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Abstract: Thin-Plate Spline Generalized Linear Models (TPS-GLMs) are an extension of Semipara-
metric Generalized Linear Models (SGLMs), because they allow a smoothing spline to be extended to
two or more dimensions. This class of models allows modeling a set of data in which it is desired
to incorporate the non-linear joint effects of some covariates to explain the variability of a certain
variable of interest. In the spatial context, these models are quite useful, since they allow the effects
of locations to be included, both in trend and dispersion, using a smooth surface. In this work, we
extend the local influence technique for the TPS-GLM model in order to evaluate the sensitivity of
the maximum penalized likelihood estimators against small perturbations in the model and data.
We fit our model through a joint iterative process based on Fisher Scoring and weighted backfitting
algorithms. In addition, we obtained the normal curvature for the case-weight perturbation and
response variable additive perturbation schemes, in order to detect influential observations on the
model fit. Finally, two data sets from different areas (agronomy and environment) were used to
illustrate the methodology proposed here.

Keywords: exponential family; smoothing spline; penalized likelihood function; weighted back-
fitting algorithm; diagnostics measures

MSC: 62P12; 62]J20; 62G05

1. Introduction

Thin-Plate Spline Generalized Linear Models (TPS-GLMs) represent an extension
of semiparametric generalized linear models (SGLMs) by enabling the application of
smoothing splines in multiple dimensions. These models have the same characteristics
of the generalized linear model (GLM), as described by McCullagh and Nelder [1]. Like
GLMs, TPS-GLMs can assume a variety of distribution families for the response variable.
They also allow for a non-linear relationship between the response variable’s mean and
the linear predictor via a link function, and they account for non constant variance in the
data. Furthermore, the TPS-GLM allow modeling non-linear joint interaction effects due to
some covariates, as well as the effects of coordinates in spatial data, making them a useful
tool to model dynamic pattern in different scientific areas, such as environment, agronomy;,
ecology, and so on. Some of the main works related to thin-plate spline technique are
Duchon [2,3], Bookstein [4], and Chen et al. [5], while in the context of statistical modeling,
Wahba [6], Green and Silverman [7], Wood [8], and Moraga et al. [9], can be mentioned,
among others.
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However, it is well known that diagnostic analysis is a fundamental process in all
statistical modeling for any data set. This analysis allows us to validate the assumptions
established about the model in question and identify discrepant observations, and even-
tually influential ones on the fit of the model. One of the main diagnostic techniques
used in GLM and SGLM is local influence. In general, the idea of the local influence
technique introduced by Cook [10] is to evaluate the sensitivity of the MLEs when small
perturbations are introduced in the assumptions of the model or in the data, both in the
response variable and in the explanatory variables. This technique has the advantage,
regarding the case elimination technique, that it is not necessary to calculate the estimates
of the parameters for each case excluded. In our case, we are interested in developing
the local influence technique in the TPS-GLM, in order to detect observations that may
have a disproportionate influence on the estimators of both the parametric (regression
coefficient) and non-parametric (surface) part of the linear predictor. Such influence may
be due, for example, to the fact that each experimental unit contributes differently to the
model or that our variable of interest is exposed to a certain modification. In the context
of GLM and SGLM, there is empirical evidence that the maximum likelihood estimators
(MLEs) and maximum penalized likelihood estimators (PMLEs) are sensitive to this type of
situation, and therefore we believe that this sensitivity is also present in the estimators of
the TPS-GLM, in particular, in the surface estimator.

Various studies have expanded upon the technique of local influence within different
parametric models. Thomas and Cook [11] applied Cook’s method of local influence [10]
to generalized linear models to assess the impact of minor data perturbations. Ouwens
and Beger [12] obtained the normal curvature under a generalized linear model in order to
identify influential subjects and/or individual observations. Zhu and Lee [13] developed
the local influence technique for incomplete data, and extended such results to generalized
linear mixed models (see also Zhu and Lee [14] for further details). Espinheira et al. [15]
extended the local influence analysis to beta regression models considering various pertur-
bation scenarios. Rocha and Simas [16] and Ferrari et al. [17] derived the normal curvature
considering a beta regression model whose dispersion parameter varies according to the
effect of some covariates. Ferreira and Paula [18] developed the local influence approach to
partially linear Skew Normal models under different perturbation schemes, and Emami [19]
evaluated the sensitivity of Liu penalized least squares estimators using local influence
analysis. Most recently, Liu et al. [20] have reported the implementation of influence
diagnostics in AR time series models with Skew Normal (SK) distributions.

Within a semiparametric framework, Thomas [21] developed diagnostics for local
influence to assess the sensitivity of estimates for the smoothing parameter, which were
determined using the cross-validation criterion. Zhu and Lee [14] and Ibacache-Pulgar and
Paula [22] introduced measures of local influence to analyze the sensitivity of maximum
penalized likelihood estimates in normal and partially linear Student-t models, respectively.
Ibacache-Pulgar et al. [23,24] explored local influence curvature within elliptical semi-
parametric mixed models and symmetric semiparametric additive models. Subsequently,
ref. [25] and Ibacache-Pulgar and Reyes [26] further extended local influence measures to
normal and elliptical partially varying-coefficient models, respectively. Ibacache-Pulgar
et al. [27] developed the local influence method within the context of semiparametric addi-
tive beta regression models. Meanwhile, Cavieres et al. [28] calculated the normal curvature
to assess the sensitivity of estimators in a thin-plate spline model that incorporates skew
normal random errors. Jeldes et al. [29] applied the partially coefficient-varying model
with symmetric random errors to air pollution data from the cities of Santiago, Chile, and
Lima, Peru. In this context, they carried out an application of the local influence technique
to detect influential observations in the model fit. Saavedra-Nievas et al. [30] extended the
local influence technique for the spatio-temporal linear model under normal distribution
and with separable covariance. Recently, Sdnchez et al. [31] obtained the normal curvature
for the varying-coefficient quantile regression model under log-symmetric distributions,



Axioms 2024, 13, 346

30f20

and presented an interesting application of such results to an environmental pollution
data set.

In this work, we extend the local influence approach in Thin-Plate Spline Generalized
Linear Model.

The contents are organized as follows: Section 2 introduces the thin-plate spline
generalized linear model. Section 3 details the method for obtaining maximum penalized
likelihood estimators and discusses some statistical inferential results. In Section 4, we
provide a detailed description of the local influence method and derives normal curvatures
for various perturbation schemes. In Section 5, the methodology is illustrated using two
datasets. The paper concludes with some final observations in Section 6.

2. The Thin-Plate Spline Generalized Linear Model (TPS-GLM)

In this section, we present the TPS-GLM and the penalized function to carry out the
process of estimating the parameters.

2.1. Statistical Model

Let{y; | i =1,...,n} be a data set where each response variable y; follows a distribu-
tion from the exponential family with the following density function:

yi0; — ¢(6;)

ai(¢) +C(yi/¢) 4

fy(yi; 0, ¢) = exp

where 6; is the canonical form of the location parameter and depends on the mean ;.
The term a;(¢) represents a known function of the unknown dispersion parameter ¢
(or a vector of unknown dispersion parameters). The function ¢ depends on both the
dispersion parameter and the responses, while ¢ is a known function, such that the mean
and variance of y; are given by: u; = E(y;) = oy(6;)/96; and Var(y;) = a;(¢) V;, with
Vi = V(p;) = 0*p(6;)/96?, respectively. The TPS-GLM is defined by Equation (1) and the
following systematic component:

-

8(pi) = mi = w; a+ f(t), (1)
where w; is a (p x 1) vector of covariables, & = (a1, ...,&p) " corresponds to the vector of re-
gression coefficients, f(-) is unknown smooth arbitrary surface, and t; is a two-dimensional
covariates vector. To write the model given by Equation (1) in a matrix form, first con-
sider the one-to-one transformation of the vector f suggested by Green and Silverman [7],
stated as

f(t)
f= : =Eé+T'a,
f(tn)

where a is a 3 x 1 vector with components a;, J is a n x 1 vector with components é;, E is a
(n x n) matrix whose elements are given by Ej; = 12— |It; — t;||? log ||t; — t;[|*, with E;; = 0
for each i, and T is a (3 x n) matrix defined as

1 1 ... 1
T_(t1 th ... tn>'
Thus, the Model (1) can be written in a matrix form as
n=Xp+ES,

: . . T
where the regression matrix is structured as X = (TT W) T, withW=(w/, ..., w}),

and the vector of regression coefficients as B = (al oc)T = (B, ---, Bp+s ), where
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Bi = a;(j = 1,23)and B; = aj 3 (j = 4,...,p+3); see [9]. Note that this matrix
representation of the linear predictor allows us to treat the TPS-GLM as a semiparametric
generalized linear model, in which the term X § represents the parametric component and
EJ the nonparametric component. One of the advantages of the TPS-GLM, apart from
being able to model both discrete and continuous variables that belong to the exponential
family, is its flexibility to model the non-linear joint effect of covariates through the surface
f present in the linear predictor 7. In the context of spatial data, this models allows the
effect of coordinates to the incorporated into the modeling process. It is important to note
that when the surface f is not present in the linear predictor #, the model reduces to the
classical generalized linear model. However, if the vector t reduces to a scalar, t, the model
reduces to the semiparametric generalized linear model discussed, for instance, by Green
and Silverman [7].

2.2. Penalized Function

Under the TPS-GLM, we have that 0 = (B8',5",¢)" C RP", withp* = (p+3) +n+1
parameters. Then, the log-likelihood function is given by

~ Y Li(6), )

i=1

where

Li(@) = | PO ey ).

To ensure the identifiability of the parameter vector &, we assume that f belongs to the
function space where all partial derivatives of total order m reside within the Hilbert space
L2[E?], the space of square-integrable functions on Euclidean d-space. Incorporating a
penalty function over f, we have that the penalized log-likelihood function can be expressed
as (see, for instance, Green and Silverman [7])

Lp(0,Ar) = L(6) +Atm(f), 3)

where J4 (f) is a penalty functional measuring the wiggliness of f, and )\;ﬁ()\ ) is a constant

that depends on the smoothing parameter Ay > 0. In general, a measure of the curvature
of f corresponds to its squared norm, || f||, defined as

2
i B B 400 +o0 omf d 4
mO=1= %o e [ @.ﬁ¢>g%'

For simplicity, in this work, we will consider the case in whichd = 2,m = 2 and
¢ = g(t1, t). Consequently, the penalty function J3(f) is expressed in the form

azf +2 azf 2 azf 2 dt;dt
//322 atZ ot10ty + @ 1952

and measures the rapid variation in f and the departure from local linearity. In this case, the
estimation of f leads to a natural thin-plate spline. According to Green and Silverman [7],
we may express the penalty functional as J3(f) = & TES. Then, if we consider A* F=—Af /2,

the penalized log-likelihood function (3) can be expressed as

Lp(6,Af) = L(B)—%&TE(S. (4)



Axioms 2024, 13, 346

50f 20

The first term in the right-hand side of Equation (4) measures the goodness-of-fit,
while the second terms penalizes the roughness of f with a fixed parameter A¢. Selecting
appropriate parameters is crucial in the estimation process, as they determine the balance
between the goodness-of-fit and the smoothness (or regularity) of the estimated function. It
is important to emphasize that selecting appropriate parameters is crucial in the estimation
process because they control the trade-off between goodness-of-fit and the smoothness (or
regularity) of the estimated function. In this work, the smoothing parameter is selected
through the Akaike Criterion (AIC) based on the penalized log-likelihood function given in
Equation (3). More details of the method are given in Section 3.7.

3. Estimation and Inference

In this section, we discuss the problem of estimating the parameters under the TPS-
GLM. Specifically, we derive a weighted iterative process based on the backfitting algorithm
and estimate the variance—covariance matrix of our estimator from the penalized Fisher
information matrix (see Green [32] and Green and Silverman [7]). A brief discussion of the
smoothing parameter selection is also presented.

3.1. Penalized Score Function

First, we are going to assume that the function Lp (6, As) is regular in the sense that it
admits first and second partial derivatives with respect to the elements of the parameter
vector 6. To obtain the score function for 8, we must calculate dLp, (0, Af)/9B; for i €
{1,...,n}and j € {1,...,p+2}. After performing some partial derivative operations, we
have that the score function for B can be written in matrix as follows:

oL, (0, A ~
Up(0) = ipé Do Xy,
B
where X is an (1 x 3 + p) matrix whose ith row is x;, T = diag [(a,-(cp))*l (g—};;:) Vi_l} isa

(n x 3+ p) matrix, with V; = V(y;) = 9*¢(6;)/06? the variance function, a;(¢) a function
of ¢,y = (y1,..,yn) " and g = (41, ..., thn) ' are (n x 1) vectors.

Conversely, to derive the score function for J, we need to compute dLp, (6,A f) /déy for
ie{l,...,n}and ¢ € {1,...,n}. Again, after some algebraic operations, the score function
for 0 can be written in matrix as follows:

5 B dLp (6,1 f)

Ub(0) = =271 — ETT(y - ) - AES,

where the matrix E is defined in Section 2.1. Finally, the score function for ¢ is given by

B aLp(G,Af) L

U0) = TP = L) Pt 900 + L)

i=1

with ¢/ (y;, ¢) = oc(y;, ¢)/0¢p, fori € {1,...,n}. Thus, the vector of penalized score func-
tions of 8 can be expressed compactly as

P
Up(0) = U%

Note that if the model under consideration only considers the parametric component
in the linear predictor, that is, the nonparametric component is omitted, the expressions of
the remaining score functions are reduced to those obtained under the classical generalized
linear model.
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3.2. Penalized Hessian Matrix

To obtain the penalized Hessian matrix, we must compute the second-derivate of
Ly(, /\f) with respect to each element of 6, that is, asz (6, )tf) /08;:0p+, for j*, £* € {1,...,p*}.
After some algebraic operations, we have that the diagonal elements (block matrices) of the
Hessian matrix are given by

gp Lp(6,Ay)

_ Tafx*
P T g X MX
0?Lp(6,A
Lff = ai;g(s_rf) = —ETM*E — AfE and
PLp(6,Af) n _ -
L = ST = L) = (0) + L ),
i=1 i=1

where M* = diag, i, [ (21(¢)) ™ (u:/m:)?V; | and ¢" (1, 9) = ey, ¢)/0¢%, for 1 <

i < n. The elements outside the main diagonal of the Hessian matrix take the form

LB _ 9*Lp(6,Af)

= —X'M'E,
P 9IS
2 n
B¢ _ M _ ) ) o _1% )
Ly = atxja([) l;(al(@) (vi Plz)vi amxl] and
9?Lp(6,A¢) n -
op _ Y =P\V ) . ‘ ) REDNY:
Lo = 3509 g@‘z((f’)) {(]/1 pV g e

where x;; denotes the (i, j)th element of the matrix X and ¢;; denotes the (i, £)th element of
the matrix E, fori € {1,...,n},j€ {1,...,p+2}and £ € {1,...,n}. Thus, the penalized
Hessian matrix can be represented as
BB ps B¢
L135 . LP ng
Lp(0) = | L 1 LY

P
Bo" 10T Lo
LP LP LP

It is noteworthy that this matrix simplifies to the Hessian matrix used in generalized
linear models when the nonparametric component is absent. The primary application of
this matrix lies in the normal curvature, which is essential for developing the local influence
technique. This will be discussed in the following section.

3.3. Penalized Expected Information Matrix

By taking the expectation of the matrix —Lp(60), we derive the penalized expected
information matrix, which is of dimension (p* x p*), as follows:

Jp(6) = -E [aZLp(B’A)] :

960007

This matrix assumes the following diagonal structure in blocks:

s
PO <gp Y a;fgw))’
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where

Bg) — XTM*X X"M*E
~ \E'M*X E'M*E+AE

and

g0) = Y —2(ai(@) (b — 9(6)) — iE(c"(M)L

i=1 i
with ¢’ (y;, ¢) = 9%c(y;, ) /9¢* fori € {1,...,n}.

3.4. Derivation of the Iterative Process
The value of 6 that maximizes Ly (6, Af), called maximum penalized likelihood es-
timate (MPLE) and denoted by 9, is carried out by solving the corresponding estima-

-
tion equations. Let 6 = (BlT 92) T, where 0, = (ﬁT 5T> and 6, = ¢. In addition,
T

consider the partition of the score function vector Up(0) = (U%)T (6) UIZ)T ( 6)) , Where
Ull,T (6) = (U}éT (6) Uf)T (6)> and U%,(B) = UZ,’(B). In order to estimate 6 based on penali-
zed likelihood function given by Equation (4), we have to solve the equations

UL(®) = 0

Ug(e) =0

b = 0.

These estimating equations are nonlinear, and necessitate an iterative approach for
their solution. An alternative frequently proposed in the context of generalized linear
models is the Fisher scoring algorithm (Nelder and Wedderburn, [33]), considering the fact
that in some situations the matrix —Lp(0) can be non-positive definite. Then, the algorithm
for estimating 67, with ¢ fixed, is given by

07 = 69 + (357 (0) 1)Uy (o),

which is equivalent to solving the matrix equation
1d
I S?ﬂ E ( ‘Bnew ) _ ( Sgldzold ) 5)
SgldX I Jnew S(l)ldzold ’
where z°14 = (y — u°d) 4 44, with S§'d defined as

(XTM*OldX)ileM*Old 19 _ ﬁ
Sy =
(ETM*“E+A/E)'ETM*" 9=25.

Consequently, the weighted back-fitting (Gauss—Seidel) iterations for simultaneously
updating B and § are given by

'Bnew _ S%ld (Zold _ E(SOld) , (6)
shew Sgld (zold _ Xﬁold) , 7)

It is crucial to note that the system of Equations (5) is consistent, and the back-fitting
algorithm converges to a solution for any initial values, provided that the weight matrix
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M* is symmetric and positive definite. Additionally, if the parametric component w, B is
absent in the linear predictor, the estimator of ¢ is given by:

shew Sgldzold .

The MPLE of the dispersion parameter, 0, = ¢, can be determined through the
following iterative procedure:

Hélew — ggld _ (3g¢ (6) -1 )OldUIZDOId (9) ‘

Summarizing, each iteration of the Fisher scoring algorithm updates § and § using
Equations (6) and (7), and evaluating matrices Sy and M* at the MPLE of 6 obtained in the
previous iteration, that is, 8°'¢, until convergence is obtained. The joint iterative process
that resolves Up(0) = 0 is presented below.

3.5. Estimation of Surface

To obtain the MPLE of f, we must consider its one-to-one representation given in
Equation (2) and MPLE obtained from the iterative process described above. Indeed, we
have that f can be obtained as

f=Es+T7a,,

where & and a are the MPLE of & and 3, respectively. Note that vector a corresponds to the
first three elements of vector /AE Consequently, fis a natural thin-plate spline. Details of the
conditions that guarantee this result are given, for example, in Green and Silverman [7]
and Wood [34].

3.6. Approximate Standard Errors

In this study, we propose approximating the variance-covariance matrix of 8 by using
the inverse of the penalized Fisher information matrix. Specifically, we have that

Cov(0) ~ 3,1(0)]5-

If we are interested in drawing inferences for B, the approximate variance—covariance
matrix can be estimated by using the corresponding block-diagonal matrix obtained from
3;1 (0), similarly for f and ¢.

3.7. On Degrees of Freedom and Smoothing Parameter

For the TPS-GLM, the degree of freedom (df) associated with the smooth surface is
given by (see, for instance Green and Silverman [7])

df(Ag) = tr(E'S;),

which approximately represents the number of effective parameters used in the modeling
process to estimate the smooth surface f.

Regarding the selection of the smoothing parameter, we propose to use the Akaike
Information Criterion (AIC) (see, for instance, [24,35]), defined as

AIC(Ag) = —2Ly(8,Af)|g +2(1+ p+df(Af)],

where L, (6, As) denote the penalized likelihood function evaluated at MPLE of 6§, and p
denote the number of parameters in B. As usual, the idea is to select the value of A that
minimizes AIC(Af).
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4. Local Influence

In this section, we extend the local influence technique to evaluate the sensitivity of
the MPLE under the TPS-GLM. Specifically, we present some theoretical aspects of the
method and, subsequently, we derive the normal curvature for three perturbation schemes.

4.1. Local Influence Analysis

Consider w = (wy,...,wy) ", an n x 1 vector of perturbations restricted to some
open subset O C R". Let L, (0, As | w) denote the logarithm of the perturbed penalized
likelihood function. Assume there exists a vector of non-perturbation wy € (3, such that
Ly(6,Af | wo) = Ly(6,Af). To evaluate the influence of small perturbations on the MPL

estimate 6, we can consider the penalized likelihood displacement given by:

2[Ly(0,Af) — Ly(8u, Af)] > 0,

where 8,, is the MPL estimate under Lp(6,Af | w). The measure LD(w) is useful for

assessing the distance between 8 and 8,,. Cook [10] suggested examining the local behavior
of LD(w) around wy. The procedure involves selecting a unit direction d € Q, with ||d|| =1,
and then plotting LD(wq + ad) against a, where a € R. This plot, called the lifted line, can be
characterized by considering the normal curvature C;(0) around a = 0. The suggestion is to
assume the direction d = dmax corresponding to the largest curvature C;__ (8). The index
plot of dmax can identify those cases that, under small perturbations, have a significant
potential influence on LD(w). According to Cook [10], the normal curvature in the unit
direction d is expressed as

Ca(0) = —2{d"AJ L' Apd},
with

2L, (6, A 2L, (0, A
_ELOAI g g, = SO ]w)
20007 |5 900w T A

0=0, w=wy

Note that —L, represents the penalized observed information matrix evaluated at
] (see Section 3.2), and A, is the penalized perturbation matrix evaluated at 6 and wy.
It is essential to highlight that C;(68) denotes the local influence on the estimate 8 after
perturbing the model or data. Escobar and Meeker [36] suggested examining the normal
curvature in the direction d = e;, where e; is an n x 1 vector with a one at the ith position
and zeros elsewhere. Consequently, the normal curvature, referred to as the total local
influence of the ith case, takes the form C, (0) = 2|c;;| fori € {1,...,n}, where c;; is the ith
principal diagonal element of the matrix C = A; L, 1Ap.

4.2. Derivation of the Normal Curvature

Typically, the perturbation schemes used in the analysis of local influence are de-
termined by the structure of the model under consideration, as discussed by Billor and
Loynes [37]. These schemes can generally be divided into two main categories: perturba-
tions to the model (to examine changes in assumptions) or perturbations to the data. For
instance, we might consider perturbing the response variable or the explanatory variables.
The motivation for employing these perturbation schemes often includes addressing issues
such as the presence of outliers or the occurrence of measurement errors in the data. Subse-
quently, we will present the formulas for the matrix Ap for various perturbation schemes.

Consider the weights assigned to the observations in the penalized log-likelihood
function, given by:

nA
Ly(6,As|w) = L(0jw)—) FoTES,
i=1
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where L(B’a)) =Y wiLi(8), w=(wy,... ,wy) " is the vector of weights, with 0 < w; <
1. In this case, the vector of no perturbation is given by wy = 1(,). Differentiating
L,(6,A f‘w) with respect to the elements of 8 and w’, we have that the matrix A, takes

the form
XD,
Ap=| E'D; |,
ﬁT

where the matrix D = diag;.;., (%) and u = (uy,...,u,)", with ; = (a;(¢)) 1 (y; —
ap(h(n;))/oh(y:))oh(n;) /i, h(n;) = ¢ (n;), ¢~ (-) denotes the inverse function of 1 (-),
u; = —(a;(¢)) 2 (yih(n;) — ¢(h(n;)) + ' (yi, ¢)e,l,, and e;, a vector with 1 at the ith position
and zero elsewhere.

To perturb the response variable values, we consider y;, = y; + w; fori € {1,...,n},
where w = (wy, ..., wn)T is the vector of perturbations. The vector of no perturbation
isw=1(0,..., O)T. The perturbed penalized log-likelihood function is constructed from
Equation (3) with y; replaced by y;,,, as follows:

L,(6,)\ = L(0lw)— ; ﬁ(sTE(s
p(8, Ag|w) (6]w) 2 2 ,
i=1

where L(-) is defined in Equation (2) with y;, replacing y;. By differentiating L,(6, A | w)
with respect to the elements of 8 and wj;, and after some algebraic manipulation, we obtain:

XD,
Ap=| E'D. |,
HT

where the matrix D, = diaglgign(ci) andd = (dy,...,dy,)", with ¢; = 9h(y;)/9y; and
di = —(a;(¢)) " 2(h(n;)e), + ¢’ (Viw, ¢)/dw;), with e;, denoting a vector with 1 at the ith
position and zero elsewhere.

5. Applications

In this section, we show the applicability of the TPS-GLM and the local influence
method with two real data applications. The model estimation and diagnostics have been
implemented using MatLab 9.13.0 (R2022b) software [38] (the developed code is available
on request by the authors).

5.1. Wypych Data

The first dataset we use to illustrate the applicability of the TPS-GLM consists of
83 sample points within a 46.6-hectare agricultural area in Wypych, located at latitude
24°50'24” S and longitude 53°36/36" W, with an average altitude ranging from 589 to 660 m.
The data were collected during the 2006/2007 agricultural year in the western region
of Parand State, Brazil (see [39], Appendix 4). The soil is classified as Dystroferric Red
Latosol with a clayey texture. The region’s climate is mesothermal, super-humid temperate,
classified as Cfa according to (Kéeppen), with a mean annual temperature of 21 °C. The
83 georeferenced points were determined by a regular grid of 75 x 75 m using a global
positioning system (GPS). The collected variables were as follows:

*  Soya: average of soybean yield (t/ha).
¢ Height: average height (cm)of plants at the end of the production process.
*  Pods: average number of pods.
e  Lat: latitude (UTM).
* Long: longitude (UTM).
The original objective was to investigate the spatial variability of soybean yield (Soya)
in the studied area based on the covariates: average plant height, average number of pods



Axioms 2024, 13, 346

11 of 20

per plant, latitude, and longitude. Figure 1 shows the scatterplots between the response
variable Soya and the explanatory variables Height and Pods. In addition, the plot of the
response variable against the coordinates is shown. Clearly, from Figure 1a,b, it can be seen
that the explanatory variables Height (X2) and Pods (X3) are linearly related to the response
variable Soya (Z). The spatial effect given by the coordinates (X,Y) will be incorporated into
the model through a smooth surface.

@ ‘ ‘ I

30 35 40 45 50 55 60 65 20 25 30 35 40 45 50 55 60 65
X2 X3

(c)

237
2.368 7.2512

«10° 2.366 7.251

7.2508 106
2364 72506

X 2362 7.2504 Y

Figure 1. Scatter plots: Soya versus Height (a), Soya versus Pods (b), and Soya versus coordinates in
UTM (c).

5.1.1. Fitting the TPS-GLM

Based on the above analysis, we propose the TPS-GLM, introduced in Section 2, to
model the trends present in the Wypych data. Specifically, we are going to assume that the
response variable Soya belongs to the Gaussian family, and that the link function is the
identity. Therefore, the model is expressed as follows:

g(ui) = ui = Bo + B1Height; + BoPods; + f(Lat;, Long;) ie{l,...,83},

where B = (Bo,B1,B2) " correspond to the regression coefficients associated with the
parametric component of the model, and f(+) is a smooth surface. Table 1 lists the MPLE of
B. The respective asymptotic standard errors are presented in parentheses.
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Table 1. MPLEs with their standard errors (within parenthesis), AIC and Rz(Adj).

Model
Parameters Gaussian Linear TPS-GLM
Bo 1.1921 (0.672) 0.497 (0.751)
B1 0.0116 (0.0128) 0.032 (0.015)
B2 0.0339 (0.0079) 0.030 (0.008)
AIC 149.99 139.9992
R?(Adj) 0.168 0.315

The value of the smoothing parameter A was selected in such a way that the AIC
criterion was minimized. The adjusted determinant coefficients (R? (Adj)) are evaluated
for assessing the goodness-of-fit of the two models. It is important to note that our model
have a lower AIC and an higher R?(Adj), compared to the multiple regression model that
does not consider the spatial effect. Figure 2a shows the QQ-plot for the standardized
residuals, whose adjustment to the Gaussian TPS-GLM seems to be reasonable. However,
the presence of some atypical observations is observed in one of the tails of the distribution.
Figure 2b displays the scatter plot between the observed values, Soya, and their estimated

values, Soya. Considering the trend of the points, we conclude that the estimates are good,
since they generate consistent adjusted values of the response variable.

@ (0

2.0

15

1.0

051

Empirical Quantiles
0.5

0.0

-0.5

-1.0

Norm Quantiles

Figure 2. QQ-plots of the standardized residuals for the TPS-GLM with its confidence interval
(dashed lines) (a) and scatterplot between Soya and Soya (b), under model fitted to Wypych data.

5.1.2. Diagnostic Analysis

To identify potentially influential observations on the MPLE under the fitted Gaussian
TPS-GLM for the Wypych data, we present several index plots of B; = B, () for y = B, 4.
Figure 3 shows the index plot B; for the case-weight perturbation scheme under the fitted
model. Figure 3a reveal that the observations #6, #61, #69 and #71 are more influential on
B, whereas the observations #6, #66, #61 and #38 are more influential on J; see Figure 3b.
When we perturb the response variable additively, we have that the observations #80, #32,
#75 and #88 are more influential on ,B see Figure 4a. Regarding 3, observations #3, #42 and
#80 appear as slightly influential as seem in Figure 4b.
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Figure 3. Index plots of B; for assessing local influence on ﬁ (a) and 5 (b), considering case-weight
perturbation.
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Figure 4. Index plots of B; for assessing local influence on § (a) and J (b), considering response

variable additive perturbation.

We conclude that the maximum penalized likelihood estimates (MPLE) of the regres-
sion coefficients and the smooth surface exhibit sensitivity to modifications made to the
data or the model. This analysis has shown that observations identified as influential for the
parametric component do not necessarily exert influence on the non-parametric component,
and vice versa. For instance, under the case-weight perturbation scheme, observations
#69 and #71 were detected as influential for the parametric component, but not for the
nonparametric component.

5.1.3. Confirmatory Analysis

Table 2 displays the relative changes experienced by each element in the vector of
regression coefficients. In this analysis, we only consider the three most influential observa-
tions under the case-weight perturbation scheme. As can be seen in this table, observations
#6, #61 and #69 generate significant changes in the estimates. Still, no relevant inferential
changes were noted. However, the AIC and &R?(Adj) present some differences once the
above observations are dropped.
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Table 2. Relative changes (RCs) (in %) in the MPL estimates of §; in cases-weight perturbation
under the TPS-GLM. The last two columns indicate the AIC and R?(Adj) of the model with dropped
observations.

Parameters and Relatives Changes

Dropped Obs. By B1 B2 RCg, RCg, RCg, AIC R2%(Adj)

6 1.696 0.009 0.023 122.59 63.93 27.52 125.50 0.267

61 0.987 0.022 0.027 29.47 15.19 12.23 131.96 0.356

69 0.432 0.035 0.028 43.33 35.04 10.85 138.07 0.326

6-61 1.996 0.002 0.022 161.89 92.06 27.65 116.20 0.218

6-69 1.481 0.014 0.023 94.35 45.61 26.09 124.52 0.268
61-69 0.704 0.029 0.028 7.59 9.58 10.93 131.03 0.358
6-61-69 1.868 0.005 0.023 145.16 81.03 26.90 115.83 0.310

On the other hand, Table 3 shows the relative changes in the vector of regression
coefficients under the additive perturbation scheme of the response variable. Here, we
consider the four most influential observations. As can be seen in the table, observations
#32, #69, #75 and #80 generate important relative changes in the estimates of the parametric
component of the model. However, no significant inferential changes were observed. About
the AIC and &R?(Adj), there are not evident differences.

Table 3. Relative changes (RCs) (in %) in the MPL estimates of ; in response variable perturbation
under the TPS-GLM. The last two columns indicate the AIC and R?(Adj) of the model with dropped
observations.

Parameters and Relatives Changes

Dropped Obs. ﬂo ﬁ1 ﬁz Rcﬁo RCﬁl RC‘B2 AIC Rz(Adj)
32 0.701 0.027 0.029 8.000 4.62 523 138.73 0.319
69 0.432 0.034 0.027 43.33 29.0 12.22 138.07 0.326
75 0.760 0.028 0.027 0.24 6.22 12.65 139.44 0.307
80 0.699 0.028 0.029 8.21 7.86 8.16 139.01 0.311
32-69 0.382 0.035 0.030 49.87 32.82 4.00 136.81 0.33
32-75 0.700 0.027 0.030 8.17 4.12 4.90 138.11 0.319
32-80 0.621 0.028 0.031 18.49 6.34 0.16 137.63 0.316
69-75 0.430 0.035 0.028 43.61 34.96 10.96 137.53 0.318
69-80 0.333 0.036 0.029 56.33 38.32 5.39 136.99 0.322
75-80 0.695 0.028 0.029 8.85 7.25 7.90 138.39 0.302
32-69-75 0.381 0.035 0.030 49.98 32.33 3.74 136.22 0.322
32-75-80 0.621 0.028 0.031 18.54 5.23 0.96 136.93 0.308
69-75-80 0.333 0.036 0.029 56.26 37.40 5.09 136.42 0.314
32-69-75-80 0.271 0.035 0.032 64.47 30.15 3.22 134.96 0.320

5.2. Ozone Concentration Data

For our analysis, we utilize data from a study examining the relationship between
atmospheric ozone concentration (O3) and various meteorological variables in the Los
Angeles Basin for a sample of 330 days in 1976. The data were initially presented by
Breiman and Friedman [40], and are available for download from various public reposito-
ries. Although the dataset includes several variables, in this application, we will consider
only three explanatory variables, which are detailed in the following.

e O3: daily maximum one-hour average ozone concentration in Upland, CA, measured
in parts per million (ppm).
¢  Temp: Sandburg Air Base temperature, in Celsius.
*  Vis: visibility, in miles.
¢ Day: calendar day.
Figure 5 contains the dispersion graphs between the outcome variable (log(O3)) and
each one of the explanatory variables Temp, Vis and Day.
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Figure 5. 3D plots between the response variable and the explanatory variables: logarithm of ozone
data versus temperature and day variables (a), and logarithm of ozone data versus visibility and day
variables (b).

Figure 5a shows a curved surface in the relationship between the variable log(O3)
and the joint effect of the explanatory variables Temp and Day, whereas the relationship
between log(O3) and the joint effect of the explanatory variable Vis and Day shows less
curve; see Figure 5b. This graphical analysis recommends the inclusion in the model of a
nonparametric component, specifically a surface, that can explain the relationship between
log(O3) and the combined effect of the explanatory variables Temp and Day. For simplicity,
in this work, we will include the effect of the explanatory variable Vis in a linear form. To
begin our analysis, we are going to consider the fit of a GLM assuming that the variable of
interest O3 is Poisson distributed with mean y; and logarithmic link function. Different
structures of the linear predictor for the explanatory variables Vis, Temp, and Day will be
considered (see Table 4).

Table 4. Four structures of the linear predictor for the explanatory variables Vis, Temp, and Day,
assuming that the response variable log(O3) follows a POISSON(y;) distribution.

Model g(ui) = log(pi)
I Bo + B1Vis; + B2 Temp; + BsDay;
I Bo + B1Vis; + B Temp; + f(Day;)
11 Bo + B1Vis; + BoTemp; + BsDay; + f4Temp; x Day;
v Bo + B1Vis; + f(Temp;, Day;)

For Model I, we consider only the individual effects of the explanatory variables
Vis, Temp and Day. Note that all these effects were incorporated in a linear form in
the systematic component of the model. For Model II, we consider the inclusion of a
nonparametric term to model the nonlinear effects of the explanatory variable Day; see
Ibacache et al. [41]. Model III considers a systematic component that contains the individual
effects of the explanatory variables Vis, Temp and Day, in addition to the incorporation of
the interaction effect between the explanatory variables Temp and Day. Here, the interaction
effect is introduced linearly in the model. Model IV corresponds to a TPS-GLM where the
joint effect of the Temp and Day explanatory variables is included nonlinearly by using
smooth surface. Table 5 contains the ML and MPL estimates associated with the parametric
component for the four fitted models.

It is important to note that both the individual and interaction effects are statistically
significant, as the corresponding p-values (not shown here) are less than 0.05. Additionally,
the estimates of By are similar across the four models, whereas the estimates of 1 vary
considerably, particularly in Model IV. Concerning the associated standard errors, all
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the estimators exhibit small values. The last two rows of Table 5 display the Akaike
Information Criterion (AIC) and R? values, respectively. It is evident that the TPS-GLM,
with AIC(Af) = 1777.705, provides the best fit to the Ozone data, followed by Model II
with an AIC of 1806.837. This is corroborated by the QQ-plots in Figure 6, specifically
Figure 6b,d. Furthermore, the R? value associated with our model is higher than those
of Models I, II, and III. The smoothing parameter A f was chosen such that the effective
degrees of freedom were approximately 7. Figure 7 illustrates the 3D plot of the adjusted
log(O3) against the explanatory variables Temp and Day, showing an adequate fit of the
TPS-GLM.

Table 5. AIC, R?(Adj), ML and MPL estimates for all four fitted models to the Ozone data.

Parameters | II III v

Bo 0.577 (0.104) 0.478 (0.142) 0.787 (0.198) 2.507 (0.040)
B1 —0.002 (0.0003) —0.002 (0.0003) —0.002 (0.0003) —0.002 (0.0003)
B2 0.035 (0.001) 0.033 (0.002) 0.032 (0.003) -

B3 —0.001 (0.002) - —0.002 (0.001) -

Ba - - 0.00002 (0.00002) -

AIC 1887.312 1806.837 1887.757 1789.92
R?(Adj) 0.673 0.715 0.670 0.728
(a) (b)
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Figure 6. QQ-plot of the standardized residuals for the models described in Table 5: Model I (a),
Model II (b), Model III (¢) and Model IV (d).
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Figure 7. 3D plot between log(y) and explanatory variables Temp and Day.

5.2.1. Diagnostic Analysis

To identify potentially influential observations on the MPL estimators under the fitted
TPS-GLM for the Ozone data, we present some index plots of B; = B,,(7y), for y = B, 4.
Figure 8 shows the index plot of B; for the case-weight perturbation scheme under the fitted
model. In Figure 8a,b, note that observations #167, #220, #168, and #177 are more influential
on B and &, respectively. By perturbing the response variable additively, it becomes clear
that observations #125, #175, #218, #219, and #221 are more influential on B and 3; see
Figure 9a and 9b, respectively.

05 @ 0 o

06f
167 #20
041 167 220 ’

168177
168177
02f

021

(X
. ; P IR A
0 LTS N TR S R N 0

—_ TSR IO A .
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Index Index

Figure 8. Index plots of B; for assessing local influence on B (a)and 3 (b), considering case-weight
perturbation under model fitted to Ozone data.

From the local influence analysis, we conclude that the MPLE of the regression co-
efficients and the smooth surface are sensitive to perturbations in the data or the model.
Furthermore, this analysis revealed that observations identified as influential for the para-
metric component are also influential for the nonparametric component, and vice versa. For
example, under the case-weight perturbation scheme, observations #167, #220, #168, and
#177 were found to be influential for both the parametric and nonparametric components.
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Figure 9. Index plots of B; for assessing local influence on ﬁ (a) and ) (b), considering response
variable additive perturbation.

5.2.2. Confirmatory Analysis

To investigate the impact on model inference when influential potentially observations
detected in the diagnostic analysis are removed, we present the relative changes (RCs)
in the MPL estimate of g; for j € {1,2} after removing the influential observations from

the dataset (%). The RC is defined as RCz = %

estimate of §, with § = i after the corresponding observation(s) are removed according
to set I. Table 6 presents the RCs in the regression coefficient estimates after removing the
observations identified as potentially influential for the parametric component of the model.

x 100%, where ¢, (1) denotes the MPL

Table 6. Relative changes (RCs) (in %) in the MPL estimates of 8; under the TPS-GLM. The last two
columns indicate the AIC and R? (Adj) of the model with dropped observations.

Dropped Obs. By B1 RCg, RCg, AIC R%(Adj)
167 2513 —0.002 0.231 0.378 1777.07 0.737
175 2.506 —0.002 0.051 1.673 1784.58 0.724
219 2.540 —0.002 1.334 7.105 1784.44 0.725
220 2.507 —0.002 0.012 0.263 1777.87 0.728
167-175 2,511 —0.002 0.169 1.052 1771.76 0.734
167-219 2.538 —0.002 1.242 6.853 1771.58 0.735
167-220 2511 —0.002 0.179 0.884 1765.08 0.738
175-219 2.538 —0.002 1.248 7.368 1779.10 0.722
175-220 2.504 —0.002 0.104 0.684 1772.55 0.725
219-220 2.507 —0.002 0.007 0.289 1772.807 0.725
167-175-219 2,536 —0.002 1.155 7.136 1766.269 0.732
167-175-220  2.512 —0.002 0.215 3.415 1759.79 0.735
175-219-220  2.504 —0.002 0.098 0.678 1767.484 0.721
167-175-219-220  2.534 —0.002 1.072 7.800 1754.761 0.731

6. Concluding Remarks and Future Research

In this work, we study some aspects of the Thin-Plate Spline Generalized Linear Mod-
els. Specifically, we derive an iterative process to estimate the parameters and the Fisher
information matrix to approximate, through its inverse, the variance—covariance matrix
of the estimators. In addition, we extended the local influence method, obtaining closed
expressions for the Hessian and perturbation matrices under cases-weight perturbation
and additive perturbation of the response variable. We performed a statistical data analysis
with two real data sets of the agronomic and environmental area. The study showed the
advantage of incorporating a smooth surface to model the joint effect of a pair of explana-
tory variables or the spatial effect determined by the coordinates. In both applications,
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it was observed that the adjusted values of the response variable were consistent. In ad-
dition, it was observed that our model presented a better fit to model the soybean yield
and ozone concentration data, compared to some classic parametric and semiparametric
models, respectively. In our analysis, it was found that those observations detected as
potentially influential generated important changes in the estimates, but not significant
inferential changes. In addition, our study confirms the need to develop the local influence
method to evaluate the sensitivity of maximum penalized likelihood estimators and thus
determine those observations that can exert an excessive influence on both the parametric
and non-parametric components, or on both.

As future work, we propose to incorporate a correlation component in the model
and extend the local influence technique to other perturbation schemes, mainly on the
non-parametric component of the model.
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