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Abstract: The subspace minimization conjugate gradient (SMCG) methods proposed by Yuan and Store
are efficient iterative methods for unconstrained optimization, where the search directions are generated
by minimizing the quadratic approximate models of the objective function at the current iterative point.
Although the SMCG methods have illustrated excellent numerical performance, they are only used to
solve unconstrained optimization problems at present. In this paper, we extend the SMCG methods and
present an efficient SMCG method for solving nonlinear monotone equations with convex constraints by
combining it with the projection technique, where the search direction is sufficiently descent.Under mild
conditions, we establish the global convergence and R-linear convergence rate of the proposed method.
The numerical experiment indicates that the proposed method is very promising.
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convex constraints; global convergence; R-linear convergence rate
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1. Introduction

We consider the following nonlinear equations with convex constraints:

F(x) = 0, x ∈ Ω, (1)

where Ω ⊂ Rn is a non-empty closed convex set and F : Rn → Rn is a continuous mapping
that satisfies the monotonicity condition

⟨F(x)− F(y), x − y⟩ ≥ 0, (2)

for all x, y ∈ Rn. It is easy to verify that the solution set of problem (1) is convex under
condition (2).

Nonlinear equations have numerous practical applications, e.g., machinery manu-
facturing problems [1], neural networks [2], economic equilibrium problems [3], image
recovery problems [4], and so on. In the context of many practical applications, problem (1)
has attracted a substantial number of scholars to put forward more effective iterative
methods to find solutions, such as Newton’s method, quasi-Newton methods, trust re-
gion methods, Levenberg–Marquardt methods, or their variants ([5–9]). Although these
methods are very popular and have fast convergence at an adequately good initial point,
they are not suitable for solving large-scale nonlinear equations due to the calculation and
storage of the Jacobian matrix or its approximation.
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Due to its simple form and low memory requirement, conjugate gradient (CG) meth-
ods are used to solve problem (1) by combining them with projection technology pro-
posed by Solodov and Svaiter [10] (see [11,12]). Xiao and Zhu [13] extended the famous
CG_DESCENT method [14] for solving nonlinear monotone equations with convex con-
straints due to its effectiveness. Liu and Li [15] presented an efficient projection method
for solving convex constrained monotone nonlinear equations, which can be viewed as
another extension of the CG_DESCENT method [14] and was used to solve the sparse
signal reconstruction in compressive sensing. Based on the Dai–Yuan (DY) method [16],
Liu and Feng [17] presented an efficient derivative-free iterative method and established its
Q-linear convergence rate of the proposed method under the local error bound condition.
By minimizing the distance between relative matrix and the self-scaling memoryless BFGS
method in the Frobenius norm, Gao et al. [18] proposed an adaptive projection method
for solving nonlinear equations and applied it to recover a sparse signal from incomplete
and contaminated sampling measurements. Based on [19], Li and Zheng [20] proposed
two effective derivative-free methods for solving large-scale nonsmooth monotone nonlin-
ear equations. Waziri et al. [21] proposed two DY-type iterative methods for solving (1).
By using the projection method [10], Abdulkarim et al. [22] introduced two classes of
three-term methods for solving (1) and established the global convergence under a weaker
monotonicity condition.

The subspace minimization conjugate gradient (SMCG) methods proposed by Yuan
and Stoer [23] are generalizations of the traditional CG methods and are a class of iterative
methods for unconstrained optimization. The SMCG methods have illustrated excellent
numerical performance and have also received much attention recently. However, the
SMCG methods are only used to solve unconstrained optimization at present. Therefore,
it is very interesting to study the SMCG methods for solving nonlinear equations with
convex constraints. In this paper, we propose an efficient SMCG method for solving
nonlinear monotone equations with convex constraints by combining it with the projection
technology, where the search direction is in a sufficient descent. Under suitable conditions,
the global convergence and the convergence rate of the proposed method are established.
The numerical experiment is conducted, which indicates that the proposed method is
superior to some efficient conjugate gradient methods.

The remainder of this paper is organized as follows. In Section 2, an efficient SMCG
method for solving nonlinear monotone equations with convex constraints is presented.
We prove the global convergence and the convergence rate of the proposed method in
Section 3. In Section 4, the conducted numerical experiment is discussed to verify the
effectiveness of the proposed method. The conclusion is presented in Section 5.

2. The SMCG Method for Solving Nonlinear Monotone Equations with
Convex Constraints

In this section, we first review the SMCG methods for unconstrained optimization, and
then propose an efficient SMCG method for solving (1) by combining it with the projection
technique and exploit some of its important properties.

2.1. The SMCG Method for Unconstrained Optimization

We review the SMCG methods here.
The SMCG methods were proposed by Yuan and Stoer [23] to solve the unconstrained

optimization problem
min
x∈Rn

f (x),

where f : Rn → R is continuously differentiable. The SMCG methods are of the form
xk+1 = xk + αk d̂k, where αk is the stepsize and d̂k is the search direction, which are generated
by minimizing the quadratic approximate models of the objective function f at the current
iterative point xk in the subspace Ωk = Span{d̂k−1, gk}, namely
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min
d̂∈Ωk

mk

(
d̂
)
=gT

k d̂+
1
2

d̂T Bk d̂, (3)

where Bk is an approximation to the Hessian matrix and is required to satisfy the quasi-
Newton equation Bk ŝk−1 = ŷk−1, ŝk−1 = xk+1 − xk = αk d̂k, gk = ∇ f (xk).

In the following, we consider the case that d̂k−1 and gk are not collinear. Since the
vector d̂k in Ωk = Span{d̂k−1, gk} can be expressed as

d̂k=µkgk+νk ŝk−1, (4)

where µk, νk ∈ R, by substituting (4) into (3), we obtain

min
(µk ,νk)∈R2

Φ(µk, νk) =

(
||gk||2
gT

k ŝk−1

)T(
µk
νk

)
+

1
2

(
µk
νk

)T( gT
k Bkgk

ŝT
k−1Bkgk

gT
k Bk ŝk−1

ŝT
k−1Bk ŝk−1

)(
µk
νk

)
. (5)

When Bk is positive definite, by imposing ∇Φ(µk, νk) = (0, 0), we obtain the optimal
solution of subproblem (5) (for more details, please see [23]):(

µ∗
k

ν∗k

)
=

1
∆k

(
gT

k ŷk−1gT
k ŝk−1 − ŝT

k−1ŷk−1||gk||2
gT

k ŷk−1||gk||2 − ρkgT
k ŝk−1

)
, (6)

where ∆k = ρk ŝT
k−1ŷk−1 −

(
gT

k ŷk−1
)2, ρk = gT

k Bkgk, ŷk−1 = gk+1 − gk.

An important property about the SMCG methods was given by Dai and Kou [24]
in 2016. They established the two-dimensional finite termination property of the SMCG
methods and presented some Barzilai–Borwein conjugate gradient (BBCG) methods with
different ρk values, and the most efficient one is

ρBBCG3
k =

3||gk||2||ŷk−1||2

2ŝT
k−1ŷk−1

. (7)

Motivated by the SMCG methods [23] and ρBBCG3
k , Liu and Liu [25] extended the BBCG3

method to general unconstrained optimization and presented an efficient subspace mini-
mization conjugate gradient method (SMCG_BB). Since then, a lot of SMCG methods [26–28]
have been proposed for unconstrained optimization. The SMCG methods are very efficient
and have received much attention.

2.2. The SMCG Method for Solving (1) and Its Some Important Properties

We will extend the SMCG methods for unconstrained optimization for solving (1) by
combining it with the projection technique and exploit some important properties of the
search direction in the subsection. The motivation behind we extend the SMCG methods
for unconstrained optimization to solve (1) is that the SMCG methods have the following
characteristics: (i) The search directions of the SMCG methods are parallel to those of
the traditional CG methods when the exact line search is performed, and thus reduce to
the traditional CG methods when the exact line search is performed. It implies that the
SMCG methods can inherit the finite termination property of the traditional CG methods
for convex quadratic minimization. (ii) The search directions of the SMCG methods are
generated by solving (3) over the whole two-dimensional subspace Ωk = Span{d̂k−1, gk},
while those of the traditional CG methods are d̂k = −gk + βk d̂k−1, where βk is called the
conjugate parameter. Obviously, the search directions of the traditional CG methods are
derived in the special subset of Ωk to make them possess the conjugate property. As a
result, the SMCG methods have more choices and thus have more potential in theoretical
properties and numerical performance. In theory, the SMCG methods without the exact line
search can possess the finite termination property when solving two-dimensional strictly
convex quadratic minimization problems [24], while this is impossible for the traditional
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CG methods when the line search is not exact. In numerical performance, the numerical
results in [25–28] indicated that the SMCG methods are very efficient.

For simplicity, we abbreviate F(xk) as Fk in the following. We are particularly interested
in the SMCG methods proposed by Yuan and store [23], where the search directions are
given by

d̂k = µ∗
k gk + ν∗k ŝk−1, (8)

where µ∗
k and ν∗k are determined by (6). For the choice of ρk in (6), we take the form (7) due

to its effectiveness [24]. Therefore, based on (8) and (7), the search direction of the SMCG
method for solving problem (1) can be arranged as

d̄k =
1

∆k

[(
FT

k yk−1FT
k sk−1 − sT

k−1yk−1∥Fk∥2
)

Fk +
(

FT
k yk−1∥Fk∥2 − ρkFT

k sk−1

)
sk−1

]
, (9)

where yk−1 = ȳk−1 + rsk−1, ȳk−1 = F(xk) − Fk−1, sk−1 = xk − xk−1, ∆k = ρksT
k−1yk−1 −(

FT
k yk−1

)2, ρk =
3||Fk ||2||yk−1||2

2sT
k−1yk−1

.

In order to analyze some properties of the search direction, the search direction will be
reset as −Fk when sT

k−1yk−1 < ξ1||yk−1||2, where ξ1 > 0. Therefore, the search direction is
truncated as

dk =

{
d̄k, if sT

k−1yk−1 ≥ ξ1||yk−1||2 ,
−Fk, otherwise,

(10)

where d̄k is given by (9).
The projection technique, which will be used in the proposed method, is described

as follows.
By setting zk=xk+αkdk as a trial point, we define a hyperplane

Hk= {x ∈ Rn|⟨F(zk), x−zk⟩= 0},

which strictly separates xk from the zero points of F(x) in (1). The projection operator is a
mapping from Rn to the non-empty closed subset Ω :

PΩ[x] = arg min{||x − y|||y ∈ Ω},

which enjoys the non-expansive property

||PΩ[x]− y|| ≤ ||x − y||, ∀y ∈ Ω.

Solodov and Svaiter [10] showed that the next iterative point xk+1 is the projection of xk
onto Hk, namely

xk+1=xk −
⟨F(zk), xk − zk⟩

||F(zk)||2
F(zk).

By combining (10) with the projection technique, we present an SMCG method for
solving (1), which is described in detail as follows.

The following lemma indicates that the search direction dk satisfies the sufficient
descent property.
Lemma 1. The search direction {dk} generated by Algorithm 1 always satisfies the sufficient
descent condition

dT
k Fk ≤ −C||Fk||2, (11)

for all k ≥ 0.

Proof. According to (10), we know that (11) holds with C = 1 if sT
k−1yk−1 < ξ1||yk−1||2. We

next consider the opposite situation. It follows that
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dT
k Fk =

1
∆k

[
(

FT
k yk−1FT

k sk−1 − sT
k−1yk−1||Fk||2

)
Fk +

(
FT

k yk−1||Fk||2 − ρkFT
k sk−1

)
sk−1]

T Fk

= −||Fk||4
∆k

sT
k−1yk−1 − 2FT

k yk−1
FT

k sk−1

||Fk||2
+ ρk

(
FT

k sk−1

||Fk||2

)2


∆
= −||Fk||4

∆k
· ηk ≤ −||Fk||4

∆k
· ∆k

ρk
= −∥Fk∥4

ρk
,

(12)

where the inequality comes from the fact that treating ηk as a one variable function of
FT

k sk−1
||Fk ||2

and minimizing it can yield ηk ≥ ∆k
ρk

. Consequently, by the choice of ρk and (10), it
holds that

dT
k Fk ≤ −||Fk||4

ρk
≤ −

2sT
k−1yk−1

3||yk−1||2
||Fk||2 ≤ −2ξ1

3
||Fk||2.

In sum, (11) holds with C = min
{

1, 2ξ1
3

}
. The proof is completed.

Algorithm 1 Subspace Minimization Conjugate Gradient Method for Solving (1)

Step 0. Initialization. Select x0 ∈ Rn, ε > 0, 0 < σ < 1, ξ ∈ (0, 1), ρ ∈ (0, 1), κ ∈ (0, 2).
Set k = 0.
Step 1. If ∥Fk∥ ≤ ε, stop. Otherwise, compute search direction dk by (10).
Step 2. Let zk = xk + αkdk, where αk = max

{
ξρi|i = 0, 1, 2, 3, · · ·

}
is determined by

−⟨F(xk + αkdk), dk⟩ ≥ σαk||F(xk + αkdk)||||dk||2, (13)

Step 3. If zk ∈ Ω and ∥F(zk)∥ ≤ ε, xk+1 = zk, then stop. Otherwise, we determine xk+1
by

xk+1 = PΩ[xk − κλkF(zk)],

where

λk =
⟨F(zk), xk − zk⟩

∥F(zk)∥2 .

Step 4. Set k = k + 1 and go to Step 1.

Lemma 2. Let the sequences {dk} and {xk} be generated by Algorithm 1, then there always exists
a stepsize αk satisfying the line search (13).

Proof. We prove it by contradiction. Suppose that inequality (13) does not hold for any
positive integer i at the k-th iteration, we can determine that

−
〈

F(xk + βρidk), dk

〉
< σβρi

∥∥∥F(xk + βρidk)
∥∥∥∥dk∥2. (14)

By taking i → ∞, it follows from the continuity of F and ρ ∈ (0, 1) that

−F(xk)
Tdk ≤ 0, (15)

which contradicts (11). The proof is completed.

3. Convergence Analysis

In this section, we will establish the global convergence and the convergence rate of
Algorithm 1.
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3.1. Global Convergence

We first perform the following assumptions.

Assumption 1. There is a solution x∗ ∈ Ω∗ such that F(x∗) = 0.

Assumption 2. The mapping F is continuous and monotone.

By utilizing (2), we can obtain

sT
k−1yk−1 = sT

k−1(ȳk−1 + rsk−1) = sT
k−1(F(xk)− F(xk−1)) + rsT

k−1sk−1 ≥ r∥sk−1∥2 > 0. (16)

The next lemma indicates that sequence {||xk − x∗||} generated by Algorithm 1 is Fejèr
monotone with respect to Ω.

Lemma 3. Suppose that Assumptions 1 and 2 hold, and {xk} and {zk} are generated by Algo-
rithm 1. Then, it holds that

||xk+1 − x∗||2 ≤ ||xk − x∗||2 − κ(2 − κ)σ2||xk − zk||4, ∀x∗ ∈ Ω∗. (17)

Moreover, the sequence {xk} is bounded and

∞

∑
k=0

||xk − zk||4 < +∞. (18)

Proof. From (2), the following holds:

⟨F(zk), xk − x∗⟩ ≥ ⟨F(zk), xk − zk⟩, ∀x∗ ∈ Ω∗,

which, together with (13), implies that

⟨F(zk), xk − zk⟩ ≥ σα2
k ||F(zk)||||dk||2 ≥ 0.

As a result, we have

||xk+1 − x∗||2 = PΩ[xk − κλkF(zk)− x∗] ≤ ||xk − κλkF(zk)− x∗||2

= ||xk − x∗||2 − 2κλk⟨F(zk), xk − x∗⟩+ ||κλkF(zk)||2

≤ ||xk − x∗||2 − 2κλk⟨F(zk), xk − zk⟩+ ||κλkF(zk)||2

= ||xk − x∗||2 − κ(2 − κ)
⟨F(zk), xk − zk⟩2

||F(zk)||2

≤ ||xk − x∗||2 − κ(2 − κ)σ2||xk − zk||4.

It follows that the sequence ||xk − x∗|| is non-increasing and thus, the sequence {xk}
is bounded. We also have

κ(2 − κ)σ2
∞

∑
k=0

||xk − zk||4 < ||x0 − x∗||2 < +∞.

By the definition of {zk}, we can determine that

lim
k→∞

∥xk − zk∥ = lim
k→∞

αk||dk|| = 0. (19)

The following lemma is proved only based on the continuity assumption on F.
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Lemma 4. Suppose that {dk} is generated by Algorithm 1. Then, for all k ≥ 0 , we have

C||Fk|| ≤ ||dk|| ≤ C3||Fk||, (20)

where 0 < C < C3.

Proof. From (11) and by utilizing the Cauchy–Schwartz inequality, it follows that

||dk|| ≥ C||Fk||. (21)

In the following, we consider two cases: when (i) sT
k−1yk−1 ≥ ξ1||yk−1||2 holds, we have∣∣∣∣ 1

∆k

∣∣∣∣ = 1∣∣∣ρksT
k−1yk−1 − (FT

k yk−1)
2
∣∣∣ = 1∣∣∣ 3

2 ||yk−1||2||Fk||2 − (FT
k yk−1)

2
∣∣∣ ≤ 2

||yk−1||2||Fk||2
. (22)

Therefore, by (10), (16) and (22), as well as the Cauchy–Schwarz inequality, we obtain

||dk|| =
∣∣∣∣ 1
∆k

∣∣∣∣ ·
∥∥∥∥∥[(FT

k yk−1FT
k sk−1 − sT

k−1yk−1||Fk||2)Fk + (FT
k yk−1||Fk||2 −

3||yk−1||2||Fk||2

2sT
k−1yk−1

FT
k sk−1)sk−1]

∥∥∥∥∥
≤
∣∣∣∣ 1
∆k

∣∣∣∣ · [∥∥∥FT
k yk−1FT

k sk−1

∥∥∥∥Fk∥+
∥∥∥sT

k−1yk−1

∥∥∥||Fk||3

+
∥∥∥FT

k yk−1

∥∥∥||Fk||2∥sk−1∥+
3||yk−1||2||Fk||2

2sT
k−1yk−1

∥∥∥FT
k sk−1

∥∥∥∥sk−1∥]

≤ 2
||yk−1||2||Fk||2

· [3∥sk−1∥∥yk−1∥∥Fk∥3 +
3

2sT
k−1yk−1

||yk−1||2∥sk−1∥2∥Fk∥3]

=

(
6∥sk−1∥
∥yk−1∥

+
3

sT
k−1yk−1

∥sk−1∥2

)
∥Fk∥

=

(
6∥sk−1∥2

∥sk−1∥∥yk−1∥
+

3
sT

k−1yk−1
∥sk−1∥2

)
∥Fk∥

≤
(

6∥sk−1∥2

sT
k−1yk−1

+
3

sT
k−1yk−1

∥sk−1∥2

)
∥Fk∥

≤ 9∥sk−1∥2

sT
k−1yk−1

∥Fk∥

≤ 9
r
∥Fk∥.

(23)

(ii) sT
k−1yk−1 < ξ1∥yk−1∥2 or k = 0, ∥dk∥ = ∥Fk∥. In sum, (20) holds for all k ≥ 0 with

C3 = max
{ 9

r , 1
}

and C in (11). The proof is completed.

In the following theorem, we establish the global convergence of Algorithm 1.

Theorem 1. Suppose that Assumption 2 holds, and the sequences {xk} and {zk} are generated by
Algorithm 1. Then, the following holds:

lim
k→∞

inf ||Fk|| = 0. (24)

Proof. We prove it by contradiction. Suppose that (24) does not hold, i.e., there exists a
constant r > 0 such that ||Fk|| ≥ r, ∀k ≥ 0. Together with (21), it implies that

||dk|| ≥ Cr, ∀k ≥ 0. (25)
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By utilizing (19) and (25), we can determine that lim
k→∞

αk = 0. By αk = βρik and the line

search (13), for a large enough k, we can determine that

−
〈

F(xk + βρik−1 dk), dk

〉
< σβρik−1

∥∥∥F(xk + βρik−1 dk)
∥∥∥∥dk∥2. (26)

It follows from (20) and ||Fk|| ≥ r that the sequence {dk} is bounded. Together with the
boundedness of {xk}, we know that there exist convergent subsequences for both {xk} and
{dk}. Without the loss of generality, we assume that the two sequences {xk} and {dk} are
convergent. Hence, taking limits on (26) yields

−
〈

F(x̄), d̄
〉
< 0, (27)

where x̄ and d̄ are the corresponding limit points. By taking limits on both sides of (11),
we obtain

−
〈

F(x̄), d̄
〉
≥ C∥F(x̄)∥2. (28)

It follows from (27) and (28) that ∥F(x̄)∥ = 0, which contradicts ||Fk|| ≥ r. Therefore, we
obtain (24). The proof is completed.

3.2. R-Linear Convergence Rate

We begin to analyze the Q-linear convergence and R-linear convergence of Algorithm 1.
We say that a method enjoys Q-linear convergence to mean that its iterative sequence {xk}
satisfies lim sup

n→∞

∥xn+1−x∗∥
∥xn−x∗∥ ≤ ϕ, where ϕ ∈ (0, 1); we say that a method enjoys R-linear

convergence to mean that for its iterative sequence {xk}, there exists two positive constants
m ∈ (0, ∞), q ∈ (0, 1) such that ∥xn − x∗∥ ≤ mqk holds (See [29]).

Assumption 3. For any x∗ ∈ Ω∗, there exist constant ω ∈ (0, 1) and δ > 0 such that

ωdist(x, Ω∗) ≤ ∥F(x)∥2, ∀x ∈ N(x∗, δ), (29)

where dist(x, Ω∗) denotes the distance from x to the solution set Ω∗, and N(x∗, δ) = {x ∈ Ω|∥x − x∗∥
≤ δ}.

Theorem 2. Suppose that Assumptions 2 and 3 hold, and let the sequence {xk} be generated by
Algorithm 1. Then, the sequence dist{xk, Ω∗} is Q-linearly convergent to 0 and the sequence {xk}
is R-linearly convergent to x̄ ∈ Ω∗.

Proof. By setting uk := arg min{∥xk − u∥|u ∈ Ω∗ }, we know that uk is the nearest solution
from xk, i.e.,

∥xk − uk∥ = dist(xk, Ω∗).

From (17), (21) and (29), for uk ∈ Ω∗, we have

dist(xk+1, Ω∗)2 = ∥xk+1 − uk∥2

≤ dist(xk, Ω∗)2 − σ2∥αkdk∥4

≤ dist(xk, Ω∗)2 − σ2α4
kC4∥Fk∥4

≤ dist(xk, Ω∗)2 − σ2ω2α4
kC4dist(xk, Ω∗)2

=
(

1 − σ2ω2α4
kC4
)

dist(xk, Ω∗)2,

which, together with σ ∈ (0, 1), ω ∈ (0, 1), αk ∈ [0, 1], and C ∈ [0, 1] implies that the
sequence dist(xk, Ω∗) is Q-linearly convergent to 0. If dist(xk, Ω∗) has this property, then
the sequence {xk} is R-linearly convergent to x̄ ∈ Ω∗. The proof is completed.
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4. Numerical Experiments

In this section, the numerical experiment is conducted to compare the performance
of Algorithm 1 with that of the HTTCGP method [30], the PDY method [17], the MPRPA
method [18], and the PCG method [15], which are very effective types of projection algo-
rithm for solving (1). All codes of the test methods were implemented in MATLAB R2019a
and were run on an HP personal desktop computer with Intel(R) Core(TM) i5-10500 CPU
3.10 GHz, 8.00 GB RAM, and Windows 10 operation system.

In Algorithm 1, we choose the following the parameter values:

ρ = 0.53, σ = 0.0001, ξ = 0.55, ξ1 = 10−7, ξ = 0.55, κ = 1.9 , r = 0.1.

The parameters of the other four test algorithms use the default values from [15,17,18,30],
respectively. In the numerical experiment, all test methods are terminated if the itera-
tion exceeds 10,000, or if the function value of the current iterations satisfies the condition
∥F(xk)∥ ≤ 10−5.

Denote
F(x) = (F1(x), F2(x), · · · , Fn(x))T .

The test problems are given as follows.

Problem 1. This problem is a logarithmic function with Ω = {x ∈ Rn|xi > −1} [17], i.e.,

Fi(x) = ln(xi + 1)− xi
n , i = 1, 2, 3, · · · , n.

Problem 2. This problem is a discrete boundary value problem with Ω = Rn
+ [17], i.e.,

F1(x) = 2x1 + 0.5h2(x1 + h)3 − x2,
Fi(x) = 2xi + 0.5h2(xi + ih)3 − xi−1 + xi+1,
Fn(x) = 2xn + 0.5h2(xn + nh)3 − xn−1,

where h = 1
n+1 , i = 2, 3, · · · , n − 1.

Problem 3. This problem is a trigexp funtion with Ω = Rn
+ [17], i.e.,

F1(x) = 3x3
1 + 2x2 − 5 + sin(x1 − x2) sin(x1 + x2),

Fi(x) = −xi−1e(xi−1−xi) + xi
(
4 + 3x2

i
)
+ 2xi+1 + sin(xi−1 − xi) sin(xi−1 + xi)− 8,

Fn(x) = −xn−1e(xn−1−xn) + 4xn − 3,

where i = 2, 3, · · · , n − 1.

Problem 4. This problem is a tridiagonal exponential problem with Ω = Rn
+ [17], i.e.,

Fi(x) = exi − 1,

where i = 1, 2, · · · , n.

Problem 5. This problem is problem 4.6 in [17] with Ω = Rn
+, i.e.,

Fi(x) = xi − 2 sin |xi − 1|,

where i = 1, 2, · · · , n.

Problem 6. This problem is problem 4.7 in [17], i.e.,

F1(x) = 2.5x1 + x2 − 1,
Fi(x) = xi−1 + 2.5xi + xi+1 − 1,
Fn(x) = xn−1 + 2.5xn − 1,
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where Ω = {x ∈ Rn|x ≥ −3}, i = 2, 3, · · · , n − 1.

Problem 7. This problem is problem 4.8 in [17], i.e.,

Fi(x) = 2xi − sin(xi),

where Ω = {x ∈ Rn|x ≥ −2}, i = 1, 2, · · · , n.

Problem 8. This problem is problem 3 in [31], i.e.,

F1(x) = x1 − ecos
(

x1+x2
n+1

)
,

Fi(x) = xi − ecos
( xi−1+xi+xi+1

n+1

)
,

Fn(x) = xn − ecos
( xn−1+xn

n+1

)
,

where Ω = Rn
+, i = 2, · · · , n − 1.

Problem 9. This problem is problem 4.3 in [32], i.e.,

Fi(x) =
i
n

exi − 1,

where Ω = Rn
+, i = 1, 2, · · · , n.

Problem 10. This problem is problem 4.8 in [32], i.e.,

Fi(x) = (exi )2 + 3 sin xi cos xi − 1,

where Ω = Rn
+, i = 1, 2, · · · , n.

Problem 11. This problem is problem 4.5 in [32], i.e.,

F1(x) = x1 − ecos
(

x1+x2
2

)
,

Fi(x) = xi − ecos
( xi−1+xi+xi+1

i

)
,

Fn(x) = xn − ecos
( xn−1+xn

n

)
,

where Ω = Rn
+, i = 2, · · · , n − 1.

Problem 12. This problem is problem 5 in [31], i.e.,

F1(x) = ex1 − 1,
Fi(x) = exi + xi−1 − 1,

where Ω = Rn
+, i = 2, · · · , n − 1.

Problem 13. This problem is problem 6 in [31], i.e.,

F1(x) = 2x1 − x2 + ex1 − 1,
Fi(x) = −xi−1 + 2xi − xi+1 + exi − 1,
Fn(x) = −xn−1 + 2xn + exn − 1,

where Ω = Rn
+, i = 2, · · · , n − 1.
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Problem 14. This problem is problem 4.3 in [20], i.e.,

F1(x) = x1
(
2x2

1 + 2x2
2
)
− 1,

Fi(x) = xi
(
2x2

i−1 + 2x2
i + 2x2

i+1
)
− 1,

Fn(x) = xn
(
2x2

n−1 + 2x2
n
)
− 1,

where Ω = Rn
+, i = 2, · · · , n − 1.

Problem 15. This problem is a complementarity problem in [20],i.e.,

Fi(x) = (xi − 1)2 − 1.01,

where Ω = Rn
+, i = 1, 2, · · · , n.

The above 15 problems with different dimensions (n = 1000, 5000, 10,000, and 50,000)
are used to test the five test methods, as well as different initial points x0 = a1 ∗ ones(n, 1),
where a1 = 0.1, 0.2, 0.5, 0.12, 0.15, 2.0, and m = ones(n, 1). Some of the numerical results
are listed in Table 1, where “Al” represents Algorithm 1, “Pi” (i = 1, 2, · · · , 15) stands for
the i-th test problem listed above, and “Ni” and “NF” denote the number of iterations and
the number of function calculations, respectively. Other numerical results are available at
https://www.cnblogs.com/888-0516-2333/p/18026523 (accessed on 6 January 2024).

Table 1. The numerical results (n = 10,000).

P x0

Al PDY HTTCGP MPRPA PCG
x0

Al HTTCGP PDY MPRPA PCG

Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF

P1 0.1 m 4\9 14\31 3\7 28\57 9\23 1.2 m 8\17 14\31 5\11 34\69 11\27
0.2 m 5\11 14\31 3\7 29\59 8\20 1.5 m 8\17 20\42 5\11 35\71 9\22
0.5 m 6\13 18\39 4\9 31\63 10\25 2.0 m 8\17 15\33 6\14 36\73 11\27

P2 0.1 m 4\10 7\23 6\19 12\25 10\36 1.2 m 5\11 8\25 7\22 13\27 9\32
0.2 m 4\10 7\23 6\19 12\25 10\36 1.5 m 6\13 8\25 7\22 13\27 9\32
0.5 m 3\8 6\20 5\16 9\19 8\29 2.0 m 6\13 8\25 8\25 14\29 10\35

P3 0.1 m 19\39 16\42 26\72 42\85 16\39 1.2 m 17\35 27\81 49\126 37\75 18\52
0.2 m 19\39 19\49 31\83 42\85 16\39 1.5 m 19\40 20\58 41\109 33\67 17\46
0.5 m 19\39 22\57 28\80 41\83 18\48 2.0 m 18\38 32\148 46\121 34\70 19\59

P4 0.1 m 22\46 24\97 50\172 77\170 19\77 1.2 m 29\60 32\129 53\185 92\205 22\89
0.2 m 24\50 26\105 52\179 83\184 20\81 1.5 m 30\62 33\133 53\185 92\205 22\89
0.5 m 26\54 30\121 59\202 86\191 21\85 2.0 m 31\64 34\137 54\189 95\212 23\93

P5 0.1 m 1\3 1\4 20\61 27\55 9\24 1.2 m 1\4 1\5 23\71 30\61 11\31
0.2 m 1\3 1\4 21\64 29\59 9\24 1.5 m 1\4 1\5 23\71 29\59 11\31
0.5 m 1\3 1\4 22\67 30\61 10\27 2.0 m 1\4 1\6 24\76 31\64 10\28

P6 0.1 m 5\11 6\20 7\22 12\25 9\32 1.2 m 6\13 7\22 7\22 13\27 9\32
0.2 m 5\11 6\20 6\19 12\25 8\29 1.5 m 5\11 6\20 7\22 13\27 10\35
0.5 m 3\8 6\20 5\16 9\19 8\29 2.0 m 6\14 7\22 8\25 14\29 10\34

P7 0.1 m 8\18 11\36 16\57 17\35 17\65 1.2 m 6\13 10\31 18\70 12\25 11\42
0.2 m 8\20 10\33 15\54 16\33 20\78 1.5 m 6\13 10\31 20\79 11\23 15\59
0.5 m 7\15 11\33 18\68 14\29 18\69 2.0 m 3\8 7\23 17\69 8\17 15\61

P8 0.1 m 5\11 7\19 20\61 28\57 10\26 1.2 m 7\15 13\31 24\73 32\65 10\26
0.2 m 5\11 7\19 21\64 29\59 10\26 1.5 m 7\15 14\33 24\74 32\65 10\26
0.5 m 6\13 6\16 23\70 31\63 10\26 2.0 m 8\17 14\33 25\77 32\65 11\29

P9 0.1 m 6\13 9\24 26\80 34\69 12\31 1.2 m 6\13 9\24 24\73 33\67 11\29
0.2 m 6\13 9\24 26\80 34\69 12\31 1.5 m 6\13 9\24 24\73 32\65 11\29
0.5 m 6\13 9\24 25\77 34\69 12\31 2.0 m 6\13 9\24 23\70 31\63 10\26

P10 0.1 m 51\105 40\192 197\816 13\40 68\311 1.2 m 27\57 26\143 147\617 14\43 52\241
0.2 m 51\105 31\159 187\774 13\40 71\324 1.5 m 31\65 36\180 121\512 14\43 43\201
0.5 m 29\61 26\131 181\752 14\43 62\285 2.0 m 34\71 35\174 132\557 16\49 43\201

 https://www.cnblogs.com/888-0516-2333/p/18026523
 https://www.cnblogs.com/888-0516-2333/p/18026523
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Table 1. Cont.

P x0

Al PDY HTTCGP MPRPA PCG
x0

Al HTTCGP PDY MPRPA PCG

Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF Ni/NF

P11 0.1 m 1\5 1\7 16\81 23\93 10\51 1.2 m 1\4 1\4 18\92 24\97 1\5
0.2 m 1\5 1\7 17\86 24\97 10\51 1.5 m 1\7 1\3 18\93 1\4 1\3
0.5 m 1\5 1\3 17\86 25\101 1\3 2.0 m 1\6 1\8 19\100 1\4 2\11

P12 0.1 m 20\41 18\75 95\306 25\51 44\152 1.2 m 21\43 15\60 73\233 28\57 43\149
0.2 m 20\41 15\59 95\306 24\49 44\152 1.5 m 21\43 15\61 65\210 26\53 24\85
0.5 m 20\41 17\67 98\315 25\51 44\152 2.0 m 18\37 20\76 92\293 23\47 38\131

P13 0.1 m 30\62 24\119 182\741 83\246 99\442 1.2 m 37\76 27\136 216\880 104\333 127\641
0.2 m 34\70 25\124 188\761 88\261 98\440 1.5 m 37\77 28\157 226\963 85\284 79\389
0.5 m 34\71 26\133 191\786 96\288 101\458 2.0 m 3\80 25\127 210\872 120\454 3\48

P14 0.1 m 54\111 31\163 101\430 129\416 14\70 1.2 m 47\99 28\152 61\269 167\533 18\94
0.2 m 40\82 42\260 125\530 184\582 17\85 1.5 m 55\120 27\158 91\393 157\505 18\96
0.5 m 49\101 31\159 123\522 177\563 17\86 2.0 m 52\115 34\177 138\588 147\473 22\119

P15 0.1 m 34\72 22\177 39\245 16\80 20\140 1.2 m 21\47 20\165 48\306 15\76 16\113
0.2 m 31\66 23\185 35\218 16\80 18\126 1.5 m 31\67 22\184 48\311 18\91 43\291
0.5 m 28\60 23\162 42\262 17\86 18\127 2.0 m 24\54 19\155 58\361 16\82 17\121

The performance profiles proposed by Dolan and Moré [33] are used to compare the
numerical performance of the test methods in terms of Ni, NF, and T, respectively. We
explain the performance profile by taking the number of iterations as an example. Denote
the test set and the set of algorithms by P and A, respectively. We assume that we have
na algorithms and np problems. For each problem with p ∈ P and algorithm a ∈ A, tp,a
represents the number of iterations required to solve problem p by algorithm a. We use the
performance ratio

rp,a =
tp,a

min
{

tp,a|a ∈ A
}

to compare the performance on problem p by solver a with the best performance by any
algorithm on this problem. To obtain an overall assessment of the performance of the
algorithm, we define

ρa(τ) =
1

np
size

{
p ∈ P|rp,a ≤ τ

}
,

which is the probability for algorithm a ∈ A that a performance ratio rp,a is within a factor
τa ∈ R of the best possible ratio and reflects the numerical performance of algorithm a
relative to the other test algorithms in A. Obviously, algorithms with large probability pa(τ)
are to be preferred. Therefore, in the figure plotted with these ρa(τ) of the test methods,
the higher the curve is, the better the corresponding algorithm a performs.

As shown in Figure 1, we observe that, in terms of the number of iterations, Algorithm 1
is the best, followed by the HTTCGP, MPRPA, and PCG methods, and the PDY method
is the worst. Figure 2 indicates that Algorithm 1 has significant improvement over the
other four test methods in terms of the number of function calculations, since it successfully
solves about 78% of test problems with the least number of function calculations, while
the percentages of the other four methods are all less than 10%. As for the reason for
the significant improvement in terms of NF, it is due to the fact that the search direction
of Algorithm 1 is generated by minimizing the quadratic approximate model in the two-
dimensional subspace Ωk = Span{d̂k−1, gk}, which implies that the search direction has
new parameters corresponding to Fk and thus results in that it requires less function
calculations in Step 2. This is also the advantage of the SMCG methods compared with
other CG methods. We can see from Figure 3 that Algorithm 1 is much faster than the other
four test methods.

The numerical experiment indicates Algorithm 1 is superior to the the other four
test methods.
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Figure 1. Performance profilesof the five algorithms with respect to number of iterations (Ni).
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Figure 2. Performance profiles of the five algorithms with respect to number of function evalua-
tions (NF).
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Figure 3. Performance profiles of the five algorithms with respect to CPU time (T).

5. Conclusions

In this paper, an efficient SMCG method is presented for solving nonlinear monotone
equations with convex constraints. The sufficient descent property of the search direction is
analyzed, and the global convergence and convergence rate of the proposed algorithm are
established under suitable assumptions. The numerical results confirm the effectiveness of
the proposed method.

The SMCG method has illustrated a good numerical performance for solving nonlinear
monotone equations with convex constraints. There is a wide research gap with regard
to studying the SMCG methods for solving nonlinear monotone equations with convex
constraints, including exploiting suitable quadratic or non-quadratic approximate models
to derive new search directions. This is also our future research focus.

Author Contributions: Conceptualization, T.S. and Z.L.; methodology, T.S. and Z.L.; software, T.S.
and Z.L.; validation, T.S. and Z.L.; formal analysis, T.S. and Z.L.; investigation, T.S. and Z.L.; resources,
T.S. and Z.L.; data curation, T.S. and Z.L.; writing—original draft preparation, T.S.; writing—review
and editing, Z.L.; visualization, T.S. and Z.L.; supervision, T.S. and Z.L.; project administration, T.S.
and Z.L.; funding acquisition, Z.L.. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by National Science Foundation of China (No. 12261019),
Guizhou Science Foundation (No. QHKJC-ZK[2022]YB084).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article and corresponding link.

Acknowledgments: We would like to thank the Associate Editor and the anonymous referees for
their valuable comments and suggestions.

Conflicts of Interest: The authors declare no competing interests.



Axioms 2024, 13, 170 15 of 16

References
1. Guo, D.S.; Nie, Z.Y.; Yan, L.C. The application of noise-tolerant ZD design formula to robots’ kinematic control via time-varying

nonlinear equations solving. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48, 2188–2197 . [CrossRef]
2. Shi, Y.; Zhang, Y. New discrete-time models of zeroing neural network solving systems of time-variant linear and nonlinear

inequalities. IEEE Trans. Syst. Man Cybern. Syst. 2017, 50, 565–576. [CrossRef]
3. Dirkse, S.P.; Ferris, M.C. MCPLIB: A collection of nonlinear mixed complementarity problems. Optim. Methods Softw. 1995, 5,

319–345. [CrossRef]
4. Xiao, Y.H.; Wang, Q.Y.; Hu, Q.J. Non-smooth equations based methods for l1-norm problems with applications to compressed

sensing. Nonlinear Anal. 2011, 74, 3570–3577. [CrossRef]
5. Yuan, Y.X. Subspace methods for large scale nonlinear equations and nonlinear least squares. Optim. Eng. 2009, 10, 207–218.

[CrossRef]
6. Ahmad, F.; Tohidi, E.; Carrasco, J.A. A parameterized multi-step Newton method for solving systems of nonlinear equations.

Numer. Algorithms 2016, 71, 631–653. [CrossRef]
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