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Abstract: In this paper, we study the complete quadrangle. We started this investigation in a few
of our previous papers. In those papers and here, the rectangular coordinates are used to enable
us to prove the properties of the rich geometry of a quadrangle using the same method. Now, we
are focused on the isoptic point of the complete quadrangle ABCD, which is the inverse point to
A′, B′, C′, and D′ with respect to circumscribed circles of the triangles BCD, ACD, ABD, and ABC,
respectively, where A′, B′, C′, and D′ are isogonal points to A, B, C, and D with respect to these
triangles. In studying the properties of the quadrangle regarding its isoptic point, some new results
are obtained as well.
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1. Introduction

The geometry of a complete quadrangle is very rich and interesting, but all of its
properties are proved in different ways. Our aim was to find a simple analytical tool with
which it is possible to prove all of its properties using the same method. We have published
several papers in this regard [1–3], where we present a unique method using rectangular
coordinates that enables us to prove several properties of the complete quadrangle in a
uniform way. This is the fourth work in the series of such papers, and it considers the
isoptic point of the complete quadrangle. In the second section, we provide an overview
of the previously mentioned method and important points and circles, which were all
introduced in previous papers [1–3]. In the third section, we present numerous results on
the isoptic point of the complete quadrangle proved using our new method. We end this
paper with a Discussion section, where we distinguish our new original results and present
the plan for our future work.

2. Materials and Methods

In [1], we introduced the choice of a suitable coordinate system and placed a complete
quadrangle in such a system. First, we will mention important definitions and statements
proved in [1,2].

The complete quadrangle ABCD is formed by four vertices, A, B, C, and D, and six
lines, AB, AC, AD, BC, BD, and CD, representing the sides of the quadrangle. The opposite
sides with no common vertex are AB, CD, AC, BD, and AD, BC. In all four papers, we set
ABCD in rectangular coordinates using four parameters: a, b, c, d ̸= 0. In [1], we proved
the following important fact: each quadrangle with no perpendicular opposite sides has a
circumscribed rectangular hyperbola.

In the mentioned coordinate system, we obtain the following equation for this circum-
scribed hyperbola H:

xy = 1. (1)
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The center of this hyperbola is the point O, and we call it the center of the quadrangle
ABCD as well. The asymptotes of H are the axes of the quadrangle ABCD.

The vertices of ABCD are

A =

(
a,

1
a

)
, B =

(
b,

1
b

)
, C =

(
c,

1
c

)
, D =

(
d,

1
d

)
, (2)

and the sides are

AB . . . x + aby = a + b, AC . . . x + acy = a + c, AD . . . x + ady = a + d
BC . . . x + bcy = b + c, BD . . . x + bdy = b + d, CD . . . x + cdy = c + d.

(3)

The elementary symmetric functions in four variables—a, b, c, and d—are very useful
in our study [1]:

s = a + b + c + d, q = ab + ac + ad + bc + bd + cd,
r = abc + abd + acd + bcd, p = abcd.

(4)

There are many important points, lines, and circles related to the complete quadrangle,
as introduced and proved in [1,2]. Here, we point out some of them that are important for
further study in this paper.

The Euler’s circles of the triangles BCD, ACD, ABD, and ABC are as follows:

Na . . . 2bcd
(

x2 + y2)+ [1 − bcd(b + c + d)]x −
(
b2c2d2 − bc − bd − cd

)
y = 0,

Nb . . . 2acd
(

x2 + y2)+ [1 − abc(a + c + d)]x −
(
a2c2d2 − ac − ad − cd

)
y = 0,

Nc . . . 2abd
(

x2 + y2)+ [1 − abd(a + b + d)]x −
(
a2b2d2 − ab − ad − bd

)
y = 0,

Nd . . . 2abc
(

x2 + y2)+ [1 − abc(a + b + c)]x −
(
a2b2c2 − ab − ac − bc

)
y = 0.

(5)

The centers of these circles are

Na =
(

1
4

(
b + c + d − 1

bcd

)
, 1

4

(
1
b +

1
c +

1
d − bcd

))
,

Nb =
(

1
4

(
a + c + d − 1

acd

)
, 1

4

(
1
a +

1
c +

1
d − acd

))
,

Nc =
(

1
4

(
a + b + d − 1

abd

)
, 1

4

(
1
a +

1
b +

1
d − abd

))
,

Nd =
(

1
4

(
a + b + c − 1

abc

)
, 1

4

(
1
a +

1
b +

1
c − abc

))
.

(6)

Denoting the orthocenters of the triangles BCD, ACD, ABD, and ABC by Ha, Hb, Hc,
and Hd, respectively, we obtain their forms:

Ha =
(
− 1

bcd ,−bcd
)

, Hb =
(
− 1

acd ,−acd
)

, Hc =
(
− 1

abd ,−abd
)

, Hd =
(
− 1

abc ,−abc
)

. (7)

The circumscribed circles of the triangles ABC, ABD, ACD, and BCD are given by

Ka . . . bcd
(
x2 + y2)− [1 + bcd(b + c + d)]x −

(
b2c2d2 + bc + bd + cd

)
y

+b + c + d + bcd(bc + bd + cd) = 0,
Kb . . . acd

(
x2 + y2)− [1 + acd(a + c + d)]x −

(
a2c2d2 + ac + ad + cd

)
y

+a + c + d + acd(ac + ad + cd) = 0,
Kc . . . abd

(
x2 + y2)− [1 + abd(a + b + c)]x −

(
a2b2d2 + ab + ad + bd

)
y

+a + b + d ++abd(ab + ad + bd) = 0,
Kd . . . abc

(
x2 + y2)− [1 + abc(a + b + c)]x −

(
a2b2c2 + ab + ac + bc

)
y

+a + b + c + abc(ab + ac + bc) = 0

(8)

with the centers
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Oa =
(

1
2

(
b + c + d + 1

bcd

)
, 1

2

(
1
b +

1
c +

1
d + bcd

))
,

Ob =
(

1
2

(
a + c + d + 1

acd

)
, 1

2

(
1
a +

1
c +

1
d + acd

))
,

Oc =
(

1
2

(
a + b + d + 1

abc

)
, 1

2

(
1
a +

1
b +

1
d + abd

))
,

Od =
(

1
2

(
a + b + c + 1

abc

)
, 1

2

(
1
a +

1
b +

1
c + abc

)) (9)

and the radii

ρa =
1
2

∣∣∣∣ a
p

∣∣∣∣√λ′µ′ν′, ρb =
1
2

∣∣∣∣ b
p

∣∣∣∣√λ′µν, ρc =
1
2

∣∣∣∣ c
p

∣∣∣∣√λµ′ν, ρd =
1
2

∣∣∣∣ d
p

∣∣∣∣√λµν′, (10)

respectively, and we use the following abbreviations

λ = a2b2 + 1, µ = a2c2 + 1, ν = a2d2 + 1,
λ′ = c2d2 + 1, µ′ = b2d2 + 1, ν′ = b2c2 + 1.

(11)

The diagonal triangle UVW of the quadrangle ABCD is given by the vertices

U = AB ∩ CD =

(
ab(c + d)− cd(a + b)

ab − cd
,

a + b − c − d
ab − cd

)
,

V = AC ∩ BD =

(
ac(b + d)− bd(a + c)

ac − bd
,

a + c − b − d
ac − bd

)
, (12)

W = AD ∩ BC =

(
ad(b + c)− bc(a + d)

ad − bc
,

a + d − b − c
ad − bc

)
,

and the sides

U = VW . . . (a + b − c − d)x + [ab(c + d)− cd(a + b)]y = 2(ab − cd),

V = UW . . . (a + c − b − d)x + [ac(b + d)− bd(a + c)]y = 2(ac − bd), (13)

W = UV . . . (a + d − b − c)x + [ad(b + c)− bc(a + d)]y = 2(ad − bc).

The vertices can be expressed as

U =

(
u′

u
,

u′′

u

)
, V =

(
v′

v
,

v′′

v

)
, W =

(
w′

w
,

w′′

w

)
,

where u, v, w, u′, v′, w′, u′′, v′′, and w′′ stand for

u = ab − cd, u′ = ab(c + d)− cd(a + b), u′′ = a + b − c − d,

v = ac − bd, v′ = ac(b + d)− bd(a + c), v′′ = a + c − b − d, (14)

w = ad − bc, w′ = ad(b + c)− bc(a + d), w′′ = a + d − b − c.

The orthocenter HUVW of the diagonal triangle UVW is of the form

HUVW =

(
u′vw + uv′w + uvw′ + u′′v′′w′′

2uvw
,

u′′vw + uv′′w + uvw′′ + u′v′w′

2uw

)
. (15)

The line

Wo . . . (u′′vw + uv′′w + uvw′′ − u′v′w′)x + (u′vw + uv′w + uvw′ − u′′v′′w′′)y = 4uvw (16)

is Wallace’s line of the center O with respect to the triangle UVW.
The points A′, B′, C′, and D′ stand for the points isogonal to A, B, C, and D with respect

to the triangles BCD, ACD, ABD, and ABC, respectively. They are given by
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A′ =
(

2a−s
p−1 , r−2bcd

p−1

)
, B′ =

(
2b−s
p−1 , r−2acd

p−1

)
,

C′ =
(

2c−s
p−1 , r−2abd

p−1

)
, D′ =

(
2d−s
p−1 , r−2abc

p−1

)
.

(17)

Moreover, the points A, B, C, and D are centers of the circles B′C′D′, A′C′B′, A′B′D′,
and A′C′D′. And the following relations are also valid:

AB · CD =
∣∣∣ (a−b)(c−d)

p

∣∣∣√λλ′, AC · BD =
∣∣∣ (a−c)(b−d)

p

∣∣∣√µµ′,

AD · BC =
∣∣∣ (a−d)(b−c)

p

∣∣∣√νν′
(18)

where λ, λ′, µ, µ′, ν, and ν′ are given in (11). The formula for two lines L and L′ with slopes
m
n and m′

n′ and their oriented angle ∠(L,L′),

tg∠(L,L′) =
m′n − mn′

mm′ + nn′ . (19)

is also of our interest.

3. Results

The line given by

(ab + ac + bc − a2b2c2)x + (a2bc + ab2c + abc2 − 1)y = a2b + ab2 + a2c + ac2 + b2c + bc2 + 2abc

is incident to the points Od and D′ given in (9) and (17); so, it is the line OdD′. However,
the line passes through the point

T =

(
s

p + 1
,

r
p + 1

)
(20)

as well. By analogy, the point T is incident to lines Oa A′, ObB′, and OcC′ too. We will call
this point an isoptic point of the quadrangle ABCD. The property described in Theorem 9
justifies this name.

Two points, (x, y) and (x′, y′), are conjugate points with respect to the circle Kd in (8)
if the equality

2abc(xx′ + yy′)− [1 + abc(a + b + c)](x + x′)− (a2b2c2 + ab + ac + bc)(y + y′)

+2[a + b + c + abc(ab + ac + bc)] = 0

is valid.
For points D′ and T from (17) and (20), we obtain

2abc(p2 − 1)(xx′ + yy′) = 2abc[s(2d − s) + r(r − 2abc)] = 2abc(r2 − s2 + 2ds − 2abcr),

(p2 − 1)(x + x′) = [(p + 1)(2d − s) + (p − 1)s] = 2(dp + d − s),

(p2 − 1)(y + y′) = [(p + 1)(r − 2abc) + (p − 1)r] = 2(rp − abcp − abc),

and as the equality

abc(r2 − s2 + 2ds − 2abcr)− [1 + abc(a + b + c)](dp + d − s)

−(a2b2c2 + ab + ac + bc)(rp − abcp − abc) + (p2 − 1)[a + b + c + abc(ab + ac + bc)] = 0

is fulfilled, these points are conjugate points with respect to the circle Kd. They are inverse
points with respect to this circle as well because they are collinear to its center Od. Hence,
the following theorem, from [4], is valid:
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Theorem 1. Let ABCD be a complete quadrangle with the isoptic point T and let the A′, B′, C′,
and D′ points be isogonal to the points A, B, C, and D with respect to the triangles BCD, ACD,
ABD, and ABC, respectively. The point T is the inverse point to A′, B′, C′, and D′ with respect to
the circumcircles of BCD, ACD, ABD, and ABC, respectively.

In [4], the isogonal point T is called the tangential point of the quadrangle ABCD.
The perpendicular from the point T to the line AB has the equation abx − y = a+b

p+1

because abs − r = (a + b)u is valid. This line is incident to the point TAB = ( a+b
p+1 , cd a+b

p+1 ),
which is incident as well to the line AB with equation x + aby = a + b. Hence, the point
TAB is the foot of the perpendicular from T to the line AB.

Let us study the point

OD =

(
1

2(p + 1)
(a + b + c − abcd2),

1
2d(p + 1)

(abd2 + acd2 + bcd2 − 1)
)

.

The points TAB and OD have the differences of coordinates 1
2d(p+1) (ad + bd − cd +

abcd3) and 1
2d(p+1) (acd2 + bcd2 − abd2 + 1). As (ad + bd − cd + abcd3)2 + (acd2 + bcd2 −

abd2 + 1)2 = (a2d2 + 1)(b2d2 + 1)(c2d2 + 1) is valid, then 4d2(p+ 1)2ODT2
AB = λ′µ′ν holds.

Based on the symmetry of this result on a, b, and c, it follows that the point OD is the center
of the pedal circle of the point T with respect to the triangle ABC and that this circle
has the radius 1

|2d(p+1)|
√

λ′µ′ν. Similarly, the pedal circles of the point T with respect to

the triangles ABD, ACD, and BCD have the radii 1
|2c(p+1)|

√
λ′µν′, 1

|2b(p+1)|
√

λµ′ν′, and
1

|2a(p+1)|
√

λµν, respectively. Comparing with (10), we can see that these radii are inversely
proportional to the radii of the circles ABC, ABD, ACD, and BCD. However, the equality
(ad + bd + cd − abcd3)2 + (acd2 + bcd2 + abd2 − 1)2 = (a2d2 + 1)(b2d2 + 1)(c2d2 + 1), i.e.,
4d2(p + 1)2ODO2 = λµ′ν′, holds, which leads to the following theorem.

Theorem 2. Let ABCD be a complete quadrangle with the center O and isoptic point T. The pedal
circles of the point T with respect the triangles ABC, ABD, ACD, and BCD, respectively, are
incident to the center O.

This is our an original statement; see the visualization of the theorem in Figure 1.

Figure 1. Visualization of Theorem 2.
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Let T′
AB, T′

AC, T′
AD, T′

BC, T′
BD, and T′

CD be the points symmetric to T with respect to the
lines AB, AC, AD, BC, BD, and CD. Then, we have, e.g., the equality T′

AB = 2TAB − T, out
of which the first equality from the two follows:

T′
AB =

(
a + b − c − d

p + 1
,

cd(a + b)− ab(c + d)
p + 1

)
, T′

CD =

(
c + d − a − b

p + 1
,

ab(c + d)− cd(a + b)
p + 1

)
The second equality follows from the first by substituting pairs a, b and c, d. We can

write it better in the form

T′
AB =

(
u′′

p + 1
,− u′

p + 1

)
, T′

CD =

(
− u′′

p + 1
,

u′

p + 1

)
.

Analogously, we have

T′
AC =

(
v′′

p + 1
,− v′

p + 1

)
, T′

BD =

(
− v′′

p + 1
,

v′

p + 1

)
,

T′
AD =

(
w′′

p + 1
,− w′

p + 1

)
, T′

BC =

(
− w′′

p + 1
,

w′

p + 1

)
,

where u′, u′′, v′, v′′, w′, and w′′ are given in (14). We have proved the next result:

Theorem 3. Let ABCD be a complete quadrangle with the center O and isoptic point T. Points
symmetric to T with respect to the sides of ABCD form a hexagon symmetric with respect to the
center O, and the feet of the perpendiculars from T to the sides of ABCD form a hexagon symmetric
with respect to the midpoint of T and O.

The result was reached in [4,5] and is shown in Figure 2.

Figure 2. Hexagons from Theorem 3.

The line OU has the slope u′′
u′ , and the line CD has the slope − 1

cd , so due to (19),

tg∠(UO, CD) =
u′ + cdu′′

u′′ − cdu′
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is valid. The line AB has the slope −1
ab , and the line UT has the slope ru−(p+1)u′′

su−(p+1)u′ , and due to
the same formula,

tg∠(AB, UT) =
abru − ab(p + 1)u′′ + su − (p + 1)u′

absu − ab(p + 1)u′ − ru + (p + 1)u′′ (21)

holds. The numerator in (21), because of valid equality abu′′ + u′ − (a + b)u = 0, is equal to

abru + su − (p + 1)(a + b)u = ab[ab(c + d) + cd(a + b)]u − p(a + b)u + (s − a − b)u =

= a2b2(c + d)u + (c + d)u = (a2b2 + 1)(c + d)u = (a2 + b2 + 1)(u′ + cdu′′)

while because of

absu − ru = [ab(a + b + c + d)− ab(c + d)− cd(a + b)]u = (ab − cd)(a + b)u =

(ab − cd)(a + b)u = (a + b)u2 = (u′ + abu′′)u

the denominator is equal to

(p+ 1+ abu)u′′− (abp+ ab− u)u′ = (a2b2 + 1)u′′− (a2b2 + 1)cdu′ = (a2b2 + 1)(u′′− cdu′),

Thus, finally, we obtain

tg∠(AB, UT) =
u′ + cdu′′

u′′ − cdu′ = tg∠(UO, CD).

We have just proved the following statement.

Theorem 4. Let ABCD be a complete quadrangle with the center O and isoptic point T. The lines
connecting O and T with a diagonal point of the quadrangle ABCD are isogonal with respect to the
pair of its opposite sides intersecting in this diagonal point.

Lines TA and TB have slopes

ar − p − 1
a(s − a − ap)

,
br − p − 1

b(s − b − bp)
,

so due to (19), we obtain

tg∠ATB =
a(s − a − ap)(br − p − 1)− b(s − b − bp)(ar − p − 1)
(ar − p − 1)(br − p − 1) + ab(s − a − ap)(s − b − bp)

.

For the numerator and denominator, we obtain the forms

(b − a)(c + d)(a2b2 + 1)(p + 1) and (a2b2 + 1)[(p + 1)2 + ab(c2 + d2)− cd(a2 + b2)],

Hence,

tg∠ATB =
(b − a)(c + d)(p + 1)

(p + 1)2 + ab(c2 + d2)− cd(a2 + b2)
. (22)

Lines AC and BC have the slopes − 1
ac and − 1

bc , so due to (19), we obtain the first out
of the two analogous equalities:

tg∠ACB =
(b − a)c
abc2 + 1

, tg∠ADB =
(b − a)d
abd2 + 1

. (23)
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out of which

tg(∠ACB +∠ADB) =
tg∠ACB + tg∠ADB

1 − tg∠ACB · tg∠ADB

=
(b − a)(c + d)(p + 1)

(p + 1)2 + ab(c2 + d2)− cd(a2 + b2)
= tg∠ATB

easily follows. Hence, we have proved the first of six analogous statements.

Theorem 5. Let ABCD be a complete quadrangle and T its isoptic point. The following statements
are valid:

tg∠ATB = tg∠ACB + tg∠ADB, tg∠ATC = tg∠ABC + tg∠ADC,

tg∠ATD = tg∠ABD + tg∠ACD, tg∠BTC = tg∠BAC + tg∠BDC,

tg∠BTD = tg∠BAD + tg∠BCD, tg∠CTD = tg∠CAD + tg∠CBD

The same result can be found in [4,6], where the result is attributed to T. McHugh, and
in [7]. See Figure 2.

Out of (17) and (20), for the slopes of lines TA′ and TB′, we obtain expressions

bc + bd + cd − b2c2d2

1 − bcd(b + c + d)
,

ac + ad + cd − a2c2d2

1 − acd(a + c + d)

so due to (19),

tg∠A′TB′ =

(ac + ad + cd − a2c2d2)[1 − bcd(b + c + d)]− (bc + bd + cd − b2c2d2)[1 − acd(a + c + d)]
(bc + bd + cd − b2c2d2)(ac + ad + cd − a2c2d2) + [1 − bcd(b + c + d)][1 − acd(a + c + d)]

is obtained. For the numerator and denominator, we obtain forms

(a − b)(c + d)(c2d2 + 1)(p + 1) and (c2d2 + 1)[(p + 1)2 + ab(c2 + d2)− cd(a2 + b2)],

so because of (22),

tg∠A′TB′ =
(a − b)(c + d)(p + 1)

(p + 1)2 + ab(c2 + d2)− cd(a2 + b2)
= −tg∠ATB.

Hence, we have proved the following.

Theorem 6. Let ABCD be a complete quadrangle with the isoptic point T and A′, B′, C′, and D′

points isogonal to the points A, B, C, and D with respect to the triangles BCD, ACD, ABD, and
ABC, respectively. The pairs of lines TA, TA′; TB, TB′; TC, TC′; and TD, TD′ have the same
bisectors. Lines TA, TB, TC, and TD have the same cross ratio as the lines TA′, TB′, TC′, and
TD′.

The first statement from the previous theorem was reached in [8,9], and the second,
in [10].

Let D be a point on the hyperbola H diametrically opposite to the point D, i.e.,
D = (−d,− 1

d ). Then, the slope of the line AD is 1
ad . As the line AB has the slope − 1

ab ,
then due to (19), the equality tg∠BAD = ab+ad

a2bd−1 is obtained. As the line AT has the slope
ar−p−1

a(s−ap−a) , and the line AC has the slope − 1
ac , according to (19), we obtain the equality

tg∠TAC =
ab + ad
a2bd − 1

= tg∠BAD.
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Analogous equalities are valid for points B and C; hence, we have proved the following
theorem.

Theorem 7. Let ABCD be a complete quadrangle with the isoptic point T and circumscribed
hyperbola H. Let A, B, C, and D be points on the hyperbola H diametrically opposite to the points
A, B, C, and D, respectively. The point T is an isogonal point to A, B, C, and D with respect to the
triangles BCD, ACD, ABD, and ABC, respectively.

This result is in [8–12]. There is one more result regarding the fact that an isogonal
image with respect to the triangle of any circumscribed conic is a line.

Theorem 8. Let ABCD be a complete quadrangle and H be its circumscribed hyperbola. The
lines that are isogonal images of H with respect to the triangles BCD, ACD, ABD, and ABC are
intersected at the point T, which is an isogonal point of the points A, B, C, and D with respect to
these triangles.

Specifically, the points A, B, C, and D are incident to H. A previous result can be found
in [10].

For the distance of the point Od from (9) and T from (20), we obtain the equality

4p2(p + 1)2OdT2 = [2sp − p(p + 1)(a + b + c)− (p + 1)d]2 +

+[2rp − (p + 1)(abd + acd + bcd)− p(p + 1)abc]2

and then, after some computing, we also obtain

4p2(p + 1)2OdT2 = (p − 1)2d2(a2b2 + 1)(a2c2 + 1)(b2c2 + 1) = (p − 1)2d2λµν′.

This means that OdT = |p−1|
2|abc(p+1)|

√
λµν′ is valid. Together with (10), the last equality

in the series is obtained:

ρa : OaT = ρb : ObT = ρc : OcT = ρd : OdT =

∣∣∣∣ p + 1
p − 1

∣∣∣∣, (24)

And the rest is valid by analogy. This actually leads to the following theorem.

Theorem 9. Let ABCD be a complete quadrangle and let its isoptic point T lie in the exterior of
the circles BCD, ACD, ABD, and ABC. These circles are seen from T under equal angels.

The result from the previous theorem can be found in [12], where it is attributed to
G.T. Bennett. But also, the same result is in [4,7,11] as well.

The locus of points for which the ratio of distances to the centers of two given circles
is equal to the ratio of the radii of these circles is a circle. This circle is called the circle of
similitude. Let us note the following: if two given circles have the common point, then the
point is incident to their circle of similitude. So, the circle of similitude for the circles Ka
and Kb with the centers Oa and Ob and radii ρa and ρb is the locus of the point P such that
OaP : ObP = ρa : ρb is valid, and this circle is incident to C and D. Out of (24), it follows
that the isoptic point T is incident to this circle of similitude. Hence, we have proved the
following theorem.

Theorem 10. Let ABCD be a complete quadrangle. Its isoptic point T is the common point of the
six circles of similitude of the pairs of the four circumcircles of the triangles ABC, ABD, ACD,
and BCD.

This result can be found in [7,10–12], which is attributed to G.T. Bennett. See this result
in Figure 3 as well.
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Figure 3. The circles of similarity in Theorem 10.

For the point D = (d, 1
d ) and the point T from (20), we obtain

d2(p + 1)2DT2 = [d2(p + 1)− ds]2 + (p + 1 − dr)2,

and after some computing, we also obtain

d2(p + 1)2DT2 = (a2d2 + 1)(b2d2 + 1)(c2d2 + 1) = λ′µ′ν, (25)

i.e., we have the last four analogous equalities:

a2(p + 1)2 AT2 = λµν, b2(p + 1)2BT2 = λµ′ν′,
c2(p + 1)2CT2 = λ′µν′, d2(p + 1)2DT2 = λ′µ′ν.

(26)

Because of 4p2ρd
2 = d2λµν′ in (10), it follows that 4p2(p + 1)2DT2ρd

2 = λµνλ′µ′ν′.
Along with three more analogues equalities, we obtain

ATρa = BTρb = CTρc = DTρd, (27)

and on the other side, from (27), we have

|p|(p + 1)4 AT · BT · CT · DT = λµνλ′µ′ν′. (28)

As (a − b)2c2 + (abc2 + 1)2 = (a2c2 + 1)(b2c2 + 1) = µν′ is valid, then from the first
formula from (23), we easily obtain the first of two analogous equalities,

sin2 ∠ACB =
1

µν′
(a − b)2c2, sin2 ∠ADB =

1
µ′ν

(a − b)2d2, (29)

for the sines of angels under which the side AB of the quadrangle ABCD is seen from
C and D. There are ten more analogous equalities for the remaining five sides of the
quadrangle. From the last two equalities and the last two equalities in (26), the equality
sin2 ∠ACB : sin2 ∠ADB = c2µ′ν : d2µν′ = DT2 : CT2 follows, i.e., we finally have

sin∠ACB : sin∠ADB = DT : CT,

along with five more analogous statements. We can find them in [4].
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For the power πd of the point T with respect to the circle ABC from (8), we obtain

abc(p + 1)2πd = abc(s2 + r2)− [1 + abc(a + b + c)]s(p + 1)

−(a2b2c2 + ab + ac + bc)r(p + 1) + [a + b + c + abc(ab + ac + bc)](p + 1)2,

and then, after some calculations abc(p+ 1)2πd = −d(a2b2 + 1)(a2c2 + 1)(b2c2 + 1) follows,
i.e., the last equality is proved as follows:

p(p + 1)2πa = −a2λ′µ′ν′, p(p + 1)2πb = −b2λ′µν,
p(p + 1)2πc = −c2λµ′ν, p(p + 1)2πd = −d2λµν′,

(30)

where πa, πb, and πc are powers of the point T with respect to the circles BCD, ACD,
and ABD. If p > 0, i.e., the quadrangle ABCD is convex, then these powers of the
point T are negative and the point T lies in the interior of each circle BCD, ACD, ABD,
and ABC, and if p < 0, i.e., one of points A, B, C, and D is placed into the area of the
triangle formed by the remaining three points, then the mentioned powers of the point
T are positive and T is outside of the circles BCD, ACD, ABD, and ABC. Out of (30), it
follows that p2(p + 1)8πaπbπcπd = (λµνλ′µ′ν′)2. Because of (25), we have the equality
p2(p + 1)8 AT2BT2CT2DT2 = (λµνλ′µ′ν′)2, so πaπbπcπd = AT2BT2CT2DT2 is valid. We
have just proved the following theorem.

Theorem 11. Let ABCD be a complete quadrangle and T be its isoptic point. πa, πb, πc, and
πd are denoted powers of the point T with respect to the circumscribed circles of the triangles
BCD, ACD, ABD, and ABC. Then, the following statement is valid"

πaπbπcπd = AT2BT2CT2DT2.

The same result was proved in [4] in another way.
For the square of a distance between T and U, the equality (p + 1)2u2TU2 = (su −

u′ − pu′)2 + (ru − pu′′ − u′′)2 is fulfilled. As

su = (a + b)u + (c + d)u = abu′′ + u′ + cdu′′ + u′ = (ab + cd)u′′ + 2u′,

ru = ab(c + d)u + cd(a + b)u = ab(cdu′′ + u′) + cd(abu′′ + u′) = (ab + cd)u′ + 2pu′′,

then

(p + 1)2u2TU2 = [(ab + cd)u′′ − (p − 1)u′]2 + [(ab + cd)u′ + (p − 1)u′′]2 =

= [(ab + cd)2 + (p − 1)2](u′2 + u′′2) = (a2b2 + 1)(c2d2 + 1)(u′2 + u′′2) = λλ′u2OU2,

So, we reach the first out of three analogous equalities in the next theorem.

Theorem 12. Let ABCD be a complete quadrangle; UVW, its diagonal triangle; and T, the isoptic
point. For the distances TU, TV, and TW, the following equalities are valid:

TU =

√
λλ′

|p + 1|OU, TV =

√
µµ′

|p + 1|OV, TW =

√
νν′

|p + 1|OW

This result was reached in [4] as well.
From the first equality in (10), the equality 4p2ρ2

a = a2λ′µ′ν′ is obtained. Together with the
first equality from (30), it gives πd = − 4p

p+1 ρ2
a. Hence, we have the following theorem.

Theorem 13. Let ABCD be a complete quadrangle and T be its isoptic point. The powers of the
point T with respect to the circumscribed circles BCD, ACD, ABD, and ABC are proportional to
the squares of the radii of these circles. The distances of the point T to each vertex of ABCD are
reversely proportional to the radii of the circumscribed circle passing through the other three vertices.
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The second statement in the previous theorem follows from (27). Both results can be
found in [7].

For points D′ in (17) and T in (20), we obtain

(p2 − 1)2D′T2 = (2d + 2pd − 2ps)2 + (2r − 2abc − 2abcp)2

= 4d2[1 − abc(a + b + c)]2 + (ab + ac + bc − a2b2c2)2

= 4d2(a2b2 + 1)(a2c2 + 1)(b2c2 + 1) = 4d2λµν′,

and together with the last equality from (26), the equality (p + 1)4(p − 1)2DT2D′T2 =
4λµνλ′µ′ν′, i.e., (p + 1)2|p − 1|DT · D′T = 2

√
λµνλ′µ′ν′ is obtained. Along with three

more analogous equalities, we obtain the following theorem.

Theorem 14. Let ABCD be a complete quadrangle; T, its isoptic point; and A′, B′, C′, and D′,
points isogonal to A, B, C, and D with respect to the triangles BCD, ACD, ABD, and ABC. Then,

AT · A′T = BT · B′T = CT · C′T = DT · D′T.

The previous result was proved in [8,9] as well. Together with the first statement in
Theorem 6, our original statement is proved.

Theorem 15. Let ABCD be a complete quadrangle; T, its isoptic point; and A′, B′, C′, and D′,
points isogonal to A, B, C, and D with respect to the triangles BCD, ACD, ABD, and ABC.
The complete quadrangle ABCD is mapped into the complete quadrangle A′B′C′D′ through the
composition of a reflection with respect to the line through T and an inversion with the center in T.

For the points Od in (9) and D′ in (20), we obtain

4p2(p − 1)2D′O2
d = [p(p + 1)s − (p + 1)2d]3 + [(p + 1)2abc − (p + 1)r]2

= (p + 1)2[p(a + b + c)− d]2 + [pabc − (abd + acd + bcd)]2

= (p + 1)2d2[abc(a + b + c)− 1]2 + (a2b2c2 − ab − ac − bc)2

= (p + 1)2d2(a2b2 + 1)(a2c2 + 1)(b2c2 + 1) = (p + 1)2d2λµν′.

Along with already proved equality, 4p2(p+ 1)2OdT2 = (p− 1)2d2λµν′, it follows that
16p4D′O′

d
2OdT2 = d4(λµν′)2. Out of (10), 16p4ρ4

d = d4(λµν′)2 follows, so the following
statement is valid.

Theorem 16. Let ABCD be a complete quadrangle and T be its isoptic point, and let A′, B′, C′,
and D′ be points isogonal to the points A, B, C, and D with respect to the triangles BCD, ACD,
ABD, and ABC. The following equalities are valid:

A′Oa · OaT = ρ2
a, B′Ob · ObT = ρ2

b, C′Oc · OcT = ρ2
c , D′Od · OaT = ρ2

d

where Oa, Ob, Oc, and Od and ρa, ρb, ρc, and ρd stand for the centers and radii of the circumcircles
of BCD, ACD, ABD, and ABC, respectively.

The same result is in [8,9].
The points T and D are isogonal with respect to the triangle ABC. It is well known

from the geometry of a triangle that there is a conic with foci T and D for which the square
β2 of the semi-minor axis β is equal to the product of the distances of these foci to any side
of the triangle. If we take into consideration that the studied conic is an ellipse or hyperbola
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and that we are calculating with oriented distances, then, for the point T from (20), the
point D = (−d,− 1

d ), and the line AB with equation x + aby − a − b = 0, we obtain

±β2 =
1
λ

(
s

p + 1
+ ab

r
p + 1

− a − b
)
(−d − ab

1
d
− a − b)

= − 1
d(p + 1)λ

[s + abr − p(a + b)− a − b](ab + ad + bd + d2)

= − 1
d(p + 1)λ

[c + d + a2b2(c + d) + abcd(a + b)− p(a + b)](a + d)(b + d)

= − 1
d(p + 1)λ

(a2b2 + 1)(c + d)(a + d)(b + d) = − 1
d(p + 1)

(a + d)(b + d)(c + d).

The distance between points T and D is given by

d2(p + 1)2DT2 = (pd + d + s)2d2 + (rd + p + 1)2.

The linear eccentricity γ of the studied conic is 1
2 DT. If α is its semi-major axis, then

α2 = γ ± β2 is valid. Hence, through a little bit of computing,

4d2(p + 1)2α2 = (pd + d + s)2d2 + (rd + p + 1)2 − 4d(p + 1)(a + d)(b + d)(c + d)

= (a2d2 + 1)(b2d2 + 1)(c2d2 + 1) = λ′µ′ν = d2(p + 1)2DT2

follow because of (25). And because of this, 2α = DT, so we have proved the following
theorem.

Theorem 17. Let ABCD be a complete quadrangle and T be its isoptic point. The major axis of the
inscribed conics of the triangles BCD, ACD, ABD, and ABC with one focus in T is equal to the
distance of this focus and the points A, B, C, and D, respectively.

Let us denote the centers of the circles ObOcOd, OaOcOd, OaObOd, and OaObOc by
O′

a, O′
b, O′

c, and O′
d. The points Oc and Od are incident to the bisector of the line segment

AB, so the bisector of the line segment OcOd is parallel to the line AB. Because the line
OcOd has the slope − 1

ab and it is incident to the midpoint of Od and Oc, it is easy to see that
its equation is the first one of the next two:

4px + 4abpy = 4(a + b)p + (a2b2 + 1)(c + d)(p + 1),

4px + 4acpy = 4(a + c)p + (a2c2 + 1)(b + d)(p + 1),

And the second one is the equation of the bisector of the line segment ObOd. From
these two equations, for the coordinates x and y of the point O′

a, we obtain

x =
1

4p
(p + 1)s − a

4p
(p − 1)2, y =

1
4p

(p + 1)r − 1
4ap

(p − 1)2.

Because of this, the point O′
a can be written in the form O′

a = 1
4p (p + 1)2T − 1

4p (p −
1)2 A, so 4pO′

a + (p− 1)2 A = (p+ 1)2T, and furthermore, (p− 1)2(T − A) = −4p(T −O′
a).

Thus, homothety with center T and factor 1
4p (p− 1)2 maps points A, B, C, and D into points

O′
a, O′

b, O′
c, and O′

d, respectively. The following result is proved.

Theorem 18. Let ABCD be a complete quadrangle; T, its isoptic point; Oa, Ob, Oc, and Od,
the centers of the circles BCD, ACD, ABD, and ACD, respectively; and O′

a, O′
b, O′

c, and O′
d,

the centers of circles ObOcOd, OaOcOd, OaObOd, and OaObOc. The quadrangles ABCD and
O′

aO′
bO′

cO′
d are similar.

This result was reached in [4] as well.
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It is easy to check the equalities

2p(a + b + c + 1
abc ) + (p − 1)(d − a − b − c) = (p + 1)(a + b + c + d)

2p( 1
a +

1
b +

1
c + abc + (p − 1)(abd + acd + bcd − abc) = (p + 1)(abc + abd + acd + bcd),

meaning that for the points Od, D′, and T, the equality 4pOd + (p − 1)2D′ = (p + 1)2T is
fulfilled, and therefore, (p − 1)2(T − D′) = −4p(T − Od). Hence, homothety with center
T and factor − 1

4p (p − 1)2 maps the point D′ into the point Od, and by analogy, the points
A′, B′, and C′ are mapped into Oa, Ob, and Oc, respectively. Therefore, the same homothety
maps the quadrangle ABCD into the quadrangle O′

aO′
bO′

cO′
d, and the quadrangle A′B′C′D′

into the quadrangle OaObOcOd. We obtained the isoptic point T of the quadrangle ABCD
as the common point of the connecting lines of the corresponding vertices of quadrangles
A′B′C′D′ and OaObOcOd. As the roles that ABCD has for A′B′C′D′ and the quadrangle
O′

aO′
bO′

cO′
d for the quadrangle OaObOcOd are the same, and as the connecting lines of the

corresponding vertices of quadrangles A′B′C′D′ and OaObOcOd are incident to the point
T, we have proved the following original statement.

Theorem 19. Let ABCD be a complete quadrangle and let A′, B′, C′, and D′ be points isogonal to
the points A, B, C, and D with respect to the triangles BCD, ACD, ABD, and ABC. The complete
quadrangle ABCD and the complete quadrangle A′B′C′D′ have the same isoptic point.

Quadrangles ABCD and OaObOcOd have the same mutual relationship as well as
relation to the point T as the quadrangles A′B′C′D′ and ABCD. So, as the point T is the
inverse point to the points A′, B′, C′, and D′ with respect to the circles BCD, ACD, ABD,
and ABC, we have the following theorem.

Theorem 20. Let ABCD be a complete quadrangle and T be its isoptic point. The point T is an
inverse point to the points A, B, C, and D with respect to the circles ObOcOd, OaOcOd, OaObOd,
and OaOcOd, where Oa, Ob, Oc, and Od are the centers of the circumscribed circles BCD, ACD,
ABD, and ABC, respectively.

This result was proved in [13,14]. Theorems 19 and 20 are visualized in Figure 4.

Figure 4. The quadrangles ABCD and A′B′C′D′ have the same isoptic point.

The equalities in (24) mean that the distances of the point T and each center of the
circles BCD, ACD, ABD, and ABC are proportional to the radii of these circles.
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Theorem 21. Let ABCD be a complete quadrangle and T be its isoptic point. The distances of
the point T and the points A, B, C, and D are proportional to the radii of circles B′C′D′, A′C′D′,
A′B′D′, and A′B′C′, where A′, B′, C′, and D′ stand for points that are isogonal to the points
A, B, C, and D with respect to the triangles BCD, ACD, ABD, and ABC.

Again, the result can be found in [8,9].
For quadrangles ABCD, OaObOcOd, and O′

aO′
bO′

cO′
d, we write them down in the form

A0B0C0D0, A1B1C1D1, and A2B2C2D2, and then the quadrangle A′B′C′D′ can be written in
the form A−1B−1C−1D−1. If we continue with this sequence in both directions, then for
each n ∈ Z, the points An+1, Bn+1, Cn+1, and Dn+1 are the centers of the circumscribed
circles BnCnDn, AnCnDn, AnBnDn, and AnBnCn, and points An−1, Bn−1, Cn−1, and Dn−1
are isogonal to the points An, Bn, Cn, and Dn with respect to the triangles BnCnDn, AnCnDn,
AnBnDn, and AnBnCn, respectively. Toward infinity for both sides of the sequence of the
quadrangles, all the quadrangles have the same isoptic point T, where the same homothety
with the center T maps the quadrangle AnBnCnDn into An+2Bn+2Cn+2Dn+2 for each n ∈ Z.
Hence, all the quadrangles on the even places in the sequence are mutually homothetic, and
the same fact is valid for the quadrangles on the odd places. However, two quadrangles
in two adjacent places in the sequence do not have to be homothetic. This result can be
found in several places [4,7,10]. The fact that the quadrangles ABCD and A2B2C2D2 are
similar was found in [15,16], and the fact that they are homothetic as well was found in
[7,17], where the part of the point T being an inverse point to each vertex of the quadrangle
AnBnCnDn with respect to the circumscribed circles of the corresponding triangles of the
quadrangle An+1Bn+1Cn+1Dn+1 was especially emphasized.

The normal of A to the line AD with the slope − 1
ad has the equation adx − y = a2d− 1

a ,
and analogously, the normal of B to the line BD has the equation bdx − y = b2d − 1

b . The
intersection point of these lines is the point

CD =

(
a + b +

1
abd

, abd +
a + b

ab

)
,

which is a vertex of the antipedal triangle ADBDCD of D with respect to the triangle ABC.
Analogously,

BD =

(
a + c +

1
acd

, acd +
a + c

ac

)
.

The bisector of the line segment BDCD is parallel to the line AD and has the equation

x + ady = a + d +
p + 1

2p
(a2d2 + 1)(b + c). (31)

It can be checked that the point

O′
D =

(
p + 1

2p
s − 1

2p
(p2 + 1)d,

p + 1
2p

r − 1
2pd

(p2 + 1)
)

(32)

passes through the line (31), so because of symmetry on a, b, and c, it follows that O′
D is the

circumcenter of the triangle ADBDCD. With the help of the forms of D and T in (20), the
point O′

D can be written in the form 2pO′
D = (p + 1)2T − (p2 + 1)D, where for the oriented

line segments, the ratio TO′
D : TD = −(p2 + 1) : 2p is valid. Because of symmetry on a, b, c,

and d, we have the following theorem.

Theorem 22. Let ABCD be a complete quadrangle. The quadrangles O′
AO′

BO′
CO′

D and ABCD
are homothetic, where O′

A, O′
B, O′

C, and O′
D are circumcenters of the antipedal triangles of the points

A, B, C, and D with respect to the triangles BCD, ACD, ABD, and ABC.
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There was the same resut in [4] as well. In addition, we obtained the center of the
homothety T, which is the isoptic point, and the factor of homothety is − 1

2p (p2 + 1).
The symmetric functions in (14) of the values u, v, w, u′, v′, w′, u′′, v′′, and w′′ can be

expressed by values s, q, r, and p, and the following identities are valid:

u′vw + uv′w + uvw′ = 4pqs − 8pr − r2s

u′′v′′w′′ = s3 − 4qs + 8r,

u′′vw + uv′′w + uvw′′ = rs2 + 8ps − 4qr,

u′v′w′ = 4pqr − 8p2s − r2,

uvw = ps2 − r2 = t,

where t = p−1
p . Because of these, the point HUVW from (15) has the form

HUVW =

(
1
2t
(4pqs − 8pr − r2s + s2 − 4qs + 8r),

1
2t
(rs2 + 8ps − 4qr + 4pqr − 8p2s − r2)

)
,

and the line (16) has an equation of the form

(rs2 + 8ps − 4qr − 4pqr + 8p2s + r2)x + (4pqs − 8pr − r2s − s2 + 4qs − 8r)y = 4t. (33)

As

(p + 1)(rs2 + 8ps − 4qr + 4pqr − 8p2s − r3)− 2r(ps2 − r2) =

= (p − 1)(4pqr + 4qr − r3 − 8p2s − 8ps − rs2),

(p + 1)(4pqs − 8pr − r2s + s3 − 4qs + 8r)− 2s(ps2 − r2) =

= (p − 1)(4pqs + 4qs − 8pr − 8r − r2s − s3)

is valid, then the line THUVW has the slope

4pqr + 4qr − r3 − 8p2s − 8ps − rs2

4pqs + 4qs − 8pr − 8r − r2s − s3

which is equal to the slope of the line (33). Hence, we have the following.

Theorem 23. Let ABCD be a complete quadrangle and UVW be its diagonal quadrangle. The
Wallace line of the center O with respect to the diagonal triangle UVW is parallel to the line
THUVW , where T is the isoptic point of ABCD, and HUVW is the orthocenter of UVW.

4. Discussion

Using rectangular coordinates for the complete quadrangle provides a new approach
for the extensive geometry of complete quadrangles. It is possible to gather all of its
properties and prove them in the same way. Here, we gathered the properties of the isoptic
point of a quadrangle. Theorems 2, 15, and 19 are our original results, and we did not find
these statements in the literature available to us. We have also studied the geometry of the
complete quadrangle in the isotropic plane. Hence, we are planning to check and prove the
results presented in this paper to see if they hold in the isotropic plane as well.
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