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Abstract: The purpose of this research is to unify and extend the study of the well-known concept of
coefficient estimates for some subclasses of analytic functions. We define the new subclass Ar,s

4 of
analytic functions related to the four-leaf domain, to increase the adaptability of our investigation.
The initial findings are the bound estimates for the coefficients |an|, n = 2, 3, 4, 5, among which the
bound of |a2| is sharp. Also, we include the sharp-function illustration. Additionally, we obtain the
upper-bound estimate for the second Hankel determinant for this subclass as well as those for the
Fekete–Szegő functional. Finally, for these subclasses, we provide an estimation of the Krushkal
inequality for the function class Ar,s

4 .

Keywords: analytic functions; subordination; four-leaf function; coefficient inequalities; Hankel
determinant; Fekete–Szegő functional; Krushkal inequality
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1. Introduction and Preliminaries

We let A denote the class of analytic functions defined in the open unit disk D :=
{z ∈ C : |z| < 1}, having the power-series expansion of the type

f (z) = z +
∞

∑
n=2

an zn, z ∈ D. (1)

Also, we let S denote the class of all functions of A that are univalent in D.
If F and G are analytic functions in D, and if there exists a function w analytic in D

with w(0) = 0 and |w(z)| < 1 in D, such that F = G ◦ w, then we say that F is subordinated
to G, written F(z) ≺ G(z) (see, for example, [1] p. 368). Using the Schwarz lemma, it is easy
to show that F(z) ≺ G(z) implies F(0) = G(0) and F(D) ⊂ G(D), and assuming that G is
univalent in D then the next equivalence holds:

F(z) ≺ G(z) ⇔ F(0) = G(0) and F(D) ⊂ G(D). (2)

The classic Fekete–Szegő problem [2] involves finding the exact limits of the functional∣∣a3 − µa2
2

∣∣ for a compact-function family or f ∈ A with any µ ∈ C; for further details, one
may refer to [3].
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Pommerenke provided the following Hankel determinant in [4,5], denoted by Dq,n( f ),
which contains the coefficients of a function f ∈ S :

Dq,n( f ) :=

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
. . .

...
an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣,
with q, n ∈ N := {1, 2, . . . }. Therefore, by altering the parameters q and n we obtain the
following Hankel determinants:

D2,1( f ) =
∣∣∣∣ 1 a2
a2 a3

∣∣∣∣ = a3 − a2
2, D2,2( f ) =

∣∣∣∣a2 a3
a3 a4

∣∣∣∣ = a2a4 − a2
3,

D3,1( f ) =

∣∣∣∣∣∣
1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ = a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2), (3)

that denote the first, the second, and the third-order Hankel determinants. There are a few
references in the literature to the Hankel determinant for functions in the general family
S . The best-known sharp inequality for the function f ∈ S is D2,n( f ) ≤ κ

√
n, where κ is

a constant, and it is due to Hayman ([6] Theorem 1). Additionally, for the class S , it was
found in [7] that

|D2,2( f )| ≤ κ, where 1 ≤ κ ≤ 11
3

≃ 3.66 . . . ,

|D3,1( f )| ≤ ν, where
4
9
≤ ν ≤ 32 +

√
285

15
≃ 3.258796 . . . .

The precise bounds of Hankel determinants for a given family of functions have
piqued the interest of several mathematicians. For the three well-known subfamilies of
the set S that are K, S∗, and R (convex, starlike, and functions of a bounded turning,
respectively), Janteng et al. [8,9] computed the sharp bounds of |D2,2( f )|. These bounds
are provided by

|D2,2( f )| ≤


1
8

, for f ∈ K,

1, for f ∈ S∗,
4
9

, for f ∈ R.

Moreover, the sharp bounds of this determinant for a few subclasses S∗ and K were
found in [10] and subsequently studied in [11]. This problem was solved for various
families of bi-univalent functions in [12–14].

Finding the bound of |D2,2( f )| is significantly easier than calculating |D3,1( f )|, as is
shown by Formula (3). In 2010, Babalola [15] was the first to study the third-order Hankel
determinant for the classes K, S∗, and R. The same approach was then used by several
authors [16–20] to the values of |D3,1( f )| for certain subclasses of univalent functions.
The researchers became interested in Zaprawa’s study [21] because he enhanced Babalola’s
findings by utilizing a novel technique to show that

|D3,1( f )| ≤


49
540

, for f ∈ K,

1, for f ∈ S∗,
41
60

, for f ∈ R,
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and he also noted that the bounds are not sharp. For f ∈ S∗, Kwon et al. [22] made a more

agreeable finding in 2019 and proved that |D3,1( f )| ≤ 8
9

. Zaprawa et al. [23] improved

this limit even more, since they proved that for f ∈ S∗ the inequality |D3,1( f )| ≤ 5
9

holds.
In recent years, a sharp bound was obtained by Kowalczyk et al. [24] and Lecko et al. [25]
for the third Hankel determinant, as below:

|D3,1( f )| ≤


4

135
, for f ∈ K,

1
9

, for f ∈ S∗
(

1
2

)
,

where S∗
(

1
2

)
is the family of starlike functions with order

1
2

.

Gandhi in [26] introduced a set of bounded turning functions connected to a three-
leaf function. In 2022, in the articles [27,28] the authors introduced and studied different
subclasses of analytic functions defined by subordination to the four-leaf function (see
Figure 1, made with MAPLE™ 2023 computer software) that is given by

Q4(z) := 1 +
5
6

z +
1
6

z5, z ∈ D.

Figure 1. The image of Q4(D).

With the aid of a four-leaf function, we define the following subclass of A, using the
notion of subordination, as follows:

Definition 1. A function f ∈ A is said to be in the class Ar,s
4 if

Ψr,s f (z) := (1 − r)(1 − s)
f (z)

z
+
(
s + r(1 + s)

)
f ′(z) + rs

(
z f ′′(z)− 2

)
≺ Q4(z), (4)

where r ≥ 0 and s ∈ [0, 1].

The reason for taking the above left-hand-side expression consisted in the fact that
we could obtain a subordination condition where appeared the usual expressions f (z)/z,
f ′(z), and z f ′′(z). For special values of the parameters r and s, some of these functions
vanished or the formula became more simple and, as we can see in the further Remark 2,
we could simply obtain expressions subordinated to the four-leaf function.

Many results regarding some subclasses defined by subordinations with different
functions with significant geometrical properties (e.g., the limaçon function, convex func-
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tions in one direction, the cosine function, the nephroid function, etc.) were studied by the
fourth author in many papers (see, for example, [29–32]). The novelty of these subclasses
and of this paper consists in the fact that such subordinations with similar expressions to
the left-hand side of the subordination (4) were not studied in some other previous articles.

Throughout this paper, unless otherwise stated, we assume that

τn := 1 + (n − 1)(r + s) +
(

n2 + 1
)

rs, n ∈ N \ {1}, (5)

where r ≥ 0 and s ∈ [0, 1]. Evidently, τn ≥ 1 and

τn+1 − τn =
(
1 + (2n + 1)s

)
r + s ≥ 0.

Remark 1. (i) If φ is an analytic function in D then φ is said to be a starlike function with respect
to w0 = φ(0) if φ is univalent in D and φ(D) is a starlike domain with respect to w0—that is, the
segment [w0, φ(z)] lies in φ(D) for all z ∈ D. It is well known that the function φ is starlike with
respect to w0 = φ(0) if and only if φ′(0) ̸= 0 and

Re
zφ′(z)

φ(z)− w0
> 0, z ∈ D.

Since Q4(0) = 1, Q′
4(0) = 5/6 ̸= 0 and

Re
zQ′

4(z)
Q4(z)−Q4(0)

= 5 Re
1 + z4

5 + z4 > 0, z ∈ D,

it follows that the four-leaf function Q4 is starlike (univalent) in D with respect to w0 = Q4(0) = 1.
Moreover, from the fact that

(
Q4(1) +Q4(−1)

)/
2 = 1 it follows that the domain Q4(D) is

symmetric with respect to the point w0 = 1, and because Q4(z) = Q4(z), z ∈ D the domain
Q4(D) is symmetric with respect to the real axis.

We have ReQ4(z) > 0, z ∈ D because

ReQ4(z) = Re
(

1 +
5
6

z +
1
6

z5
)
= 1 + Re

(
5
6

z +
1
6

z5
)
≥ 1 −

∣∣∣∣56 z +
1
6

z5
∣∣∣∣

≥ 1 − 5
6
|z| − 1

6
|z5| > 1 − 5

6
− 1

6
= 0, z ∈ D,

hence, ReQ4(z) > 0, z ∈ D.
(ii) We will emphasize that the class Ar,s

4 is not empty. Considering f̃ (z) = z + az2 + bz3,
for the particular case a = 0.08, b = 0.01, r = 1.5, and s = 0.5, using the 2D plot of the MAPLE™
computer software we obtain the images of the boundary ∂D by the functions Ψr,s f̃ and Q4, shown
in Figure 2a. Since Q4, as we showed above, is univalent in D, the equivalence (2) yields that the
subordination Ψr,s f̃ (z) ≺ Q4(z) holds whenever Ψr,s f̃ (0) = Q4(0) = 1 and Ψr,s f̃ (D) ⊂ Q4(D)
(see Figure 2b). In conclusion, f̃ ∈ Ar,s

4 for the above values of the parameters; hence, the class Ar,s
4

is not empty for non-trivial values of the parameters.
The following univalence theorem on the boundary is well known (see, for example, [33]

Lemma 1.1, p. 13): Let f be analytic in D and injective on the boundary ∂D. Then, f is univalent in
D and maps D onto the inner domain of the (closed) Jordan curve J = f (∂D).

For the function f̃ defined by the above item (ii), we have f̃ ∈ Ar,s
4 . Using the 2D plot of the

MAPLE™ computer software, the image of the boundary ∂D by the functions f̃ (see Figure 2b),
we see that f̃ (∂D) is a simple curve; hence, f̃ is univalent on ∂D. Therefore, according to the above
result, we conclude that f̃ ∈ S ; hence, Ar,s

4 ∩ S ̸= ∅ for some values of the parameters r ≥ 0 and
s ∈ [0, 1].
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(a) (b)

Figure 2. Figures for Remark 1 (ii): (a) The images of Ψr,s f̃
(

eiθ
)

(blue color) and Q4

(
eiθ
)

(red color),

θ ∈ [0, 2π). (b) The image of f̃ (∂D).

(iii) Let us consider the function f̂ (z) = z + az2 + bz3 for a = 0.58, b = 0.01, and let us
take r = 0.05 and s = 0.06. From the 2D plot of the MAPLE™ computer software we represent
the images of the boundary ∂D by the functions Ψr,s f̂ and Q4 in Figure 3a. For similar reasons,
like item (ii) we have Ψr,s f̂ (z) ≺ Q4(z). In conclusion, f̂ ∈ Ar,s

4 for the above given values of the
parameters. But, representing with a 2D plot of the MAPLE™ computer software the image of
the circle |z| = 0.98 by the functions f̂ (see Figure 3b), we see that f̂

(
0.98 eiθ), θ ∈ [0, 2π) is not

a simple curve; hence, f̂ is not univalent in D. Consequently, we have Ar,s
4 ̸⊂ S for the general

choices of the parameters r ≥ 0 and s ∈ [0, 1].

(a) (b)

Figure 3. Figures for Remark 1 (iii): (a) The images of Ψr,s f̂
(

eiθ
)

(blue color) and Q4

(
eiθ
)

(red color),

θ ∈ [0, 2π). (b) The image of f̂
(

0.98 eiθ
)

, θ ∈ [0, 2π).

(iv) Not only polynomial functions belong to these classes Ar,s
4 , as can we see in the next

examples. Taking fc(z) = z · 1 + az
1 + bz

for the particular case a = 0.58, b = 0.001, r = 0.05, and

s = 0.06, we similarly obtain the images of the boundary ∂D by the functions Ψr,s fc and Q4, shown
in Figure 4a, and, for the same reasons as in the above item, we conclude that fc ∈ Ar,s

4 for these
values of the parameters. We could mention the same property for the transcendental function
fe(z) = z eaz with a = 0.38, where for r = 0.05 and s = 0.06, using a proof similar to those of
item (ii) (see Figure 4b), we obtain fe ∈ Ar,s

4 .
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(v) For all n ∈ N \ {1} and γ ∈ C with |γ| = 1, if we define the functions

fn−2(z) := z +
5

6τn
γn−1zn +

1
6τ5n−4

γ5n−5z5n−4, z ∈ D, (6)

using the fact that

Ψr,s fn−2(z) = 1 +
5
6
(γz)n−1 +

1
6
(γz)5n−5 = Q4

(
(γz)n−1

)
≺ Q4(z)

it follows that fn−2 ∈ Ar,s
4 for all r ≥ 0, s ∈ [0, 1] and n ∈ N \ {1}.

(a) (b)

Figure 4. Figures for Remark 1 (iv): (a) The images of Ψr,s fc

(
eiθ
)

(red color) and Q4

(
eiθ
)

(blue color),

θ ∈ [0, 2π). (b) The image of Ψr,s fe

(
eiθ
)

(red color) and Q4

(
eiθ
)

(blue color), θ ∈ [0, 2π).

(vi) Definition 1 of the class Ar,s
4 generates the next natural question: whether for every

function f ∈ A there exists r ≥ 0 and s ∈ [0, 1], such that the function f belongs to the class Ar,s
4 .

We will provide below a negative answer to this question, i.e., there exists a function g ∈ A,
such that for any r ≥ 0 and s ∈ [0, 1] we have Ψr,sg(z) ̸≺ Q4(z). The proof of this fact will be
presented below, where we provide an example of such a function.

Letting g(z) := zez ∈ A, from Formula (4) we easily obtain

H(z) := Ψr,sg(z) =
{[(

z2 + 3z + 2
)

s + z
]
r + zs + 1

}
ez − 2rs,

that is, an entire function (analytic in the whole complex plane C), and from the theorem of the
maximum of the module it follows that

sup
z∈D

|H(z)| = max
z∈D

|H(z)| = max
|z|=1

|H(z)|

≥ |H(1)| =
[
(6e − 2)s + e

]
r + (1 + s)e =: L(r, s), (7)

with L : [0,+∞)× [0, 1] → R. Since

∂L(r, s)
∂r

= (6e − 2)s + e ≥ e > 0, (r, s) ∈ [0,+∞)× [0, 1],

it follows that L(·, s) is a strictly increasing function on [0,+∞) for all s ∈ [0, 1], therefore,

L(r, s) ≥ L(0, s) = (1 + s)e ≥ e, (r, s) ∈ [0,+∞)× [0, 1], (8)
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and combining the inequalities (7) and (8) we deduce that

sup
z∈D

|H(z)| ≥ e ≃ 2.7182 . . . (9)

On the other hand, the function Q4 is also an entire function and it is easy to check that

sup
z∈D

|Q4(z)| = Q4(1) = 2, (10)

consequently, from (9) and (10) we obtain

sup
z∈D

|Ψr,sg(z)| ≥ e > 2 = sup
z∈D

|Q4(z)|,

which implies Ψr,sg(z) ̸≺ Q4(z). Thus, for the function g(z) = zez ∈ A, there does not exist
(r, s) ∈ [0,+∞)× [0, 1], such that g ∈ Ar,s

4 ; hence,

A ̸⊂
{
Ar,s

4 : (r, s) ∈ [0,+∞)× [0, 1]
}

.

Remark 2. Some relevant special cases of the class Ar,s
4 could be obtained as follows:

(i) For s = 0 and r ≥ 0, the class Ar,0
4 will be

Ar,0
4 =

{
f ∈ A : (1 − r)

f (z)
z

+ r f ′(z) ≺ Q4(z)
}

.

(ii) Putting s = 0 and r = 1 in (4), we obtain the class A1,0
4 , which was introduced and

studied by Sunthrayuth et al. [27], which is

A1,0
4 =

{
f ∈ A : f ′(z) ≺ Q4(z)

}
.

To prove our main results, we will use the next preliminary results.
We say a function p belongs to the class P of Carathéodory functions (see [34,35]) if and

only if it has the series expansion

p(z) = 1 +
∞

∑
k=1

cnzk, z ∈ D, (11)

and Re p(z) > 0 for all z ∈ D.

Lemma 1. Let p ∈ P be of the form (11). Then:
(i) For n ≥ 1

|cn| ≤ 2. (12)

The inequality holds for all n ≥ 1 if and only if p(z) = (1 + λz)/(1 − λz), |λ| = 1.
(ii) Also, if µ ≥ 0 then

|cn+k − µcnck| ≤ 2 max{1; |2µ − 1|} =

{
2, if 0 ≤ µ ≤ 1,
2|2µ − 1|, otherwise.

(13)

If 0 < µ < 1 the inequality is sharp for the function p(z) =
(

1 + zn+k
)/(

1 − zn+k
)

.

In the other cases, the inequality is sharp for the function p(z) = (1 + z)
/
(1 − z).

(iii) Moreover, if B ∈ [0, 1] with B(2B− 1) ≤ D ≤ B, we have∣∣∣c3 − 2Bc1c2 +Dc3
1

∣∣∣ ≤ 2. (14)
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We note that inequality (12) is the well-known result of the Carathéodory lemma [34]
(see also ([33] Corollary 2.3, p. 41), ([36] Carathéodory’s Lemma, p. 41)). Inequality (13)
represents Lemma 2.3 of [37], that for µ = 1 was proved in a more general form for
p(0) = c0 in Lemma 1 of ([38] p. 546). Inequality (14) refers to Lemma 3 of ([39] p. 66).

Lemma 2. If p ∈ P is given by (11) then

2c2 = c2
1 + x

(
4 − |c1|2

)
, (15)

4c3 = c3
1 + 2

(
4 − c2

1

)
c1x −

(
4 − c2

1

)
c1x2 + 2

(
4 − c2

1

)(
1 − |x|2

)
η, if c1 ≥ 0, (16)

for some x, η with |x| ≤ 1, |η| ≤ 1.

Formula (15) for c2 can be found in relation (10) of ([33] p. 166), while (16) for c3 was
originally derived by Libera and Złotkiewicz, as referenced in equalities (3.9) and (3.10)
of ([40] p. 229) and ([41] p. 254), respectively.

Lemma 3 ([37] Lemma 2.1). Let ϑ, ε, ς, and a satisfy that a, ϑ ∈ (0, 1) and

8a(1− a)
(
(ϑε − 2ς)2 + (ϑ(a + ϑ)− ε)2

)
+ ϑ(1− ϑ)(ε− 2aϑ)2 ≤ 4aϑ2(1− ϑ)2(1− a). (17)

If p ∈ P and is given by (11) then∣∣∣∣ςc4
1 + ac2

2 + 2ϑc1c3 −
3
2

εc2
1c2 − c4

∣∣∣∣ ≤ 2. (18)

2. Initial Coefficient Estimates for Class Ar,s
4

The first theorem gives us the upper bounds for the first five coefficients |an| for the
functions belonging to Ar,s

4 as follows:

Theorem 1. If the function f ∈ Ar,s
4 is given by (1) then

|an| ≤
5

6τn
, n = 2, 3, 4, 5, (19)

where τn is given by (5).

For n = 2 the bound is the best possible, and the inequality |a2| ≤
5

6τ2
is sharp for the

function

f∗(z) := z +
5

6τ2
γz2 +

1
6τ6

γ5z6,

with γ ∈ C, |γ| = 1.

Proof. Supposing that f ∈ Ar,s
4 has the form (1), then there exists a function w analytic in

D with w(0) = 0 and |w(z)| < 1, z ∈ D satisfying

(1 − r)(1 − s)
f (z)

z
+
(
s + r(1 + s)

)
f ′(z) + rs

(
z f ′′(z)− 2

)
= Q4(w(z)), z ∈ D. (20)

It is easy to check that

(1 − r)(1 − s)
f (z)

z
+
(
s+ r(1+ s)

)
f ′(z)+ rs

(
z f ′′(z)− 2

)
= 1+

∞

∑
n=2

τnanzn−1, z ∈ D, (21)
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where τnan =

(
Ψr,s f

)(n−1)
(0)

(n − 1)!
, with Ψr,s f and τn given by (4) and (5), respectively, for n ∈

{2, 3, 4, 5}.
Letting the function l defined by

l(z) :=
1 + w(z)
1 − w(z)

= 1 +
∞

∑
n=1

ln zn, z ∈ D,

since |w(z)| < 1 in D, it follows that l ∈ P .
A simple computation gives

w(z) =
l(z)− 1
l(z) + 1

=
1
2

l1z +
1
2

(
l2 −

1
2

l2
1

)
z2 +

1
2

(
l3 − l1l2 +

1
4

l3
1

)
z3 + . . . , z ∈ D, (22)

and by replacing the power series expansion of (22) in relation (20) we obtain

(1 − r)(1 − s)
f (z)

z
+
(
s + r(1 + s)

)
f ′(z) + rs

(
z f ′′(z)− 2

)
= 1 +

5
12

l1z (23)

+

(
5l2
12

−
5l2

1
24

)
z2 +

(
5
12

l3 −
5

12
l1l2 +

5
48

l3
1

)
z3

+

(
5

12
l4 −

5
12

l1l3 −
5
24

l2
2 +

5
16

l2l2
1 −

5
96

l4
1

)
z4 + . . . , z ∈ D.

Equating the first five coefficients of (21) and (23) we obtain

a2 =
5

12τ2
l1, (24)

a3 =
1
τ3

(
− 5

24
l2
1 +

5
12

l2

)
, (25)

a4 =
1
τ4

(
− 5

12
l1l2 +

5
12

l3 +
5

48
l3
1

)
, (26)

and

a5 =
1
τ5

(
5

12
l4 +

5
16

l2
1 l2 −

5
96

l4
1 −

5
24

l2
2 −

5
12

l1l3

)
. (27)

Using the inequality (12) for n = 2 in (24) we obtain

|a2| ≤
5

6τ2
. (28)

Since (25) can be written as

a3 =
5

12τ3

(
l2 −

1
2

l2
1

)
,

using inequality (13) for n = k = 1 and µ =
1
2

we obtain

|a3| ≤
5

6τ3
.

From (26), it follows that

|a4| =
5

12τ4

∣∣∣∣l3 − 2 · 1
2
· l1l2 +

1
4

l3
1

∣∣∣∣
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and we will compare the right-hand side of the above relation to (14). Therefore, since

0 ≤ B =
1
2
≤ 1, B =

1
2
≥ D =

1
4

, B(2B− 1) = 0 ≤ D =
1
4

,

all the requirements of Lemma 1 (iii) are satisfied; hence, (14) leads us to

|a4| ≤
5

6τ4
.

Equality (27) implies that

|a5| =
5

12τ5

∣∣∣∣18 l4
1 +

1
2

l2
2 + 2 · 1

2
· l1l3 −

3
2
· 1

2
· l2

1 l2 − l4

∣∣∣∣, (29)

and by comparing the right-hand side of (29) with the left-hand side of (18) we obtain

ς =
1
8

, a =
1
2

, ϑ =
1
2

, ε =
1
2

Since

8a(1 − a)
(
(ϑε − 2ς)2 + (ϑ(a + ϑ)− ε)2

)
+ ϑ(1 − ϑ)(ε − 2aϑ)2 = 0 ≤ 1

16
= 4aϑ2(1 − ϑ)2(1 − a),

the assumption inequality (17) holds; consequently, (18) combined with (29) implies

|a5| ≤
5

6τ5
,

and the proof of the theorem is complete.
To prove the sharpness for n = 2, we will use the fact f∗ ≡ f0, given by (6). From

Remark 1 (iv) we obtain f∗ ∈ Ar,s
4 and for n = 2 the equality holds in (19).

Fekete and Szegő [2] proved the well-known result,

max
{∣∣∣a3 − µa2

2

∣∣∣ : f ∈ S
}
= 1 + 2e−

2µ
1−µ , µ ∈ [0, 1],

and in the next result we consider the corresponding problem for the family Ar,s
4 :

Theorem 2. If the function f ∈ Ar,s
4 has the form (1) and µ ∈ R then

∣∣∣a3 − µa2
2

∣∣∣ ≤ max

{
5

6τ3
;

25|µ|
36τ2

2

}
.

Proof. If f ∈ Ar,s
4 has the form (1), as in the proof of the previous theorem, using (24) and

(25), we obtain

∣∣∣a3 − µa2
2

∣∣∣ = ∣∣∣∣∣ 1
τ3

(
5

12
l2 −

5
24

l2
1

)
− µ

25
144τ2

2
l2
1

∣∣∣∣∣ = 5
12τ3

∣∣∣∣∣l2 − 6τ2
2 + 5µ τ3

12τ2
2

l2
1

∣∣∣∣∣.
Using inequality (13) for the right-hand side of the above equality, if n = k = 1 we

obtain ∣∣∣a3 − µa2
2

∣∣∣ ≤ 5
6τ3

max

{
1;

∣∣∣∣∣6τ2
2 + 5µτ3

6τ2
2

− 1

∣∣∣∣∣
}

= max

{
5

6τ3
;

25|µ|
36τ2

2

}
.
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Another three estimations of the differences of the coefficients modules for the func-
tions of the class Ar,s

4 will be presented as follows.

Theorem 3. If the function f ∈ Ar,s
4 has the form (1) then

|a2a3 − a4| ≤
5

6τ4
.

Proof. Since f ∈ Ar,s
4 is of the form (1), as in the proof of Theorem 1 according to (24)–(26)

we obtain

|a2a3 − a4| =
5

12τ4

∣∣∣∣l3 − 2
(

5τ4

24τ2τ3
+

1
2

)
l1l2 +

(
5τ4

24τ2τ3
+

1
4

)
l3
1

∣∣∣∣. (30)

If we compare the right-hand side of the above equality with the left-hand side of (14)
we obtain

B =
5τ4

24τ2τ3
+

1
2

, D =
5τ4

24τ2τ3
+

1
4

.

Since

B− 1 = −600r2s2 + 240r2s + 240r s2 + 24r2 + 143rs + 24s2 + 21r + 21s + 7
24(5rs + r + s + 1)(10rs + 2r + 2s + 1)

< 0

and

B(2B− 1)−D =− 1

288(5rs + r + s + 1)2(10rs + 2r + 2s + 1)2

(
180000r4s4

+ 144000r4s3 + 144000r3s4 + 43200r4s2 + 194400r3s3 + 43200r2s4

+ 5760r4s + 82080r3s2 + 82080r2s3 + 5760r s4 + 288r4 + 14112r3s

+ 43823r2s2 + 14112r s3 + 288s4 + 864r3 + 9402r2s + 9402r s2 + 864s3

+ 711r2 + 2732rs + 711s2 + 282r + 282s + 47
)
< 0

for all r ≥ 0 and s ∈ [0, 1], using also (5), it follows that

0 ≤ B =
5τ4

24τ2τ3
+

1
2
≤ 1, B =

5τ4

24τ2τ3
+

1
2
≥ D =

5τ4

24τ2τ3
+

1
4

,

B(2B− 1) =
5τ4

12τ2τ3

(
5τ4

24τ2τ3
+

1
2

)
≤ D =

5τ4

24τ2τ3
+

1
4

.

Since all the conditions of Lemma 1 (iii) are satisfied, using (14) we obtain from (30)
the required conclusion.

Theorem 4. If the function f ∈ Ar,s
4 is given by (1) then

|a5 − a2a4| ≤
5

6τ5
.

Proof. Similarly, as in the proof of the previous theorems, since f ∈ Ar,s
4 has the form (1)

from (24), (26), and (27), we obtain

a5 − a2a4 = − 5
12τ5

[
l2
2
2
− l4 +

(
5τ5

12τ2τ4
+ 1
)

l1l3 −
(

5τ5

12τ2τ4
+

3
4

)2

1
l2 +

(
5τ5

48τ2τ4
+

1
8

)
l4
1

]
,
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hence,

|a5 − a2a4| =
5

12τ4

∣∣∣∣(1
8
+

5τ5

48τ2τ4

)
l4
1 +

1
2

l2
2 + 2

(
1
2
+

5τ5

24τ2τ4

)
l1l3 (31)

−3
2

(
1
2
+

5τ5

18τ2τ4

)
l2
1 l2 − l4

∣∣∣∣.
Comparing the right side of (31) with the left-hand side of (18) we obtain

ς =
1
8
+

5τ5

48τ2τ4
, a =

1
2

, ϑ =
1
2
+

5τ5

24τ2τ4
, ε =

1
2
+

5τ5

18τ2τ4
,

and denoting

U := 8a(1 − a)
(
(ϑε − 2ς)2 + (ϑ(a + ϑ)− ε)2

)
+ ϑ(1 − ϑ)(ε − 2aϑ)2, (32)

V := 4aϑ2(1 − ϑ)2(1 − a), (33)

it follows that

V − U =
1

373248(5rs + r + s + 1)4(17rs + 3r + 3s + 1)4

(
1217736180000r8s8

+ 1833767424000r8s7 + 1833767424000r7s8 + 1207454947200r8s6

+ 3675624998400r7s7 + 1207454947200r6s8 + 454063656960r8s5

+ 3015278369280r7s6 + 3015278369280r6s7 + 454063656960r5s8

+ 106659488448r8s4 + 1355054095872r7s5 + 2992998111048r6s6

+ 1355054095872r5s7 + 106659488448r4s8 + 16025776128r8s3

+ 369638318592r7s4 + 1586405248416r6s5 + 1586405248416r5s6

+ 369638318592r4s7 + 16025776128r3s8 + 1504096128r8s2

+ 63159906816r7s3 + 500006872080r6s4 + 967753705944r5s5

+ 500006872080r4s6 + 63159906816r3s7 + 1504096128r2s8

+ 80621568r8s + 6634483200r7s2 + 97102192320r6s3 + 345393269808r5s4

+ 345393269808r4s5 + 97102192320r3s6 + 6634483200r2s7 + 80621568r s8

+ 1889568r8 + 393030144r7s + 11439040392r6s2 + 75185189568r5s3

+ 135240643162r4s4 + 75185189568r3s5 + 11439040392r2s6 + 393030144r s7

+ 1889568s8 + 10077696r7 + 751686048r6s + 9858848928r5s2

+ 31767073568r4s3 + 31767073568r3s4 + 9858848928r2s5 + 751686048r s6

+ 10077696s7 + 21184416r6 + 717170664r5s + 4488452100r4s2

+ 7822440500r3s3 + 4488452100r2s4 + 717170664r s5 + 21184416s6

+ 22266000r5 + 354292592r4s + 1153024056r3s2 + 1153024056r2s3

+ 354292592r s4 + 22266000s5 + 12045058r4 + 96743788r3s + 174849942r2s2

+ 96743788r s3 + 12045058s4 + 3603400r3 + 15476952r2s + 15476952r s2

+ 3603400s3 + 643974r2 + 1497212rs + 643974s2 + 73648r + 73648s + 4603
)

.

Therefore, V > U for all r ≥ 0 and s ∈ [0, 1]; hence, assumption (17) of Lemma 3 is
satisfied, and by combining (31) with (18) we obtain our result.
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Theorem 5. If the function f ∈ Ar,s
4 is given by (1) then∣∣∣a5 − a2

3

∣∣∣ ≤ 5
6τ5

.

Proof. If f ∈ Ar,s
4 has the form (1), from (25) and (27) we obtain

a5 − a2
3 = − 5

12τ5

[(
1
8
+

5τ5

48τ2
3

)
l4
1 +

(
1
2
+

5τ5

12τ2
3

)
l2
2 + l1l3 −

3
2

(
1
2
+

5τ5

18τ2
3

)
l2
1 l2 − l4

]
,

hence, it follows that

∣∣∣a5 − a2
3

∣∣∣ = 5
12τ5

∣∣∣∣∣
(

1
8
+

5τ5

48τ2
3

)
l4
1 +

(
1
2
+

5τ5

12τ2
3

)
l2
2 + 2 · 1

2
· l1l3

−3
2

(
1
2
+

5τ5

18τ2
3

)
l2
1 l2 − l4

∣∣∣∣∣. (34)

Comparing the right-hand side of (34) with the left-hand side of inequality (18), that
is, ∣∣∣∣ςc4

1 + ac2
2 + 2ϑc1c3 −

3
2

εc2
1c2 − c4

∣∣∣∣,
we obtain

ς =
1
8
+

5τ5

48τ2
3

, a =
1
2
+

5τ5

12τ2
3

, ϑ =
1
2

, ε =
1
2
+

5τ5

18τ2
3

.

If we use notations (32) and (33), for the above values of the parameters we obtain

V − U =
1

46656(10rs + 2r + 2s + 1)8

(
291600000000r8s8 + 466560000000r8s7

+ 466560000000r7s8 + 326592000000r8s6 + 886464000000r7s7

+ 326592000000r6s8 + 130636800000r8s5 + 718502400000r7s6 + 718502400000r6s7

+ 130636800000r5s8 + 32659200000r8s4 + 326592000000r7s5 + 648219600000r6s6

+ 326592000000r5s7 + 32659200000r4s8 + 5225472000r8s3 + 91445760000r7s4

+ 322600320000r6s5 + 322600320000r5s6 + 91445760000r4s7 + 5225472000r3s8

+ 522547200r8s2 + 16198963200r7s3 + 98225568000r6s4 + 171272304000r5s5

+ 98225568000r4s6 + 16198963200r3s7 + 522547200r2s8 + 29859840r8s

+ 1776660480r7s2 + 18871856640r6s3 + 54977126400r5s4 + 54977126400r4s5

+ 18871856640r3s6 + 1776660480r2s7 + 29859840r s8 + 746496r8 + 110481408r7

+ 2242816128r6s2 + 11129803776r5s3 + 18355915120r4s4 + 11129803776r3s5

+ 2242816128r2s6 + 110481408r s7 + 746496s8 + 2985984r7 + 151054848r6s

+ 1403345664r5s2 + 3861088640r4s3 + 3861088640r3s4 + 1403345664r2s5

+ 151054848r s6 + 2985984s7 + 4419072r6 + 101308032r5s + 510650880r4s2

+ 838703840r3s3 + 115053120r3s2 + 510650880r2s4 + 101308032r s5 + 4419072s6

+ 3209472r5 + 39359360r4s + 115053120r2s3 + 39359360r s4 + 3209472s5

+ 1359520r4 + 9404800r3s + 16218960r2s2 + 9404800r s3 + 1359520s4

+ 357568r3 + 1389024r2s + 1389024r s2 + 357568s3 + 58992r2 + 126464rs

+ 58992s2 + 6256r + 6256s + 391
)
> 0, r ≥ 0, s ∈ [0, 1],
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because all the terms of the sum are positive and, thus, assumption (17) of Lemma 3 is
satisfied. Therefore, the required inequality follows from (34) and (18).

3. Krushkal Inequalities for the Class Ar,s
4

In this section, we will show that for the well-known inequality∣∣∣ap
n − ap(n−1)

2

∣∣∣ ≤ 2p(n−1)−np
(35)

we can find smaller upper bounds for the subclass Ar,s
4 and for the specific couples of values

n = 4, p = 1 and n = 5, p = 1. This inequality was originally introduced and proved by
Krushkal for the entire class of normalized univalent functions S and integers n > 3, p ≥ 1,
while it is sharp and the equality occurs for the Koebe function (as cited in [42] Theorem 6.1,
p. 17).

First, for n = 4 and p = 1 we obtain the following first upper bound for the left-
hand side of (35), while the second result deals with the same problem for n = 5, p = 1.
According to the fact that τ5 ≥ τ4 > 1, it is obvious that these bounds are smaller than the
right-hand side of (35) for these values of n and p.

Theorem 6. If the function f ∈ Ar,s
4 has the form (1), then∣∣∣a4 − a3

2

∣∣∣ ≤ 5
6τ4

.

Proof. If f ∈ Ar,s
4 , from (24) and (26) we obtain

a4 − a3
2 =

5l3
12τ4

− 5
12

l2
τ4

l1 +

(
5

48τ4
− 125

1728τ3
2

)
l3
1 ,

hence, ∣∣∣a4 − a3
2

∣∣∣ = 5
12τ4

∣∣∣∣∣l3 − 2 · 1
2
· l2l3 +

(
1
4
− 25τ4

144τ3
2

)
l3
1

∣∣∣∣∣. (36)

Comparing the right-hand side of the above relation (14), since r ≥ 0 and s ∈ [0, 1]
and according to (5), we obtain

0 ≤ B =
1
2
≤ 1, B =

1
2
≥ D =

1
4
− 25τ4

144τ3
2

.

Moreover,

B(2B− 1) = 0 ≤ D =
1
4
− 25τ4

144τ3
2

,

because

D =
1

144(5rs + r + s + 1)3

(
4500r3s3 + 2700r3s2 + 2700r2s3 + 540r3s + 3780r2s2

+540r s3 + 36r3 + 1188r2s + 1188r s2 + 36s3 + 108r2 + 331rs + 108s2 + 33r

+33s + 11
)
> 0, r ≥ 0, s ∈ [0, 1],

and using (14) together with (36) we obtain the desired result.

Theorem 7. If the function f ∈ Ar,s
4 is given by (1) then∣∣∣a5 − a4

2

∣∣∣ ≤ 5
6τ5

.
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Proof. If f ∈ Ar,s
4 has the power expansion series (1), from (24) and (27) we obtain

a5 − a4
2 = −

5
(
4l2

2 − 8l4
)

96τ5
− 5

12
l3
τ5

l1 +
5

16
l2
τ5

l2
1 −

(
625

20736τ4
2
+

5
96τ5

)
l4
1 ,

hence,

∣∣∣a5 − a4
2

∣∣∣ = 5
12τ5

∣∣∣∣∣
(

1
8
+

125τ5

1728τ4
2

)
l4
1 +

1
2
· l2

2 + 2 · 1
2
· l1l3 −

3
2
· 1

2
· l2

1 l2 − l4

∣∣∣∣∣. (37)

After we compare the right-hand side of (37) to∣∣∣∣ςc4
1 + ac2

2 + 2ϑc1c3 −
3
2

εc2
1c2 − c4

∣∣∣∣
we obtain

ς =
1
8
+

125τ5

1728τ4
2

, a =
1
2

, ϑ =
1
2

, ε =
1
2

.

Letting U and V be defined by (32) and (33), it follows that

V − U =
1

373248(5rs + r + s + 1)8

(
9112500000r8s8 + 14580000000r8s7

+ 14580000000r7s8 + 10206000000r8s6 + 34992000000r7s7 + 10206000000r6s8

+ 4082400000r8s5 + 32659200000r7s6 + 32659200000r6s7 + 4082400000r5s8

+ 1020600000r8s4 + 16329600000r7s5 + 40824000000r6s6 + 16329600000r5s7

+ 1020600000r4s8 + 163296000r8s3 + 4898880000r7s4 + 26127360000r6s5

+ 26127360000r5s6 + 4898880000r4s7 + 163296000r3s8 + 16329600r8s2

+ 914457600r7s3 + 9634464000r6s4 + 21555072000r5s5 + 9634464000r4s6

+ 914457600r3s7 + 16329600r2s8 + 933120r8s + 104509440r7s2

+ 2142443520r6s3 + 9993715200r5s4 + 9993715200r4s5 + 2142443520r3s6

+ 104509440r2s7 + 933120r s8 + 23328r8 + 6718464r7s + 284788224r6s2

+ 2712019968r5s3 + 5888453760r4s4 + 2712019968r3s5 + 284788224r2s6

+ 6718464r s7 + 23328s8 + 186624r7 + 20901888r6s + 428488704r5s2

+ 1998743040r4s3 + 1998743040r3s4 + 428488704r2s5 + 20901888r s6

+ 186624s7 + 653184r6 + 36578304r5s + 385378560r4s2 + 862202880r3s3

+ 385378560r2s4 + 36578304r s5 + 653184s6 + 1306368r5 + 39191040r4s

+ 209018880r3s2 + 209018880r2s3 + 39191040r s4 + 1306368s5 + 1632960r4

+ 26127360r3s + 54755900r2s2 + 26127360r s3 + 1632960s4 + 1306368r3

+ 7200944r2s + 7200944r s2 + 1306368s3 + 403184r2 + 926988rs + 403184s2

+ 61624r + 61624s + 7703
)

, r ≥ 0, s ∈ [0, 1],

using the fact that all the terms are positive, and from (18) combined with (37) we obtain
our result.

Next, for the class f ∈ Ar,s
4 we will determine an upper bound for the Hankel determi-

nant of order two.
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Theorem 8. If the function f ∈ Ar,s
4 is given by (1) then

|D2,2( f )| =
∣∣∣a2a4 − a2

3

∣∣∣ ≤ 25
36τ2

3
.

Proof. If f ∈ Ar,s
4 , from (24), (25), and (26) we obtain

a2a4 − a2
3 =

25
144τ2τ4

l1l3 −
(

25
144τ2τ4

− 25
288τ2

3

)
l2
1 l2 +

(
25

576τ2τ4
− 25

576τ2
3

)
l4
1

− 25
144τ2

3
l2
2 . (38)

Using (15) and (16) to express l2 and l3 in terms of l1, and noting that without loss in
generality and using (12) we can write l1 := l ∈ [0, 2], from (38) we obtain

a2a4 − a2
3 =

25
(
4 − l2)[− 2k2η lτ2

3 − l
(
l x2 − 2η

)
τ2

3 − τ2τ4x2(4 − l2)]
576τ2τ4τ2

3

= − 25
576τ2τ4

l2
(

4 − l2
)

x2 +
25

288τ2τ4
l
(

4 − l2
)(

1 − k2
)

η − 25
576τ2

3
x2
(

4 − l2
)2

,

where |x| = k ≤ 1 and |η| ≤ 1. Using the triangle inequality in the above relation, since
l ∈ [0, 2] and k, |η| ∈ [0, 1] we obtain∣∣∣a2a4 − a2

3

∣∣∣ ≤ 25
576τ2τ4

l2
(

4 − l2
)

k2 +
25

288τ2τ4
l
(

4 − l2
)(

1 − k2
)

+
25

576τ2
3

k2
(

4 − l2
)2

=: ϕ(l, k), (39)

and we need to determine

max
{

ϕ(l, k) : (l, k) ∈ [0, 2]× [0, 1]
}

.

For this purpose, a simple computation shows that

∂ϕ(l, k)
∂k

=
25l2(4 − l2)k

288τ2τ4
−

25l
(
4 − l2)k

144τ2τ4
+

25k
(
4 − l2)2

288τ2
3

=
25(l − 2)2(l + 2) k

[
l
(
τ2τ4 − τ2

3
)
+ 2τ2τ4

]
288τ2τ4τ2

3
. (40)

Since
τ2τ4 − τ2

3 = −
(

15s2 + 8s + 1
)

r2 − 8r s2 − s2,

a simple computation leads to

l
(

τ2τ4 − τ2
3

)
+ 2τ2τ4 =

[
5(34 − 3l)s2 + 8(8 − l)s + 6 − l

]
r2

+
[
8 + 56s + 8(8 − l)s2]r + (6 − l)s2 + 2(1 + 4s) ≥ 0

for all r ≥ 0, because all the coefficients of r from the above equality are non-negative
whenever (l, k) ∈ [0, 2]× [0, 1]. That is,

l
(

τ2τ4 − τ2
3

)
+ 2τ2τ4 ≥ 0,
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and from (40) we obtain

∂ϕ(l, k)
∂k

=
25(l − 2)2(l + 2) k

[
l
(
τ2τ4 − τ2

3
)
+ 2τ2τ4

]
288τ2τ4τ2

3
≥ 0, (l, k) ∈ [0, 2]× [0, 1],

therefore, the function ϕ(l, ·) is increasing on [0, 1]; hence,

ϕ(l, k) ≤ ϕ(l, 1) =
25

576τ2τ4
l2
(

4 − l2
)
+

25
576τ2

3

(
4 − l2

)2
=: ψ(l). (41)

Using the fact that

ψ′(l) = − 25l

144(5rs + r + s + 1)(17rs + 3r + 3s + 1)(10rs + 2r + 2s + 1)2

(
15l2r2s2

+8l2r2s + 8l2r s2 + l2r2 + l2s2 + 140r2s2 + 48r2s + 48r s2 + 4r2 + 56rs

+4s2 + 8r + 8s + 2
)
≤ 0, l ∈ [0, 2],

for all r ≥ 0 and s ∈ [0, 1], the function ψ will be decreasing on [0, 2], which implies that

ψ(l) ≤ ψ(0) =
25

36τ2
3

. (42)

According to inequalities (41) and (42) we deduce

max
{

ϕ(l, k) : (l, k) ∈ [0, 2]× [0, 1]
}
= ϕ(1, 0) =

25
36τ2

3
,

and from (39) we obtain our final result.

Remark 3. The results presented in this paper specifically for the case when r = 1 and s = 0 were
previously obtained by Sunthrayuth et al. [27].

4. Conclusions

In this study, we focused on a subclass of bounded turning functions associated with a
four-leaf-type domain. We made some useful findings for this class, including the bounds
of the first four initial coefficients, the Fekete–Szegő-type inequality, the Zalcman inequality,
the Krushkal inequality, and the estimation of the second-order Hankel determinant.

Related results for subclasses defined by subordinations with the limaçon function,
convex functions in one direction, the cosine function, the nephroid function, etc., were
studied in the last period by the fourth author. The actual results do not overlap any of
these, nor the structure of the subclasses, because the subordinations by expressions as the
left-hand side of subordination (4) had not already appeared.

All of the obtained results have been confirmed to be the best possible. This work
has been applied to derive higher-order Hankel determinants, such as when investigating
the boundaries of fourth- and fifth-order Hankel determinants. Furthermore, this novel
methodology can be used to obtain precise bounds on the third-order Hankel determinant
for various subclasses of univalent functions.

Taking into account the upper bounds given in Theorem 1, an interesting open problem

that could start a real challenge is to prove that the inequality |an| ≤
5

6τn
holds for all

n ∈ N \ {1} for the function class Ar,s
4 , where τn is given by (5).
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30. Marimuthu, K.; Jayaraman, U.; Bulboacă, T. Coefficient estimates for starlike and convex functions associated with cosine function.
Hacet. J. Math. Stat. 2023, 52, 596–618.
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