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Abstract

:

Based on equivalence relation R on X, equivalence class   [ x ]   of a point and equivalence class   [ A ]   of a subset represent the neighborhoods of x and A, respectively. These neighborhoods play the main role in defining separation axioms, metric spaces, proximity relations and uniformity structures on an approximation space   ( X , R )   depending on the lower approximation and the upper approximation of rough sets. The properties and the possible implications of these definitions are studied. The generated approximation topology   τ R   on X is equivalent to the generated topologies associated with metric d, proximity  δ  and uniformity  U  on X. Separated metric spaces, separated proximity spaces and separated uniform spaces are defined and it is proven that both are associating exactly discrete topology   τ R   on X.






Keywords:


approximation space; rough set; separation axioms; metric spaces; proximity relations; uniform structures




MSC:


03E02; 03E20; 54D010; 54D15; 54E35; 54E05; 54E15












1. Introduction


Originally, Pawlak in [1] initiated the notions of lower approximation set   L ( A )   and upper approximation set   U ( A )   of subset A of universal set X depending on the equivalence classes formed by equivalence relation R on X. The pair   ( X , R )   is then called an approximation space. From the set difference,   U ( A ) ∖ L ( A )  , a boundary region area is formed and is called the boundary region set   B ( A )  . Any subset in   ( X , R )   is then a rough set (whenever   B ( A ) ≠ ∅  ) or an exact set (whenever   B ( A ) = ∅  ). The importance of this boundary region set is in its role in many real applications; refs. [2,3] are samples of research work of such applications. Decision Theory and Data Mining are the most intercept branches with the concept of rough sets. Yao in [4,5] extended the research work on rough sets and explained the algebraic properties of rough sets. Some researchers paid their attention to the approximation spaces   ( X , R )   constructed by an arbitrary (not equivalence) relation R on X. As an example, ref. [6] objected to the effects on the notion of rough sets by reflexive relations or transitive relation or both. Generating approximation topology   τ R   associated with   ( X , R )   is explained well in [7,8], whenever   ( X , R )   is constructed by arbitrary relation R on X. Then, we obtain left approximation neighborhoods   R < x >   and right approximation neighborhoods   < x > R   at each point   x ∈ X  . That is, the notion of rough sets has a generalized form (as found in [4,9]) in which the definition of Pawlak is a special case. Kozae, in [10], introduced a generalization of rough sets using the intersection of left and right approximation neighborhoods   R < x >   and   < x > R  , respectively, at point   x ∈ X  . The resulting rough sets (in [10]) have fewer boundary region sets than those defined in [1,4,9], and so it is a good generalized definition. Following that generalized definition in [10], Ibedou et al. [11,12] introduced two types of generalizations of rough sets in the fuzzy case. Also, in this paper, we follow the same strategy. For all basics in general topology, please refer to [13,14,15].



The aim of this paper is to construct a proximity relation and a uniformity structure on an approximation space   ( X , R )  , and also define a metric function and separation axioms based on the rough sets in   ( X , R )  . In Section 2, we present (in the sense of Pawlak) some basics of rough sets and introduce the definitions of separation axioms    T i  ,  i = 0 , 1 , 2 , 3 , 4   in   ( X , R )  . In Section 3, we focus on defining metric d on approximation space   ( X , R )   and study its usual properties. In Section 4, we define proximity relation  δ  on   ( X , R )   and study its properties. In Section 5, we define a uniform structure  U , similar to that defined in [16], on   ( X , R )  . We study the relations in between notion separation axioms    T i  ,  i = 0 , 1 , 2 , 3 , 4   in   ( X , R )  , metric spaces   ( X , d )  , proximity spaces   ( X , δ )   and uniform spaces   ( X , U )   based on the rough sets defined by an equivalence relation R on X. Finally, in Section 6, we explain the deviations in these notions whenever R is not an equivalence relation on X.




2. Preliminaries


Throughout the paper, we let X be a universal set of objects, let   P ( X )   be the power set of X and let   2 X   denote the set of all characteristic functions on X. Then, in the set theory, it is well known that there is a one-to-one correspondence between   P ( X )   and   2 X  . Thus, we use subset A and characteristic function A without distinction.



Relation R on X is mapping   R : X × X → { 0 , 1 }   defined by the following: for any   x , y ∈ X ,  


  R ( x , y ) = 1   i f  x  a n d  y  a r e  r e l a t e d  a n d  R ( x , y ) = 0   i f  x  a n d  y  a r e  n o t  r e l a t e d .  











R is called an equivalence relation on X if it satisfies the following conditions:




	(1)

	
R is reflexive, that is, for all   x ∈ X ,   we have   R ( x , x ) = 1  ,




	(2)

	
R is symmetric, that is,   R ( x , y ) = R ( y , x )   for any   x , y ∈ X  ,




	(3)

	
R is transitive, that is,   R ( x , z ) ≤ R ( x , y ) ∧ R ( y , z )   for any   x , y , z ∈ X  ,









where   R ( x , y ) ∧ R ( y , z ) = m i n { R ( x , y ) , R ( y , z ) } .  



The pair   ( X , R )   is called an approximation space (see [1]).



The equivalence relation R is partitioning X into equivalence classes   [ x ]   for each   x ∈ X  , where an equivalence class   [ x ]   is mapping   [ x ] : X → { 0 , 1 }   defined, for each   y ∈ X  , as follows:


  [ x ] ( y ) = 1  iff  R ( y , x ) = 1  a n d  [ x ] ( y ) = 0  iff  R ( y , x ) = 0 .  











Then, for any   x , y ∈ X  , we have


  x ∈ [ y ]  iff  y ∈ [ x ]  iff  [ x ] = [ y ]   iff  [ x ] ∩ [ y ] ≠ ϕ ,  








and moreover,   [ x ]   and   [ y ]   are disjointed:


  [ x ] ∩ [ y ] = ∅  iff  R ( x , y ) = 0  iff  [ x ] ( z ) ≠ [ y ] ( z )   for  all   z ∈ X .  











Now, for each   A ∈  2 X   , the equivalence class   [ A ]   of A is defined by


   [ A ]  =  ⋁  x ∈ A    [ x ]  .  











Then,   [ A ] = { z ∈ X :   there  exists   x ∈ A   w i t h   R ( x , z ) = 1 }   that is,


  [ A ] ( z ) = 1  iff  R ( x , z ) = 1   f o r  s o m e   x ∈ A .  











For each   x ∈ X   and each   A ∈  2 X   , we have   { x } ⊆ [ x ]   and    A ⊆ [ A ]  , respectively, and these equivalence classes,   [ x ]   and   [ A ]  , are called the neighborhoods of x and A, respectively.



In general, let us define an equivalence class   [ B ]   as follows:


   [ B ]   ( x )  =  ⋁  y ∈ X    B ( y ) ∧ R ( y , x )   ≡    ⋁  y ∈ X    ( B ∩  [ x ]  )   ( y )  .  



(1)







Remark 1.

For   A , B ⊆ X   where A which is not a singleton or B is not a singleton, we have   [ A ] ∩ [ B ] = ∅  , w h i c h i m p l i e s   A ∩ B = ∅   but not the converse. For example, we let   X = { a , b , c , d , e , f }  ,   R = { ( a , a ) , ( b , b ) , ( c , c ) , ( d , d ) , ( e , e ) , ( f , f ) , ( b , d ) , ( d , b ) , ( e , f ) , ( f , e ) }  ,   K = { a , c , d }  ,   H = { b , e }  . Then,   [ K ] = { a , b , c , d }  ,   [ H ] = { b , d , e , f }  . That is,   K ∩ H = ∅   while   [ K ] ∩ [ H ] = { b , d } ≠ ∅  . Thus, for non-singleton sets,   A , B   may be found   [ A ] ∩ [ B ] ≠ ∅   but   [ A ] , [ B ]   are not identical as the case with two singletons.   A ⊆ [ B ]   and   B ⊆ [ A ]   implies   [ A ] = [ B ]  , and in general     [ A ]  c  ⊆  A c  ⊆  [  A c  ]   ,   [ [ A ] ] = [ A ]  . Moreover,   A ⊆ B   implies   [ A ] ⊆ [ B ]  . We recall that


      [ A ] ∩ [ B ] = ∅     i m p l i e s     ( [ A ] ∩ { x } = ∅    for  all   x ∈ B )        e q u i v u i v a l e n t   t o     ( [ B ] ∩ { y } = ∅    for  all   y ∈ A )        i m p l i e s     ( [ x ] ∩ [ y ] = ∅    for  all   x ∈ B , y ∈ A ) .      













Lemma 1.

For any   A , B ∈  2 X   , the following properties are fulfilled:




	 (1) 

	
  [ A ] ⊆ B   implies   A ⊆ B  ,




	 (2) 

	
  [ A ∪ B ] = [ A ] ∪ [ B ]  ,




	 (3) 

	
  [ A ] ⊆ B   implies    [  B c  ]  ⊆  A c   , while   A ⊆ B   implies     [ B ]  c  ⊆  A c   ,




	 (4) 

	
If   [ A ] ⊆ B  , then there is   K ∈  2 X    such that   [ A ] ⊆ K   and   [ K ] ⊆ B  .











Proof. 






	(1)

	
This is easily proven using Remark 1.




	(2)

	
  [ A ] ∪ [ B ] ⊆ [ A ∪ B ]   is clear. Now, we let   x ∈ [ A ∪ B ]  . Then, there is   y ∈ A ∪ B   such that   R ( x , y ) = 1  ; that is, there is   y ∈ A   or   y ∈ B   such that   R ( x , y ) = 1  . Thus,   x ∈ [ A ]   or   x ∈ [ B ]  . So,   x ∈ [ A ] ∪ [ B ]  ; that is,   [ A ∪ B ] ⊆ [ A ] ∪ [ B ]  . Hence,   [ A ∪ B ] = [ A ] ∪ [ B ]  .




	(3)

	
  [ A ] ⊆ B   implies    B c  ⊆   [ A ]  c   ; that is,     [ B ]  c  ⊆  [  B c  ]  ⊆   [ A ]  c  ⊆  A c   , while   A ⊆ B   implies that     [ B ]  c  ⊆   [ A ]  c  ⊆  A c   .




	(4)

	
The proof is straightforward.









□





Based on the meaning of neighborhoods   [ x ] , [ A ]  , the lower and the upper approximations of any subset of X were defined. For subset A of X, we define approximation subsets    A ∗  ,  A ∗  : X →  { 0 , 1 }    using


   A ∗  =  { x ∈ X :  [ x ]  ∩  A c  = ∅ }  ,   A ∗  =  { x ∈ X :  [ x ]  ∩ A ≠ ∅ }  ;   that  is ,  for  each  x ∈ X ,   










      A ∗   ( x )  =     1    if   [ x ]  ∩  A c  = ∅      0    if   [ x ]  ∩  A c  ≠ ∅ ,          



(2)






      A ∗   ( x )  =     0    if  [ x ] ∩ A = ∅      1    if  [ x ] ∩ A ≠ ∅ .          



(3)







Lemma 2.

If   ( X , R )   is an approximation space with R an arbitrary relation on X, then, for any   A , B ∈  2 X  ,  




	 (1) 

	
    X ∗  = X ,   ∅ ∗  = ∅ ,   




	 (2) 

	
   A ⊈  A ∗  ⊈ A ,  A ⊈  A ∗  ⊈ A ,   




	 (3) 

	
     (  A ∗  )  ∗  ⊆  A ∗  ,        (  A ∗  )  ∗  ⊇  A ∗  ,   




	 (4) 

	
     ( A ∩ B )  ∗  ⊆  A ∗  ∩  B ∗  ,    ( A ∪ B )  ∗  ⊇  A ∗  ∪  B ∗  ,   




	 (5) 

	
     ( A ∪ B )  ∗  ⊇  A ∗  ∪  B ∗  ,    ( A ∩ B )  ∗  ⊆  A ∗  ∩  B ∗  ,   




	 (6) 

	
  A ⊆ B   implies that    A ∗  ⊆  B ∗  ,      A ∗  ⊆  B ∗  .  











Proof. 

The proof is direct. □





Whenever R is reflexive, for any   A , B ∈  2 X  ,   we have    A ∗  ⊆ A ,  A ⊆  A ∗   ,    X ∗  = X ,   ∅ ∗  = ∅ ,    ( A ∪ B )  ∗  =  A ∗  ∪  B ∗  ,    ( A ∩ B )  ∗  =  A ∗  ∩  B ∗  .  



If R is also transitive,    A  ∗ ∗   =  A ∗  ,   A  ∗ ∗   =  A ∗   . For any subset A of X, the lower approximation   A R   and the upper approximation   A R   are defined by


   A R  = A ∩  A ∗   ,   A R  = A ∪  A ∗  .  











The boundary region set   A B   is defined by the set difference,    A R  ∖  A R  =  A B   , and moreover, the accuracy value   α ( A )   of rough set A is given by the ratio


  α  ( A )  =    n u m b e r   o f   e l e m e n t s   o f     A R     n u m b e r   o f   e l e m e n t s   o f     A R    .  











Whenever    A R  ⊈  A R   ,   A B   is not empty and set A has a roughness region. Thus, A is called a rough set. As a special case, if    A R  = X ,  A R  = ∅  . Then,    A B  = X  , and A is called a totally rough set. However, if    A R  ⊆  A R   , then    A B  = ∅  , and set A is called an exact set.



From Lemma 2 and the definitions of   A R   and   A R  , we have the following consequences.



Lemma 3.

Let   ( X , R )   be an approximation space with R as an arbitrary relation. Then, for any   A , B ∈  2 X   , the following properties are fulfilled:




	 (1) 

	
    X R  =  X R  = X ,         ∅ R  =  ∅ R  = ∅ ,   




	 (2) 

	
    A R  ⊆ A ⊆  A R  ,   




	 (3) 

	
     (  A R  )  R  ⊆  A R  ,          (  A R  )  R  ⊇  A R  ,   




	 (4) 

	
     ( A ∩ B )  R  ⊆  A R  ∩  B R  ,          ( A ∪ B )  R  ⊇  A R  ∪  B R  ,   




	 (5) 

	
     ( A ∪ B )  R  ⊇  A R  ∪  B R  ,          ( A ∩ B )  R  ⊆  A R  ∩  B R  ,   




	 (6) 

	
  A ⊆ B   implies that    A R  ⊆  B R  ,       A R  ⊆  B R  .  











Proof. 

The proof is straightforward from Lemma 2. □





Note that if R is a reflexive relation, the equality holds in (5), Lemma 3, and moreover, if R is a transitive relation, the equality holds in (3), Lemma 3. Thus, we can deduce that approximation topology   τ R   on approximation space   ( X , R )   is associated, for each   A ⊆ X  , with the interior   A ∘   and the closure   A ¯   defined by    A ∘  =  A R    and    A ¯  =  A R   .



Now, we recall two operators on X and both operators generate topologies on X, respectively (both are dual).



Mapping   c :  2 X  →  2 X    is called a closure operator on X (see [14]) if it satisfies the following conditions: for any   A , B ∈  2 X  ,  



(C.1)   c ( ∅ ) = ∅ ,  



(C.2)   A ⊆ c ( A ) ,  



(C.3)   c ( c ( A ) ) = c ( A ) ,  



(C.4)   c ( A ∪ B ) = c ( A ) ∪ c ( B ) .  



Mapping   i :  2 X  →  2 X    is called an interior operator on X (see [14]) if it satisfies the following conditions: for any   A , B ∈  2 X  ,  



(I.1)   i ( X ) = X ,  



(I.2)   i ( A ) ⊆ A ,  



(I.3)   i ( i ( A ) ) = i ( A ) ,  



(I.4)   i ( A ∩ B ) = i ( A ) ∩ i ( B ) .  



Lemma 4

([14]). Let c be a closure operator on X. Then, topology   τ c   is generated on X such that   c  ( A )  =  A ¯    for each   A ∈  2 X   , where   A ¯   is the closure of A with respect to topology   τ c  . In fact,    τ c  =  { F ∈  2 X  : c  (  F c  )  =  F c  }  .  





Lemma 5

([14]). Let i be an interior operator on X. Then, topology   τ i   is generated on X such that   i  ( A )  =  A ∘    for each   A ∈  2 X   , where   A ∘   is the interior of A with respect to topology   τ i  . In fact,    τ i  =  { U ∈  2 X  : i  ( U )  = U }  .  





We let   ( X , R )   be an approximation space. We define mappings   i , c :  2 X  →  2 X   , respectively, for each   A ∈  2 X  ,   as follows:


  i  ( A )  =  ⋃   [ x ]  ∩  A c  = ϕ    { x }  ≡  A R  ,  



(4)






  c  ( A )  =  ⋃  [ x ] ∩ A ≠ ϕ    { x }  ≡  A R  .  



(5)







Then, from Lemma 3, we can easily check that i is an interior operator and c is a closure operator on X. Thus, by Lemmas 5 and 4, there are topologies   τ i   and   τ c   on X such that   i  ( A )  =  A ∘    and   c  ( A )  =  A ¯    for each   A ∈  2 X   . Furthermore, we have   c  (  A c  )  = i   ( A )  c    and   i  (  A c  )  = c   ( A )  c   . So,    τ i  =  τ c   , and we denote both of the topologies by   τ R  . Hence, we consider approximation space   ( X , R )   as the topological space equipped with the interior operator defined by (4) or the closure operator defined by (5). Moreover, the generated topology on X is given by


   τ R  =  { A ⊆ X :  A =  A ∘  }  ≡  { A ⊆ X :   A c  =   A c  ¯  }  .  











Since    A ∘  = A  iff   [ A ]  = A  ,    [  A c  ]  =  A c   . Also, since    A ¯  = A  iff   [  A c  ]  =  A c   ,   [ A ] = A  . In general, each   A ∈  2 X    with   [ A ] = A   is an open and closed set in   ( X , R )  . That is,    A R  =  A R  = A  , and then A is an exact set. That means no roughness of A.



Example 1.

Let   X = { a , b , c }   and   R = { ( a , a ) , ( b , b ) , ( c , c ) , ( a , b ) , ( b , a ) }  . Then,


   [ a ] = [ b ] = [ { a , b } ] = { a , b } ,  [ c ] = { c }  a n d  [ { a , c } ] = [ { b , c } ] = [ X ] = X .   











(1) If   A = { a , c }   or   A = { b , c }  . Then, obtain


    A R  =  ⋃  [ x ] ∩ { b } = ∅    { x }  =  ⋃  [ x ] ∩ { a } = ∅    { x }  =  { c }  ,   










    A R  =  ⋃  [ x ] ∩ { a , c } ≠ ∅    { x }  =  ⋃  [ x ] ∩ { b , c } ≠ ∅    { x }  = X .   











(2) If   A = { a }   or   A = { b }  . Then, obtain


    A R  =  ⋃  [ x ] ∩ { b , c } = ∅    { x }  =  ⋃  [ x ] ∩ { a , c } = ∅    { x }  = ∅ ,   










    A R  =  ⋃  [ x ] ∩ { a } ≠ ∅    { x }  =  ⋃  [ x ] ∩ { b } ≠ ∅    { x }  =  { a , b }  .   











(3) Since   [ { a , b } ] = { a , b }  ,   [ c ] = { c }   and   [ X ] = X  , the lower approximation and the upper approximation of any of these subsets are equal,    A R  = A =  A R   , and then only subsets   { a , b } , { c } , X   are exact sets and the other four non-empty subsets are rough sets.





Example 2.

Let   X = { a , b , c , d }   and   R = { ( a , a ) , ( b , b ) , ( c , c ) , ( d , d ) , ( a , b ) , ( b , a ) , ( c , d ) , ( d , c ) }  . Then, have


      [ a ] = [ b ] =     [ { a , b } ] = { a , b } , [ c ] = [ d ] = [ { c , d } ] = { c , d } ,       [ { a , c } ] =     [ { b , c } ] = [ { a , d } ] = [ { b , d } ] = [ { a , b , c } ]      =    [ { a , b , d } ] = [ { a , c , d } ] = [ { b , c , d } ] = [ X ] = X .      











(1) If   A ∈ { { a , c } , { b , c } , { a , d } , { b , d } }  ,    A R  = ∅   and    A R  = X  . Thus, these subsets are totally rough sets.



(2) If   A ∈ { { a , b , c } , { a , b , d } }  ,    A R  =  { a , b }    and    A R  = X  .



(3) If   A ∈ { { a , c , d } , { b , c , d } }  ,    A R  =  { c , d }    and    A R  = X  .



(4) If   A ∈ { { a } , { b } }  ,    A R  = ∅   and    A R  =  { a , b }   .



(5) If   A ∈ { { c } , { d } }  ,    A R  = ∅   and    A R  =  { c , d }   . These subsets appearing in he previous items (2)–(5) are rough sets.



(6) If   A ∈ { { a , b } , { c , d } , X }  , determine that the lower approximation and the upper approximation of any of these subsets are equal, that is,    A R  = A =  A R   . Thus, these subsets are exact sets without roughness.





Example 3.

Let   X = { a , b , c , d }   and   R = { ( a , a ) , ( b , b ) , ( c , c ) , ( d , d ) , ( b , c ) , ( c , b ) , ( b , d ) , ( d , b ) ,   ( c , d ) , ( d , c ) }  . Then, have


      [ a ] = { a } ,       [ b ] = [ c ] = [ d ] = [ { b , c } ] = [ { b , d } ] = [ { c , d } ] = [ { b , c , d } ] = { b , c , d } ,       [ { a , b } ] = [ { a , c } ] = [ { a , d } ] = [ { a , b , c } ] = [ { a , b , d } ] = [ { a , c , d } ] = [ X ] = X .      











(1) If   A ∈ { { a , b } , { a , c } , { a , d } , { a , b , c } , { a , b , d } , { a , c , d } }  ,    A R  =  { a }    and    A R  = X .   These subsets are rough sets. Moreover, the boundary set is    A B  =  { b , c , d }   , and the accuracy is   1 4  .



(2) If   A ∈ { { b } , { c } , { d } , { b , c } , { b , d } , { c , d } }  ,    A R  = ∅   and    A R  =  { b , c , d }   . These subsets are rough sets. Moreover, the boundary set is    A B  =  { b , c , d }   , and the accuracy is    0 3  = 0  .



(3) If   A ∈ { { a } , { b , c , d } , X }  ,    A R  = A =  A R   . These non-empty subsets are exact sets. Moreover, the boundary set is    A B  = ∅  , and the accuracy is 1.





Example 4.

Let   ( X , R )   be a finite approximation space such that   [ x ] = { x }   for all   x ∈ X   (only equal elements are related). Then,   [ A ] = A   for each   A ∈  2 X   . Thus, any subset A of X is open and closed, that is,    A R  = A =  A R    for all   A ∈  2 X   , and hence the boundary set is ∅. So, each   A ∈  2 X    is an exact subset of X without roughness.





Definition 1.

An approximation space   ( X , R )   is said to be



(i) a   T 0  -space if for all   x ≠ y ∈ X  , then   t ∉ [ y ]   for all   t ∈ [ x ]   or   s ∉ [ x ]   for all   s ∈ [ y ]  ,



(ii) a   T 1  -space if for all   x ≠ y ∈ X  , then   t ∉ [ y ]   for all   t ∈ [ x ]   a n d   s ∉ [ x ]   for all   s ∈ [ y ]  , that is,   [ x ] ∩ [ y ] = ∅  ,



(iii) a   T 2  -space if for all   x ≠ y ∈ X  , then   [ x ] ∩ [ y ] = ∅  ,



(iv) regular if for all   x ∉ F =  F ¯   , then   t ∉ [ F ]   for all   t ∈ [ x ]   a n d   s ∉ [ x ]   for all   s ∈ [ F ]  , that is,   [ x ] ∩ [ F ] = ∅  ,



(v) a   T 3   space if it is regular and   T 1  ,



(vi) normal if for all   F =  F ¯  , G =  G ¯    with   F ∩ G = ∅  ,   t ∉ [ G ]   for all   t ∈ [ F ]   a n d   s ∉ [ F ]   for all   s ∈ [ G ]  , that is,   [ F ] ∩ [ G ] = ∅  ,



(vii) a   T 4   space if it is normal and   T 1  .





Remark 2.






	 (1) 

	
Suppose   ( X , R )   is a   T 0  -space and let   x ≠ y ∈ X  . Then, either   [ x ] ∩ [ y ] = ∅   or   [ x ] = [ y ]  . Thus, every approximation space   ( X , R )   cannot be a   T 0  -space except   [ x ] = { x }   for all   x ∈ X  .




	 (2) 

	
  ( X , R )   is a   T 1  -space if and only if   [ x ] = { x }   for all   x ∈ X   if and only if     { x }  ¯  =  { x }    for all   x ∈ X   from Equation (5).




	 (3) 

	
It is obvious that   T 0  ,   T 1   and   T 2   separation axioms are equivalent definitions in an approximation space   ( X , R )  .











Proposition 1.

From Definition 1,    T 4   ⇒   T 3   ⇒   T 2   ⇔   T 1   ⇔   T 0   .






3. Metric Distance in Approximation Spaces


Let   d : X × X → { 0 , 1 }   be a mapping satisfying the following conditions:




	(D1)

	
  x = y   implies that   d ( x , y ) = 0  ,




	(D2)

	
  d ( x , y ) = d ( y , x )   for all   x , y ∈ X  ,




	(D3)

	
  d ( x , z ) ≤ d ( x , y ) + d ( y , z )   for all   x , y , z ∈ X  ,




	(D4)

	
  d ( x , y ) = 0   implies that   x = y  .









d is called a metric on X if mapping d satisfies only conditions (D1)–(D3). Then, d is called a pseudo-metric on X if d satisfies only conditions (D1), (D3). Then, d is called a quasi-pseudo-metric on X, and if d satisfies only conditions (D1), (D3), (D4), d is called a quasi-metric on X.



Let   ( X , R )   be an approximation space with an equivalence relation R on X and   d : X × X → { 0 , 1 }   a mapping defined as a relation on X in the following way:


     d  ( x , y )   =       1      if  [ x ] ∩ { y } = ∅       0      if  [ x ] ∩ { y } ≠ ∅ .          



(6)







From (6), it is obvious that   x = y   implies   d ( x , y ) = 0  . Since   [ x ] ∩ { y } = ∅ ≡ [ y ] ∩ { x } = ∅  ,   d ( x , y ) = d ( y , x )  . Also, it is clear that   d ( x , z ) ≤ d ( x , y ) + d ( y , z )  . On the other hand, if   [ x ] = [ y ] = { x , y }  , then, clearly,   d ( x , y ) = 0   but   x ≠ y .   Thus, d defines a pseudo-metric on X. In this case, the pair   ( X , d )   is called a pseudo-metric space induced by   ( X , R )   and we write the topology on X induced by d or associated to d as   τ d  . The pair   ( X ,  τ d  )   is the associated topological space.



It is clear that there is a distance between x and y in X if and only if   [ x ] ∩ { y } = ∅  .



For each   x ∈ X   and each   A ∈  2 X   , the distance between x and A, denoted by   d ( x , A )  , is defined as follows:


  d  ( x , A )  =  ⋀  y ∈ A   d  ( x , y )   








which is equivalent to


     d  ( x , A )   =       1      if  [ x ] ∩ A = ∅       0      if  [ x ] ∩ A ≠ ∅ .          



(7)







For any   A ,  B ∈  2 X   , the distance between A and B, denoted by   d ( A , B )  , is defined as follows:


  d  ( A , B )  =  ⋀  x ∈ A    ⋀  y ∈ B    d  ( x , y )   








which is equivalent to


     d  ( A , B )   =       1      if  [ A ] ∩ B = ∅       0      if  [ A ] ∩ B ≠ ∅ .          



(8)







Then, from (7), we can rewrite Equations (2) and (3), respectively, as follows:


      A ∗   ( x )   =       1      if  d ( x ,  A c  ) = 1       0      if  d ( x ,  A c  ) = 0 ,          



(9)






      A ∗   ( x )   =       0      if  d ( x , A ) = 1       1      if  d ( x , A ) = 0 .          



(10)







Thus, from Equations (4) and (5), obtain


   int  τ d    ( A )  =   A ∘  =   A R  =   A ∗   =   ⋃  d ( x ,  A c  ) = 1    { x }  ,  



(11)






   cl  τ d    ( A )  =   A ¯  =   A R  =   A ∗   =   ⋃  d ( x , A ) = 0    { x }  ,  



(12)




where    int  τ d    ( A )    and    cl  τ d    ( A )    denote the interior and the closure of A with respect to topology   τ d  , respectively. So, it can easily be seen that    τ d  =  τ R  .  



Pseudo-metric d on the approximation space   ( X , R )   is a metric on X, if   x ≠ y ∈ X   implies   d ( x , y ) = 1  , that is,   [ x ] = { x }   for all   x ∈ X  . The associated topological space   ( X ,  τ d  )   proves that it is a normal topological space. Based on the definition of a metric d, and that R is given by   R ( x , x ) = 1   for all   x ∈ X  , otherwise   R ( x , y ) = 0  ,   ( X ,  τ d  )   is a   T 1   space. Thus,   ( X ,  τ d  )   is a   T 4   space, which means satisfying all the   T i   separation axioms;   i = 0 , 1 , 2 , 3  . Recall that   ( X ,  τ d  )   in this case is exactly a discrete topological space, i.e., all subsets are open and closed. Moreover, Equations (7) and (8) could be rewritten as


     d  ( x , A )   =       1      if  x ∉  A       0      if  x ∈ A ,          










     d  ( A , B )   =       1      if  A ∩ B = ∅       0      if  A ∩ B ≠ ∅ .          











Proposition 2.

Let   ( X , d )   be a pseudo-metric space and let   τ d   be the topology associated to d. Then,   ( X ,  τ d  )   is a normal space. Moreover, if d is a metric, then   ( X ,  τ d  )   is a   T 4   space.





Proof. 

We suppose d is a metric on X. From Equation (6), we determine that   x ≠ y   if   d ( x , y ) = 1   if   [ x ] ∩ { y } = [ y ] ∩ { x } = ∅  , and then   y ∉ [ x ]   and   x ∉ [ y ]  . Hence,   ( X ,  τ d  )   is a   T 1   space.



We let   F =  cl  τ d   F ∈  2 X   ,   G =  cl  τ d   G ∈  2 X    with   F ∩ G = ∅  . Then, we have


  F ⊆  G c  =  int  τ d    (  G c  )   a n d  G ⊆  F c  =  int  τ d    (  F c  )  .  











Thus,    [ F ]  ⊆  [  G c  ]  =  G c    and    [ G ]  ⊆  [  F c  ]  =  F c   . We assume that   [ F ] ∩ [ G ] ≠ ∅ ,   say,   t ∈ [ F ] ∩ [ G ]  . Then, there exist   x ∈ F   and   y ∈ G   such that   R ( x , t ) = 1   and   R ( t , y ) = 1  . Thus,   R ( x , y ) = 1  . So,   x ∈  [ G ]  ⊆  F c    and   y ∈  [ F ]  ⊆  G c    and both are contradictions. Hence,   [ F ] ∩ [ G ] = ∅  . Therefore,   ( X ,  τ d  )   is normal. □






4. Proximity Relation in Approximation Spaces


Binary relation  δ  on   2 X   is called a nearness relation or a proximity on X, provided that the negation of  δ , denoted by   δ ¯   (called a farness relation), for any   A , B , K ∈  2 X   , fulfills the following conditions (see [15]):



(P1)   A  δ ¯  B   implies   B  δ ¯  A  ,



(P2)    ( A ∪ B )   δ ¯  K   if and only if   A  δ ¯  K   and   B  δ ¯  K  ,



(P3)   A = ∅   or   B = ∅   implies   A  δ ¯  B  ,



(P4)   A  δ ¯  B   implies   A ∩ B = ∅  ,



(P5) if   A  δ ¯  B  . Then, there is   L ∈  2 X    such that   A  δ ¯  L   and    L c    δ ¯  B  .



The pair   ( X , δ )   is called a proximity space. Note that  δ  is the negation of   δ ¯  , that is,   A δ B  ≡  A  /    δ ¯    B  .



(P1) and (P2) imply the following condition:



(P2′)   K  δ ¯   ( A ∪ B )    if and only if   K  δ ¯  A   and   K  δ ¯  B  .



In the following proposition, we show that there is a proximity on an approximation space   ( X , R )  .



Proposition 3.

Let   ( X , R )   be an approximation space and let δ be a binary relation on   2 X   defined, for any   A , B ∈  2 X   , as follows:


   A  δ ¯  B   if   and   only   if    [ A ]  ∩ B = ∅ .   











Then, δ is a proximity on X. In this case, δ is called a proximity on X induced by R and the pair   ( X , δ )   is called a proximity space of   ( X , R ) .  





Proof. 

(P1) Suppose   A  δ ¯  B   for any   A ,  B ∈  2 X   . Then, by the definition of  δ ,   [ A ] ∩ B = ∅ .   Thus,    [ A ]  ⊆  B c   . So, by Lemma 1 (3),    [ B ]  ⊆  A c   . Hence,   B  δ ¯  A  .



(P2) Suppose    ( A ∪ B )   δ ¯  K   for any   A , B , K ∈  2 X  .   Then, clearly,   [ A ∪ B ] ∩ K = ∅ .   Thus, by Lemma 1 (2),   ( [ A ] ∪ [ B ] ) ∩ K = ∅ ,   that is,   ( [ A ] ∩ K ) ∪ ( [ B ] ∩ K ) = ∅ .   So,   [ A ] ∩ K = ∅   and   [ B ] ∩ K = ∅  . Hence,   A  δ ¯  K   and   B  δ ¯  K  .



Conversely, suppose   A  δ ¯  K   and   B  δ ¯  K  . Assume that   ( A ∪ B ) δ K  , that is,   [ A ∪ B ] ∩ K ≠ ∅  . Then, there is   x ∈ K   and   R ( x , y ) = 1   for some   y ∈ A ∪ B  . Thus,   R ( x , y ) = 1   for some   y ∈ A   or   y ∈ B  . So,   x ∈ [ A ]   or   x ∈ [ B ]  , that is,   [ A ] ∩ K ≠ ∅   or   [ B ] ∩ K ≠ ∅  . Both are contradicting   A  δ ¯  K   and   B  δ ¯  K  . Hence,    ( A ∪ B )   δ ¯  K  .



(P3), (P4) The proofs are straightforward.



(P5) Suppose   A  δ ¯  B   for any   A ,  B ∈  2 X  .   Then, clearly,   [ A ] ∩ B = ∅  , that is,    [ A ]  ⊆  B c   . Thus, there is   H ⊆  B c    such that    [ A ]  ⊆ H ⊆  [ H ]  ⊆  B c   . Thus,   A  δ ¯   H c    and   H  δ ¯  B  , which is equivalent to there is   L ∈  2 X    such that   A  δ ¯  L   and    L c    δ ¯  B  . □





Let  δ  be a proximity on an approximation space   ( X , R )  . Consider two mappings,   i n  t δ  ,  c  l δ  :  2 X  →  2 X    defined, for each   A ∈  2 X  ,   respectively, as follows:


   int δ  A  =   ⋃   { x }   δ ¯   A c     { x }   ≡    ⋃   [ x ]  ∩  A c  = ∅    { x }   ≡    ⋃  d ( x ,  A c  ) = 1    { x }  ≡   A R   ≡   A ∘   



(13)




and


   cl δ  A  =   ⋃   { x }   /    δ ¯    A    { x }   ≡    ⋃  [ x ] ∩ A ≠ ∅    { x }   ≡    ⋃  d ( x , A ) = 0    { x }   ≡   A R   ≡   A ¯  .  



(14)







Then, it can easily be checked that   i n  t δ    is an interior operator and   c  l δ    a closure operator on X. Thus, by Lemmas 4 and 5, there is topology   τ δ   (called the topology associated to) on X. In fact,


   τ δ  =  { K ⊆ X : K =  int δ  K }   ≡   { K ⊆ X :  K c  =  cl δ   (  K c  )  }  .  











The pair   ( X ,  τ δ  )   is the associated topological space to   ( X , δ )  . It is obvious that    τ δ  =  τ R   .



Proximity  δ  on approximation space   ( X , R )   is said to be separated if   x ≠ y ∈ X   implies    { x }   δ ¯   { y }   . It is obvious that  δ  is a separated proximity if and only if   [ x ] = { x }   for all   x ∈ X  , that is,   ( X ,  τ δ  )   is a   T 1  -space if and only if the pseudo-metric d is a metric.



In the following Proposition, it is proven that topological space   ( X ,  τ δ  )   associated to proximity space   ( X , δ )   is a   T 4   space.



Proposition 4.

Let   ( X , δ )   be the proximity space for an approximation space   ( X , R )   and let   τ δ   be the topology associated to δ. Then,   ( X ,  τ δ  )   is a normal space. Moreover, if δ is separated,   ( X ,  τ δ  )   is a   T 4   space.





Proof. 

Clear as given in Proposition 2 and from Equations (13) and (14). □





Proposition 5.

Let   ( X ,  τ R  )   be a topological approximation space. Then, the constructed proximity δ on X fulfills, for any   A , B ∈  2 X  ,   the following property:


   A  δ ¯  B   if   and   only   if    A ¯    δ ¯    B ¯  .   













Proof. 

From conditions (P1), (P2),    A ¯    δ ¯    B ¯    if   A   δ ¯    B ¯    if   A  δ ¯  B  . Also,    A ¯    δ ¯    B ¯    if    A ¯    δ ¯   B   if   A  δ ¯  B  . □





Let   ( X , d )   be the pseudo-metric space induced by an approximation space   ( X , R )  . Then, we can define proximity  δ  on X in the following way: for any   A ,  B ∈  2 X  ,  


  A  δ ¯  B   iff   d  ( A , B )  = 1    o r    A δ B   iff   d  ( A , B )  = 0 .  



(15)







It is easy to see that  δ  satisfies Conditions (P1)–(P5) depending on the properties of the pseudo-metric d. Moreover, if d is a metric on X,  δ  is a separated proximity on X. Thus, the resulting interior operators and closure operators in both of   ( X , d )   and   ( X , δ )   (as shown in Equations (11)–(14)) generate equivalent topologies   τ d   and   τ δ  . So, both of them are equivalent to discrete topology   τ R   generated on X. Hence, all subsets of X have identical lower approximations and upper approximations.



In this case,


  d  ( A , B )  = 1   iff   A  δ ¯  B   iff   A ∩ B = ∅ ,    d  ( A , B )  = 0   iff   A δ B   iff   A ∩ B ≠ ∅ .  












5. Uniform Structure in Approximation Spaces


In this section, we study the relation between the uniform spaces and the   T i   separation axioms given in Section 2, the defined pseudo-metric in Section 3 and the defined proximity in Section 4.



For a non-empty set X, the top relation and the bottom relation on X, denoted by  T  and  B , are relations on X, respectively, defined, for any   x , y ∈ X  , as follows:


  T ( x , y ) = 1  a n d  B ( x , y ) = 0 .  











  2  X × X    denotes the bounded set of all relations on X.



For each   R ∈  2  X × X   ,   the inverse relation of R, denoted by   R  − 1   , is a relation on X defined, for any   x , y ∈ X  , as follows:


   R  − 1    ( x , y )  = R  ( y , x )  .  











Binary operations ∧ and ∨ on   2  X × X    between arbitrary relations are defined, for any    R 1  ,  R 2  ∈  2  X × X     and any   x , y ∈ X ,   by


   (  R 1  ∧  R 2  )   ( x , y )  =  R 1   ( x , y )  ∧  R 2   ( x , y )   a n d   (  R 1  ∨  R 2  )   ( x , y )  =  R 1   ( x , y )  ∨  R 2   ( x , y )  .  











For any    R 1  ,  R 2  ∈  2  X × X   ,   the composition of   R 1   and   R 2  , denoted by    R 1  ∘  R 2   , is a relation on X defined as follows: for any   x , z ∈ X  ,


   (  R 1  ∘  R 2  )   ( x , z )   =   ⋁  y ∈ X    R 1   ( x , y )  ∧  R 2   ( y , z )  .  



(16)







The order relation ≤ on   2  X × X    is defined, for any    R 1  ,  R 2  ∈  2  X × X     and   x , y ∈ X ,   by


   R 1  ≤  R 2   iff   R 1   ( x , y )  ≤  R 2   ( x , y )  .  











Definition 2.

Filter  M  on   X × X   is mapping   M :  2  X × X   →  { 0 , 1 }    satisfying the following conditions:



(i)   M ( T ) = 1  , (  M ( B ) = 0   to be a proper filter),



(ii)    R 1  ≤  R 2    implies   M  (  R 1  )  ≤ M  (  R 2  )    for all    R 1  ,  R 2  ∈  2  X × X    ,



(iii)   M  (  R 1  ∧  R 2  )  ≥ M  (  R 1  )  ∧ M  (  R 2  )    for all    R 1  ,  R 2  ∈  2  X × X    .





The inverse    M   − 1    of  M  is defined by     M   − 1    ( R )  = M  (  R  − 1   )    for all   R ∈  2  X × X    .



The principal filter   [ x , y ]   on   X × X   of a pair   ( x , y )   in   X × X   is defined, for each   R ∈  2  X × X   ,   by


  [ x , y ] ( R ) = R ( x , y ) .  











It is clear that   [ x , x ] ( R ) = R ( x , x )   for all   R ∈  2  X × X    . Then,    R ref   ( X )  ⊆  [ x , x ]  ,   where    R ref   ( X )    denotes the set of all reflexive relations on X.



For any two filters  M  and  K , we say that  M  is finer than  K , denoted by   M ≺ K  , if for each   R ∈  2  X × X   ,  


  M ≺ K   iff   M ( R ) ≤ K ( R ) .  











Definition 3.

Let  M  and  K  be two filters on   X × X   such that   [ x , y ] ≺ M   and   [ y , z ] ≺ K   for any   x , y , z ∈ X .   Then, the composition of  M  and  K , denoted by   M ∘ K  , is a filter on   X × X   defined, for each   R ∈  2  X × X   ,   by


    ( M ∘ K )   ( R )  =  ⋁  (  R 1  ∘  R 2  ) ≤ R    M  (  R 1  )  ∧ K  (  R 2  )  .   



(17)









The notion of uniformity was introduced by Weil in [15]. Here, we construct a uniform structure in an approximation space   ( X , R )  .



Definition 4.

Uniformity  U  on X is a filter on   X × X   satisfying the following conditions:



(U1)   [ x , x ] ≺ U   for all   x ∈ X  ,



(U2)   U =   U   − 1    ,



(U3)   ( U ∘ U ) ≺ U  .



The pair   ( X , U )   is called a uniform space.





From the above definition, we can easily see that    R eq   ( X )  ⊆ U  , where    R eq   ( X )    denotes the set of all equivalence relations on X.



Definition 5.

Let  U  be a filter on   X × X   such that   [ x , x ] ≺ U   for all   x ∈ X   and let   M :  2 X  → 2   be a filter on X. Then, the image of  M  with respect to  U , denoted by   U [ M ]  , is the mapping   U  [ M ]  :  2 X  → 2   defined in [16], for each   R ∈  2  X × X     and each   B ∈  2 X  ,   by


    ( U  [ M ]  )   ( A )  =  ⋁  R  [ B ]  ∩  A c  = ∅    U ( R ) ∧ M ( B )  ,   



(18)




where   R ∈  2  X × X    ,   B ∈  2 X    and set   R  [ B ]  ∈  2 X    is defined so that


    ( R  [ B ]  )   ( x )  =  ⋁  y ∈ X    B ( y ) ∧ R ( y , x )  ≡  [ B ]   ( x )  .   



(19)







From Equation (1), determine that   R [ B ] ≡ [ B ]   for all   B ∈  2 X   .





It is obvious that   U [ M ]   is a filter on X.



The principal filter   [  x ˙  ]   on X at a point   x ∈ X   is defined by    [  x ˙  ]   ( A )  = A  ( x )    for all   A ∈  2 X   . It is clear that    [  x ˙  ]   (  { x }  )  = 1   for all   x ∈ X  .



Let  U  be a uniformity on a set X and let    int U  ,  cl U  :  2 X  →  2 X    be the mappings defined, respectively, as follows: for each   R ∈  2  X × X    , any   A , B ∈  2 X    and each   x ∈ X  :


   (  int U  A )   ( x )  =  ( U  [  x ˙  ]  )   ( A )  ≡   ⋁   [ B ]  ∩  A c  = ∅    U ( R ) ∧ B ( x )  ,  



(20)






   (  cl U  A )   ( x )  =  ⋁  [ B ] ∩ A ≠ ∅    U ( R ) ∧ B ( x )  .  



(21)







Then, it can easily be proven that   int U   and   cl U   are the interior and the closure operators on X, respectively. Thus, there is topology   τ U   on X induced by   int U   or   cl U  .



Since any equivalence relation R on X is an element of a uniformity  U  on X, in an approximation space   ( X , R )  , from Equations (4) and (5), obtain


   int U  A ≡  int δ  A ≡   int  τ d   A ≡  A ∘  ≡  A R   



(22)




and


   cl U  A ≡  cl δ  A ≡   cl  τ d   A ≡  A ¯  ≡  A R  .  



(23)







Uniformity  U  on X is said to be separated, if for all   x ≠ y ∈ X   there is   R ∈  R E   ( X )    such that   U ( R ) = 1   and   R ( x , y ) = 0  , that is,   [ x ] ∩ [ y ] = ∅  . In this case, pair   ( X , U )   is called a separated uniform space.



As in Section 2,    T 2  ≡  T 1  ≡  T 0    as separation axioms. So, separated uniform spaces satisfy all these axioms.



Generated topology   τ R   on approximation space   ( X , R )   is explained during the lower and the upper sets of a rough set. It is equivalent to induced topology   τ δ   generated by constructed proximity  δ  on X, and also is equivalent to the generated topology   τ d   by pseudo-metric d constructed on X. Moreover, all these topologies are equivalent to generated topology   τ U   the constructed uniformity  U  on X. According to the definitions of a metric, a separated proximity and a separated uniformity, obtain a similar result to Proposition 2 and Proposition 4 related to the defined separation axioms in Section 2.



Proposition 6.

Let X be a set,  U  a uniform structure on X and   τ U   the topology induced by  U . Then,   ( X ,  τ U  )   is a normal space, and moreover


    ( X , U )   separated   if   and   only   if     ( X ,  τ U  )   is   a    T 4  - space  .   













Proof. 

The proof is coming from Equations (22) and (23) and from the proofs of Proposition 2 and Proposition 4. □






6. Arbitrary Relation in Approximation Spaces


In this section, we recall the strategy of Kozae in [10]. We let R be an arbitrary relation on X. Then, the right and left neighborhoods (the after and fore sets) of element   x ∈ X   are sets in   2 X   given, respectively, by


  x R = { y ∈ X : R ( x , y ) = 1 } ,   R x = { y ∈ X : R ( y , x ) = 1 } .  











We let   < x > R ∈  2 X    be defined as


  < x > R  =         ⋂  x ∈ p R     p R      if    there  exists   p : x ∈ p R ,       ∅     otherwise      



(24)




and   R < x >  ∈  2 X    be defined as


  R < x >  =         ⋂  x ∈ R p     R p      if    there  exists   p : x ∈ R p ,       ∅      otherwise .       



(25)







  < x > R ,  R < x >   are called minimal right neighborhoods and minimal left neighborhoods of   x ∈ X  ;


  R < x > R  =  < x > R  ∩  R < x >  



(26)




is called the minimal neighborhood of   x ∈ X  .



For any subset A of X, the lower approximation   A R   and the upper approximation   A R   are defined by    A R  = A ∩  A ∗   ,    A R  = A ∪  A ∗  ,   where


   A ∗  =  { x ∈ X :  R < x > R  ∩  A c  = ∅ }  ,    A ∗  =  { x ∈ X :  R < x > R  ∩ A ≠ ∅ }   



(27)







The resulting lower and upper approximation sets    A R  ,  A R    of set A are typically those defined by Kozae in [10]. The interior operator and the closure operator defined, respectively, in Equations (4) and (5) did not satisfy the common properties of interior and closure operators to generate a topology on   ( X , R )  . In the case R is a reflexive relation,    A ∘  =  A R  =  A ∗  ,   A ¯  =  A R  =  A ∗   , but this is still not sufficient to generate a topology on   ( X , R )  . At least, in Equations (4) and (5), R needs to be reflexive and transitive to produce topology   τ R   on   ( X , R )  . In the case R is an equivalence relation, the well-known definition of Pawlak [1] is obtained, and Equations (4) and (5) define topology   τ R   on X.



In the case R is an arbitrary relation on   ( X , R )  , the separation axiom   T 0   could be satisfied and the separation axiom   T 1   is not satisfied. That is, the given equivalence    T 0   iff   T 1   iff   T 2    in Section 2 is not correct.



Remark 3.

Whenever R is arbitrary relation on X, we have to replace   [ x ]   with   R < x > R   in all the notations introduced in Section 2, Section 3, Section 4 and Section 5. If R is not reflexive, it may be   R ( x , x ) = 0  , that is,   R < x > R ∩ { x } = ∅  . Hence, condition (D1) is not satisfied and we can not build pseudo-metric d on   ( X , R )   according to Equation (6). According to Equation (13), we may have    { x }   δ ¯   { x }    which is a contradiction to condition (P4), and then we cannot build proximity δ on   ( X , R )  . Also, condition (U1) is not satisfied, and so construction of uniformity  U  on   ( X , R )   is not possible. If R is not symmetric, Conditions (D2), (P1) and (U2) are not satisfied, and thus it fails to build a metric (pseudo-metric), a proximity or a uniformity in   ( X , R )  , but it could be a quasi-metric (quasi-pseudo-metric), a quasi-proximity or a quasi-uniformity in   ( X , R )  . Also, if R is not transitive, Conditions (D3), (P5) and (U3) are not satisfied, and thus it fails to build any of metric (pseudo-metric), proximity or uniformity in   ( X , R )  .





Examples 1–4 are given for equivalence relations. Now, we offer an example of arbitrary relation R on X.



Example 5.

Let R be a relation on set   X = { a , b , c , d }   as shown below.
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  a R = { 1 , 1 , 0 , 0 }  ,   b R = { 1 , 0 , 1 , 1 }  ,   c R = { 0 , 1 , 0 , 0 }  ,   d R = { 0 , 1 , 0 , 1 }   and   R a = { 1 , 1 , 0 , 0 }  ,   R b = { 1 , 0 , 1 , 1 }  ,   R c = { 0 , 1 , 0 , 0 }  ,   R d = { 0 , 1 , 0 , 1 }  . Then,   < a > R = { 1 , 0 , 0 , 0 }  ,   < b > R = { 0 , 1 , 0 , 0 }  ,   < c > R = { 1 , 0 , 1 , 1 }  ,   < d > R = { 0 , 0 , 0 , 1 }   and   R < a > = { 1 , 0 , 0 , 0 }  ,   R < b > = { 0 , 1 , 0 , 0 }  ,   R < c > = { 1 , 0 , 1 , 1 }  ,   R < d > = { 0 , 0 , 0 , 1 }   and then,   R < a > R = { 1 , 0 , 0 , 0 }  ,   R < b > R = { 0 , 1 , 0 , 0 }  ,   R < c > R = { 1 , 0 , 1 , 1 }  ,   R < d > R = { 0 , 0 , 0 , 1 }  .



(1) For subset   A = { 1 , 1 , 0 , 0 }  , we compute    A ∗  ,  A ∗    as follows:    A ∗  =  A R  =  { 1 , 1 , 0 , 0 }  = A  ,    A ∗  =  A R  =  { 1 , 1 , 1 , 0 }   , and thus    A B  =  { 0 , 0 , 1 , 0 }   , and the accuracy value is   2 3  .



(2) For subset   K = { 0 , 0 , 1 , 0 }  , we compute    K ∗  ,  K ∗    as follows:    K ∗  =  { 0 , 0 , 0 , 0 }  ≡ ∅ ,    K ∗  = K =  { 0 , 0 , 1 , 0 }   , and then    K R  =  { 0 , 0 , 0 , 0 }  ,  K R  = K =  { 0 , 0 , 1 , 0 }   , and thus    K B  =  { 0 , 0 , 1 , 0 }   , and the accuracy value is    0 1  = 0  .



(3) For subset   H = { 1 , 1 , 0 , 1 }   we have    H ∗  =  { 1 , 1 , 0 , 1 }  =  H R  = H  ,    H ∗  =  H R  =  { 1 , 1 , 1 , 1 }  ≡ X  , and thus    H B  =  { 0 , 0 , 1 , 0 }   , and the accuracy value is   3 4  .



From Remark 3, we determine that   R < c > R = { 1 , 0 , 1 , 1 } ≠ { 0 , 0 , 1 , 0 }  , and thus this example cannot satisfy any axiom of the separation axioms as given in Definition 1.



Also, from   R < a > R , R < b > R , R < c > R , R < d > R   computed in this example, we can deduce function ρ (neither a metric nor a pseudo-metric) as follows:
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7. Conclusions


This aim of paper was to construct a proximity relation and a uniformity structure on approximation space   ( X , R )   and also define metric function and separation axioms based on the rough sets in   ( X , R )  . We presented some basics of rough sets and introduced the definitions of separation axioms    T i  ,  i = 0 , 1 , 2 , 3 , 4   in   ( X , R )  . We focused on defining metric d on approximation space   ( X , R )   and studied its usual properties. We defined proximity relation  δ  on   ( X , R )   and studied its properties. Following the definition of uniformity structure  U  introduced by Gahler on   ( X , R )  , we studied the relations in between notion separation axioms    T i  ,  i = 0 , 1 , 2 , 3 , 4   in   ( X , R )  , metric spaces   ( X , d )  , proximity spaces   ( X , δ )   and uniform spaces   ( X , U )   based on the rough sets defined by an equivalence relation R on X. At last, we explained the deviations in these notions whenever R is not an equivalence relation on X. In a future work, we will discuss these results and their applications in the fuzzy approximation spaces, the soft approximation spaces and the soft fuzzy approximation spaces.
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