
Citation: La Guardia, G.G.; Chagas,

J.Q.; Lenzi, E.K.; Pires, L.; Zumelzu,

N.; Bedregal, B. On Semi-Vector

Spaces and Semi-Algebras with

Applications in Fuzzy Automata.

Axioms 2024, 13, 308. https://

doi.org/10.3390/axioms13050308

Academic Editor: Jorge Delgado

Gracia

Received: 24 November 2023

Revised: 4 January 2024

Accepted: 8 January 2024

Published: 8 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

On Semi-Vector Spaces and Semi-Algebras with Applications in
Fuzzy Automata
Giuliano G. La Guardia 1,† , Jocemar Q. Chagas 1,† , Ervin K. Lenzi 2 , Leonardo Pires 1 , Nicolás Zumelzu 3,*
and Benjamín Bedregal 4

1 Department of Mathematics and Statistics, State University of Ponta Grossa, (UEPG),
Avenida General Carlos Cavalcanti N◦ 4748, Ponta Grossa 84030-900, Paraná, Brazil;
gguardia@uepg.br (G.G.L.G.); jocemarchagas@uepg.br (J.Q.C.); lpires@uepg.br (L.P.)

2 Department of Physics, State University of Ponta Grossa, Avenida General Carlos Cavalcanti N◦ 4748,
Ponta Grossa 84030-900, Paraná, Brazil; eklenzi@uepg.br

3 Department of Mathematics and Physics, University of Magallanes (UMAG), Avenida Bulnes N◦ 01855,
Punta Arenas 6200000, Chile

4 Department of Informatics and Applied Mathematics, Federal University of Rio Grande do Norte (UFRN),
Campus Universitário Lagoa Nova, Natal 59078-900, Río Grande do Norte, Brazil; bedregal@dimap.ufrn.br

* Correspondence: nicolas.zumelzu@umag.cl
† These authors contributed equally to this work.

Abstract: In this paper, we expand the theory of semi-vector spaces and semi-algebras, both over the
semi-field of nonnegative real numbers R+

0 . More precisely, we prove several new results concerning
these theories. We introduce to the literature the concept of eigenvalues and eigenvectors of a
semi-linear operator, describing how to compute them. The topological properties of semi-vector
spaces, such as completeness and separability, are also investigated here. New families of semi-
vector spaces derived from the semi-metric, semi-norm and semi-inner product, among others, are
exhibited. Furthermore, we show several new results concerning semi-algebras. After this theoretical
approach, we apply such a theory in fuzzy automata. More precisely, we describe the semi-algebra
of A-fuzzy regular languages and we apply the theory of fuzzy automata for counting patterns in
DNA sequences.
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MSC: 08A05, 08A72.

1. Introduction

The concept of semi-vector space was introduced by Prakash and Sertel in [1]. Roughly
speaking, semi-vector spaces are “vector spaces” where the scalars are in a semi-field.
Although the concept of semi-vector space was investigated over time, there exist few
works available in the literature dealing with such spaces [1–7]. This fact occurs maybe
due to the limitations that such a concept brings, i.e., the non-existence of a (additive)
symmetric for some (for all) semi-vectors. A textbook on this topic of research is the book
by Kandasamy [8].

Although the seminal paper on semi-vector spaces was the paper by Prakash and
Sertel [1], the idea of such a concept is implicit in [7], where Radstrom showed that a
semi-vector space over the semi-field of nonnegative real numbers can be extended to a real
vector space (see [7], Theorem 1-B.). In [1], Prakash and Sertel investigated the structure of
topological semi-vector spaces. The authors were concerned with the study of the existence
of fixed points in compact convex sets and also with generating min–max theorems in
topological semi-vector spaces. In [6], Prakash and Sertel investigated the properties of the
topological semi-vector space consisting of nonempty compact subsets of a real Hausdorff
topological vector space. In [5], Pap investigated and formulated the concept of integrals
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of functions having, as counter-domains, complete semi-vector spaces. W. Gahler and
S. Gahler [2] showed that a (ordered) semi-vector space can be extended to a (ordered)
vector space and a (ordered) semi-algebra can be extended to a (ordered) algebra. Moreover,
they provided an extension of fuzzy numbers. Janyska et al. [3] developed such a theory
(of semi-vector spaces) by proving useful results and defining the semi-tensor product
of (semi-free) semi-vector spaces. They were also interested in proposing an algebraic
model of physical scales. Canarutto [9] explored the concept of semi-vector spaces to
express aspects and to exploit nonstandard mathematical notions of the basics of quantum
particle physics on a curved Lorentzian background. Moreover, he dealt with the case of
electroweak interactions. Additionally, in [10], Canarutto provided a suitable formulation
of the fundamental mathematical concepts with respect to quantum field theory. Such a
paper presents a natural application of the concept of semi-vector spaces and semi-algebras.
Recently, Bedregal et al. [4] investigated (ordered) semi-vector spaces over a weak semi-
field K (i.e., both (K,+) and (K, •) are monoids) in the context of fuzzy sets and applying
the results in multi-criteria group decision-making.

In this paper, we show new results on the theory of semi-vector spaces and semi-
algebras. The semi-field of scalars considered here is the semi-field of nonnegative real
numbers. We prove several results in the context of semi-vector spaces and semi-linear
transformations. We introduce the concept of semi-eigenvalues and semi-eigenvectors of
an operator and of a matrix, showing how to compute it in specific cases. We investigate
topological properties such as completeness, compactness and separability of semi-vector
spaces. Additionally, we present interesting new families of semi-vector spaces derived
from semi-metric, semi-norm, semi-inner product and metric-preserving functions, among
others. Furthermore, we show several new results concerning semi-algebras. To sum-
marize, we provide new results on semi-vector spaces and semi-algebras, although such
theories are very difficult to investigate due to the fact that vectors do not even have
(additive) symmetry.

The main motivation of this research is to present an expansion of both theories:
semi-vector spaces and semi-algebras. Since a semi-vector space (semi-algebra) is a natural
extension of a vector space (algebra), this paper provides new useful tools that can be
utilized in several areas of research. In particular, we apply some new results in order to
count patterns in DNA sequences (see, Section 4.3). Moreover, due to the fact that the fuzzy
theory is correlated with semi-vector spaces and semi-algebras, the new results presented
here can be applied directly in the study of novel results on such a theory (fuzzy theory).

In fuzzy sets theory, introduced by Zadeh in [11], the “sets” can have uncertainty
frontiers. To deal with this uncertainty one utilizes values in the interval [0, 1] as member-
ship degrees. From then, many extensions of this theory have been proposed; see [12], for
instance. On the other hand, in [13], the author proposed the notion of fuzzy languages
and fuzzy automata which can be useful to process natural languages instead of formal
languages [14] as is the case of automata theory [15]. Many extensions of fuzzy automata
have been proposed, ([16–19]). In this paper, we also introduce a new extension of fuzzy
automata, where the membership degree takes values in a semi-algebra.

The paper is organized as follows. In Section 2, we recall some concepts on semi-vector
spaces which will be utilized in this work. In Section 3, we present and prove several results
concerning semi-vector spaces and semi-linear transformations. We introduce naturally
the concepts of the eigenvalue and eigenvector of a semi-linear operator. Additionally, we
exhibit and show interesting examples of semi-vector spaces derived from semi-metric,
semi-norms and metric-preserving functions, among others. The results concerning semi-
algebras are also presented. In Section 4, we show relationships between Fuzzy Set Theory
and semi-algebras. More precisely, in Section 4.1, we show some relationships between
semi-algebras and fuzzy automata; in Section 4.2, we present the semi-algebras of A-fuzzy
regular languages; and, in Section 4.3, we apply the theory of fuzzy automata for counting
patterns in DNA sequences. Finally, this paper’s conclusion is presented in Section 5.



Axioms 2024, 13, 308 3 of 28

2. Preliminaries

The purpose of this section is to recall important facts about semi-vector spaces that
are necessary for the development of this work. In order to define such a concept, it is
necessary to define the concepts of semi-ring and semi-field.

Definition 1. A semi-ring (S,+, •) is a set S endowed with two binary operations, + : S × S −→
S (addition), • : S × S −→ S (multiplication) such that: (1) (S,+) is a commutative monoid;
(2) (S, •) is a semigroup; (3) the multiplication • is distributive with respect to +: ∀ x, y, z ∈ S,
(x + y) • z = x • z + y • z and x • (y + z) = x • y + x • z.

We write S instead of writing (S,+, •) if there is no possibility of confusion. If the
multiplication • is commutative, then S is a commutative semi-ring. If there exists 1 ∈ S,
such that ∀ x ∈ S, one has 1 • x = x • 1 = x, then S is a semi-ring with identity.

Definition 2 ([8] Definition 3.1.1). A semi-field is an ordered triple (K,+, •) which is a commu-
tative semi-ring with a unit satisfying the following conditions: (1) ∀ x, y ∈ K, if x + y = 0, then
x = y = 0; (2) if x, y ∈ K and x • y = 0, then x = 0 or y = 0.

Before proceeding further, it is interesting to observe that, in [2], the authors considered
the additive cancellation law in the definition of a semi-vector space. In [3], the authors did
not assume the existence of the zero (null) vector.

In this paper, we consider the definition of a semi-vector space in the context of that
shown in Section 3.1 of [2].

Definition 3. A semi-vector space over a semi-field K is an ordered triple (V, +, ·), where V is a
non-empty set endowed with the operations + : V × V −→ V (vector addition) and · : K × V −→
V (scalar multiplication) such that:

(1) (V,+) is an abelian monoid equipped with the additive cancellation law: ∀ u, v, w ∈ V, if
u + v = u + w, then v = w;

(2) ∀ α ∈ K and ∀ u, v ∈ V, α(u + v) = αu + αv;
(3) ∀ α, β ∈ K and ∀ v ∈ V, (α + β)v = αv + βv;
(4) ∀ α, β ∈ K and ∀ v ∈ V, (αβ)v = α(βv);
(5) ∀ v ∈ V and 1 ∈ K, 1v = v.

Note that, from Item (1) of Definition 3, all semi-vector spaces considered in this paper
are regular, that is, the additive cancellation law is satisfied. The zero (or null) vector of V,
which is unique, will be denoted by 0V . Let v ∈ V, v ̸= 0V . If there exists u ∈ V, such that
v + u = 0V , then v is said to be symmetrizable. A semi-vector space V is said to be simple if
the unique symmetrizable element is the zero vector 0V . In other words, V is simple if it
has no nonzero symmetrizable elements.

Definition 4 ([3] Definition 1.4). Let V be a simple semi-vector space over R+
0 . A subset B ⊂ V

is called a semi-basis of V if every v ∈ V, v ̸= 0V , can be written in a unique way as v = ∑
i∈Iv

v(i)bi,

where v(i) ∈ R+, bi ∈ B and Iv is a finite family of indices uniquely determined by v. The finite
subset Bv ⊂ B defined by Bv := {bi}i∈Iv is uniquely determined by v. If a semi-vector space V
admits a semi-basis, then it is said to be semi-free.

The concept of semi-dimension can be defined in an analogous way to semi-free
semi-vector spaces due to the next results.

Corollary 1 ([3] Corollary 1.7). Let V be a semi-free semi-vector space. Then, all semi-bases of V
have the same cardinality.
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Therefore, the semi-dimension of a semi-free semi-vector space is the cardinality of
a semi-basis (consequently, of all semi-bases) of V. We next present some examples of
semi-vector spaces.

Example 1. All real vector spaces are semi-vector spaces, but they are not simple.

Example 2. The set [R+
0 ]

n
= R+

0 × . . . ×R+
0︸ ︷︷ ︸

n times

endowed with the usual sum of coordinates and

scalar multiplication is a semi-vector space over R+
0 .

Example 3. The set Mn×m(R+
0 ) of matrices n × m whose entries are nonnegative real numbers

equipped with the sum of matrices and multiplication of a matrix by a scalar (in R+
0 , of course) is a

semi-vector space over R+
0 .

Example 4. The set Pn[x] of polynomials with coefficients from R+
0 and degrees less than or equal

to n, equipped with the usual sum of polynomials and the scalar multiplication of a scalar by a
polynomial, is a semi-vector space.

Definition 5. Let (V,+, ·) be a semi-vector space over R+
0 . We say that a non-empty subset W

of V is a semi-subspace of V if W is closed under both the addition and scalar multiplication of V,
that is,

(1) ∀ w1, w2 ∈ W =⇒ w1 + w2 ∈ W;
(2) ∀ λ ∈ R+

0 and ∀ w ∈ W =⇒ λw ∈ W.

The uniqueness of the zero vector implies that, for each λ ∈ R+
0 , one has λ0V = 0V .

Moreover, if v ∈ V, it follows that 0v = 0v + 0v; applying the regularity, one obtains
0v = 0V . Therefore, from Item (2), every semi-subspace contains the zero vector.

Example 5. Let Q+
0 denote the set of nonnegative rational numbers. The semi-vector space Q+

0
considered as an Q+

0 space is a semi-subspace of R+
0 considered as an Q+

0 space.

Example 6. The set of diagonal matrices of order n with entries in R+
0 is a semi-subspace of

Mn(R+
0 ), where the latter is the semi-vector space of square matrices with entries in R+

0 (according
to Example 3).

Definition 6 ([3] Definition 1.22). Let V and W be two semi-vector spaces over R+
0 and T : V −→

W be a map. We say that T is a semi-linear transformation if: (1) ∀ v1, v2 ∈ V, T(v1 + v2) =
T(v1) + T(v2); (2) ∀λ ∈ R+

0 and ∀ v ∈ V, T(λv) = λT(v).

If U and V are semi-vector spaces, then the set Hom(U, V) = {T : U −→ V; T is semi-
linear} is also a semi-vector space.

3. The New Results

In this section, we present the contributions of this work. More precisely, we show
new properties on semi-vector spaces and we introduce the concepts of the eigenvalue and
eigenvector of a semi-linear operator. In Section 3.1, we investigate properties of complete
semi-vector spaces. In Section 3.2, we provide examples of interesting semi-vector spaces,
and, in Section 3.3, we prove several results with respect to semi-algebras.

We start with important remarks.

Remark 1.

(1) Throughout this section, we always consider that the semi-field K is the set of nonnegative real
numbers, i.e., K = R+

0 = R+ ∪ {0}.
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(2) In the whole section (except Subsection 3.2), we assume that the semi-vector spaces are simple,
i.e., the unique symmetrizable element is the zero vector 0V .

(3) It is well-known that a semi-vector space (V,+, ·) can be always extended to a vector space
according to the equivalence relation on V × V defined by : (u1, v1) ∼ (u2, v2) if and only
if u1 + v2 = v1 + u2 (see [7]; see also [2] (Section 3.4)). However, our results were obtained
without utilizing such a natural embedding. In other words, if we want to compute, for
instance, the eigenvalues of a matrix defined over R+

0 , we cannot solve the problem in the
associated vector spaces and then discard the negative ones. Put differently, all computations
performed here are restricted to nonnegative real numbers and also to the fact that a none
vector (with the exception of 0V) is (additive and) symmetrical. However, we will show that,
even in this case, several results can be obtained.

Proposition 1. Let V be a semi-vector space over R+
0 . Then, the following hold:

(1) Let v ∈ V, v ̸= 0V , and λ ∈ R+
0 ; if λv = 0V , then λ = 0.

(2) If α, β ∈ R+
0 , v ∈ V and v ̸= 0V , then the equality αv = βv implies that α = β.

Proof. (1) If λ ̸= 0, then there exists its multiplicative inverse λ−1, hence 1v = λ−10V = 0V ,
i.e., v = 0V , a contradiction.
(2) If α ̸= β, assume w.l.o.g. that α > β, i.e., there exists a positive real number c such
that α = β + c. Thus, αv = βv implies βv + cv = βv. From the cancellation law, we have
cv = 0V , and from Item (1) it follows that c = 0, i.e., a contradiction.

We next introduce in the literature the concepts of the eigenvalue and eigenvector of a
semi-linear operator.

Definition 7. Let V be a semi-vector space and T : V −→ V be a semi-linear operator. If there
exists a non-zero vector v ∈ V and a nonnegative real number λ, such that T(v) = λv, then λ is
an eigenvalue of T and v is an eigenvector of T associated with λ.

As is natural, the zero vector joined to the set of the eigenvectors associated with a
given eigenvalue has a semi-subspace structure.

Proposition 2. Let V be a semi-vector space over R+
0 and T : V −→ V be a semi-linear operator.

Then, the set Vλ = {v ∈ V; T(v) = λv} is a semi-subspace of V.

Proof. From the hypotheses, Vλ is non-empty. Let u, v ∈ Vλ, i.e., T(u) = λu and T(v) = λv.
Hence, T(u + v) = T(u) + T(v) = λ(u + v), i.e., u + v ∈ Vλ. Further, if α ∈ R+

0 and u ∈ V,
it follows that T(αu) = αT(u) = λ(αu), that is, αu ∈ Vλ. Therefore, Vλ is a semi-subspace
of V.

The next natural step would be to introduce the characteristic polynomial of a matrix,
according to the standard linear algebra. However, how does one compute det(A − λI)
if −λ can be a negative real number? Based on this fact, we must be careful to compute
the eigenvectors of a matrix. In fact, the main tools to be utilized in computing the eigen-
values/eigenvectors of a square matrix whose entries are nonnegative real numbers is the
additive cancellation law in R+

0 and also the fact that positive real numbers have multiplica-
tive inverses. However, in many cases, such tools are insufficient to solve the problem. Let
us see some cases where it is possible to compute the eigenvalues/eigenvectors of a matrix.

Example 7. Let us see how to obtain (if there exists) an eigenvalue/eigenvector of a diagonal matrix
A ∈ M2(R+

0 ),

A =

[
a 0
0 b

]
,
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where a ̸= b are both not zero. We obtain λ = a with associated eigenvector x(1, 0) and λ = b with
associated eigenvector y(0, 1).

If a ̸= 0 and b = 0, then λ = a with eigenvectors x(1, 0).
If a = 0 and b ̸= 0, then λ = b with eigenvectors y(0, 1).

Example 8. Let A ∈ M2(R+
0 ) be a matrix of the form

A =

[
a b
0 a

]
,

where a ̸= b are positive real numbers.
From direct computations, it follows that λ = a with eigenvectors (x, 0).

If V and W are semi-free semi-vector spaces, then it is possible to define the matrix of
a semi-linear transformation T : V −→ W as in the usual case (vector spaces).

Definition 8. Let T : V −→ W be a semi-liner transformation between semi-free semi-vector
spaces with semi-basis B1 and B2, respectively. Then, the matrix [T]B2

B1
is the matrix of the transfor-

mation T.

Theorem 1. Let V be a semi-free semi-vector space over R+
0 and let T : V −→ V be a semi-linear

operator. Then, T admits a semi-basis B = {v1, v2, . . . , vn} such that [T]BB is diagonal if and only if
B consists of eigenvectors of T.

Proof. The proof is analogous to the case of vector spaces. Let B = {v1, v2, . . . , vn} be a
semi-basis of V whose elements are eigenvectors of T. We then have the following:

T(v1) = λ1v1 + 0v2 + . . . + 0vn,

T(v2) = 0v1 + λ2v2 + . . . + 0vn,
...

T(vn) = 0v1 + 0v2 + . . . + λnvn,

which implies that [T]BB is of the form

[T]BB =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

...
... . . .

...
0 0 0 . . . λn

.

On the other hand, let B∗ = {w1, w2, . . . , wn} be a semi-basis of V, such that [T]B
∗

B∗ is
diagonal:

[T]B
∗

B∗ =


α1 0 0 . . . 0
0 α2 0 . . . 0
...

...
... . . .

...
0 0 0 . . . αn

.
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Thus,

T(w1) = α1w1 + 0w2 + . . . + 0wn = α1w1,

T(w2) = 0w1 + α2w2 + . . . + 0wn = α2w2,
...

T(wn) = 0w1 + 0w2 + . . . + αnwn = α2wn.

This means that wi are eigenvectors of T with corresponding eigenvalues αi, for all i =
1, 2, . . . , n.

Definition 9. Let T : V −→ W be a semi-linear transformation. The set Ker(T) = {v ∈
V; T(v) = 0W} is called kernel of T.

Proposition 3. Let T : V −→ W be a semi-linear transformation. Then, the following hold:

(1) Ker(T) is a semi-subspace of V;
(2) If T is injective then Ker(T) = {0V};
(3) If V has semi-dimension 1, then Ker(T) = {0V} implies that T is injective.

Proof. (1) We have T(0V) = T(0V)+ T(0V). Since W is regular, it follows that T(0V) = 0W ,
which implies Ker(T) ̸= ∅. If u, v ∈ Ker(T) and λ ∈ R+

0 , then u + v ∈ Ker(T) and
λv ∈ Ker(T), which implies that Ker(T) is a semi-subspace of V.
(2) Since T(0V) = 0W , it follows that {0V} ⊆ Ker(T). On the other hand, let u ∈ Ker(T),
that is, T(u) = 0W . Since T is injective, one has u = 0V . Hence, Ker(T) = {0V}.
(3) Let B = {v0} be a semi-basis of V. Assume that T(u) = T(v), where u, v ∈ V are such
that u = αv0 and v = βv0. Hence, αT(v0) = βT(v0). Since Ker(T) = {0V} and v0 ̸= 0, it
follows that T(v0) ̸= 0. From Item (2) of Proposition 1, one has α = β, i.e., u = v.

Definition 10. Let T : V −→ W be a semi-linear transformation. The image of T is the set of all
vectors w ∈ W such that there exists v ∈ V with T(v) = w, that is, Im(T) = {w ∈ W; ∃ v ∈
V with T(v) = w}.

Proposition 4. Let T : V −→ W be a semi-linear transformation. Then, the image of T is a
semi-subspace of W.

Proof. The set Im(T) is non-empty because T(0V) = 0W . It is easy to see that, if w1, w2 ∈
Im(T) and λ ∈ R+

0 , then w1 + w2 ∈ Im(T) and λw1 ∈ Im(T).

Recall that two semi-vector spaces V and W over a semi-field K are isomorphic; there
exists a bijective semi-linear transformation from V to W.

Theorem 2. Let V be a n-dimensional semi-free semi-vector space over R+
0 . Then, V is isomorphic

to (R+
0 )

n.

Proof. Let B = {v1, v2, . . . , vn} be a semi-basis of V and consider the canonical semi-
basis ei = (0, 0, . . . , 0, 1︸︷︷︸

i

, 0, . . . , 0) of (R+
0 )

n, where i = 1, 2, . . . , n. Define the map

T : V −→ (R+
0 )

n as follows: for each v =
n

∑
i=1

aivi ∈ V, put T(v) =
n

∑
i=1

aiei. It is easy to see

that T is bijective semi-linear transformation, i.e., V is isomorphic to (R+
0 )

n, as required.

3.1. Complete Semi-Vector Spaces

Here, we define and study complete semi-vector spaces, i.e., semi-vector spaces whose
norm (inner product) induces a metric under which the space is complete.
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Definition 11. Let V be a semi-vector space over R+
0 . If there exists a norm ∥ ∥ : V −→ R+

0 on V,
we say that V is a normed semi-vector space (or normed semi-space, for short). If the norm defines a
metric on V under which V is complete then V is said to be Banach semi-vector space.

Definition 12. Let V be a semi-vector space over R+
0 . If there exists an inner product ⟨ , ⟩ :

V × V −→ R+
0 on V, then V is an inner product semi-vector space (or inner product semi-space).

If the inner product defines a metric on V under which V is complete, then V is said to be Hilbert
semi-vector space.

The well-known norms on Rn are also norms on [R+
0 ]

n, as we show in the next
propositions.

Proposition 5. Let V = [R+
0 ]

n be the Euclidean semi-vector space (over R+
0 ) of semi-dimension

n . Define the function ∥ ∥ : V −→ R+
0 as follows: if x = (x1, x2, . . . , xn) ∈ V, put ∥x∥ =√

x2
1 + x2

2 + . . . + x2
n. Then, ∥ ∥ is a norm on V, called the Euclidean norm on V.

Proof. It is clear that ∥x∥ = 0 if and only if x = (0, . . . , 0) and for all α ∈ R+
0 and x ∈ V,

∥αx∥ = |α|∥x∥. To show the triangle inequality, it is sufficient to apply the Cauchy–Schwarz
inequality in R+

0 : if x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are semi-vectors in V, then
n

∑
i=1

xiyi ≤
(

n

∑
i=1

x2
i

)1/2

·
(

n

∑
i=1

y2
i

)1/2

.

In the next results, we show that the Euclidean norm on [R+
0 ]

n generates the Euclidean
metric on it.

Proposition 6. Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) be semi-vectors in V = [R+
0 ]

n.
Define the function d : V × V −→ R+

0 as follows: for every fixed i, if xi = yi put ci = 0; if xi ̸= yi,
put φi = ψi + ci, where φi = max{xi, yi} and ψi = min{xi, yi} (in this case, ci > 0); then

consider d(x, y) =
√

c2
1 + . . . + c2

n. The function d is a metric on V.

Remark 2. Note that, in Proposition 6, we could have defined ci simply by the nonnegative real
number satisfying max{xi, yi} = min{xi, yi}+ ci. However, we prefer to separate the cases when
ci = 0 and ci > 0 in order to improve the readability of this paper.

Proof. It is easy to see that d(x, y) = 0 if and only if x = y and d(x, y) = d(y, x).
We will next prove the triangle inequality. To do this, let x = (x1, x2, . . . , xn), y =

(y1, y2, . . . , yn) and z = (z1, z2, . . . , zn) be semi-vectors in V = [R+
0 ]

n. We look first at a
fixed i. If xi = yi = zi or if two of them are equal, then d(xi, zi) ≤ d(xi, yi) + d(yi, zi). Let
us then assume that xi, yi and zi are pairwise distinct. We have to analyze the six cases:
(1) xi < yi < zi; (2) xi < zi < yi; (3) yi < xi < zi; (4) yi < zi < xi; (5) zi < xi < yi; (6) zi <
yi < xi. In order to verify the triangle inequality, we will see what occurs in the worst cases.
More precisely, we assume that for all i = 1, 2, . . . , n we have xi < yi < zi or, equivalently,
zi < yi < xi. Since both cases are analogous, we only verify the (first) case xi < yi < zi, for
all i. In such cases, there exist positive real numbers ai, bi, for all i = 1, 2, . . . , n, such that
yi = xi + ai and zi = yi + bi, which implies zi = xi + ai + bi. We need to show that d(x, z) ≤

d(x, y) + d(y, z), i.e.,

(
n

∑
i=1

(ai + bi)
2

)1/2

≤
(

n

∑
i=1

a2
i

)1/2

+

(
n

∑
i=1

b2
i

)1/2

. The last inequality

is equivalent to the inequality
n

∑
i=1

(ai + bi)
2 ≤

n

∑
i=1

a2
i +

n

∑
i=1

b2
i + 2

(
n

∑
i=1

a2
i

)1/2

·
(

n

∑
i=1

b2
i

)1/2

.

Developing the first member of the previous inequality and deleting the corresponding
terms with the first two terms in the second member following the multiplication by 1/2,
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we have
n

∑
i=1

aibi ≤
(

n

∑
i=1

a2
i

)1/2

·
(

n

∑
i=1

b2
i

)1/2

, which is the Cauchy–Schwarz inequality in

R+
0 . Therefore, d satisfies the triangle inequality and, hence, is a metric on V.

Remark 3. Note that Proposition 6 means that the Euclidean norm on [R+
0 ]

n (see Proposition 5)
generates the Euclidean metric on [R+

0 ]
n. This result is analogous to the fact that every norm

defined on vector spaces generates a metric on it. Further, a semi-vector space V is Banach (see
Definition 11) if the norm generates a metric under which every Cauchy sequence in V converges to
an element of V.

Proposition 7. Let V = [R+
0 ]

n and define the function ⟨ , ⟩ : V × V −→ R+
0 as follows: if

u = (x1, x2, . . . , xn) and v = (y1, y2, . . . , yn) are semi-vectors in V, put ⟨u, v⟩ =
n

∑
i=1

xiyi. Then,

⟨ , ⟩ is an inner product on V, called the dot product.

Proof. The proof is immediate.

Proposition 8. The dot product on V = [R+
0 ]

n generates the Euclidean norm on V.

Proof. If x = (x1, x2, . . . , xn) ∈ V, define the norm of x by ∥x∥ =
√
⟨x, x⟩. Note that the

norm is exactly the Euclidean norm given in Proposition 5.

Remark 4. We observe that, if an inner product on a semi-vector space V generates a norm ∥ ∥
and such a norm generates a metric d on V, then V is a Hilbert space (according to Definition 12) if
every Cauchy sequence in V converges with respect to d to an element of V.

Proposition 9. Let V = [R+
0 ]

n and define the function ∥ ∥1 : V −→ R+
0 as follows: if x =

(x1, x2, . . . , xn) ∈ V, ∥x∥1 =
n

∑
i=1

xi. Then, ∥x∥1 is a norm on V.

Proof. The proof is direct.

Proposition 10. Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) be semi-vectors in V = [R+
0 ]

n.
Define the function d1 : V × V −→ R+

0 in the following way. For every fixed i, if xi = yi, put
ci = 0; if xi ̸= yi, put φi = ψi + ci, where φi = max{xi, yi} and ψi = min{xi, yi}. Let us

consider that d1(x, y) =
n

∑
i=1

ci. Then, the function d1 is a metric on V derived from the norm ∥ ∥1

shown in Proposition 9.

Proof. We only prove the triangle inequality. To avoid the stress of notation, we make the
same considerations as in the proof of Proposition 6. We then fix i and only investigate
the worst case xi < yi < zi. In this case, there exist positive real numbers ai, bi for all
i = 1, 2, . . . , n, such that yi = xi + ai and zi = yi + bi, which implies zi = xi + ai + bi. Then,

for all i, d1(xi, zi) ≤ d1(xi, yi) + d1(yi, zi); hence, d1(x, z) =
n

∑
i=1

d1(xi, zi) =
n

∑
i=1

(ai + bi) =

n

∑
i=1

ai +
n

∑
i=1

bi =
n

∑
i=1

d1(xi, yi) +
n

∑
i=1

d1(yi, zi) = d1(x, y) + d1(y, z). Therefore, d1 is a metric

on V.

Proposition 11. Let V = [R+
0 ]

n be the Euclidean semi-vector space of semi-dimension n. Define
the function ∥ ∥2 : V −→ R+

0 as follows: if x = (x1, x2, . . . , xn) ∈ V, take ∥x∥2 = max
i

{xi}.

Then, ∥x∥2 is a norm on V.
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Proposition 12. Keeping the notation of Proposition 6, define the function d2 : V × V −→ R+
0

such that d2(x, y) = maxi{ci}. Then, d2 is a metric on V. Moreover, d2 is obtained from the norm
∥ ∥2 exhibited in Proposition 11.

Proposition 13. The norms ∥ ∥, ∥ ∥1 and ∥ ∥2 shown in Propositions 5, 9 and 11 are equivalent.

Proof. It can immediately be seen that ∥ ∥2 ≤ ∥ ∥ ≤ ∥ ∥1 ≤ n∥ ∥2.

In a natural way, we can define the norm of a bounded semi-linear transformation.

Definition 13. Let V and W be two normed semi-vector spaces and let T : V −→ W be a semi-
linear transformation. We say that T is bounded if there exists a real number c > 0, such that
∥T(v)∥ ≤ c∥v∥.

If T : V −→ W is bounded and v ̸= 0V , we can consider the quotient ∥T(v)∥
∥v∥ . Since

such a quotient is upper bounded by c, the supremum sup
v∈V,v ̸=0V

∥T(v)∥
∥v∥ exists and it is, at

most, c. We then define

∥T∥ = sup
v∈V,v ̸=0V

∥T(v)∥
∥v∥ .

Proposition 14. Let T : V −→ W be a bounded semi-linear transformation. Then, the following hold:

(1) T sends bounded sets in bounded sets;
(2) ∥T∥ is a norm, called norm of T;
(3) ∥T∥ can be written in the form ∥T∥ = sup

v∈V,∥v∥=1
∥T(v)∥.

Proof. Items (1) and (2) are immediate. The proof of Item (3) is analogous to the standard
proof but we present it here to guarantee that our mathematical tools are sufficient to
perform it. Let v ̸= 0V be a semi-vector with norm ∥v∥ = a ̸= 0 and set u = (1/a)v. Thus,
∥u∥ = 1 and since T is semi-linear, one has

∥T∥ = sup
v∈V,v ̸=0V

1
a
∥T(v)∥ = sup

v∈V,v ̸=0V

∥T((1/a)v)∥ = sup
u∈V,∥u∥=1

∥T(u)∥ = sup
v∈V,∥v∥=1

∥T(v)∥.

Semi-Spaces l∞
+ , lp

+ and C+[a, b]

In this subsection, we investigate the topological aspects of some semi-vector spaces
over R+

0 , such as completeness and separability. We investigate the sequence spaces l∞
+ , lp

+,
C+[a, b], which will be defined in the sequence.

We first study the space l∞
+ , the set of all bounded sequences of nonnegative real

numbers. Before studying such a space, we must define a metric on it, since the metric in l∞,
which is defined as d(x, y) = sup

i∈N
|xi − yi|, where x = (xi) and y = (yi) are sequences in l∞,

has no meaning to us, because there is no sense in considering −yi if yi > 0. Based on this
fact, we circumvent this problem by utilizing the total order of R according to Proposition 6.
Let x = (µi) and y = (νi) be sequences in l∞

+ . We then fix i, and define ci as was carried
out in Proposition 6: if µi = νi, then we put ci = 0; if µi ̸= νi, let γi = max{µi, νi} and
ψi = min{µi, νi}; then, there exists a positive real number ci such that γi = ψi + ci and, in
place of |µi − νi|, we put ci. Thus, our metric becomes

d(x, y) = sup
i∈N

{ci}. (1)
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It is clear that d(x, y), as shown in Equation (1), defines a metric. However, we must
show that the tools that we have are sufficient to prove this fact, once we are working on R+

0 .

Proposition 15. The function d shown in Equation (1) is a metric on l∞
+ .

Proof. It is clear that d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y. Let x = (µi) and y = (νi)
be two sequences in l∞

+ . Then, for every fixed i ∈ N, if ci = d(µi, νi) = 0 then µi = νi,
i.e., d(µi, νi) = d(νi, µi). If ci > 0 then ci = d(µi, νi) is computed by γi = ψi + ci, where
γi = max{µi, νi} and ψi = min{µi, νi}. Hence, d(νi, µi) = c∗i is computed by γ∗

i = ψ∗
i + c∗i ,

where γ∗
i = max{νi, µi} and ψ∗

i = min{νi, µi}, which implies d(µi, νi) = d(νi, µi). Taking
the supremum over all i’s we have d(x, y) = sup

i∈N
{ci} = sup

i∈N
{c∗i } = d(y, x).

To show the triangle inequality, let x = (µi), y = (νi) and z = (ηi) be sequences in
l∞
+ . For every fixed i, we will prove that d(µi, ηi) ≤ d(µi, νi) + d(νi, ηi). If νi = µi = ηi, the

result is trivial. If two of them are equal, the result is also trivial. Assume that µi, νi and ηi
are pairwise distinct. As in the proof of Proposition 6, we must investigate the six cases:
(1) µi < νi < ηi; (2) µi < ηi < νi; (3) νi < µi < ηi; (4) νi < ηi < µi; (5) ηi < µi < νi;
(6) ηi < νi < µi. We only show (1) and (2).

To show (1), note that there exist positive real numbers ci and c
′
i, such that νi = µi + ci

and ηi = νi + c
′
i, which implies ηi = µi + ci + c

′
i. Hence, d(µi, ηi) = ci + c

′
i = d(µi, νi) +

d(νi, ηi).
Let us show (2). There exist positive real numbers bi and b

′
i , such that ηi = µi + bi and

νi = ηi + b
′
i , so νi = µi + bi + b

′
i . Therefore, d(µi, ηi) = bi < d(µi, νi) + d(νi, ηi) = bi + 2b

′
i .

Taking the supremum over all i’s, we have

sup
i∈N

{d(µi, ηi)} ≤ sup
i∈N

{d(µi, νi)}+ sup
i∈N

{d(νi, ηi)},

i.e., d(x, z) ≤ d(x, y) + d(y, z). Therefore, d is a metric on l∞
+ .

Definition 14. The metric space l∞
+ is the set of all bounded sequences of nonnegative real numbers

equipped with the metric d(x, y) = sup
i∈N

{ci} given previously.

We prove that l∞
+ equipped with the previous metric is complete.

Theorem 3. The space l∞
+ with the metric d(x, y) = sup

i∈N
{ci} shown above is complete.

Proof. The proof follows the same line as the standard proof of completeness of l∞; how-
ever, it is necessary to adapt it to the metric (written above) in terms of nonnegative real
numbers. Let (xn) be a Cauchy sequence in l∞

+ , where xi = (η
(i)
1 , η

(i)
2 , . . .). We must show

that (xn) converges to an element of l∞
+ . As (xn) is Cauchy, given ϵ > 0, there exists a

positive integer, k such that, for all n, m > k,

d(xn, xm) = sup
j∈N

{c(n,m)
j } < ϵ,

where c(n,m)
j is a nonnegative real number, such that, if η

(n)
j = η

(m)
j then c(n,m)

j = 0, and if

η
(n)
j ̸= η

(m)
j then c(n,m)

j is given by max{η
(n)
j , η

(m)
j } = min{η

(n)
j , η

(m)
j }+ c(n,m)

j . This implies
that, for each fixed j, one has

c(n,m)
j < ϵ, (2)
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where n, m > k. Thus, for each fixed j, it follows that (η(1)
j , η

(2)
j , . . .) is a Cauchy sequence

in R+
0 . Since R+

0 is a complete metric space, the sequence (η
(1)
j , η

(2)
j , . . .) converges to an

element ηj in R+
0 . Hence, for each j, we form the sequence x whose coordinates are the

limits ηj, i.e., x = (η1, η2, η3, . . .). We must show that x ∈ l∞
+ and xn −→ x.

To show that x is a bounded sequence, let us consider the number c(n,∞)
j defined as

follows: if ηj = η
(n)
j then c(n,∞)

j = 0, and if ηj ̸= η
(n)
j , define c(n,∞)

j as being the positive real

number satisfying max{ηj, η
(n)
j } = min{ηj, η

(n)
j }+ c(n,∞)

j . From the inequality (2), one has

c(n,∞)
j ≤ ϵ. (3)

Because ηj ≤ η
(n)
j + c(n,∞)

j and since η
(n)
j ∈ l∞

+ , it follows that ηj is a bounded sequence for
every j. Hence, x = (η1, η2, η3, . . .) ∈ l∞

+ . From (3), we have

sup
j∈N

{c(n,∞)
j } ≤ ϵ,

which implies that xn −→ x. Therefore, l∞
+ is complete.

Although l∞
+ is a complete metric space, it is not separable.

Theorem 4. The space l∞
+ with the metric d(x, y) = sup

i∈N
{ci} is not separable.

Proof. The proof is the same as shown in ([20] 1.3-9), so it is omitted.

Let us define the space analogous to the space lp.

Definition 15. Let p ≥ 1 be a fixed real number. The set lp
+ consists of all sequences x =

(η1, η2, η3, . . .) of nonnegative real numbers, such that
∞

∑
i=1

(ηi)
p < ∞, whose metric is defined by

d(x, y) =

[
∞

∑
i=1

[ci]
p

]1/p

, where y = (µ1, µ2, µ3, . . .) and ci is defined as follows: ci = 0 if µi = ηi,

and if µi > ηi (respect. ηi > µi) then ci > 0 is such that µi = ηi + ci.

Theorem 5. The space lp
+ with the metric d(x, y) =

[
∞

∑
i=1

[ci]
p

]1/p

exhibited above is complete.

Proof. Recall that the given two sequences (µi) and (ηi) in lp
+ the Minkowski inequality

for sums reads as[
∞

∑
i=1

|µi + ηi|p
]1/p

≤
[

∞

∑
j=1

|µj|p
]1/p

+

[
∞

∑
k=1

|ηk|p
]1/p

.

Applying the Minkowski inequality as per ([20] 1.5-4) with some adaptations, it follows
that d(x, y) is, in fact, a metric. In order to prove the completeness of lp

+, we proceed
similarly as in the proof of Theorem 3 with some adaptations. The main adaptation is
performed according to the proof of completeness of lp in ([20] 1.5-4) replacing the last
equality x = xm + (x − xm) ∈ lp (after Equation (5)) by two equalities in order to avoid
negative real numbers.
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(1) If the i-th coordinate x(i) − x(i)m of the sequence x − xm is positive, then define c(i)m =

x(i) − x(i)m and write x(i) = x(i)m + c(i)m . From the Minkowski inequality, it follows that
the sequence (x(i))i is in lp

+.

(2) If x(j) − x(j)
m is negative, then define c(j)

m = x(j)
m − x(j) and write x(j)

m = x(j) + c(j)
m . Since

xm ∈ lp
+, from the comparison criterion for positive series it follows that the sequence

(x(j))j is also in lp
+.

Theorem 6. The space lp
+ is separable.

Proof. The proof follows the same line of ([20] 1.3-10).

Definition 16. Let I = [a, b] be a closed interval in R+
0 , where a ≥ 0 and a < b. Then, C+[a, b] is

the set of all continuous nonnegative real valued functions on I = [a, b], whose metric is defined by
d( f (t), g(t)) = max

t∈I
{c(t)}, where c(t) is given by max{ f (t), g(t)} = min{ f (t), g(t)}+ c(t).

Theorem 7. The metric space (C+[a, b], d), where d is given in Definition 16, is complete.

Proof. The proof follows the same lines as the standard one with some modifications. Let
( fm) be a Cauchy sequence in C+[a, b]. Given, ϵ > 0 there exists a positive integer N such
that, for all m, n > N, it follows that

d( fm, fn) = max
t∈I

{cm,n(t)} < ϵ, (4)

where max{ fm(t), fn(t)} = min{ fm(t), fn(t)} + cm,n(t). Thus, for any fixed t0 ∈ I, we
have cm,n(t0) < ϵ, for all m, n > N. This means that ( f1(t0), f2(t0), . . .) is a Cauchy
sequence in R+

0 , which converges to f (t0) when m −→ ∞ since R+
0 is complete. We then

define a function f : [a, b] −→ R+
0 such that, for each t ∈ [a, b], we put f (t). Taking

n −→ ∞ in (4), we obtain max
t∈I

{cm(t)} ≤ ϵ for all m > N, where max{ fm(t), f (t)} =

min{ fm(t), f (t)}+ cm(t), which implies cm(t) ≤ ϵ for all t ∈ I. This fact means that ( fm(t))
converges to f (t) uniformly on I, i.e., f ∈ C+[a, b] because the functions fm’s are continuous
on I. Therefore, C+[a, b] is complete, as desired.

3.2. Interesting Semi-Vector Spaces

In this section, we exhibit semi-vector spaces over K = R+
0 derived from semi-metrics,

semi-metric-preserving functions, semi-norms, semi-inner products and sub-linear func-
tionals. Recall that a semi-metric is a metric without the condition that d(x, y) = 0 if and
only if x = y.

Theorem 8. Let X be a semi-metric space and MX = {d : X × X −→ R; d is a semi-metric on
X}. Then, (MX,+, ·) is a semi-vector space over R+

0 , where + and · are the pointwise addition
and the scalar multiplication (in R+

0 ), respectively.

Proof. We first show that MX is closed under addition. Let d1, d2 ∈ MX and set d :=
d1 + d2. It is clear that d is a nonnegative real-valued function. Moreover, for all x, y ∈ X,
d(x, y) = d(y, x). Let x ∈ X; d(x, x) = d1(x, x) + d2(x, x) = 0. For all x, y, z ∈ X, d(x, z) =
d1(x, z) + d2(x, z) ≤ [d1(x, y) + d2(x, y)] + [d1(y, z) + d2(y, z)] = d(x, y) + d(y, z).

Let us show that MX is closed under scalar multiplication. Let d1 ∈ MX and define
d = λd1, where λ ∈ R+

0 . It is clear that d is real-valued nonnegative and for all x, y ∈
X, d(x, y) = d(y, x). Moreover, if x ∈ X, d(x, x) = 0. For all x, y, z ∈ X, d(x, z) =
λd1(x, z) ≤ λ[d1(x, y) + d1(y, z)] = d(x, y) + d(y, z). This means that MX is closed under
scalar multiplication.

It is easy to see that (MX ,+, ·) satisfies the other conditions of Definition 3.
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Let (X, d) be a metric space. In [21], Corazza investigated interesting functions f :

R+
0 −→ R+

0 , such that the composite of f with d, i.e., X × X d−→ R+
0

f−→ R+
0 , also generates a

metric on X. Let us put this concept formally.

Definition 17. Let f : R+
0 −→ R+

0 be a function. We say that f is metric-preserving if, for all
metric spaces (X, d), the composite f ◦ d is a metric.

For our purpose, we will consider semi-metric preserving functions as follows.

Definition 18. Let f : R+
0 −→ R+

0 be a function. We say that f is semi-metric-preserving if, for
all semi-metric spaces (X, d), the composite f ◦ d is a semi-metric.

We next show that the set of semi-metric preserving functions has a semi-vector space
structure.

Theorem 9. Let Fpres = { f : R+
0 −→ R+

0 ; f is semi-metric preserving}. Then, (Fpres,+, ·) is
a semi-vector space over R+

0 , where + and · are the pointwise addition and the scalar multiplication
(in R+

0 ), respectively.

Proof. We begin by showing that Fpres is closed under pointwise addition and scalar
multiplication.

Let f , g ∈ Fpres. Given a semi-metric space (X, d), we must prove that ( f + g) ◦ d is
also semi-metric preserving. We know that [( f + g) ◦ d](x, y) ≥ 0 for all x, y ∈ X. Let x ∈ X;
then [( f + g) ◦ d](x, x) = f (d(x, x)) + g(d(x, x)) = 0. It is clear that [( f + g) ◦ d](x, y) =
[( f + g) ◦ d](y, x). Let x, y, z ∈ X. One has [( f + g) ◦ d](x, y) = f (d(x, y)) + g(d(x, y)) ≤
[ f (d(x, z)) + g(d(x, z))] + [ f (d(z, y)) + g(d(z, y))] = ( f + g)(d(x, z)) + ( f + g)(d(z, y)) =
[( f + g) ◦ d](x, z) + [( f + g) ◦ d](z, y).

Here, we show that, for each f ∈ Fpres and α ∈ R+
0 , it follows that α f ∈ Fpres.

We show only the triangular inequality since the other conditions are immediate. Let
us calculate the following: [α f ◦ d](x, y) = α f (d(x, y)) ≤ α f (d(x, z)) + α f (d(z, y)) =
[α f ◦ d](x, z) + [α f ◦ d](z, y).

The null vector is the null function 0 f : R+
0 −→ R+

0 . The other conditions are easy to
verify.

Theorem 10. Let V be a semi-normed real vector space and NV = {∥ ∥ : V −→ R; ∥ ∥
is a semi-norm on V}. Then, (NV ,+, ·) is a semi-vector space over R+

0 , where + and · are
pointwise addition and scalar multiplication (in R+

0 ), respectively.

Proof. From the hypotheses, NV is non-empty. Let ∥ ∥1, ∥ ∥2 ∈ NV and set ∥ ∥ := ∥ ∥1 +
∥ ∥2. For all v ∈ V, ∥v∥ ≥ 0. If v ∈ V and α ∈ R, then ∥αv∥ = |α|∥v∥. For every u, v ∈ V,
it follows that ∥u + v∥ := ∥u + v∥1 + ∥u + v∥2 ≤ (∥u∥1 + ∥u∥2) + (∥v∥1 + ∥v∥2) = ∥u∥+
∥v∥. Hence, NV is closed under addition.

We next show that NV is closed under scalar multiplication. Let ∥ ∥1 ∈ NV and
define ∥ ∥ := λ∥ ∥1, where λ ∈ R+

0 . For all v ∈ V, ∥v∥ ≥ 0. If α ∈ R and v ∈ V,
∥αv∥ = |α|(λ∥v∥1) = |α|∥v∥. Let u, v ∈ V. Then, ∥u + v∥ ≤ λ∥u∥1 + λ∥v∥1 = ∥u∥+ ∥v∥.
Therefore, NV is closed under addition and scalar multiplication over R+

0 .
The zero vector is the null function 0 : V −→ R. The other conditions of Definition 3

are straightforward.

Remark 5. Note that N ⋄
V = {∥ ∥ : V −→ R; ∥ ∥ is a norm on V} is also closed under both

pointwise function addition and scalar multiplication.

Lemma 1. Let T : V −→ W be a linear transformation.

(1) If ∥ ∥ : W −→ R is a semi-norm on W, then ∥ ∥ ◦ T : V −→ R is a semi-norm on V.
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(2) If T is injective linear and ∥ ∥ : W −→ R is a norm on W, then ∥ ∥ ◦ T is a norm on V.

Proof. We only show Item (1). It is clear that [∥ ∥ ◦ T](v) ≥ 0 for all v ∈ V. For all
α ∈ R and v ∈ V, [∥ ∥ ◦ T](αv) = |α|∥T(v)∥ = |α|[∥ ∥ ◦ T](v). Moreover, ∀ v1, v2 ∈ V,
[∥ ∥ ◦ T](v1 + v2) ≤ [∥ ∥ ◦ T](v1) + [∥ ∥ ◦ T](v2). Therefore, ∥ ∥ ◦ T is a semi-norm on
V.

Theorem 11. Let V and W be two semi-normed vector spaces and T : V −→ W be a linear
transformation. Then

NVT = {∥ ∥ ◦ T : V −→ R; ∥ ∥ is a semi-norm on W}

is a semi-subspace of (NV ,+, ·).

Proof. From the hypotheses, it follows that NVT is non-empty. From Item (1) of Lemma 1, it
follows that ∥ ∥ ◦ T is a semi-norm on V. Let f , g ∈ NVT , i.e., f = ∥ ∥1 ◦ T and g = ∥ ∥2 ◦ T,
where ∥ ∥1 and ∥ ∥2 are semi-norms on W. Then, f + g = [∥ ∥1 + ∥ ∥2] ◦ T ∈ NVT . For
every nonnegative real number λ and f ∈ NVT , λ f = λ[∥ ∥ ◦ T] = (λ∥ ∥) ◦ T ∈ NVT .

Theorem 12. Let N be the class whose members are {NV}, where NV ’s are given in Theorem 10.
Let Hom(N ) be the class whose members are the sets

hom(NV ,NW) = {FT : NV −→ NW ; FT(∥ ∥V) = ∥ ∥V ◦ T},

where T : W −→ V is a linear transformation and ∥ ∥V is a semi-norm on V. Then, (N , Hom(N ),
Id, ◦) is a category.

Proof. The sets hom(NV ,NW) are pairwise disjointed. For each NV , there exists Id(NV)

given by Id(NV)
(∥ ∥V) = ∥ ∥V = ∥ ∥V ◦ Id(V). It is clear that, if FT : NV −→ NW , then

FT ◦ Id(NV)
= FT and Id(NW ) ◦ FT = FT .

It is easy to see that, for every T : W −→ V linear transformation, the map FT is
semi-linear, i.e., FT(∥ ∥(1)V + ∥ ∥(2)V ) = FT(∥ ∥(1)V ) + FT(∥ ∥(2)V ) and FT(λ∥ ∥V) = λFT(∥ ∥V),

for every ∥ ∥V , ∥ ∥(1)V , ∥ ∥(2)V ∈ NV and λ ∈ R+
0 .

Let NU ,NV ,NW ,NX ∈ N and FT1 ∈ hom(NU ,NV), FT2 ∈ hom(NV ,NW), FT3 ∈
hom(NW ,NX), i.e.,

NU
FT1−→ NV

FT2−→ NW
FT3−→ NX .

The linear transformations are of the forms

X
T3−→ W

T2−→ V
T1−→ U

∥ ∥U−−→ R.

The associativity (FT3 ◦ FT2) ◦ FT1 = FT3 ◦ (FT2 ◦ FT1) follows from the associativity of compo-
sition of the maps. Moreover, the map FT3 ◦ FT2 ◦ FT1 ∈ Hom(N ) because FT3 ◦ FT2 ◦ FT1 =
(∥ ∥U) ◦ (T1 ◦ T2 ◦ T3) and T1 ◦ T2 ◦ T3 is a linear transformation. Therefore, (N , Hom(N ),
Id, ◦) is a category, as required.

Theorem 13. Let V be a real vector space endowed with a semi-inner product and let PV = {⟨ , ⟩ :
V × V −→ R; ⟨ , ⟩ is a semi-inner product on V}. Then, (PV ,+, ·) is a semi-vector space over
R+

0 , where + and · are pointwise addition and scalar multiplication (in R+
0 ), respectively.

Proof. The proof is analogous to that of Theorems 8 and 10.

Proposition 16. Let V, W be two vector spaces and T1, T2 : V −→ W be two linear transfor-
mations. Let us consider the map T1 × T2 : V × V −→ W × W given by T1 × T2(u, v) =
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(T1(u), T2(v)). If ⟨ , ⟩ is a semi-inner product on W, then ⟨ , ⟩ ◦ T1 × T2 is a semi-inner product
on V.

Proof. The proof is immediate, so it is omitted.

Let V be a real vector space. Recall that a sub-linear functional on V is a functional
t : V −→ R which is sub-additive: ∀ u, v ∈ V, t(u + v) ≤ t(u) + t(v); and positive-
homogeneous: ∀ α ∈ R+

0 and ∀ v ∈ V, t(αv) = αt(v).

Theorem 14. Let V be a real vector space. Let us consider SV = {S : V −→ R; S is sub-linear on
V}. Then, (SV ,+, ·) is a semi-vector space on R+

0 , where + and · are pointwise addition and scalar
multiplication (in R+

0 ), respectively.

Proof. The proof follows the same line of that of Theorems 8 and 10 and 13.

3.3. Semi-Algebras

We start this section by recalling the definition of semi-algebra and semi-sub-algebra.
For more details, the reader can consult [2]. In [22], Olivier and Serrato investigated
relation semi-algebras, i.e., a semi-algebra being both a Boolean algebra and an involu-
tive semi-monoid, satisfying some conditions (see page 2 in Ref. [22] for more details).
Roy [23] studied the semi-algebras of continuous and monotone functions on compact
ordered spaces.

Definition 19. A semi-algebra A over a semi-field K (or a K-semi-algebra) is a semi-vector space A
over K endowed with a binary operation called the multiplication of semi-vectors • : A × A −→ A
such that ∀ u, v, w ∈ A and λ ∈ K:

(1a) u • (v + w) = (u • v) + (u • w) (left-distributivity);
(1b) (u + v) • w = (u • w) + (v • w) (right-distributivity);
(2) λ(u • v) = (λu) • v = u • (λv).

A semi-algebra A is associative if (u • v) • w = u • (v • w) for all u, v, w ∈ A; A is
said to be commutative (or abelian) if the multiplication is commutative, that is, ∀ u, v ∈ A,
u • v = v • u; A is called a semi-algebra with identity if there exists an element 1A ∈ A such
that ∀ u ∈ A, 1A • u = u • 1A = u; the element 1A is called the identity of A. The identity
element of a semi-algebra A is unique (if exists). If A is a semi-free semi-vector space, then
the dimension of A is its dimension regarded as a semi-vector space. A semi-algebra is
simple if it is simple as a semi-vector space.

Example 9. The set R+
0 is a commutative semi-algebra with identity e = 1.

Example 10. The set of square matrices of order n whose entries are in R+
0 , are equipped with

the sum of matrices, the multiplication of a matrix by a scalar (in R+
0 , of course) and by the

multiplication of matrices, constituting an associative and non-commutative semi-algebra with
identity e = In (the identity matrix of order n), over R+

0 .

Example 11. Let V be a semi-vector space over a semi-field K. Then, the set L(V, V) = {T :
V −→ V; T is a semi-linear operator} is a semi-vector space. If we define a vector multiplication
as the composite of semi-linear operators (which is also semi-linear), then we have a semi-algebra
over K.

Definition 20. Let A be a semi-algebra over K. We say that a non-empty set S ⊆ A is a semi-
subalgebra if S is closed under the operations of A, that is,

(1) ∀ u, v ∈ A, u + v ∈ A;
(2) ∀ u, v ∈ A, u • v ∈ A;
(3) ∀ λ ∈ K and ∀u ∈ A, λu ∈ A.
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Definition 21. Let A and B two semi-algebras over K. We say that a map T : A −→ B is an
K-semi-algebra homomorphism if, ∀ u, v ∈ A and λ ∈ K, the following conditions hold:

(1) T(u + v) = T(u) + T(v);
(2) T(u • v) = T(u) • T(v);
(3) T(λv) = λT(v).

Definition 21 means that T is both a semi-ring homomorphism and also semi-linear
(as a semi-vector space).

Definition 22. Let A and B be two K-semi-algebras. A K-semi-algebra isomorphism T : A −→ B
is a bijective K-semi-algebra homomorphism. If there exists such an isomorphism, we say that A is
isomorphic to B, written A ∼= B.

The following results seems to be new, because semi-algebras over R+
0 have not been

investigated much in the literature.

Proposition 17. Assume that A and B are two K-semi-algebras, where K = R+
0 and A has identity

1A. Let T : A −→ B be a K-semi-algebra homomorphism. Then, the following properties hold:

(1) T(0A) = 0B;
(2) If u ∈ A is invertible, then its inverse is unique and (u−1)−1 = u;
(3) If T is surjective, then T(1A) = 1B, i.e., B also has identity; furthermore, T(u−1) = [T(u)]−1;
(4) If u, v ∈ A are invertible, then (u • v)−1 = v−1 • u−1;
(5) The composite of K-semi-algebra homomorphisms is also a K-semi-algebra homomorphism;
(6) If T is a K-semi-algebra isomorphism, then T−1 : B −→ A is also;
(7) The relation A ∼ B, if and only if A is isomorphic to B, is an equivalence relation.

Proof. Note that Item (1) holds because the additive cancelation law holds in the definition
of semi-vector spaces (see Definition 3). We only show Item (3) since the remaining items
are direct. Let v ∈ B; then, there exists u ∈ A such that T(u) = v. It then follows that
v • T(1A) = T(u • 1A) = v and T(1A) • v = T(1A • u) = v, which means that T(1A) is the
identity of B, i.e., T(1A) = 1B.

We have T(u) • T(u−1) = T(u • u−1) = T(1A) = 1B and T(u−1) • T(u) = T(u−1 •
u) = T(1A) = 1B, which implies T(u−1) = [T(u)]−1.

Proposition 18. If A is a K-semi-algebra with identity 1A, then A can be embedded in L(A, A),
the semi-algebra of semi-linear operators on A.

Proof. For every fixed v ∈ A, define v∗ : A −→ A as v∗(x) = v • x. It is easy to see that
v∗ is a semi-linear operator on A. Define h : A −→ L(A, A) by h(v) = v∗. We must show
that h is a injective K-semi-algebra homomorphism where the product in L(A, A) is the
composite of maps from A into A. Fixing u, v ∈ A, we have the following: [h(u + v)](x) =
(u + v)∗(x) = (u + v) • x = u • x + v • x = u∗(x) + v∗(x) = [h(u)](x) + [h(v)](x), hence
h(u + v) = h(u) + h(v). For λ ∈ K and v ∈ A, it follows that [h(λv)](x) = (λv)∗(x) =
(λv)x = λ(vx) = [λh(v)](x), i.e., h(λv) = λh(v). For fixed u, v ∈ A, [h(u • v)](x) =
(u • v)∗(x) = (u • v) • x = u • (v • x) = u • v∗(x) = u∗(v∗(x)) = [h(u) ◦ h(v)](x), i.e.,
h(u • v) = h(u) ◦ h(v). Assume that h(u) = h(v), that is, u∗ = v∗; hence, for every x ∈ A,
u∗(x) = v∗(x), i.e., u • x = v • x . Taking, in particular, x = 1A, it follows that u = v, which
implies that h is injective. Therefore, A is isomorphic to h(A), where h(A) ⊆ L(A, A).

Definition 23. Let A be a semi-vector space over a semi-field K. Then, A is said to be a Lie semi-
algebra if A is equipped with a product [ , ] : A × A −→ A such that the following conditions hold:

(1) [ , ] is semi-bilinear, i.e., fixing the first (second) variable, [ , ] is semi-linear with respect to
the second (first) one;

(2) [ , ] is anti-symmetric, i.e., [v, v] = 0V ∀ v ∈ A;
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(3) [ , ] satisfies the Jacobi identity: ∀ u, v, w ∈ A, [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0V .

From Definition 23, we can see that a Lie semi-algebra can be non-associative, i.e., the
product [ , ] is not always associative.

Let us now consider the semi-algebra Mn(R+
0 ) of matrices of order n with entries

in R+
0 (see Example 10). We know that Mn(R+

0 ) is simple, i.e., with the exception of the
zero matrix (zero vector), no matrix is (additive) symmetric. Therefore, the product of such
matrices can be nonzero. However, in the case of a Lie semi-algebra A, if A is simple, then
the unique product [ , ], that can be defined over A, is the zero product, as is shown in the
next result.

Proposition 19. If A is a simple Lie semi-algebra over a semi-field K, then the semi-algebra is
abelian, i.e., [u, v] = 0V for all u, v ∈ A.

Proof. Assume that u, v ∈ A and [u, v] ̸= 0V . From Items (1) and (2) of Definition 23,
it follows that [u + v, u + v] = [u, u] + [u, v] + [v, u] + [v, v] = 0V , i.e., [u, v] + [v, u] = 0V .
This means that [u, v] has symmetric [v, u] ̸= 0V , a contradiction.

Definition 24. Let A be a Lie semi-algebra over a semi-field K. A Lie semi-subalgebra B ⊆ A is a
semi-subspace of A which is closed under [u, v], i.e., for all u, v ∈ B, [u, v] ∈ B.

Corollary 2. All semi-subspaces of A are semi-subalgebras of A.

Proof. Apply Proposition 19.

4. Fuzzy Set Theory and Semi-Algebras

The theory of semi-vector spaces and semi-algebras is a natural generalization of the
corresponding theories of vector spaces and algebras. Since the scalars are in semi-fields
(weak semi-fields), some standard properties do not hold in this new context. However,
as we have shown in Section 3, even in the case of the nonexistence of symmetrizable
elements, several results are still true. An application of the theory of semi-vector spaces is
in the investigation of Fuzzy Set Theory, which was introduced by Lotfali Askar-Zadeh [11].
In fact, such a theory fits in the investigation/extension of results concerning fuzzy sets
and their corresponding theory. Let us see an example.

Let L be a linearly ordered complete lattice with distinct smallest and largest elements
0 and 1. Recall that a L-fuzzy number is a function x : R −→ L on the field of real
numbers satisfying the following items (see [2] Sect. 1.1): (1) for each α ∈ L0 the set
xα = {φ ∈ R; α ≤ x(φ)} is a closed interval [xαl , xαr], where L0 = {α ∈ L; α > 0};
(2) {φ ∈ R; 0 < x(φ)} is bounded.

The addition of two fuzzy numbers x and y is the fuzzy number x + y defined for each
r ∈ R by

(x + y)(r) = sup{x(s) ∧L y(t); s + t = r}.

Analogously, the product of x and y is the fuzzy number x · y, for each r ∈ R given by

(x · y)(r) = sup{x(s) ∧L y(t); st = r}.

The scalar product of α ∈ R and x ∈ RL is the fuzzy number αx such that αx = α̃ · x, where

α̃(r) =
{

1 if r = α
0 if r ̸= α.

We denote the set RL to be the set of all fuzzy numbers; RL can be equipped with a
partial order in the following manner: x ≤ y if and only if xαl ≤ yαl and xαr ≤ yαr for
all α ∈ L0. Additionally, in [24], the authors investigated linear orders on fuzzy numbers
which refine this partial order. In this scenario, Gahler et al. showed that the concepts of
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semi-algebras can be utilized to extend the concept of fuzzy numbers, according to the
following proposition:

Proposition 20 ([2] Proposition 19). The set RL is an ordered commutative semi-algebra.

Thus, a direct utilization of the investigation of the structures of semi-vector spaces and
semi-algebras is the possibility to generate new interesting results on the Fuzzy Set Theory.

Let Ln([0, 1]) = {(x1, x2, . . . , xn) ∈ [0, 1]n|x1 ≤ x2 ≤ . . . ≤ xn}. Shang et al., in [25],
introduced a new type of fuzzy sets where the membership are elements of Ln([0, 1]).
The product order ≤p

n on Ln([0, 1]) is given as follows: for all x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) vectors in Ln([0, 1]), define x ≤p

n y ⇐⇒ πi(x) ≤ πi(x) for each i ∈
{1, 2, . . . , n}, where πi : Ln([0, 1]) −→ [0, 1] is the i-th projection πi(x1, x2, . . . , xn) =
xi [26]. Another work relating semi-vector spaces and Fuzzy Set Theory is the study by
Bedregal et al. [4]. In order to study the aggregation functions (geometric mean, weighted
average and ordered weighted averaging, among others) with respect to an admissible
order (a total order ⪯ on Ln([0, 1]) such that, for all x, y ∈ Ln([0, 1]), x ≤p

n y =⇒ x ⪯ y), the
authors worked with semi-vector spaces over the weak semi-field U = ([0, 1],⊕, ·) where,
for all x, y ∈ [0, 1], x ⊕ y = min{1, x + y} and · is the usual multiplication. With these
concepts in mind, the authors showed two important results:

Theorem 15 ([4] Theorem 1). Ln([0, 1]) = (Ln([0, 1],∔,⊙) is a semi-vector space over U, where
r ⊙ v = (rx1, . . . , rxn) and u ∔ v = (x1 ⊕ y1, . . . , xn ⊕ yn). Moreover, (Ln([0, 1]),≤p

n) is an
ordered semi-vector space over U, where ≤p

n is the product order.

Proposition 21 ([4] Propostion 2). For any bijection f : {1, 2, . . . , n} −→ {1, 2, . . . , n}, the pair
(Ln([0, 1]),⪯ f ) is an ordered semi-vector space over U, where ⪯ f , defined in ([4] Example 1), is
an admissible order.

Clearly, except for the additive cancellation law, Ln([0, 1]) jointly with the operation
u • v = (x1y1, . . . , xnyn), for all x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) vectors in
Ln([0, 1]), is a commutative semi-algebra over U. As a consequence of the investigation
conducted, the authors propose an algorithm to perform a multi-criteria and multi-expert
decision-making method.

Summarizing the ideas: The theory of semi-vector spaces in [4] can be related to
our theory of semi-algebras, increasing the connection between fuzzy set theory and
semi-algebras. Therefore, it is important to understand deeply which are the algebraic
and geometry structures of semi-vector spaces, providing, in this way, support for the
development of our own theory as well as other interesting theories such as, for example,
the Fuzzy Set Theory. In the next subsection, we provide a connection between K-semi-
algebra and fuzzy formal language [14].

4.1. K-Fuzzy Automata

Let A be a K-semi-algebra and U a set. Then, a K-fuzzy set F over U is a function
F : U → A. The support of F is the set Supp(F) = {u ∈ U|F(u) ̸= 0A}.

Let X∗ be the free monoid generated by a set of input symbols X with concatenation
as a binary operation. We will denote this by ε the identity element of X∗, i.e., the empty
string. An A-fuzzy language over a set of input symbols X has any function L : X∗ → A.

Definition 25. Let A be a K-semi-algebra with identity 1A. Then, the system M = ⟨Q, X, ϱ, ι, τ⟩
is a K-Fuzzy Finite Automaton, K-FFA for short, if Q and X are nonempty finite disjoint sets,
ϱ : Q × (X ∪ {ε}) × Q → A is such that ϱ(q, ε, q) = 1A for each q ∈ Q, ι : Q → A and
τ : Q → A. The elements of Q are the states and elements of X of input symbols. The mapping
ϱ, ι and τ are the K-fuzzy transition function, K-fuzzy initial state set and K-fuzzy final state set,
respectively.
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Example 12. Let A be a commutative K-semi-algebra with identity 1A and three different elements
a, b, c ∈ A − {0A}. Then, M = ⟨Q, X, ϱ, ι, τ⟩ where Q = {q0, q1, q2, q3}, X = {0, 1}, and for
each i, j ∈ {0, 1, 2, 3}

ϱ(qi, x, qj) =


a if x = 0 and i = j ∈ {0, 3}
b if x = 1 and, either j = i + 1 or j = i ∈ {0, 3}
1A if x = ε and i = j
0A otherwise

ι(qi) =

{
c if i = 0
0A otherwise,

τ(qi) =

{
c if i = 3
0A otherwise.

is a K-FFA. Analogously, as occurs in automata theory, finite automata are graphically represented.
In particular, the graphical representation of this K-FFA is presented in Figure 1.

q0 q1 q2 q3

0;a/1;b

1;b 1;b 1;b

0;a/1;b

Figure 1. Graphical representation of a K-FFA.

Notice that, if A is the K-semi-algebra of fuzzy numbers, then 1A = 1̃, 0A = 0̃ and a, b and c
are arbitrary fuzzy numbers (different from 0̃).

Definition 26. Let A be a K-semi-algebra with identity 1A and M = ⟨Q, X, ϱ, ι, τ⟩ be a K-FFA.
Then, the extension of ϱ is the mapping ϱ∗ : Q × X∗ × Q → A recursively defined for each
q, p ∈ Q, by

ϱ∗(q, ε, p) = ϱ(q, ε, p) and ϱ∗(q, wa, p) = ∑
q′∈Q

ϱ∗(q, w, q′) • ϱ(q′, a, p),

whenever w ∈ X∗ and a ∈ X, where the sum is with respect to the addition of the K-semi-algebra.

Definition 27. Let A be a K-semi-algebra with identity and M = ⟨Q, X, ϱ, ι, τ⟩ be a K-FFA. M is
deterministic if

1. there is q0 ∈ Q such that, for each q ∈ Q, ι(q) ̸= 0A ⇔ q = q0;
2. for each q, p ∈ Q, such that p ̸= q, ϱ(q, ε, p) = 0A;
3. for each q, p, p′ ∈ Q and a ∈ X, ϱ(q, a, p) ̸= 0A and ϱ(q, a, p′) ̸= 0A, then p = p′.

Proposition 22. Let A be an associative K-semi-algebra with identity 1A and M = ⟨Q, X, ϱ, ι, τ⟩
be a K-FFA such that ϱ(q, ε, p) = 0A whenever q, p ∈ Q and q ̸= p. If 0A is a right annihilator
element, i.e., x • 0A = 0A for each x ∈ A, then for each v, w ∈ X∗ and q, p ∈ Q, we have

ϱ∗(q, vw, p) = ∑
q′∈Q

ϱ∗(q, v, q′) • ϱ∗(q′, w, p).

Proof. The proof is confirmed by induction on n = |w|. If n = 0, then w = ε. Hence, for
each v ∈ X∗, since ϱ(q, ε, p) = 0A whenever q, p ∈ Q and q ̸= p, it follows that

ϱ∗(q, vw, p) = ϱ∗(q, v, p)

= ϱ∗(q, v, p) • 1A + ∑
q′∈Q,q′ ̸=q

ϱ(q, v, q′) • 0A

= ϱ∗(q, v, p) • ϱ(p, ε, p) + ∑
q′∈Q,q′ ̸=q

ϱ∗(q, v, q′) • ϱ(q′, ε, p)
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ϱ∗(q, vw, p) = ∑
q′∈Q

ϱ∗(q, v, q′) • ϱ(q′, ε, p) .

= ∑
q′∈Q

ϱ∗(q, v, q′) • ϱ∗(q′, w, p).

Suppose now that ϱ∗(q, vw, p) = ϱ∗(q, v, p) • ϱ∗(q, w, p) for any v, w ∈ X∗ such that |w| = n.
Thus, if u ∈ X∗ is such that |u| = n + 1, then there are w ∈ X∗ and a ∈ X such that |w| = n
and u = wa. Therefore,

ϱ∗(q, vu, p) = ∑
q′′∈Q

ϱ∗(q, vw, q′′) • ϱ(q′′, a, p)

= ∑
q′′∈Q

(
∑

q′∈Q
ϱ∗(q, v, q′) • ϱ∗(q′, w, q′′)

)
• ϱ(q′′, a, p) by inductive hyp.

= ∑
q′′∈Q

(
∑

q′∈Q
((ϱ∗(q, v, q′) • ϱ∗(q′, w, q′′)) • ϱ(q′′, a, p)

)
by right-distributivity

= ∑
q′′∈Q

(
∑

q′∈Q
ϱ∗(q, v, q′) • (ϱ∗(q′, w, q′′) • ϱ(q′′, a, p))

)
by associativity

= ∑
q′∈Q

(
∑

q′′∈Q
ϱ∗(q, v, q′) • (ϱ∗(q′, w, q′′) • ϱ(q′′, a, p))

)

= ∑
q′∈Q

(
ϱ∗(q, v, q′) • ∑

q′′∈Q
(ϱ∗(q′, w, q′′) • ϱ(q′′, a, p))

)
by left-distributivity

= ∑
q′∈Q

(ϱ∗(q, v, q′) • ϱ∗(q′, u, p)).

Definition 28. Let A be a K-semi-algebra with identity and M = ⟨Q, X, ϱ, ι, τ⟩ be a K-FFA. Then,
the A-fuzzy language accepted by M is LM : X∗ → A where, for each w ∈ X∗,

LM(w) = ∑
q,p∈Q

ι(q) • (ϱ∗(q, w, p) • τ(p)).

A-fuzzy languages accepted by a K-FFA on a nonempty set of input symbols X will be called
A-fuzzy regular languages on X and the set of all them will be denoted by FRLX

A.

Example 13. The A-fuzzy language accepted by the K-FFA of Example 12, for each w ∈ X∗, is

LM(w) =

{
c2 • (am(w) • bn(w)) if 111 is a substring of w
0A otherwise,

where m(ε) = 0, m(wx) = m(w) + 1 − x, n(ε) = 0, n(wx) = n(w) + x, x0 = 1A, xk+1 =
xk • x.

4.2. The Semi-Algebras of A-Fuzzy Regular Languages

In the following, for each α ∈ K, α0 = 1 and αn+1 = α · αn for each positive integer n.

Definition 29. Let L, L1 and L2 be A-fuzzy languages over a set of input symbols X, respectively.
We then define the following:

Scalar product of an A-fuzzy language: given α ∈ K, the scalar product of α with L is the
A-fuzzy language α ⊙ L : X∗ → A, where α⊙L(w) = α|w| · L(w) for each w ∈ X∗;

Addition of A-fuzzy languages: the addition of L1 and L2 is the A-fuzzy language L1⊕L2 :
X∗ → A, where L1 ⊕ L2(w) = L1(w) + L2(w) for each w ∈ X∗;

Multiplication of A-fuzzy languages: the multiplication of L1 and L2 is the A-fuzzy language
L1⊙• L2 : X∗ → A, where L1⊙• L2(w) = L1(w) • L2(w) for each w ∈ X∗.
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Lemma 2. Let X be a non-empty set of input symbols and A be a K-semi-algebra with identity.
Then, for each family a1, . . . , am, b1, . . . , bn ∈ A, we have that

m

∑
i=1

n

∑
j=1

ai • bj =

(
m

∑
i=1

ai

)
•
(

n

∑
j=1

bj

)
. (5)

Proof. We prove by induction on n. If n = 1, then

m

∑
i=1

n

∑
j=1

ai • bj=
m

∑
i=1

ai • b1

= a1 • b1 + (a2 • b1 + . . . + (am−2 • b1 + ((am−1 + am) • b1))...) by Def. 19(1b)

= a1 • b1 + (a2 • b1 + . . . ((am−2 + (am−1 + am)) • b1)...) by Definition 19(1b)

...

= a1 • b1 +

((
m

∑
i=2

ai

)
• b1

)
by Definition 19(1b)

=

(
m

∑
i=1

ai

)
• b1 by Definition 19(1b).

Assume that Equation (5) holds for each k ≤ n. Then,

m
∑

i=1

n+1
∑

j=1
ai • bj =

m
∑

i=1

(
ai • b1 +

(
n+1
∑

j=2
ai • bj

))

=

(
m
∑

i=1
ai • b1

)
+

(
m
∑

i=1

n+1
∑

j=2
ai • bj

)
by associativity and commutativity of +

=

(
m
∑

i=1
ai

)
• b1 +

(
m
∑

i=1
ai

)
•
(

n
∑

j=1
bj

)
by Induction hypotheses

=

(
m
∑

i=1
ai

)
•
(

n+1
∑

j=1
bj

)
by Definition 19(1a).

Theorem 16. Let X be a non-empty set of input symbols and A be a K-semi-algebra with identity.
The K-fuzzy regular languages on X are closed under the scalar product. Moreover, if 0A is the left
annihilator element of the •, i.e., 0A • x = 0A for each x ∈ A, then the K-fuzzy regular languages
on X are closed under addition and multiplication operations in Definition 29.

Proof. Let L be K-fuzzy regular language on X and α ∈ K. Then, there exists a K-FFA
M = ⟨Q, X, ϱ, ι, τ⟩ such that LM = L. We now define Mα = ⟨Q, X, ϱα, ι, τ⟩ where, for each
q, p ∈ Q and a ∈ X, ϱα(q, a, p) = α · ϱ(q, a, p) and ϱα(q, ε, p) = ϱ(q, ε, p). Clearly, Mα is a
K-FFA.

We first prove by induction on w ∈ X∗ that

ϱ∗α(q, w, p) = α|w| · (ϱ∗(q, w, p)). (6)

If w = ε, from Definition 3(5), one has ϱ∗α(q, w, p) = ϱα(q, ε, p) = ϱ(q, ε, p) = α|w| ·
(ϱ(q, w, p)).
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Suppose that ϱ∗α(q, w, p) = α|w| · ϱ∗(q, w, p) when (n before |w| was deleted) |w| = n.
Then,

ϱ∗α(q, wa, p) = ∑
q′∈Q

ϱ∗α(q, w, q′) • ϱα(q′, a, p)

= ∑
q′∈Q

(α|w| · ϱ∗(q, w, q′)) • (α · ϱ(q′, a, p)) by inductive Hyp.

= ∑
q′∈Q

α|w|+1 · (ϱ∗(q, w, q′) • ϱ(q′, a, p)) by Definition 19(2)

= α|wa| · ϱ∗(q, wa, p) by Definition 3(2).

Therefore, for each w ∈ X∗, we have

LMα(w) = ∑
q,p∈Q

ι(q) • (ϱ∗α(q, w, p) • τ(p))

= ∑
q,p∈Q

ι(q) • ((α|w| · ϱ∗(q, w, p)) • τ(p)) by Equation (6)

= ∑
q,p∈Q

α|w| · (ι(q) • (ϱ∗(q, w, p) • τ(p))) by Definition 19(2)

= α|w| ·
(

∑
q,p∈Q

ι(q) • (ϱ∗(q, w, p) • τ(p))

)
by Definition 3(2)

= α|w| · (LM(w))

= α⊙LM(w)

Therefore, α⊙L ∈ FRLX
A, i.e., the K-fuzzy regular languages on X, are closed under the

scalar product operator.
Next, if L1, L2 ∈ FRLX

A, then there exist K-FFAs M1 = ⟨Q1, X, ϱ1, ι1, τ1⟩ and M2 =
⟨Q2, X, ϱ2, ι2, τ2⟩ such that Q1 ∩ Q2 = ∅, LM1 = L1 and LM2 = L2. Then, M1⊕2 =
⟨Q, X, ϱ, ι, τ⟩, where Q = Q1 ∪ Q2, and for each q, p ∈ Q and a ∈ X ∪ {ε},

ϱ(q, a, p) =


ϱ1(q, a, p) if q, p ∈ Q1
ϱ2(q, a, p) if q, p ∈ Q2
0A otherwise

ι(q) =
{

ι1(q) if q ∈ Q1
ι2(q) if q ∈ Q2,

τ(q) =
{

τ1(q) if q ∈ Q1
τ2(q) if q ∈ Q2

is clearly a K-FFA. We will prove that LM1⊕2 = LM1 ⊕ LM2 . Before this, note that

ϱ∗(q, w, p) =


ϱ∗1(q, w, p) if q, p ∈ Q1
ϱ∗2(q, w, p) if q, p ∈ Q2
0A otherwise.

(7)

Since 0A is the left annihilator element of the • and neutral element of +, it follows that

LM1⊕2 (w) = ∑
q,p∈Q

ι(q) • (ϱ∗(q, w, p) • τ(p))

=

(
∑

q,p∈Q1

ι(q) • (ϱ∗(q, w, p) • τ(p))

)
+

(
∑

q,p∈Q2

ι(q) • (ϱ∗(q, w, p) • τ(p))

)
+

(
∑

q∈Q1,p∈Q2

ι(q) • (ϱ∗(q, w, p) • τ(p))

)
+

(
∑

q∈Q2,p∈Q1

ι(q) • (ϱ∗(q, w, p) • τ(p))

)
.
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LM1⊕2 (w) =

(
∑

q,p∈Q1

ι1(q) • (ϱ∗1(q, w, p) • τ1(p))

)
+

(
∑

q,p∈Q2

ι2(q) • (ϱ∗2(q, w, p) • τ2(p))

)
+

(
∑

q∈Q1,p∈Q2

ι1(q) • (0A • τ2(p))

)
+

(
∑

q∈Q2,p∈Q1

ι2(q) • (0A • τ1(p))

)
by Equation (7)

=

(
∑

q,p∈Q1

ι1(q) • (ϱ∗1(q, w, p) • τ1(p))

)
+

(
∑

q,p∈Q2

ι2(q) • (ϱ∗2(q, w, p) • τ2(p))

)
+ 0A + 0A

=LM1 (w) + LM2 (w) = LM1⊕LM2 (w).

Therefore, L1 ⊕ L2 ∈ FRLX
A, i.e., the K-fuzzy regular languages on X, are closed

under the addition operator.
Finally, if L1, L2 ∈ FRLX

A, then there are K-FFAs M1 = ⟨Q1, X, ϱ1, ι1, τ1⟩ and M2 =
⟨Q2, X, ϱ2, ι2, τ2⟩ such that Q1 ∩ Q2 = ∅, LM1 = L1 and LM2 = L2. Then, M1 ⊙• M2 =
⟨Q, X, ϱ, ι, τ⟩ where Q = Q1 × Q2, and for each q, p ∈ Q and a ∈ X, ϱ((q1, q2), a, (p1, p2)) =
ϱ1(q1, a, p1) • ϱ2(q2, a, p2) and

ι((q1, q2)) = ι1(q1) • ι2(q2) and τ((q1, q2)) = τ1(q1) • τ2(q2) (8)

is clearly a K-FFA. We will now prove that LM1⊙•M2 = LM1 ⊙• LM2 .
Since • is associative and commutative, then

ϱ∗((q1, q2), w, (p1, p2)) = ϱ∗1(q1, w, p1) • ϱ∗2(q2, w, p2) (9)

Since 0A is an annihilator element of the • and neutral element of +, we have

LM1⊙•M2 (w) = ∑
(q1,q2),(p1,p2)∈Q

ι((q1, q2)) • (ϱ∗((q1, q2), w, (p1, p2)) • τ((p1, p2)))

= ∑
q1,p1∈Q1,q2,p2∈Q2

(ι1(q1) • ι2(q2)) • ((ϱ∗1(q1, w, p1)

• ϱ∗2(q2, w, p2)) • (τ1(q1) • τ2(q2))) by Equations (8) and (9)

= ∑
q1,p1∈Q1,q2,p2∈Q2

(ι1(q1) • (ϱ∗1(q1, w, p1)

•τ1(q1))) • (ι2(q2) • (ϱ∗2(q2, w, p2) • τ2(q2))) since • is comm. and assoc.

=

(
∑

q1,p1∈Q1

(ι1(q1) • (ϱ∗1(q1, w, p1) • τ1(q1)))

)

•
(

∑
q2,p2∈Q2

(ι2(q2) • (ϱ∗2(q2, w, p2) • τ2(q2)))

)
by Lemma 2

=LM1 (w) • LM2 (w) = LM1⊙•LM2 (w).

Therefore, L1 ⊙• L2 ∈ FRLX
A, i.e., the K-fuzzy regular languages on X, are closed

under the product operator.

Theorem 17. Let K be a semi-field, A be a K-semi-algebra with identity and X a non-empty set
of input symbols such that 0A is a left annihilator element of the •. Then, (FRLX

A,⊕,⊙,⊙•) is a
K-semi-algebra with identity.

Proof. This is straightforward from Definition 29 and from the fact that A is a K-semi-
algebra. For example, to prove that (FRLX

A,⊕,⊙,⊙•) satisfies the left-distributivity, take
L1, L2, L3 ∈ FRLX

A. Then, for each w ∈ X∗,
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(L1 ⊙• (L2 ⊕ L3))(w) = L1(w) • (L2(w) + L3(w)) by Definition 29
= ((L1(w) • L2(w)) + (L1(w) • L3(w)) by the left-distributivity of A
= ((L1 ⊙• L2)⊕ (L1 ⊙• L3))(w) by Definition 29

4.3. Counting Pattern in DNA Sequences

DNA sequences can contain many repetitions of some DNA sequences, called DNA
patterns. In other words, a pattern is a contiguous sub-sequence of a DNA sequence.
In most situations, the quantity of occurrences of a DNA pattern have important roles
in determining if a DNA pattern is interesting or not [27] or to detect some mutational
anomalies such as tandem duplication [28].

Let X = {A,C,G,T} be the set of DNA characters or bases, and consider the patterns
u1 = gata and u2 = cat and a semi-algebra (A,⊕,⊗, •) with identity 1A over a semi-field
K and annihilator 0 for •.

Let us consider the K-FFA M = ⟨Q, X, ϱ, ι, τ⟩ such that Q = {q1, . . . , q8}, where ϱ is
defined in Figure 2 with a ∈ A − {1A, 0A, 0},

ι(qi) =

{
1A if i = 1
0 otherwise

and τ(qi) =

{
1A if i = 2 or i = 3
0 otherwise.

Then, LM(w) = am ⊕ an where m and n are, respectively, the number of occurrences of u1
and u2.

q1 q2 q3 q4 q5

q6 q7 q8

ε;1A

ε;1A

(A,C,G,T);1A

G;1A A;1A T;1A

A;a

(A,C,G,T);1A
C;1A A;1A

T;a

Figure 2. K-FFA for counting two DNA patterns.

If A is the set of nonnegative integers in unary (in unary, each nonnegative integer
n is represented by a string of n symbols 1, denoted by 1n and, therefore, 10 is the empty
string) endowed with an extra element, denoted by 0, and the operations 1m ⊕ 1n = 1m+n,
0 ⊕ 1m = 1m ⊕ 0 = 1m, 1m • 1n = 1m1n = 1m+n, 0 • 1m = 1m • 0 = 0; then, for each w ∈ X∗,
LM(w) is the sum (in unary) of the number of occurrences of u1 and u2 in w. For example,
LM(GACATTGCATGGATACATGTGATACb) = 12 ⊕ 13 = 15.

It is worth noting that such a counting cannot be carried out either with nondeter-
ministic finite automata or with fuzzy automata. In fact, nondeterministic finite automata
just decide if a string is in the regular language or not and the Mealy or Moore machines
are essentially deterministic. The case of fuzzy automata is similar, only deciding the
membership degree of a string to a fuzzy language, i.e., a real value in [0, 1]. Of course, we
can consider L-fuzzy automata, where L is a complete lattice, as in [29,30]. In particular, this
complete lattice can be the set of nonnegative integers in unary A extended with infinitum,
denoted here by A∞.

A tentative of L-fuzzy automata for this purposes is shown in Figure 3. In this case,
using the notation of [29], recA(GACATTGCATGGATACATGTGATAC) =

∨
p1,...,p25∈Q25

I(p1) ∧

δ(p1,Gp2) ∧ . . . ∧ δ(p24,Cp25) ∧ F(p25) = I(o1) ∧ δ(o1,G, o2) ∧ . . . ∧ δ(o24,C, o25) ∧ F(o25)



Axioms 2024, 13, 308 26 of 28

where o1 = o2 = o5 = o6 = o7 = o10 = o11 = o15 = o18 = o19 = o20 = o24 = o25 = q1,
o12 = o21 = q2, o13 = o22 = q3, o14 = o23 = q4, o3 = o8 = o16 = q5, and o4 = o9 = o17 = q6.

Therefore, recA(GACATTGCATGGATACATGTGATAC) = 1a ∧ . . . ∧ 1a ∧ a ∧ 1A ∧ . . . ∧
1A ∧ a ∧ 1A ∧ . . . ∧ 1A ∧ a ∧ 1A ∧ . . . ∧ 1A ∧ a ∧ 1A ∧ . . . ∧ 1A ∧ a ∧ 1A ∧ 1A = a, that is, these
L-fuzzy automata do not perform a counting of u1 and u2. The unique way to achieve
this counting is to enrich the lattice with operations like addition or concatenation if we
consider A∞. But, in this case, these operations must satisfy some properties, resulting in
fuzzy automata valued in the algebra as the K-FFA proposal in this manuscript.

q1 q2 q3 q4

q5

q6

(A,C,G,T);1A

G;1A

C,1A

A;1A T;1A

A;a

A;1A

T;a

Figure 3. Tentative L-fuzzy automata for counting two DNA patterns.

5. Conclusions

In this paper, we have expanded the theory of semi-vector spaces as well as the theory
of semi-algebras, both over the semi-field of nonnegative real numbers. Among these results,
we introduced the concept of eigenvalues and eigenvectors of a semi-linear operator. The
properties of completeness and separability were also investigated. Since semi-vector spaces
and semi-algebras are correlated with fuzzy theory, we described the semi-algebra of A-fuzzy
regular languages, after applying the theory of fuzzy automata for counting patterns in
DNA sequences. In addition, we provided evidence that the counting of patterns, in general,
cannot be achieved either with nondeterministic finite automata or L-fuzzy automata in the
sense of [29]. Fuzzy automata have been applied in several areas of research, such as neural
networks, learning machines, pattern recognition, control engineering, decision-making,
robot control, clinical monitoring, image processing, etc. [31,32]. In particular, applications of
fuzzy automata in syntactic pattern recognition can deal with pattern variability by defining
inaccurate models [33]. In terms of future work, we intend to apply the K-Fuzzy Automata
in Hand Gesture Recognition based on the approaches of [34,35].
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