FGs known as In-FGs, which give information regarding the
effect of vertices on the edges [19].

VIGs can represent natural flow networks with extra illegal flow conditions. They have
been used in physical problems related to networking and trafficking. Through this paper,
the connectivity thoughts in VIG are extended along with the study of several fundamental
properties of such graphs. Special influence vertices are studied and the relationships
between several influence parameters have been found.

Mathew et al. [20,21] expressed the notions of fuzzy end vertices for In-FGs. Natarajan
et al. [22] studied strong (weak) domination in FGs. Certain properties of domination in
VG products were explained by Shi et al. [23]. New results on VG were reported by
Akram et al. [24,25]. Borzooei et al. [26] explained the new definition of domination in
VGs. Double domination in VGs was developed by Banitalebi [27]. Some properties of
double domination in VGs were defined by [28]. New results of FGs were presented by
Rashmanlou et al. [29,30]. The concept of a strong pair domination number in intuitionistic
In-FGs was introduced by Rehman et al. [31]. Poulik et al. [32] presented the Randic index
in graphs.

1.1. Methodology and Importance of VIG

The idea of VIG is proposed for three reasons. First, FGs are not able to provide the
effect of vertices on the edges, and this flaw is covered by In-FGs, but they only provide
the effect of a vertex on an edge and not on all the edges of the graph. The effect of vertices
on any edge of the graph is given in VIGs. However, VIGs are incapable of intimating the
degree of non-membership of the vertices, edges and In-pairs. This is the main reason
behind the idea of VIGs.

Second, it broadens the ideas of domination, minimal strong fuzzy in In-pair DS and
minimum strong In-pair domination number in VIGs.

Third, there is a vertex m along with an edge nl, and they are not connected. Then, by
using the influence theory, an In-path can be generated between vertex m to vertices n, l
and edge nl. Lastly, In-FG shows the effect of a vertex on which vertices are connected
with it only, whereas VIGs are capable of reflecting not only the impact of a vertex on any
edge of the graph but also providing the effect of a vertex of a graph on the edge of the
other graph. In the FG theory, there was no such concept .

1.2. Research Gaps and Motivation of Study

The following points influenced us to write this article:

• Due to the enormous applications of domination in FGs, including domination for FGs
in distinct decision-making problems, it seems advantageous to expand the notion of
domination in VIG.
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• There are numerous applications of the domination in VIG in chemistry, computer
science, psychology, and others.

• Moreover, some basic notions related to domination such as walk, path, strength of
In-pair, strong In-pair, and In-cut vertex have not yet been discussed and studied in
the literature, and therefore, we expanded the notion of domination of In-FG to the
domination of VIG, and the strong pair domination number is investigated.

1.3. Contribution of This Study

VGs provide tools for modeling different types of real-world networks. However,
we should consider more relations, especially the relationship between edges with their
corresponding vertices, which usually refer to incidences where external factors influence
the real flow in a network. Then, VIGs may sometimes model certain real-world situations
better. In this regard, we introduce dominating sets in VIGs by using influence edges due
to the importance of the concept of domination and its application in various issues.

Domination in VG theory is one of the most widely used topics in other sciences,
including psychology, computer science, nervous systems, artificial intelligence, decision-
making theory, and combinations of them. VIGs are highly practical tools for the study of
different computational intelligence and computer science domains. Dominations in VIGs
have many applications, such as, in wireless networking, dominations are used to find
efficient routes within networks. They have also been used in document summarization
and in designing secure systems for electrical grids, ect.

Hence, in this study, we extended the In-FG notion to the VIG and discussed the
well-known problems of domination, walk, path, In-pair, strong In- pair and In-cut vertex
on VIG. Likewise, we introduced the new concepts of the strong pair domination number
in VIGs. Finally, an application of domination in illegal drug trade was introduced.

2. Preliminaries

In this part, we study some essential definitions and notions of graphs. Such as, FGs,
VGs and domination sets. Before stating the definitions, we fix some notations for graphs
and sets.

Definition 1 ([33]). A graph G∗ is a pair (X, E), where X is called the vertex set and E ⊆ X × X
is called the edge set.

Definition 2. Given a crisp graph G∗ = (X, E), a subset of vertices D ⊆ X is called a DS, if for
every vertex u ∈ X − D, there is a vertex v ∈ D such that (u, v) ∈ E.

Definition 3 ([34]). In graph theory, a path in a graph is a finite or infinite sequence of edges
which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices
are distinct, so are the edges). Paths are fundamental concepts of graph theory, described in the
introductory sections of most graph theory texts.

Definition 4 ([33]). An FG G = (ϕ, ψ) is a pair of function ϕ : X → [0, 1] and ψ : X × X →
[0, 1] such that, for all m, m ∈ X,

ψ(mn) ≤ min{ϕ(m), ϕ(n)}.

Definition 5. A path P of length l in an FG G = (ϕ, ψ) is a sequence of distinct vertices
x0, x1, x2, . . . , xl such that ψ(xk−1xk) > 0, k = 1, 2, 3, . . . , l. The degree of membership value
(MV) of a weakest edge is defined as its strength. The strength of connectedness between two vertices
m and n is defined as the maximum (MA) of the strength of all paths between m and n and is
denoted by ψ∞(m, n) or CONNG(m, n).

An edge mn is called an SE if ψ∞(m, n) = ψ(mn). If ψ(mn) = 0 for each m ∈ X, then n is
named an isolated vertex. If mn is an SE, then its weight is at least as great as the strength of the
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connectedness of its end vertices when it is deleted. Note that, CONNG−mn(mn) is the strength of
the connectedness between m and n in an FG obtained from G by deleting the edge mn.

Definition 6. Let G = (ϕ, ψ) be an FG. Any edge mn is called effective edge if ψ(mn) =
min{ϕ(m), ϕ(n)}.

Definition 7 ([5]). A vague set (VS) Q is a pair (Qt, Q f ) on a set X, where Qt and Q f are real-
valued functions which can be defined from X to [0, 1] , so that Qt(m) +Q f (m) ≤ 1, ∀m ∈ X.

Definition 8 ([6]). A pair G = (Q,Z) is called a VG on graph G∗ = (X, E), where Q = (Qt,Q f )
is a VS on X and Z = (Z t,Z f ) is a VS on E such that

Z t(mn) ≤ min{Qt(m),Qt(n)},

Z f (mn) ≥ max{Q f (m),Q f (n)}.

for all mn ∈ E. Note that Z is called a vague relation on Q. A VG G is named strong if

Z t(mn) = min{Qt(m),Qt(n)},

Z f (mn) = max{Q f (m),Q f (n)},

for all mn ∈ E.

Definition 9. Suppose G = (Q,Z ,R) is a VG. Then,

(i) A path P : m = m0, m1, m2, . . . , mq−1, mq = n in G is a sequence of distinct vertices where
Z t(mk−1mk) > 0 , Z f (mk−1mk) < 1 , k = 1, 2, 3, . . . , q. The length of P is q.

(ii) If P : m = m0, m1, m2, . . . , mq−1, sq = n is a path between m and n of length q, then
(Z t(mn))q = sup{Z t(mm1)∧Z t(m1m2)∧ ...∧Z t(mq−1n)} and (Z f (mn))q = inf{Z f

(mm1) ∨ Z f (m1m2) ∨ ... ∨ Z f (mq−1n)}.

CONNG(m, n) = (CONNt
G(m, n), CONN f

G(m, n)) = (Z t∞
(mn),Z f ∞

(mn)) is named
the strength of connectedness between any two vertices m and n in G where CONNt

G(m, n) =

sup{(Z t(mn))q} and CONN f
G(m, n) = inf{( fZ (mn))q}, q = 1, 2, . . . , ∞.

Definition 10. Let G∗ = (X, E) be a crisp graph. Then, the triad G = (X, E, K) in which
K ⊆ X × E is called In-graph. An element of K is called an In-pair.

Definition 11. Let G∗ = (X, E, K) be an In-graph. A triad G̃ = (ϕ, ψ, λ), where ϕ, ψ and
λ are fuzzy subsets of X, E and K, respectively, is called an In-FG of G∗, if λ(m, mn) ≤
min{ϕ(m), ψ(mn)}, ∀m ∈ X, mn ∈ E. A vertex m and an edge mn are connected if there
exists a path m, (m, mn), mn between them. The vertices m, n are connected if there exists a path
m, (m, mn), mn, (n, mn), n between them.

Example 1. Consider the In-FG G̃ = (ϕ, ψ, λ) presented in Figure 1. In this In-FG, we
have ϕ(m) = 0.4, ϕ(n) = 0.5, ϕ(l) = 0.6 and ψ(mn) = 0.4, ψ(ml) = 0.4, ψ(ln) = 0.5 and
λ(m, nm) = λ(n, nm) = 0.3, λ(n, nl) = λ(l, nl) = 0.4. In this In-FG, the vertices m, n are
connected vertices because there exist a path m, (m, mn), mn, (n, mn), n between them.

Definition 12. An In-FG G̃ = (ϕ, ψ, λ) of an In-graph G∗ = (X, E, K) is complete In-FG, if
λ(m, nl) = min{ϕ(m), ψ(nl)}, ∀(m, nl) ∈ K.

Definition 13. Let G = (ϕ, ψ) be an FG with any two vertices m and n. A vertex m dominates
the vertex n if ψ(mn) ≤ min{ϕ(m), ϕ(n)}. A subset S of the set X is called an SE DS if for every
n ∈ X − S , ∃m ∈ S such that m dominates n. A DS S is called MIL DS if there is no proper
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subset of S that is DS. The effective edge domination number is the MIL fuzzy cardinality created
from all MIL DS and is shown by αEE(G), and the related set S is known as MIL effective edge DS.

Figure 1. An In-FG G.

List of abbreviations used throughout this paper.

• FS stands for “Fuzzy Set”;
• FG stands for “Fuzzy Graph”;
• VS stands for “Vague Set”;
• VG stands for “Vague Graph”;
• VIG stands for “Vague influence Graph”;
• in stands for “Influence”;
• DS stands for “Domination Set”;
• SE stands for “Strong Edge”;
• CP stands for “Cut Pair”;
• MV stands for “Membership Value”;
• MA stands for “Maximum”;
• MI stands for “Minimum”;
• MIL stands for “Minimal”.

3. Vague Influence Graphs

In this section, we study a new notion of the influence graph and influence pair
domination set on VGs. Namely, we obtain the domination set on VIGs. Furthermore, some
properties of VIGs are established.

Definition 14. A triad G = (Q,Z ,R) is called a VIG on graph G∗ = (X, E, K), where Q =
(Qt,Q f ) is a VS on X, and Z = (Z t,Z f ) is a VS on E, and R = (Rt,R f ) is a VS on K,
such that

Rt(m, nl) ≤ min{Qt(m),Z t(nl)},

R f (m, nl) ≥ max{Q f (m),Z f (nl)}

for all m ∈ X, nl ∈ E .

Definition 15. Consider that G = (Q,Z ,R) is a VIG. The vertex m and an edge nl are shown as
connected if there exists a path of m, (m, nl), nl between them.

Example 2. Consider a VIG G = (Q,Z ,R) presented in Figure 2. In this VIG, we have
Q(m) = (0.3, 0.5),Q(n) = (0.4, 0.6),Q(l) = (0.6, 0.7) and Z(mn) = (0.3, 0.6),Z(ml) =
(0.3, 0.7),Z(ln) = (0.4, 0.7) and R(m, nm) = R(n, nm) = (0.3, 0.6),R(n, nl) = R(l, nl) =
(0.3, 0.8),R(m, nl) = (0.2, 0.8). In this VIG, vertex m and an edge nl are shown as connected
because there exists a path of m, (m, nl), nl between them.
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Definition 16. Let G = (Q,Z ,R) be a VIG. If it involves an In-pair then G is VIG. A sequence
P : m, (m, nl), nl, (n, nl), l is a walk in G, and it is an In(m − l) path, whereas P : m, (m, nl), nl
is also an In(m − nl) path. Every two vertices in VIG are known to be connected if there exists any
In-pair between them. Here, (m, nl) is an In-pair as m, n and l are distinct. This In-pair shows
the influence of vertex m on the edge nl.

Figure 2. A VIG G.

Definition 17. Suppose G = (Q,Z ,R) is a VIG. An In-pair in G is named effective IP if

Rt(m, nl) = min{Qt(m),Z t(nl)},

R f (m, nl) = max{Q f (m),Z f (nl)}.

Definition 18. Let G = (Q,Z ,R) be a VIG. Then, the influence of path P indicated by In(P) =
(I tn(P), I f n(P)) and is described as, Int(P) = min{Rt(m, nl)|(m, nl) ∈ P} , In f (P) =
max{R f (m, nl)|(m, nl) ∈ P}, where Int and In f show the MV and the non-MVs of In-pair
lies in the path exists between m to nl.

Definition 19. Let G = (Q,Z ,R) be a VIG. An In-pair (m, nl) is known as strong IP if
R(m, nl) ≥ CONNG−(m,nl)(m, nl). An In-pair (m, nl) is known as the strongest In-pair if
R(m, nl) > CONNG−(m,nl)(m, nl). An In-pair (m, nl) is known as weak IP if R(m, nl) <
CONNG−(m,nl)(m, nl).

Definition 20. Let G = (Q,Z ,R) be a VIG. The greatest In-strength between m and nl is
the highest MV with lowest non-MV from all the In-paths between m to nl which is represented
by CONN∞(m, nl) = (CONNt∞(m, nl), CONN f ∞(m, nl)) and is defined CONN∞(m, nl) =
max{CONNtq(m, nl)|q = 1, 2, 3, . . . , ∞} and CONN∞(m, nl) = min{CONN f q(m, nl)|q =
1, 2, 3, . . . , ∞}.

Theorem 1. Let G = (Q,Z ,R) be a VIG. If (m, nl) is a strong In-pair, then G involves a strong
In-path P .

Proof. Suppose G = (Q,Z ,R) is a VIG. Then, a pair (m, nl) is an effective In-pair if
Rt(m, nl) = min{Qt(m),Z t(nl)} and R f (m, nl) = max{Q f (m),Z f (nl)}. Now, consider
that m − nl is an In-path P : m, (m, nl), nl. Any In-pair incident from m to nl can not
have In-MV more than nl. Similarly, any In-pair (m, nl) which is influenced at nl can not
have In-MV more than (m, nl). It means that the In-path P : m, (m, nl), nl has In-strength
from MVs as min{Q(m),Z(nl)} and In-strength from non-MVs as max{Q(m),Z(nl)}.
Therefore, P becomes the strong In-path with the effective In-pair.

Theorem 2. Let G = (Q,Z ,R) be a VIG. If the In-path P involves the alone In-pair, then the
In-pair should be strong.
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Proof. Suppose G = (Q,Z ,R) is a VIG with an In-pair (m, nl) and R(m, nl) = min
{Q(m),Z(nl)}. Suppose the In-pair is not a strong In-pair, then CONNG−(m,nl)(m, nl) >
R(m, nl), which is just possible if there exist any other In-path that is a contradiction. Thus,
if the In-path P contains the alone In-pair, then the In-pair should be strong.

Theorem 3. Let G = (Q,Z ,R) be a VIG. If R(m0, m1m2) = max{R(m0, m1m2) : (m0, m1m2)
∈ R}, then (m0, m1m2) is known as strong In-pair.

Proof. Suppose G = (Q,Z ,R) is a VIG. Let the In-pair (m0, m1m2) be not a strong In-
pair. Then, there is any In-path P : m0, (m0, m1m2), m1m2, . . . , m0mn so that the highest
In-strength of P > R(m0, m1m2). Clearly, there is R(mi, mi+1mi+2) > R(m0, m1m2) for
every i = 1, 2, 3, . . . , n. This shows that there is any In-pair that is a strong In-pair, which
is a contradiction. Therefore, if R(m0, m1m2) = max{R(m0, m1m2) : (m0, m1m2) ∈ R},
then (m0, m1m2) is known as a strong In-pair.

Theorem 4. Suppose G = (Q,Z ,R) is a VIG having a strong In-pair(m, nl), then it must be a
strong In-pair.

Proof. Suppose G = (Q,Z ,R) is a VIG having a strong In-pair (m, nl). Then, by using
the definition of a strong In-pair (m, nl) in G, we have Rt(m, nl) = min{Qt(m),Z t(nl)}
and R f (m, nl) = max{Q f (m),Z f (nl)}. Suppose Qt(m) ≥ Z t(nl), then Rt(m, nl) =
Z t(nl). So, for any In-path P : m, (m, nl), nl, the influence of P ≤ Z t(nl). By using
Theorem 1, the In-path P involves the alone In-pair, then the IP should be strong, and
according to Theorem 2, the In-pair having MA degree of MV should be a strong In-
pair. As the In-pair is alone and has MA degree of MV, we have Rt(m, nl) = Z t(nl) >
CONNt

G−(m,nl)(m, nl). Now, suppose Qt(m) ≤ Z t(nl), then Rt(m, nl) = Qt(m). So, for

any In-path P : m, (m, nl), nl, the influence of P ≤ Qt(m0). Again by using Theorems
1 and 2, we have Rt(m, nl) = Qt(m) > CONNt

G−(m,nl)(m, nl). For non-MVs, consider

Q f (m) ≤ Z f (nl), then R f (m, nl) = Z f (nl). So, for any In-path P : m, (m, nl), nl, the
influence of P ≥ Z t(nl). By using Theorems 1 and 2, we have R f (m, nl) = Q f (m) >
CONNt

G−(m,nl)(m, nl). Now, suppose Q f (m) ≤ Z f (nl), then R f (m, nl) = Q f (m). So, for

any In-path P : m, (m, nl), nl, the influence of P ≥ Q f (m). Again, by using Theorems 1
and 2, we have R f (m, nl) = Q f (m) > CONN f

G−(m,nl)(m, nl). Therefore, (m, nl) is a strong
In-pair.

Theorem 5. Let G = (Q,Z ,R) be a VIG. Then, a vertex x ∈ Q is called an In-cut vertex of G if
CONNG−x(m, nl) < R(m, nl) for some m, nl ∈ Q∪Z .

Example 3. Consider that G = (Q,Z ,R) is a VIG as shown in Figure 3. In this VIG, there are two
In-paths from a0 to a3 namely: P1 : a0, (a0, a3a4), a3a4, (a3, a3a4), a3 and P2 : a0, (a0, a1a2), a1a2,
(a2, a1a2), a2, (a2, a2a3), a2a3, (a3, a2a3), a3. For P1, CONNG−a0(a0, a3a4) = (0, 0) < (0.1, 0.6)
= R(a0, a3a4), and for P2, CONNG−a0(a0, a1a2) = (0, 0) < (0.2, 0.6) = R(a0, a1a2).

Definition 21. Let G = (Q,Z ,R) be a VIG. Then, G is described as VIG block if G does not
involve any cut vertex.

Theorem 6. Suppose G = (Q,Z ,R) is a VIG with an In-pair (m, nl). Then, the vertex deleted
from the In-pair is a cut vertex of G.

Proof. Suppose G = (Q,Z ,R) is a VIG with an In-pair (m, nl). There is only one In-path
from m to nl namely m, (m, nl), nl having CONNG−m(m, nl) < CONNG(m, nl). Therefore,
m is a In-cut vertex.
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Definition 22. Let G = (Q,Z ,R) be a VIG. Then, an edge mjmj+1 ∈ Z for each j =
1, 2, 3, . . . , q is called a bridge of G if CONNG−mjmj+1(m0, m1m2) < CONNG(m0, m1m2) for
some m0, m1m2 ∈ Q∪Z .

Figure 3. A VIG G with cut vertex a0.

Definition 23. Let G = (Q,Z ,R) be a VIG. Then, G is bridgeless if it involves no bridge.

Definition 24. Let G = (Q,Z ,R) be a VIG. Then, an In-pair (m, nl) ∈ R is defined to be an
In-CP of G if CONNG−m(m, nl) < CONNG(m, nl) for some m, nl ∈ Q∪Z .

Example 4. Consider that G = (Q,Z ,R) is a VIG as shown in Figure 4. The MV and non-MV
of pairs of VIG are shown in Table 1.

Figure 4. VIG G.

In this VIG, there is only one In-path from a1 to a3a4, namely a1, (a1, a3a4), a3a4. If
we delete the edge a3a4, we obtain (0, 0) = CONNG−a3a4(a1, a3a4) < CONNG(a1, a3a4) =
(0.1, 0.6). Hence, a3a4 is an influence bridge. If we delete the In-pair (a1, a3a4), we have
(0, 0) = CONNG−(a1,a3a4)

(a1, a3a4) < CONNG(a1, a3a4) = (0.1, 0.6). Hence, (a1, a3a4) is
an In-CP.
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Definition 25. A VIG G = (Q,Z ,R) is known as a complete VIG, if every vertex m has the in-
fluence on every edge nl with Rt(m, nl) = min(Qt(m),Z t(nl)) and R f (m, nl) = max(Q f (m),
Z f (nl)).

Example 5. Consider that G = (Q,Z ,R) is a complete VIG as shown in Figure 5. The MV and
non-MV of pairs of VIG are shown in Table 1.

Figure 5. A complete VIG G.

Table 1. VIG R.

R MV and Non-MV of Pairs

(m1, m1m2) (0.2, 0.6)

(m3, m1m3) (0.3, 0.6)

(m2, m1m2) (0.2, 0.6)

(m1, m1m3) (0.3, 0.6)

(m2, m2m3) (0.2, 0.5)

(m1, m2m3) (0.2, 0.6)

(m3, m2m2) (0.2, 0.5)

(m1, m3m4) (0.2, 0.6)

(m3, m3m4) (0.2, 0.4)

(m2, m1m4) (0.2, 0.6)

(m4, m3m4) (0.2, 0.4)

(m2, m3m4) (0.2, 0.5)

(m1, m1m4) (0.2, 0.6)

(m4, m1m2) (0.2, 0.6)

(m4, m1m4) (0.2, 0.6)

(m4, m2m3) (0.2, 0.5)

(m2, m2m4) (0.2, 0.5)
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Table 1. Cont.

R MV and Non-MV of Pairs

(m3, m1m2) (0.2, 0.6)

(m4, m2m4) (0.2, 0.5)

(m3, m1m4) (0.2, 0.6)

This is a complete VIG because m1 has an influence on m1m2, m1m3, m2m3, m3m4 and m1m4.
Similarly, m2 has an influence on m1m2, m1m4, m2m4, m3m4 and m2m3. Furthermore, also,
m3 has an influence on m3m2, m3m4, m3m1, m1m2 and m1m4. Lastly, m4 has an influence on
m4m3, m4m1, m4m2, m2m3 and m1m2. This graph G also has a vague fuzzy influence cycle.

Definition 26. Let G = (Q,Z ,R) be a VIG. Then, G is a cycle if G = (Q∗,Z∗,R∗) is a cycle,
while G is shown as a fuzzy cycle if G is a cycle and it does not contains a unique m1m2 ∈ Z such
that Z(m1, m2) = minZ(mimj)|mimj ∈ Z . The VIG G = (Q,Z ,R) is known as a VIG cycle
if it does not contains a unique In-pair so that Rt(m0, m1m2) = min{Qt(m0),Z t(m1m2)} and
R f (m0, m1m2) = max{Q f (m0),Z f (m1m2)}.

Theorem 7. Let G = (Q,Z ,R) be a VIG. If G is complete, then each In-pair of G is a CP.

Proof. Let G = (Q,Z ,R) be a complete VIG. If we remove any vertex from G, then it must
reduce the In-connectivity between two vertices or between the vertex and edge. Assume
any three vertices m, n and l makes a complete VIG. If we remove a vertex m from G, we
obtain CONNG−m(m, nl) < CONNG(m, nl). Therefore, if G is complete, then each pair of
G is a CP.

Theorem 8. Let G = (Q,Z ,R) be a VIG. Then, a pair (m, nl) is an In-pair CP if and only if the
removal of the pair (m, nl) reduces the In-connectivity between m and nl.

Proof. Let G = (Q,Z ,R) be a VIG. Suppose (m, nl) is the In-CP in G. Now, by using the
definition, we have CONNG−(m,nl)(m, nl) < R(m, nl). From all the In-paths m − nl, the
path P : m, (m, nl), nl will have the MA-influenced strength, namely R(m, nl). So, it is
clear that by removing the In-pair , (m, nl) the In-connectivity between m and nl will be
reduced.

Conversely, if we have CONNG−(m,nl)(m, nl) < R(m, nl), then by the definition, it
shows that the pair (m, nl) is an In-CP of G.

Definition 27. Let G = (Q,Z ,R) be a VIG with any three vertices m, n and l. A vertex m
dominates the vertex l if R(m, nl) ≥ CONN(m, nl). A subset S of the set X is called a strong
In-pair DS, if for each l ∈ X − S , ∃m ∈ S such that m dominates l.

Definition 28. Let G = (Q,Z ,R) be a VIG. Then, the degree of vertex m in G is represented
by deg(m) = (degt(m), deg f (m)) and is described as degt(m) = ∑(m, nl), (m, nl) ∈ Rt, where
m ̸= n ̸= l and deg f (m) = ∑m,n ̸=l(m, nl), (m, nl) ∈ R f , where m ̸= n ̸= l.

Definition 29. Let G = (Q,Z ,R) be a VIG. Then, the minimum(MI) degree of G is represented
by ω(G) = (ωt(G), ω f (G)) and is described as ωt(G) = min{degt(m)|m ∈ Q} , ω f (G) =
max{deg f (m)|m ∈ Q}.

Definition 30. Let G = (Q,Z ,R) be a VIG. Then, the MA degree of G is represented by
γ(G) = (γt(G), γ f (G)) and is described as γt(G) = max{degt(m)|m ∈ Q} , γ f (G) =
min{deg f (m)|m ∈ Q}.
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Definition 31. Let G = (Q,Z ,R) be a VIG. Then, the order of G is shown by O(G) =
(Ot(G),O f (G)) and is described as

Ot(G) = ∑
m∈Q

Q(m), ∀m ∈ Ot,

O f (G) = ∑
m∈Q

Q(m), ∀m ∈ O f .

Definition 32. Let G = (Q,Z ,R) be a VIG. Then, the size of G is shown by S(G) = (S t(G),
S f (G)) and is defined as S t(G) = ∑(m, nl), (m, nl) ∈ Rt, where m ̸= n ̸= l and S f (G) =

∑m,n ̸=l(m, nl), (m, nl) ∈ R f , where m ̸= n ̸= l.

Definition 33. Let G = (Q,Z ,R) be a VIG. A strong In-pair DS S is known as a MIL strong
In-pair DS if no proper subset of S is a strong In-pair DS.

Definition 34. Let G = (Q,Z ,R) be a VIG. The MI strong In-pair domination number obtained
from all MIL strong In-pair SDs and is represented by β(G).

Definition 35. Let G = (Q,Z ,R) be a VIG. Then, the MI number of elements in the MIL
strong In-pair DS is shown by M(β(G)), where M(β(G)) = min{|Sj|}, Sj is a MIL strong
In-pair DS.

Theorem 9. Suppose thatG = (Q,Z,R) is a VIG. IfG is complete, then β(G) = min{Q(m)|m ∈ X}.

Proof. Suppose that S is a DS. Let m0 ∈ S and m1 ∈ X − S . As G is a complete VIG, so
each In-pair is an effective In-pair, then by using the Theorem 7, every In-pair is a CP.
Now, by using Theorem 8, every CP is a strong In-pair as it decreases the In-connectivity
between m0 and m1m2. It implies that m0 dominates each m1 ∈ X − S . It shows that
S = {m0} is a MIL strong In-pair DS. Therefore, β(G) = min{Q(m)|m ∈ X}.

4. Application: Recognition of Companies Participating in Illegal Drug Trade

Graph theory has expanded greatly as a result of a wide variety of applications in
optimization combinatorial issues, chemistry, physics and other fields. In this section, we
describe a real-world application of VIGs.

Currently, the illegal drug trade is seen as a high-risk, high-reward dirty industry. It
is estimated that arms, medicine, drugs, alcohol and tobacco are the five largest illegal
businesses in the world. The drug trade is a big business that generates billions of dollars
in illegal income. Criminals mostly design many creative methods of illegal drug trans-
portation, focusing on buying and selling. It is hard to find hidden ways to enforce the law,
so the police must be aware of the latest illegal trends. For the drug trading market, we
can use VIG to highlight the safest path chosen by the dangerous international networks
of illegal drug trade between two companies and can also announce its removal, which
reduces the safety of that route.

Consider how many companies in the world take part illegal drug trade, which is a
major threat to humans, in the following series: X = {C1, C2, C3, C4, C5, C6} (see in Figure 6).
VIG Q defined on set X is presented in Table 2.

In Table 2, Qt shows law enforcement efforts of the company for illegal drug trade,Q f

indicates the involvement of the company in organized illegal drug trade, and the neutral
approach of the company to illegal drug trade can be considered as a degree of indeter-
minacy. We define VIG Z in Table 3. An element of VIG Z represents illegal drug trade
between those two companies.
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Table 2. VIG Q on set X.

Company
Law Enforcement Efforts of
the Country for Illegal Drug

Trade

Involvement of the Country
in Organized Illegal Drug

Trade

C1 0.4 0.5

C2 0.3 0.5

C3 0.4 0.6

C4 0.3 0.4

C5 0.2 0.3

C6 0.1 0.2

Table 3. VIG Z on set E.

Z Rate of Illegal Drug Trade Negative Effect

C1C2 0.3 0.5

C2C3 0.3 0.6

C3C4 0.3 0.6

C4C5 0.2 0.4

C5C1 0.2 0.5

C1C6 0.1 0.5

C5C6 0.1 0.3

In Table 3, Z t shows the rate of illegal drug trade between companies, and Z f shows
the rate of the world’s negative effect for that illegal drug trade.

Figure 6. A VIG G.
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Consider that Rt(C1, C1C5) and R f (C1, C1C5) represent the degree of safety and
degree of risk for illegal drug trade, respectively, to use C1 as a source company, relationship
on C1C5 and arrive at destination company C5. Similarly, the MV and non-MV of the other
pairs of VIG are shown in Table 4.

Table 4. VIG R on set K.

R Degree of Safety Degree of Risk

(C1, C1C2) 0.2 0.6

(C2, C1C2) 0.2 0.6

(C2, C2C3) 0.2 0.7

(C3, C2C3) 0.2 0.7

(C3, C3C4) 0.2 0.7

(C4, C3C4) 0.2 0.7

(C4, C4C5) 0.1 0.5

(C5, C4C5) 0.1 0.5

(C5, C5C1) 0.1 0.6

(C1, C1C5) 0.1 0.6

(C2, C3C4) 0.2 0.7

(C3, C4C5) 0.2 0.7

(C5, C2C3) 0.1 0.6

(C1, C1C6) 0.1 0.5

(C6, C1C6) 0.1 0.5

(C5, C5C6) 0.1 0.4

(C6, C5C6) 0.1 0.4

The interesting thing is that there are multiple In-paths between every two vertices.
Consider, we are finding the In-paths from C1 to C3, thus all possible C1 − C3C4 are as
follows:

P1 : C1, (C1, C1C5), C1C5, (C5, C1C5), C5, (C5, C2C3), C2C3, (C3, C2C3), C3, (C3, C3C4),
C3C4.
P2 : C1, (C1, C1C2), C1C2, (C2, C1C2), C2, (C2, C3C4), C3C4.
P3 : C1, (C1, C1C2), C1C2, (C2, C1C2), C2, (C2, C2C3), C2C3, (C3, C2C3), C3, (C3, C3C4),
C3C4.
P4 : C1, (C1, C1C5), C1C5, (C5, C1C5), C5, (C5, C4C5), C4C5, (C4, C4C5), C4, (C4, C3C4),
C3C4, .
P5 : C1, (C1, C1C6), C1C6, (C6, C1C6), C6, (C6, C5C6), C5C6, (C5, C5C6), C5, (C5, C2C3),
C2C3, (C3, C2C3), C3, (C3, C3C4), C3C4.
P6 : C1, (C1, C1C6), C1C6, (C6, C1C6), C6, (C6, C5C6), C5C6, (C5, C5C6), C5, (C5, C4C5),
C4C5, (C4, C4C5), C4, (C4, C3C4), C3C4.

The In strengths of these In-pairs are given by
IP(P1) = (0.1, 0.7), IP(P2) = (0.2, 0.7), IP(P3) = (0.2, 0.7),
IP(P4) = (0.1, 0.7), IP(P5) = (0.1, 0.7), IP(P6) = (0.1, 0.7).
The t-In strength and f-In strength of connectedness are given by
CONNt

G(C1, C3C4) = max{IP t(P1, P2, P3, P4, P5, P6)} = 0.2

CONN f
G(C1, C3C4) = min{IP f (P1, P2, P3, P4, P5, P6)} = 0.7

CONNG(C1, C3C4) = (CONNt
G(C1, C3C4), CONN f

G(C1, C3C4)) = (0.2, 0.7)
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Here, we consider that if the connection between companies is reduced, the amount
of illegal drug trade will decrease. Let us remove (C3, C2C3) and (C1, C1C2) of VIG G, as
shown in Figure 7. Then, CONNG−(C3,C2C3)

(C1, C3C4) = (0.1, 0.7). Therefore, the removal
of (C3, C2C3) and (C1, C1C2) decreases the safety of the path.

Figure 7. A VIG G.

Comparative Analysis

We want to eliminate the safest route through which the dangerous international drug
trade networks between two companies conduct their interactions. Therefore, we need to
check this application with the VIG graph. In this section, we considered six companies
(C1, C2, C3, C4, C5, C6) that have the most illegal interactions with each other and that these
companies have caused an increase in illegal drug trade due to their interactions with
each other. Each of the paths shows the rate of illegal drug trade between companies and
rate of the world’s negative effect for that illegal drug trade. Here, we consider that if the
connection between companies is reduced, the amount of illegal drug trade will be reduced.
First, we chose two companies C1 and C3. There are several routes between these two
companies that we are finding in the In-paths from C1 to C3. Then, we obtained the In
strength and strength of connectedness. By removing the route that had the most power of
penetration and connection between the two companies, the safety of the route decreased,
so by reducing the interactions between the companies, the amount of illegal drug trade
can be prevented.

5. Conclusions

A VG, an extension of the basic notion of an FG, can be employed to deal with deeper
aspects of uncertainty and imprecision for which the use of FGs would not fully succeed.
VIGs are efficient tools for studying different computational intelligence and computer
science domains. In this paper, we introduced the notion of domination in VIGs using a
strong In-pair. The concepts of the MI strong In-pair DS and MI strong fuzzy In-pair
domination number are described for a VIG. The attributes of several specific values are
given, including the In-cut vertex, In-bridges, In-CPs, strong In-pair with their mutual
relationship in the VIGs, and some results are presented. Due to unforeseen circumstances,
there is an area for broad theoretical and practical level interpretations of these subjects. In
the future, we intend to broaden the scope of our research to include topological indices and
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the notion of energy in VIGs. There is a scope for extensive theoretical and practical-level
analysis of these topics.
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