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Abstract: A class of fractional viscoelastic Kirchhoff equations involving two nonlinear source terms
of different signs are studied. Under suitable assumptions on the exponents of nonlinear source
terms and the memory kernel, the existence of global solutions in an appropriate functional space
is established by a combination of the theory of potential wells and the Galerkin approximations.
Furthermore, the asymptotic behavior of global solutions is obtained by a combination of the theory
of potential wells and the perturbed energy method.
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1. Introduction

In this paper, we deal with the initial boundary value problem for a class of fractional
viscoelastic Kirchhoff equations involving two nonlinear source terms of different signs.

utt + (a + b[u]2p−2
m )(−∆)mu −

∫ t

0
g(t − τ)(−∆)mu(τ)dτ

+ ut = |u|q−2u − |u|r−2u, x ∈ Ω, t > 0,
(1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (2)

u(x, t) = 0, x ∈ RN\Ω, t > 0, (3)

where [u]m is the Gagliardo seminorm defined by

[u]m :=
(∫∫

R2N

|u(x, t)− u(y, t)|2
|x − y|N+2m dxdy

) 1
2

,

[u]2p−2
m means that 2p − 2 is a power of [u]m, and (−∆)m is the fractional Laplacian

with 0 < m < 1, which (up to normalization factors) could be given by

(−∆)m φ(x) :=
∫
RN

2φ(x)− φ(x + y)− φ(x − y)
|y|N+2m dy, x ∈ RN

for all φ ∈ C∞
0 (RN). In addition, a > 0, b ≥ 0, p > 1, Ω ⊂ RN (N ≥ 1) is a bounded

domain with a Lipschitz boundary, and the functions u0(x) and u1(x) are specified later.
The problem (1)–(3) can govern the motion of the viscoelastic string with a fractional

length (see Ref. [1]). The unknown function u = u(x, t) represents the vertical displacement,
−
∫ t

0 g(t − τ)(−∆)mu(τ)dτ is the viscoelastic term, ut is a weakly damped term, |u|q−2u
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and −|u|r−2u are two nonlinear source terms of different signs, and q, r, and the memory
kernel g are introduced later.

In the case where m = 1, Equation (1) becomes a classical viscoelastic Kirchhoff wave
equation. Concerning this class of equations, Torrejón and Yong [2] investigated

utt − h(∥∇u∥2
2)∆u +

∫ t

0
g(t − τ)∆u(τ)dτ = f ,

where h is the Kirchhoff function. They obtained existence, uniqueness, and asymptotic
behavior of global solutions. Wu and Tsai [3] treated a viscoelastic Kirchhoff wave equation
with nonlinear weak damping and source terms:

utt − h(∥∇u∥2
2)∆u +

∫ t

0
g(t − τ)∆u(τ)dτ + f2(ut) = f1(u).

They derived existence and blow-up of local solutions, and also established the es-
timates on the blow-up time. Liu et al. [4] studied a more general viscoelastic Kirchhoff
wave equation:

utt − h(∥∇u∥2
2)∆u +

∫ t

0
g(t − τ)∆u(τ)dτ + f2(x, t, u, ut) = f1(x, t, u).

They proved the nonexistence of global solutions.
Fractional partial differential equations arise in continuum mechanics [5], quantum me-

chanics [6,7], population dynamics [5], anomalous diffusion [8,9], fluid mechanics [10,11],
and so on, and they have received considerable attention. Ambrosio and Isernia [12]
investigated a fractional stationary Kirchhoff equation:

(a + b(1 − m)[u]2m)(−∆)mu = f (u),

where a and b are two parameters. By the minimax arguments, they established the
multiplicity of solutions, provided b is sufficiently small. Nyamoradi and Ambrosio [13]
dealt with a fractional stationary Kirchhoff equation involving two nonlinear source terms:

(a + b[u]2θ−2
m )(−∆)mu = λ f (x)|u|q−2u + |u|2∗m−2u,

where θ and λ are also parameters, and 2∗m represents the critical exponent of the fractional
Sobolev space. Under suitable values of the parameters, they derived the existence and
nonexistence of multiple solutions. Fiscella and Mishra [14] studied the following fractional
stationary Kirchhoff equation involving two nonlinear source terms:

(a + b[u]2θ−2
m )(−∆)mu − µ

u
|x|2m = λ f1(x)u−p + f2(x)u2∗m−1.

They addressed the existence of at least two positive solutions depending on the
parameters by exploiting the Nehari manifold. do Ó et al. [15] studied a fractional stationary
Kirchhoff equation involving two nonlinear source terms of different signs:

(a + b[u]2θ−2
m )(−∆)mu = λ f (x)|u|q−2u − |u|2∗m−2u.

By using a variational approach based on the Nehari manifold, they obtained the
existence of two positive solutions for suitable values of the parameters. Zhang et al. [16]
investigated a fractional stationary Kirchhoff equation involving the nonlocal integro-
differential operator:

−h
(∫∫

R2N
|u(x)− u(y)|2K(x − y)dxdy

)
LKu = f (x, u), (4)
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where K : RN \ {0} → (0, ∞) is a function satisfying certain assumptions, and LK denotes
the nonlocal integral-differential operator. Equation (4) includes the following fractional
Kirchhoff equation as a particular case.

h([u]2m)(−∆)mu = f (x, u).

By computing the critical groups at zero and at infinity, they derived the existence of
at least one nontrivial solution via Morse theory. Molica Bisci and Vilasi [17] considered the
following fractional stationary Kirchhoff equation involving two nonlinear source terms:

−h([u]2m)LKu = λ f1(x, u) + µ f2(x, u).

By exploiting an abstract critical point theorem for smooth functionals, they obtained
the existence of at least three solutions for suitable values of the parameters. Additionally,
in the autonomous case, they gave a precise estimate for the range of these parameters
by using some properties of the fractional calculus on a specific family of test functions.
Concerning the fractional evolution Kirchhoff equations, Xiang et al. [18] studied

ut + h([u]2m)(−∆)mu = |u|p−2u.

They obtained the existence of non-negative local solutions by using the Galerkin
approximations and proved the blow-up of non-negative local solutions with suitable
initial data by virtue of a differential inequality technique. Lin et al. [19] studied a fractional
evolution Kirchhoff equation of the form

utt + [u]2θ−2
m (−∆)mu = f (u).

They utilized the concavity arguments to obtain the blow-up of solutions. Pan et al. [20]
considered the following fractional evolution Kirchhoff equation with nonlinear weak
damping:

utt + [u]2θ−2
m (−∆)mu + |ut|r−2ut + u = |u|q−2u.

They obtained the global existence, vacuum isolation, asymptotic behavior, and blow-
up of solutions by using the theory of potential wells. Recently, Xiang and Hu [21] con-
ducted an investigation on the following fractional viscoelastic Kirchhoff equation:

utt + h([u]2m)(−∆)mu −
∫ t

0
g(t − τ)(−∆)mu(τ)dτ + (−∆)sut = λ|u|q−2u.

They utilized the Galerkin approximations to establish the existence of local and global
solutions, and they employed the concavity arguments to derive the blow-up of solutions.

Inspired by the above works, we deal with the problem (1)–(3). There are two features
about our results. On the one hand, our results are independent of any parameters. On the
other hand, we focus on the effects of the nonlinear source terms of different signs on solu-
tions. From a physical perspective, the two nonlinear source terms of different signs actually
represent the two opposing external forces acting on the viscoelastic string with fractional
length. In the absence of the external force |u|q−2u, it is trivial that the problem (1)–(3) has a
global solution with the asymptotic behavior by the arguments similar to Ref. [22]. Our re-
sults show that even though the external force |u|q−2u appears, the problem (1)–(3) can still
have a global solution with the asymptotic behavior. In addition, our main technical tool is
the theory of potential wells that has been widely employed to analyze the qualitative prop-
erties of solutions of evolution equations. In this regard, in addition to the work of Ref. [20]
mentioned above, we refer to the following work. Xu et al. [23] used the theory of potential
wells to investigate the global existence and blow-up of solutions of a sixth-order nonlinear
hyperbolic equation. Cavalcanti and Domingos Cavalcanti [24] modified the theory of
potential wells to study the global existence and asymptotic behaviour of solutions of a
nonlinear evolution equation. Gazzola and Squassina [25] improved the theory of potential
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wells to obtain the global existence, asymptotic behaviour, and blow-up of solutions of
a damped semilinear wave equation. Liu et al. [26] applied the idea of Ref. [25] to deal
with a fourth-order damped nonlinear hyperbolic equation. Xu and Su [27], Luo et al. [28],
and Liu and Li [29] introduced a family of potential wells to study the equation under
consideration, respectively. Liu et al. [30] introduced a family of potential wells that were
different from those in Refs. [27–29]. In contrast, the definition of the potential well in this
paper differs from those in the above studies.

This paper is organized as follows. Section 1 serves as an introduction. Section 2
provides a comprehensive overview of the relevant functional spaces. Additionally, we
define a potential well and give its properties. Section 3 is devoted to the proof of the
existence of global solutions by using the theory of potential wells and the Galerkin
approximations. In Section 4, we prove the asymptotic behavior of global solutions by
using the theory of potential wells and the perturbed energy method [31–33]. In Section 5,
we summarize our main results.

2. Preliminaries

As in Refs. [34,35], we denote by X the linear space of Lebesgue measurable functions
from RN to R such that the restriction to Ω of any function u in X belongs to L2(Ω) and

∫∫
Q

|u(x)− u(y)|2
|x − y|N+2m dxdy < ∞,

where Q := R2N\(CΩ × CΩ) and CΩ := RN\Ω. The space X is endowed with

∥u∥X := ∥u∥L2(Ω) +

(∫
Q

|u(x)− u(y)|2
|x − y|N+2m dxdy

) 1
2

.

It is straightforward to verify that ∥ · ∥X is a norm on X. We introduce the following
closed linear subspace of X,

X0 := {u ∈ X|u = 0 a.e. in CΩ}.

This is a Hilbert space equipped with the inner product

(u, v)X0 :=
∫∫

Q

(u(x)− u(y))(v(x)− v(y))
|x − y|N+2m dxdy

and the norm

∥u∥X0 :=
(∫∫

Q

|u(x)− u(y)|2
|x − y|N+2m dxdy

) 1
2

which is equivalent to ∥u∥X . Moreover, the embedding X0 ↪→ Lq(Ω) is continuous for any
1 ≤ q ≤ 2∗m and compact for any 1 ≤ q < 2∗m, where

2∗m =


2N

N − 2m
if 2m < N,

∞ if 2m ≥ N.

In this paper, the exponents q and r satisfy the following assumption:

(A1) 2 < r < q < 2∗m.
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In addition, as in Ref. [33], the memory kernel g satisfies

(A2) g ∈ C1(R+) ∩ L1(R+), g(t) ≥ 0, g′(t) ≤ 0 for all t ∈ [0, ∞), and

κ := a −
∫ ∞

0
g(t)dt > 0.

For simplicity, we denote

∥ · ∥p := ∥ · ∥Lp(Ω), (u, v) :=
∫

Ω
uv dx

and

(g ◦ u)(t) :=
∫ t

0
g(t − τ)∥u(t)− u(τ)∥2

X0
dτ.

Moreover, C > 0 denotes a generic constant.

Definition 1. A function u ∈ L∞(0, T; X0) with ut ∈ L∞(0, T; L2(Ω)) is called the weak
solution of the problem (1)–(3), if u(0) = u0 in X0, ut(0) = u1 in L2(Ω), and

(ut(t), w) +
∫ t

0
(a + b∥u(τ)∥2p−2

X0
)(u(τ), w)X0 dτ −

∫ t

0

∫ s

0
g(s − τ)(u(τ), w)X0 dτds

+ (u(t), w) = (u1, w) + (u0, w) +
∫ t

0
(|u|q−2u, w)dτ −

∫ t

0
(|u|r−2u, w)dτ

for any w ∈ X0 and t ∈ (0, T].

The energy function for the problem (1)–(3) is defined as follows:

E(t) :=
1
2
∥ut(t)∥2

2 +
b

2p
∥u(t)∥2p

X0
+

1
2

(
a −

∫ t

0
g(τ)dτ

)
∥u(t)∥2

X0

+
1
2
(g ◦ u)(t)− 1

q
∥u(t)∥q

q +
1
r
∥u(t)∥r

r.

Following the idea from Ref. [36], the potential well and its boundary are defined by

W :=

{
u ∈ X0

∣∣∣∣∣∥u∥X0 <

(
2q

(q − 2)κ
d
) 1

2
}

(5)

and

∂W :=

{
u ∈ X0

∣∣∣∣∣∥u∥X0 =

(
2q

(q − 2)κ
d
) 1

2
}

, (6)

where the depth of the potential well is

d :=
q − 2

2q
κ

q
q−2 C

− 2q
q−2

1 , (7)

and C1 is the best Sobolev constant for the embedding X0 ↪→ Lq(Ω), i.e.,

C1 := sup
u∈X0\{0}

∥u∥q

∥u∥X0

.

Lemma 1. Let (A1) and (A2) be satisfied. Then,

(i) if u ∈ W and ∥u∥X0 ̸= 0, then κ∥u∥2
X0

> ∥u∥q
q;

(ii) if u ∈ ∂W , then κ∥u∥2
X0

≥ ∥u∥q
q.
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Proof. (i) By u ∈ W and (5), we obtain

∥u∥X0 <

(
2q

(q − 2)κ
d
) 1

2
.

From (7), we obtain

∥u∥X0 < κ
1

q−2 C
− q

q−2
1 .

Noting that ∥u∥X0 ̸= 0, we have

κ∥u∥2
X0

> C
q
1∥u∥q

X0
.

Therefore,
κ∥u∥2

X0
> ∥u∥q

q.

(ii) By u ∈ ∂W and (6), we obtain

∥u∥X0 =

(
2q

(q − 2)κ
d
) 1

2
.

By adopting similar arguments in the proof of (i), it is evident that

κ∥u∥2
X0

≥ ∥u∥q
q.

3. Existence of Global Solutions

Theorem 1. Let (A1) and (A2) be satisfied. If u0 ∈ W , u1 ∈ L2(Ω), and E(0) < d, then the
problem (1)–(3) has a global solution u(t) ∈ W := W ∪ ∂W for all t ∈ (0, ∞).

Proof. We divide the proof of this theorem into three steps.
Step I. Galerkin approximations. Let {ωj}∞

j=1 be the orthogonal basis of X0 and an
orthonormal basis of L2(Ω) given by eigenfunctions of (−∆)m with boundary condition (3)
(see Ref. [34], Proposition 9, for details). Denote Wn = Span{ω1, ω2, · · · , ωn}, n = 1, 2, · · · .
We seek the approximate solutions of the problem (1)–(3)

un(t) =
n

∑
j=1

ξ jn(t)ωj, n = 1, 2, · · · , (8)

which satisfy

(untt(t), w) + (a + b∥un(t)∥2p−2
X0

)(un(t), w)X0 −
∫ t

0
g(t − τ)(un(τ), w)X0 dτ

+ (unt(t), w) = (|un(t)|q−2un(t), w)− (|un(t)|r−2un(t), w), t > 0,
(9)

un(0) =
n

∑
j=1

ξ jn(0)ωj → u0 in X0, (10)

unt(0) =
n

∑
j=1

ξ ′jn(0)ωj → u1 in L2(Ω), (11)

for any w ∈ Wn. Let ξn(t) = (ξ1n(t), ξ2n(t), · · · , ξnn(t))T. Then, the vector function ξn solves

ξ ′′n(t) + ξ ′n(t) + Ln(t, ξn(t)) = 0, t > 0, (12)

ξn(0) = ((u0, ω1), (u0, ω2), · · · , (u0, ωn))
T , (13)
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ξ ′n(0) = ((u1, ω1), (u1, ω2), · · · , (u1, ωn))
T , (14)

where
Ln(t, ξn(t)) = (L1n(t, ξn(t)),L2n(t, ξn(t)), · · · ,Lnn(t, ξn(t)))T ,

Lin(t, ξn(t)) =

a + b

∥∥∥∥∥ n

∑
j=1

ξ jn(t)ωj

∥∥∥∥∥
2p−2

X0

( n

∑
j=1

ξ jn(t)ωj, ωi

)
X0

−
∫ t

0
g(t − τ)

(
n

∑
j=1

ξ jn(τ)ωj, ωi

)
X0

dτ

+

∣∣∣∣∣ n

∑
j=1

ξ jn(t)ωj

∣∣∣∣∣
q−2 n

∑
j=1

ξ jn(t)ωj, ωi


−

∣∣∣∣∣ n

∑
j=1

ξ jn(t)ωj

∣∣∣∣∣
r−2 n

∑
j=1

ξ jn(t)ωj, ωi

.

In light of the standard theory of ordinary differential equations, the problem (12)–(14)
has a solution ξn ∈ C2[0, Tn), with Tn ≤ T. Consequently, un(t) defined by (8) satisfies the
problem (9)–(11).

Step II. A priori estimates. Taking w = unt(t) in (9), we obtain

d
dt

(
1
2
∥unt(t)∥2

2 +
a
2
∥un(t)∥2

X0
+

b
2p

∥un(t)∥2p
X0

)
−
∫ t

0
g(t − τ)(un(τ), unt(t))X0 dτ + ∥unt(t)∥2

2

=
1
q

d
dt

∥un(t)∥q
q −

1
r

d
dt

∥un(t)∥r
r.

(15)

Concerning the fourth term on the left hand side of (15), we have∫ t

0
g(t − τ)(un(τ), unt(t))X0 dτ

=
∫ t

0
g(t − τ)(un(τ)− un(t), unt(t))X0 dτ +

∫ t

0
g(t − τ)(un(t), unt(t))X0 dτ

=− 1
2

∫ t

0
g(t − τ)

d
dt

∥un(τ)− un(t)∥2
X0

dτ +
1
2

∫ t

0
g(t − τ)

d
dt

∥un(t)∥2
X0

dτ

=− 1
2

d
dt

(
(g ◦ un)(t)−

∫ t

0
g(τ)dτ∥un(t)∥2

X0

)
+

1
2
(g′ ◦ un)(t)−

1
2

g(t)∥un(t)∥2
X0

.

Substituting this equality into (15) and performing integration with respect to t, we obtain

En(t) +
∫ t

0

(
∥unτ(τ)∥2

2 −
1
2
(g′ ◦ un)(τ) +

1
2

g(τ)∥un(τ)∥2
X0

)
dτ = En(0) (16)

for all t ∈ [0, T], where

En(t) =
1
2
∥unt(t)∥2

2 +
b

2p
∥un(t)∥2p

X0
+

1
2

(
a −

∫ t

0
g(τ)dτ

)
∥un(t)∥2

X0

+
1
2
(g ◦ un)(t)−

1
q
∥un(t)∥q

q +
1
r
∥un(t)∥r

r.
(17)

Based on the observations from (10) and (11), we conclude that En(0) < d and un(0) ∈ W
for a sufficiently large n. We claim that

un(t) ∈ W (18)
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for all t ∈ [0, T] and a sufficiently large n. Suppose that un(t) /∈ W for some 0 < t < T.
Then, there exists a time 0 < t0 < T such that un(t0) ∈ ∂W and un(t) ∈ W for all t ∈ [0, t0).
Therefore,

∥un(t0)∥X0 =

(
2q

(q − 2)κ
d
) 1

2
.

Utilizing (17) in conjunction with part (ii) in Lemma 1, we are able to derive

En(t0) ≥
1
2

κ∥un(t0)∥2
X0

− 1
q
∥un(t0)∥

q
q

=
q − 2

2q
κ∥un(t0)∥2

X0
+

1
q

(
κ∥un(t0)∥2

X0
− ∥un(t0)∥

q
q

)
≥ q − 2

2q
κ∥un(t0)∥2

X0

=d.

In view of (16), we obtain a contradiction with En(0) < d.
By (17), assertion (18) and (i) in Lemma 1, we can conclude that

En(t) ≥
1
2
∥unt(t)∥2

2 +
1
2

κ∥un(t)∥2
X0

− 1
q
∥un(t)∥q

q

=
1
2
∥unt(t)∥2

2 +
q − 2

2q
κ∥un(t)∥2

X0
+

1
q

(
κ∥un(t)∥2

X0
− ∥un(t)∥q

q

)
≥1

2
∥unt(t)∥2

2 +
q − 2

2q
κ∥un(t)∥2

X0
, (19)

which, together with (16), gives

1
2
∥unt(t)∥2

2 +
q − 2

2q
κ∥un(t)∥2

X0
< d

for all t ∈ [0, T]. Thus,
∥unt(t)∥2

2 < 2d (20)

and
∥un(t)∥2

X0
<

2q
(q − 2)κ

d. (21)

Further, it can be derived from (21) that

∥|un(t)|q−2un(t)∥ q
q−1

= ∥un(t)∥q−1
q ≤ C∥un(t)∥q−1

X0
< C

(
2q

(q − 2)κ
d
) q−1

2
(22)

and

∥|un(t)|r−2un(t)∥ r
r−1

= ∥un(t)∥r−1
r ≤ C∥un(t)∥r−1

X0
< C

(
2q

(q − 2)κ
d
) r−1

2
(23)

for all t ∈ [0, T]. Estimates (20)–(23) imply that

{un} is bounded in L∞(0, T; X0), (24)

{unt} is bounded in L∞(0, T; L2(Ω)), (25)

{|un|q−2un} is bounded in L∞(0, T; L
q

q−1 (Ω)), (26)

{|un|r−2un} is bounded in L∞(0, T; L
r

r−1 (Ω)). (27)
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Step III. Passage to the limit. By virtue of (24)–(27), there is a subsequence of {un}
(still represented by {un}) and a function u such that as n → ∞,

un ⇀ u weakly star in L∞(0, T; X0), (28)

unt ⇀ ut weakly star in L∞(0, T; L2(Ω)), (29)

|un|q−2un ⇀ |u|q−2u weakly star in L∞(0, T; L
q

q−1 (Ω)),

|un|r−2un ⇀ |u|r−2u weakly star in L∞(0, T; L
r

r−1 (Ω)).

Integrating (9) with respect to t, we obtain

(unt(t), w) +
∫ t

0
(a + b∥un(τ)∥2p−2

X0
)(un(τ), w)X0 dτ

−
∫ t

0

∫ s

0
g(s − τ)(un(τ), w)X0 dτds + (un(t), w)

= (unt(0), w) + (un(0), w) +
∫ t

0
(|un(τ)|q−2un(τ), w)dτ

−
∫ t

0
(|un(τ)|r−2un(τ), w)dτ.

Taking n → ∞, we obtain

(ut(t), w) +
∫ t

0
(a + b∥u(τ)∥2p−2

X0
)(u(τ), w)X0 dτ −

∫ t

0

∫ s

0
g(s − τ)(u(τ), w)X0 dτds

+ (u(t), w) = (u1, w) + (u0, w) +
∫ t

0
(|u(τ)|q−2u(τ), w)dτ −

∫ t

0
(|u(τ)|r−2u(τ), w)dτ.

From (10) and (11), we obtain u(0) = u0 in X0 and ut(0) = u1 in L2(Ω). Hence, u is a
global solution of the problem (1)–(3). Furthermore, from (28), we obtain

∥u(t)∥X0 ≤ lim inf
n→∞

∥un(t)∥X0 ,

which, together with (21), gives

∥u(t)∥X0 ≤
(

2q
(q − 2)κ

d
) 1

2
,

that is, u(t) ∈ W for all t ∈ (0, ∞).

4. Asymptotic Behavior of Global Solutions

Theorem 2. In addition to all the assumptions of Theorem 1, assume that there exists a constant
ρ > 0 such that g′(t) ≤ −ρg(t) for all t ∈ [0, ∞). Then,

∥u(t)∥2
X0

+ ∥ut(t)∥2
2 ≤ αe−βt, ∀t ∈ [0, ∞), (30)

for some constants α, β > 0.

Proof. For the approximate solutions given in the proof of Theorem 1, we construct

L(t) = En(t) + εΨ(t), ∀t ∈ [0, ∞), (31)

where Ψ(t) = (un(t), unt(t)), and ε > 0 is a constant to be determined later.
Step I. We now claim that there exist two constants γ1, γ2 > 0, depending on ε, such

that
γ1En(t) ≤ L(t) ≤ γ2En(t), ∀t ∈ [0, ∞). (32)
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In fact, according to Cauchy’s inequality, we obtain

|Ψ(t)| ≤ 1
2
∥un(t)∥2

2 +
1
2
∥unt(t)∥2

2,

and so,

|Ψ(t)| ≤
C2

2
2
∥un(t)∥2

X0
+

1
2
∥unt(t)∥2

2, (33)

where C2 is the best Sobolev constant for the embedding X0 ↪→ L2(Ω). Combining (33)
and (19), we obtain |Ψ(t)| ≤ MEn(t) for some constant M > 0 independent of n, which,
together with (31), yields that assertion (32) holds.

Step II. We next claim that

L′(t) ≤ −εηEn(t) (34)

for sufficiently small η and ε. Indeed, since

E′
n(t) =

1
2
(g′ ◦ un)(t)−

1
2

g(t)∥un(t)∥2
X0

− ∥unt(t)∥2
2

and

Ψ′(t) =∥unt(t)∥2
2 − b∥un(t)∥2p

X0
− a∥un(t)∥2

X0
+
∫ t

0
g(t − τ)(un(τ), un(t))X0 dτ

− (un(t), unt(t)) + ∥un(t)∥q
q − ∥un(t)∥r

r,

it follows from (31) that

L′(t) =
1
2
(g′ ◦ un)(t)−

1
2

g(t)∥un(t)∥2
X0

− ∥unt(t)∥2
2 + ε∥unt(t)∥2

2

− εb∥un(t)∥2p
X0

− εa∥un(t)∥2
X0

+ ε
∫ t

0
g(t − τ)(un(τ), un(t))X0 dτ

− ε(un(t), unt(t)) + ε∥un(t)∥q
q − ε∥un(t)∥r

r.

(35)

For the seventh term on the right hand side of (35), we can derive from Schwarz’s
inequality and Cauchy’s inequality with ϵ1 > 0 that∫ t

0
g(t − τ)(un(τ), un(t))X0 dτ

=
∫ t

0
g(t − τ)∥un(t)∥2

X0
dτ +

∫ t

0
g(t − τ)(un(τ)− un(t), un(t))X0 dτ

≤
∫ t

0
g(τ)dτ∥un(t)∥2

X0
+ ϵ1

∫ t

0
g(τ)dτ∥un(t)∥2

X0
+

1
4ϵ1

(g ◦ un)(t)

≤(a − κ)∥un(t)∥2
X0

+ ϵ1(a − κ)∥un(t)∥2
X0

+
1

4ϵ1
(g ◦ un)(t). (36)

For the eighth term on the right-hand side of (35), we deduce from Cauchy’s inequality
with ϵ2 > 0 that

−(un(t), unt(t)) ≤ϵ2∥un(t)∥2
2 +

1
4ϵ2

∥unt(t)∥2
2

≤ϵ2C
2
2∥un(t)∥2

X0
+

1
4ϵ2

∥unt(t)∥2
2. (37)
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Plugging (36) and (37) into (35), we obtain

L′(t) ≤
(

ε +
ε

4ϵ2
− 1
)
∥unt(t)∥2

2 − εb∥un(t)∥2p
X0

+ ε(ϵ1(a − κ) + ϵ2C
2
2 − κ)∥un(t)∥2

X0
+

(
ε

4ϵ1
− ρ

2

)
(g ◦ un)(t)

+ ε∥un(t)∥q
q − ε∥un(t)∥r

r,

and so,

L′(t) ≤− εηEn(t) +
(

ε +
ε

4ϵ2
+

εη

2
− 1
)
∥unt(t)∥2

2 + εb
(

η

2p
− 1
)
∥un(t)∥2p

X0

+ ε
(

ϵ1(a − κ) + ϵ2C
2
2 +

ηa
2

− κ
)
∥un(t)∥2

X0

+

(
ε

4ϵ1
+

εη

2
− ρ

2

)
(g ◦ un)(t) + ε∥un(t)∥q

q − ε∥un(t)∥r
r

− εη

q
∥un(t)∥q

q +
εη

r
∥un(t)∥r

r,

(38)

where η > 0 is a constant to be determined later. We conclude from (16) and (19) that

En(0) ≥
q − 2

2q
κ∥un(t)∥2

X0
.

This leads to

∥un(t)∥X0 ≤
(

2q
(q − 2)κ

En(0)
) 1

2
.

Hence,

∥un(t)∥q
q ≤ C

q
1∥un(t)∥q−2

X0
∥un(t)∥2

X0
≤ C

q
1

(
2q

(q − 2)κ
En(0)

) q−2
2
∥un(t)∥2

X0
.

The substitution of this inequality into (38) yields

L′(t) ≤− εηEn(t) +
(

ε +
ε

4ϵ2
+

εη

2
− 1
)
∥unt(t)∥2

2 + εb
(

η

2p
− 1
)
∥un(t)∥2p

X0

+ ε

ϵ1(a − κ) + ϵ2C
2
2 +

ηa
2

+ C
q
1

(
2q

(q − 2)κ
En(0)

) q−2
2

− κ

∥un(t)∥2
X0

+

(
ε

4ϵ1
+

εη

2
− ρ

2

)
(g ◦ un)(t)− ε∥un(t)∥r

r +
εη

r
∥un(t)∥r

r.

(39)

Since

C
q
1

(
2q

(q − 2)κ
En(0)

) q−2
2

< C
q
1

(
2q

(q − 2)κ
d
) q−2

2
= κ,

the values of ϵ1, ϵ2, and η can be selected to be sufficiently small, such that η < min{2p, r}
and

ϵ1(a − κ) + ϵ2C
2
2 +

ηa
2

+ C
q
1

(
2q

(q − 2)κ
En(0)

) q−2
2

− κ < 0.
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Consequently, it follows from (39) that

L′(t) ≤− εηEn(t) +
(

ε +
ε

4ϵ2
+

εη

2
− 1
)
∥unt(t)∥2

2

+

(
ε

4ϵ1
+

εη

2
− ρ

2

)
(g ◦ un)(t).

Thus, for fixed ϵ1, ϵ2, and η, we can choose

ε < min
{

1
M

,
4ϵ2

4ϵ2 + 1 + 2ηϵ2
,

2ρϵ1

1 + 2ηϵ1

}
such that assertion (34) holds.

Step III. We prove (30). To accomplish this, by combining (34) with the second
inequality stated in assertion (32), we obtain

L′(t) ≤ − εη

γ2
L(t).

Hence,
L(t) ≤ Ce−

εη
γ2

t, ∀t ∈ [0, ∞).

The first inequality in assertion (32) allows us to further deduce that

En(t) ≤
C
γ1

e−
εη
γ2

t, ∀t ∈ [0, ∞). (40)

It can be inferred from (28) and (29) that

∥u(t)∥2
X0

+ ∥ut(t)∥2
2 ≤ lim inf

n→∞

(
∥un(t)∥2

X0
+ ∥unt(t)∥2

2

)
,

which, together with (19) and (40), gives

lim inf
n→∞

(
∥un(t)∥2

X0
+ ∥unt(t)∥2

2

)
≤ lim inf

n→∞
CEn(t) ≤

C
γ1

e−
εη
γ2

t,

and so, (30) is derived, where α = C/γ1 and β = εη/γ2. Theorem 2 is proved.

Theorem 2 provides a sufficient condition for the asymptotic behavior of solutions of
the problem (1)–(3). For example, we take N = 1, m = 1/2, a = 1, b = 0, q = 4, r = 3, and
g(t) = g(0)e−t with g(0) < 1. Then, it is easy to verify that (A1), (A2), and g′(t) ≤ −ρg(t)
hold, where κ = 1 − g(0) and ρ = 1. By virtue of (7) and (5), we obtain

d =
1
4
(1 − g(0))2C−4

1

and
W =

{
u ∈ X0

∣∣∣∥u∥X0 < (1 − g(0))
1
2 C−2

1

}
.

Therefore, if u0 and u1 satisfy

∥u0∥X0 < (1 − g(0))
1
2 C−2

1

and
1
2
∥u1∥2

2 +
1
2
∥u0∥2

X0
− 1

4
∥u0∥4

4 +
1
3
∥u0∥3

3 <
1
4
(1 − g(0))2C−4

1 ,

then, we conclude from Theorem 2 that the norm of global solutions of the problem (1)–(3)
in the phase space X0 × L2(Ω) decays exponentially to zero when the time tends to infinity.
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5. Conclusions

The initial boundary value problem for a class of fractional viscoelastic Kirchhoff equa-
tions involving two nonlinear source terms of different signs is studied by this paper. In the
case where the two opposing external forces |u|q−2u and −|u|r−2u appear simultaneously,
the existence and asymptotic behavior of global solutions are derived, namely, Theorems 1
and 2. More specifically, Theorem 1 shows that if the initial data u0 lie in the potential well,
and the initial energy is less than the depth of the potential well, then the problem (1)–(3)
has a global solution. Theorem 2 shows us that if the memory kernel decays exponentially,
then the global solutions of the problem (1)–(3) also do this.

Our main technical tool is the theory of potential wells, which is different from the
classical. We describe the potential well by a sphere, whose radius is expressed by d.
Although the depth of the potential well d is smaller than the classical, the spatial structure
of the potential well is clearer so that it is not necessary to introduce the Nehari functional
and the Nehari manifold.

In the future, we will focus on the study of the qualitative properties of solutions of
fractional viscoelastic Kirchhoff equations involving more general Kirchhoff functions and
nonlinear source terms.
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18. Xiang, M.Q.; Rădulescu, V.D.; Zhang, B.L. Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions.

Nonlinearity 2018, 31, 3228–3250. [CrossRef]
19. Lin, Q.; Tian, X.T.; Xu, R.Z.; Zhang, M.N. Blow up and blow up time for degenerate Kirchhoff- type wave problems involving the

fractional Laplacian with arbitrary positive initial energy. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 2095–2107. [CrossRef]
20. Pan, N.; Pucci, P.; Xu, R.Z.; Zhang, B.L. Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with

nonlinear damping and source terms. J. Evol. Equ. 2019, 19, 615–643. [CrossRef]
21. Xiang, M.Q.; Hu, D. Existence and blow-up of solutions for fractional wave equations of Kirchhoff type with viscoelasticity.

Discret. Contin. Dyn. Syst. Ser. 2021, 14, 4609–4629. [CrossRef]
22. Cavalcanti, M.M.; Cavalcanti, V.N.D.; Ma, T.F. Exponential decay of the viscoelastic Euler–Bernoulli equation with a nonlocal

dissipation in general domains. Differ. Integral Equ. 2004, 17, 495–510. [CrossRef]
23. Xu, R.Z.; Zhang, M.Y.; Chen, S.H.; Yang, Y.B.; Shen, J.H. The initial-boundary value problems for a class of six order nonlinear

wave equation. Discret. Contin. Dyn. Syst. 2017, 37, 5631–5649. [CrossRef]
24. Cavalcanti, M.M.; Cavalcanti, V.N.D. Existence and asymptotic stability for evolution problems on manifolds with damping and

source terms. J. Math. Anal. Appl 2004, 291, 109–127. [CrossRef]
25. Gazzola, F.; Squassina, M. Global solutions and finite time blow up for damped semilinear wave equations. Ann. Inst. Henri

Poincare Anal. Non Lineaire 2006, 3, 185–207. [CrossRef]
26. Liu, Y.; Mu, J.; Jiao, Y.J. A class of fourth order damped wave equations with arbitrary positive initial energy. Proc. Edinb. Math.

Soc. 2019, 62, 165–178. [CrossRef]
27. Xu, R.Z.; Su, J. Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. 2013,

264, 2732–2763. [CrossRef]
28. Luo, Y.B.; Xu, R.Z.; Yang, C. Global well-posedness for a class of semilinear hyperbolic equations with singular potentials on

manifolds with conical singularities. Calc. Var. Partial. Differ. Equ. 2022, 61, 210. [CrossRef]
29. Liu, Y.; Li, W.K. A class of fourth-order nonlinear parabolic equations modeling the epitaxial growth of thin films. Discret. Contin.

Dyn. Syst. Ser. S 2021, 14, 4367–4381. [CrossRef]
30. Liu, Y.; Yu, T.; Li, W.K. Global well-posedness, asymptotic behavior and blow-up of solutions for a class of degenerate parabolic

equations. Nonlinear Anal. 2020, 196, 111759. [CrossRef]
31. Haraux, A.; Zuazua, E. Decay estimates for some semilinear damped hyperbolic problems. Arch. Ration. Mech. Anal. 1988, 100,

191–206. [CrossRef]
32. Liu, Y. Global attractors for a nonlinear plate equation modeling the oscillations of suspension bridges. Commun. Anal. Mech.

2023, 15, 436–456. [CrossRef]
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