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Abstract: The edge DP-chromatic number of G, denoted by χ′
DP(G), is the minimum k such that

G is edge DP-k-colorable. In 1999, Juvan, Mohar, and Thomas proved that the edge list chromatic
number of K4-minor free graph G with ∆ ≥ 3 is ∆. In this paper, we prove that if G is a K4-minor free
graph, then χ′

DP(G) ∈ {∆, ∆ + 1}, and equality χ′
DP(G) = ∆ + 1 holds for some K4-minor free graph

G with ∆ = 3. Moreover, if G is a planar graph with ∆ ≥ 9 and with no intersecting triangles, then
χ′

DP(G) = ∆.
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1. Introduction

Graphs considered in this paper are finite and simple. For a graph G and e, e′ ∈ E(G),
let d(e, e′) be the length of the shortest path between the endpoints of e and e′. The edge
chromatic number of G, denoted by χ′(G), is the minimum number of colors needed to
color the edges of G so that edges e and e′ with d(e, e′) = 0 are colored by distinct colors.
An edge list assignment L assigns to each edge e a set L(e) of permissible colors. We say G
is edge L-colorable if there exists a function ϕ : E(G) → ⋃

L(e) such that

1. ϕ(e) ∈ L(e), ∀e ∈ E(G);
2. ϕ(e) ̸= ϕ(e′), if d(e, e′) = 0.

The edge list chromatic number χ′
l(G) is the smallest k such that G is edge L-colorable

for every edge list assignment L with |L(e)| ≥ k.
DP-coloring is a generalization of list coloring introduced by Dvořák and Postle [1].

Then, Bernshteyn and Kostochka introduced edge DP-coloring of G as DP-coloring of the
line graph of G [2]. To be precise, edge DP-coloring of a graph G is defined as follows:

Definition 1. Assume G is a graph and g ∈ NE(G) is a mapping that assigns to each edge e of G a
positive integer g(e). A cover of the line graph of G is a pair (L, M), where L = {L(e) : e ∈ E(G)}
is a family of pairwise disjoint sets, and M = {Mee′ : e ̸= e′, d(e, e′) = 0} is a family of bipartite
graphs such that Mee′ has the bipartite set L(e) and L(e′) and ∆(Mee′) ≤ 1. An g-cover is
a cover (L, M) such that |L(e)| ≥ g(e) for each edge e. An (L, M)-edge coloring of G is a
mapping ϕ such that ϕ(e) ∈ L(e) for each edge e, and for any pair of edges e, e′ with d(e, e′) = 0,
{ϕ(e), ϕ(e′)} /∈ Mee′ (for convenience, we write Mee′ for E(Mee′)).

Definition 2. If G has an (L, M)-edge coloring for every g-cover (L, M), then we say G is edge
DP-g-colorable. If g(e) = k for each edge e, then edge DP-g-colorable is called edge DP-k-colorable.
The edge DP-chromatic number of G, denoted by χ′

DP(G), is the minimum integer k such that G
is edge DP-k-colorable.

It is easy to see and well known that for any graph G, χ′(G) ≤ χ′
l(G) ≤ χ′

DP(G).
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A graph G is K4-minor free if it has no subgraph isomorphic to a subdivision of K4.
There are many good results based on the K4-minor free graphs. Beaudou, Foucaud, and
Naserasr [3] studied the homomorphism of K4-minor free graphs with odd girth. Combined
with results from [4,5], it is obvious that every K4-minor free graph is 2-degenerate, and its
strong edge chromatic number is at most 6∆ − 7. Meanwhile, Juvan, Mohar, and Thomas
proved the following theorem.

Theorem 1 ([6]). Let G be a K4-minor free graph with ∆ ≥ 3. Then χ′
l(G) = ∆.

The following conjecture is known as the edge list coloring conjecture, which was
proposed by several researchers (see [7,8]).

Conjecture 1. χ′
l(G) = χ′(G) for a loopless multigraph G.

The conjecture is verified for bipartite multigraphs [9], complete graphs of odd
order [10], and complete graphs Kp+1 where p is an odd prime [11], and remains largely
open in general.

Vizing’s theorem implies that for every simple graph, the edge chromatic number is at
most ∆ + 1. The next conjecture is a combination of Conjecture 1 and Vizing’s theorem.

Conjecture 2. χ′
l(G) ≤ ∆ + 1 for a simple graph G.

Borodin [12] proved Conjecture 2 for planar graphs G when ∆(G) ≥ 9, and Bonamy [13]
improved this result to planar graphs with ∆ ≥ 8.

Theorem 2 ([12]). If G is a planar graph with ∆ ≥ 9, then χ′
l(G) ≤ ∆ + 1.

Theorem 3 ([13]). If G is a planar graph with ∆ ≥ 8, then χ′
l(G) ≤ ∆ + 1.

By Theorem 3, we can see that if G is a planar graph with ∆ ≥ 8, then
χ′

l(G) ∈ {∆, ∆ + 1}. Moreover, edge DP-coloring and DP-coloring of graphs are also
studied in the literature [14–16]. In particular, the following two results were proved by
Zhang et al. in [16].

Theorem 4. Assume that G is a planar graph with maximum degree ∆ such that G has no cycle of
length k for k ∈ {3, 4}. Then, χ′

DP(G) = ∆ if either ∆ ≥ 7 and k = 4, or ∆ ≥ 8 and k = 3.

Theorem 5. If G is a planar graph with maximum degree ∆ ≥ 9, then χ′
DP(G) ≤ ∆ + 1.

In this paper, we first study edge DP-coloring of K4-minor free graphs by following the
theorem and constructing a K4-minor free graph with ∆ = 3, which is not edge DP-3-colorable.

Theorem 6. Let G be a K4-minor free graph with maximum degree ∆. Then, χ′
DP(G) ≤ ∆ + 1.

Then, consideration of the edge DP-chromatic number of planar graph G with ∆ ≥ 9
as an improvement of Theorem 5 is given by following Corollary 1, which is implied from
Theorem 7.

Theorem 7. If G is a planar graph with maximum degree ∆, and with no intersecting triangles,
then χ′

DP(G) = max{∆, 9}.

Corollary 1. If G is a planar graph with ∆ ≥ 9 and with no intersecting triangles, then χ′
DP(G) = ∆.
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Compared with Theorems 5 and 7, the discharging method, as a powerful tool for
graph-coloring problems, is also used to consider reducible configurations. By our result,
we give one sufficient condition for planar graph G with ∆ ≥ 9 such that χ′

DP(G) = ∆.
Our paper is organized as follows. In Section 2, some lemmas that are used in the

proof of Theorems 6 and 7 are listed. In Section 3, we complete the proof of Theorem 6, and
a K4-minor free graph with ∆ = 3 that is not edge DP-3-colorable is given, corresponding
the matching assignment ML, which is described in this part. In Section 4, the proof of
Theorem 7 is given. Finally, in the Section 5, the conclusions of this paper are stressed.

2. Some Preliminaries

In this section, we introduce some lemmas that are used in the proof of our results. It
is well known [6] that a K4-minor free graph has some special structure, as shown in the
lemma below.

Lemma 1 ([6]). There exists one of the following structures in every K4-minor free graph G:

(a) A vertex of degree at most one;
(b) Two distinct vertices of degree two with the same neighbors;
(c) Two distinct vertices u,v and not necessarily distinct vertices w, z ∈ V(G)\{u, v} such that

the neighbors of v are u and w, and every neighbor of u is equal v, w, or z;
(d) Five distinct vertices v1,v2,u1,u2,w such that the neighbors of w are u1,u2,v1,v2, and the

neighbors of vi are w and ui for i = 1, 2.

Below, we provide a special edge list assignment L and show that the graph of (d) (as
shown in Figure 1) in Lemma 1 is edge DP-L-colorable.

Figure 1. Graph and the value of its list assignment of (d) in Lemma 1.

Lemma 2. Let H be the graph in Figure 1, and L be an edge list assignment with |L(e)| ≥ 3 if
e ∈ {v1u1, v2u2, u1w, u2w}, and |L(e)| ≥ 5 if e ∈ {v1w, v2w}. Then, H has an (L, M)-edge
coloring for any cover (L, M).

Proof. The proof is trivial since H can be colored greedily by the order of u1w, u2w, u1v1,
v1w, v2w, v2u2.

Let G be a graph with a cover (L, M). Suppose that H is a subgraph of G and
G′ = G − E(H) has an (L′, M′)-edge coloring with

L′ = {L′(e) = L(e) ∈ L : e ∈ E(G′)} and M′ = {M′
ee′ = Mee′ ∈ M : e ∼G′ e′}.

There is a mapping ϕ′ such that ϕ′(e) ∈ L′(e) for each edge e in G′, and for any pair of
edges e, e′ with dG′(e, e′) = 0, {ϕ′(e), ϕ′(e′)} /∈ M′

ee′ .
For e ∈ E(H), we define a new list assignment L∗(e) and a new family of bipartite

graphs M∗ as below:

L∗(e) = L(e)\
⋃

e′∼e

{c ∈ L(e) : ∃ϕ′(e′) ∈ L′(e′) s.t. {c, ϕ′(e′)} ∈ Mee′ ∈ M}
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and
M∗

ee′ = {{c, c′} ∈ Mee′ ∈ M : c ∈ L∗(e), c′ ∈ L∗(e′)}, ∀e ∼H e′.

If G′ has an (L′, M′)-edge coloring ϕ′ and H has an (L∗, M∗)-edge coloring ϕ∗, then
ϕ′ ∪ ϕ∗ is an (L, M)-edge coloring of G. Hence, G has an (L, M)-edge coloring. This gives
the following lemma, proved in [16].

Lemma 3 ([16]). Let G be a graph with a cover (L, M), and H be a subgraph of G. If G − E(H)

has an (L′, M′)-edge coloring and H has an (L∗, M∗)-edge coloring, then G has an (L, M)-edge
coloring, where L′, M′, L∗, and M∗ are defined as above.

Besides, Zhang et al. [16] provided the following lemmas as powerful tools to study
the edge DP-coloring of planar graphs. Let G be a graph; a vertex v of G is a pendant vertex
if v has degree 1. Similarly, an edge of a graph is said to be pendant if one of its endpoints
is a pendant vertex.

Lemma 4 ([16]). Let G be a cycle with a pendant edge, and L be an edge list assignment of G
satisfying |L(uv)| ≥ d(u) + d(v)− 2 for every uv ∈ E(G). Then, G has an (L, M)-edge coloring
for any cover (L, M), where M is a family of bipartite graphs over L.

Lemma 5 ([16]). Let G = C + {v1v2i : i ∈ [2, t − 1]}+ v1u(t ≥ 3), where C = v1v2 . . . v2tv1
is a cycle and v1u is a pendant edge. If L is an edge list assignment of G satisfying |L(v1u)| ≥ t,
|L(v1v2i)| ≥ t + 1 for i ∈ [1, t], |L(e)| ≥ 2 for other edges e of G, then G has an (L, M)-edge
coloring for any cover (L, M), where M is a family of bipartite graphs over L.

Before the next section, some notations need to be introduced in advance. Let G
be a graph and f be a k-face; all vertices of f will be ordered as v1, v2 . . . , vk clockwise,
and denoted by [v1v2 . . . vk]. The definitions of all symbols used are shown clearly by the
following table.

The Definitions of All Symbols

Symbol Definition

V(G) The set of all vertices in G
F(G) The set of all faces in G
k(k+; k−)-vertex A vertex of degree k (at least k; at most k)
k(k+; k−)-face A face of length k (at least k; at most k)
(d1, d2, . . . , dk)-face All vertices of face will be ordered as v1, v2 . . . , vk clockwise and

for each i ∈ [k], vi is di-vertex
(d1, d2)-edge v1v2 is a (d1, d2)-edge if vi has degree di for i ∈ [2]

3. Edge DP-Coloring of K4-Minor Free Graph

In this section, we provide a proof of Theorem 6 and construct a K4-minor free graph
with ∆ = 3 that is not edge DP-3-colorable.

Theorem 8. Let G be a K4-minor free graph with maximum degree ∆; then, χ′
DP(G) ≤ ∆ + 1.

Proof. Assume that G is a counterexample of Theorem 6 with |V(G)|+ |E(G)| minimal.
Let (L, M) be a cover with |L(e)| = ∆ + 1 for all e ∈ E(G) such that G does not have an
(L, M)-edge coloring. As G is a K4-minor free graph, G contains one of the structures (a–d)
in Lemma 1.

(a) Assume that u ∈ V(G) with e = uv ∈ E(G) and d(u) = 1. Then, G′ = G − e has
an (L′, M′)-edge coloring by minimality, where L′ and M′ are defined in Lemma 3. Note
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that e has at most ∆ − 1 incident edges in G′. Thus, we have |L∗(e)| ≥ 2, and so e can be
colored properly. Then, G has an (L, M)-edge coloring by Lemma 3, a contradiction.

(b) Let u, v ∈ V(G) such that N(u) = N(v) = {w, y} (it may happen that uv ∈ E(G)

and N(u) = {v, w}, N(v) = {u, w}). Set G′ = G − E(C), where C = uwvyu (or C = uvw).
By minimality, G′ has an (L′, M′)-edge coloring. And C has an (L∗, M∗)-edge coloring
because of |L∗(e)| ≥ 3, ∀e ∈ E(C). Similarly, G has an (L, M)-edge coloring by Lemma 3,
a contradiction.

(c) If w = z, then this situation is included in (a) or (b). Assume that w ̸= z.
Then, G − uv has an (L′, M′)-edge coloring by minimality. Note that d(v) = 2 and
v ∈ N(u) ⊆ {v, w, z}. Thus,

|L∗(uv)| = ∆ + 1 − (d(u)− 1)− (d(v)− 1) ≥ max{d(u), d(v)} − d(u)− d(v) + 3

≥ max{d(u), d(v)} − d(u) + 1 ≥ 1.

So uv could be colored directly. By Lemma 3, G could have an (L, M)-edge coloring,
a contradiction.

(d) Let H be the graph in Figure 1. Then G′ = G − E(H) has an (L′, M′)-edge coloring
by minimality. It is easy to check that for all e ∈ E(H), |L∗(e)| satisfies the condition in
Lemma 2. Thus, H has an (L∗, M∗)-edge coloring, and so G has an (L, M)-edge coloring,
a contradiction.

In the following, we will introduce a K4-minor free graph G with a maximum degree
of 3, which is not edge DP-3-colorable. In particular, we will define a K4-minor free graph
G, a cover (L, M) with |L(e)| = 3, ∀e ∈ E(G) such that G has no (L, M)-edge coloring.

Definition 3. Let (L, M) be a cover of G and (ei, ej) be an adjacent pair. We call the cover M
straight over (ei, ej) if every {(ei, c1)(ej, c2)} ∈ Meiej satisfies c1 = c2. Especially, for edge set E,
we call M straight over E if M is straight over every adjacent pair (ei, ej), ∀ei, ej ∈ E.

Lemma 6. Let H be the graph in Figure 2a with an edge list assignment L, where L(e) = {b, c}
for e ∈ {uw, uz}, and L(e) = {a, b, c} otherwise. Then, there exists a family of bipartite graphs
M′ over L such that H does not have any (L, M′)-edge coloring.

(a) H (b) A family of bipartite graphs M′ over L

Figure 2. Graph H and a cover (M′, L) of H.

Proof. Let M′ be the family of bipartite graphs over L, as shown in Figure 2b, which is
straight over (uw, uz), (wv, wz), (wv, vz) and (vz, wz). Assume that H has an (L, M′)-edge
coloring ϕ. Without loss of generality, we may assume that ϕ(uw) = b. Then, the only
choice for edge uz, wz, vz is c, c, b, respectively. Now we cannot find available colors for
wv. Similarly, we can get a contradiction if ϕ(uw) = c. Therefore, H does not have an
(L, M′)-edge coloring.
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Lemma 7. Let G be a K4-minor free graph as shown in Figure 3. Then, G is not edge DP-3-
colorable.

Figure 3. K4-minor free graph G.

Proof. Let L(e) = {a, b, c} for each e ∈ E(G). Set E0 =
⋃

i=1,2,3
{xui, uiwi, uizi},

Ei = {uiwi, uizi, wizi, wivi, vizi} and Hi = G[Ei] for i ∈ [3]. Note that Hi is a copy of
H in Lemma 6. Now, we will define a family of bipartite graphs M over L such that G has
no (L, M)-edge coloring. Let M be a family of bipartite graphs over L such that

• M is straight over E0;
• For i ∈ [3], Mee′ = M′

ee′ , ∀e, e′ ∈ Ei = {uiwi, uizi, wizi, wivi, vizi}( M′ is shown in
Figure 2b).

Assume that G has an (L, M)-edge coloring ϕ. As M is straight over {xu1, xu2, xu3},
there must exist exactly one edge xuj, j ∈ {1, 2, 3}, say j = 1 s.t. ϕ(xu1) = a. Then a
is not available for u1w1 and u1z1. Thus, for graph H1, the remaining list assignment L′

satisfies L′(e) = {b, c} for e ∈ {u1w1, u1z1} and L′(e) = {a, b, c} otherwise. By Lemma 6,
H1 does not have (L′, M′)-edge coloring, and so G does not have an (L, M)-edge coloring.
Therefore, G is not edge DP-3-colorable.

4. Proof of Theorem 7

Assume G is a counterexample to Theorem 7 such that |E(G)| is minimal. Then, there
exists a cover (L, M) with |L(e)| = ∆ for e ∈ E(G) such that G has no (L, M)-edge coloring.

The lemma below shows some properties of the minimal counterexample G. We
say f is a special 4-face with facial cycle [v1v2v3v4] if either (Type I) d(v1) = d(v3) = 2,
d(v2) = d(v4) = ∆ or (Type II) d(v1) = 2, d(v3) = 3, d(v2) = d(v4) = ∆. Let F1 (F2) be the
set of special faces of Type I (Type II), respectively. Figure 4 describes these two kinds of
special faces.

(a) Special face of Type I (b) Special face of Type II

Figure 4. Two kinds of special 4-faces.
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Lemma 8. If G is a counterexample to Theorem 7 with |E(G)| minimal, then all of following hold:

(a) G is connected.
(b) Each v ∈ V(G) is incident to at most one triangle.
(c) d(u) + d(v) ≥ ∆ + 2 for any edge uv ∈ E(G).
(d) If d(v) = ∆ and v is incident to some f ∈ F1, then all vertices in NG(v) \ V( f ) are

3+-vertex.
(e) G does not contain H0 (shown in Figure 5a) as its subgraph, where ∆-vertex v1 is incident to

a 2-vertex u and two special faces of Type II.
(f) G does not contain H1(shown in Figure 5b) as its subgraph, where ∆-vertex v is incident to a

2-vertex u0 and three 4-faces. Moreover, [u1u3vu2] and [w2vw3w1] are two special faces of
Type II and [vu3xw3] shares a common (∆, 3)-edge with two special faces. Here, u1 and w1
are not necessarily different.

(a) H0

(b) H1

Figure 5. Two configurations of (e) and (f) in Lemma 8.

Proof. (a,b) It is trivial, since G is a minimal counterexample and does not have
intersecting triangles.

(c) Assume that there is an edge e = uv of G satisfying d(u) + d(v) ≤ ∆ + 1. Let
G′ = G − {uv}. By minimality, G′ has an (L′, M′)-edge coloring for cover (L′, M′), the
definition of L′ and M′ are given in Section 2. Note that |L∗(e)| ≥ ∆− (d(u)+ d(v)− 2) ≥ 1.
Thus, e could be colored. By Lemma 3, G has an (L, M)-edge coloring, a contradiction.

(d) Let v ∈ V(G) with d(v) = ∆ and f ∈ F1 with f = [v1vv3v4]. Note that
d(v1) = d(v3) = 2 and d(v4) = ∆. Assume there exists u ∈ NG(v) \ V( f ) with d(u) ≤ 2.
Let H be a subgraph of G with V(H) = V( f ) + {u} and E(H) = E( f ) + {vu}. Then, by the
minimality of G, G − E(H) has an (L′, M′)-edge coloring ϕ′. Now we consider |L∗(e)| for
e ∈ E(H). It is easy to check that |L∗(vu)| ≥ ∆− (1+∆− 3) ≥ 2, |L∗(e)| ≥ ∆− (∆− 2) = 2
for e ∈ {v3v4, v4v1}, |L∗(e)| ≥ ∆ − (∆ − 3) = 3 for e ∈ {v1v, vv3}. By Lemma 4, H has
an (L∗, M∗)-edge coloring ϕ∗. Since G − E(H) has an (L′, M′)-edge coloring ϕ′, G has an
(L, M)-edge coloring ϕ′ ∪ ϕ∗.
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(e) Assume H0 ⊆ G. Then, G − E(H0) has an (L′, M′)-edge coloring. Note that H0
is a structure described in Lemma 5 with t = 3. Based on its degree condition, it is easy
to check that |L∗(v1u)| ≥ ∆ − (∆ − 4 + 1) = 3, |L∗(v1v2)| = |L∗(v1v6)| = |L∗(v1v4)| ≥
∆ − (∆ − 4) = 4, and |L∗(e)| ≥ ∆ − (∆ − 2) = 2 for e ∈ E(H0) otherwise. By Lemma 5, H0
has an (L∗, M∗)-edge coloring. Thus, G has an (L, M)-edge coloring by Lemma 3, which is
a contradiction.

(f) Observe that H1 is the structure of Lemma 5 with t = 4 and d(x) ≤ ∆. Thus, we have
|L∗(e)| ≥ 2 for e ∈ {u1u2, u1u3, w1w2, w1w3, xu3, xw3}, |L∗(e)| ≥ 5 for
e ∈ {vu2, vw2, vu3, vw3} and |L∗(vu0)| ≥ 4. Thus, H1 has an (L∗, M∗)-edge coloring,
and so G has an (L, M)-edge coloring by Lemma 3, which is a contradiction.

To drive a contradiction by discharging analysis, we first define an initial charge ch as
ch(v) = 2d(v)− 6 for v ∈ V(G) and ch( f ) = d( f )− 6 for f ∈ F(G).

By Euler’s formula |V(G)| − |E(G)|+ |F(G)| = 2, the total sum of charges of vertices
and faces satisfies the following identity:

∑
x∈V(G)∪F(G)

ch(x) = ∑
v∈V(G)

(2d(v)− 6) + ∑
x∈F(G)

(d( f )− 6) = −12.

Next, we design appropriate discharging rules and redistribute charges accordingly.
Once the discharging is finished, a new charge ch∗ is produced. Note that the discharging
process preserves the total sum of charges of G. However, we will show that ch∗(x) ≥ 0 for
all x ∈ V(G) ∪ F(G), which leads to an obvious contradiction, and subsequently the proof
is complete.

Our discharging rules are defined as follows. (For 3, 4, 5-face f , we always assume
v1 ∈ V( f ) has the minimal degree).

(R1) Every 2-vertex v receives 1 from every incident face.
(R2) If a ∆-vertex v is incident to a 6+-face f ; and

(R2.1) v is adjacent to two 2-vertices which are incident to f , then v gives 1 to f .
(R2.2) v is adjacent to exactly one 2-vertex which is incident to f , then v gives 1

2 to f .

(R3) Let f = [v1v2v3] be a 3-face.

(R3.1) If d(v1) = 2, then each of v2 and v3 gives 2 to f , respectively.
(R3.2) If d(v1) = 3, then each of v2 and v3 gives 3

2 to f , respectively.
(R3.3) If d(v1) = 4, then each of v2 and v3 gives 5

4 to f ; v1 gives 1
2 to f .

(R3.4) If d(v1) = 5,

• and ∃i ∈ {2, 3} with d(vi) = ∆ − 3, then each of v1, v2 and v3 gives 1 to f .
• otherwise, v1 gives 1

2 to f , each of v2 and v3 gives 5
4 to f .

(R3.5) If d(v1) ≥ 6, then each of v1, v2 and v3 gives 1 to f .

(R4) Let f = [v1v2v3v4] be a 4-face.

(R4.1) If d(v1) = 2 (note that d(v2) = d(v4) = ∆), and

• d(v3) = 2, then each of v2 and v4 gives 2 to f ( f ∈ F1 due to (c) in Lemma 8).
• d(v3) = 3, then each of v2 and v4 gives 3

2 to f ( f ∈ F2).
• d(v3) = 4, then each of v2 and v4 gives 5

4 to f and v3 gives 1
2 to f .

• d(v3) = 5, then each of v2 and v4 gives 11
10 to f and v3 gives 4

5 to f .
• d(v3) ≥ 6, then each of v2 and v4 gives 1 to f , v3 gives 1 to f .

(R4.2) If d(v1) = 3, and

• d(v3) = 3, then each of v2 and v4 gives 1 to f .
• d(v3) ≥ 4, then each of v2 and v4 gives 3

4 to f and v3 gives 1
2 to f .

(R4.3) If d(v1) ≥ 4, then each of v1, v2, v3 and v4 gives 1
2 to f .
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(R5) Let f = [v1v2v3v4v5] be a 5-face. By (c) in Lemma 8 and symmetry, we could assume
v3 has the second smallest degree.

(R5.1) If d(v1) = 2,

• and d(v3) = 2, then each of v2, v4 and v5 gives 1 to f .
• and d(v3) = 3, then each of v2 and v4 gives 1

2 to f , v5 gives 1 to f .
• otherwise, each of v2, v3, v4 and v5 gives 1

2 to f .

(R5.2) If d(v1) = 3,

• and d(v3) = 3, then each of v2, v4 and v5 gives 1
3 to f .

• otherwise, each of v2, v3, v4 and v5 gives 1
4 to f .

(R5.3) If v1 is a 4+-vertex, then each vi gives 1
5 to f for i ∈ [5].

Note that each face f only gives a charge to incident 2-vertex. Assume that | f | ≥ 6.
If there is a 2-vertex v ∈ V( f ), then there exist two ∆-vertices as its neighbors on f by
(c) in Lemma 8. Thus, by (R1) and (R2), each ∆-vertices gives at least 1/2 to f , and so
ch∗( f ) ≥ ch( f ) ≥ 0. If f is a d-face, d ∈ {3, 4, 5}, then ch∗( f ) = 0 by rules (R3), (R4) and
(R5). After all, the final charge of every face is nonnegative.

As d(u) + d(v) ≥ ∆ + 2 for any edge uv ∈ E(G) (by (c) of Lemma 8), each v of G has
degree at least 2. Now, we will consider the final charge of d-vertex, where d ∈ [2, ∆]. If
d(v) = 2, then ch(v) = −2. As v does not give out any charge, ch∗(v) = −2 + 1 × 2 = 0 by
rule (R1). Now it suffices to consider the vertex v with d(v) ∈ [3, ∆].

Claim 1. If v is d-vertex with d ∈ [3, ∆ − 1], then ch∗(v) ≥ 0.

Proof. If d(v) = 3, then v does not give out or get any charge by all discharging rules. So,
ch∗(v) = ch(v) = 0.

If d(v) = 4, then v gives at most 1
2 to every incident face by rules (R3), (R4) and (R5).

So, ch∗(v) ≥ 2 − 4 × 1
2 = 0.

Next considering any 5-vertex v. If v is not incident to any 3-face, then by rules (R4)
and (R5), we obtain ch∗(v) ≥ 4 − 5 × 4

5 = 0. Otherwise, v is incident to exactly one 3-face
by (b) in Lemma 8. For i ∈ [5], let ui ∈ N(v) in cyclic order and for i ∈ [5], let fi be the face
incident to v with vui, vui+1, where indices are taken module 5. Assume that the unique
3-face is f1. If v gives at most 4

5 to f1, then ch∗(v) ≥ 0 obviously. So, considering v gives 1 to
f1 by rule (R3.4). Then, ∃i ∈ {1, 2} such that d(ui) = ∆ − 3, and so, v gives at most 1

2 to the
face f ∈ { f2, f5} with ui ∈ V( f ) by (R4.3) and (R5). Thus, ch∗(v) ≥ 4 − 1 − 1

2 − 3 × 4
5 ≥ 0.

If d(v) = 6, then v sends at most 1 to every incident face by (R3), (R4), and (R5). So,
ch∗(v) ≥ 6 − 1 × 6 = 0.

If d(v) ∈ [7, ∆ − 1], by (R3), (R4) and (R5), then v sends at most 3
2 to 3-face, and v sends

at most 1 to every incident 4+-face. Therefore, we obtain ch∗(v) ≥ 2d − 6 − 3
2 × 1 − (d −

1)× 1 = d − 6.5 > 0.

Claim 2. If v is a ∆-vertex, then ch∗(v) ≥ 0.

Proof. For i ∈ [∆], let ui ∈ N(v) in cyclic order and fi be the face incident to v with
vui, vui+1, where indices are taken module ∆. Let F = { fi : i ∈ [∆]}. We call P ⊆ F is
a petal of v if P is formed by some consecutive adjacent f ∈ F2 and set l = max{|P| :
P is a petal of v}.

If l ≥ 5, then there is some subgraph H0 of G, which contradicts (e) of Lemma 8. Thus,
we can have the following observation.

Observation 1. Let w be the number of petals around v. If F2 ∩ F ̸= ∅, i.e., w ≥ 1, then l ≤ 4
and one of the following situations appears.



Axioms 2024, 13, 375 10 of 15

(s1) l = 4, ω = 1 (as shown in Figure 6a);
(s2) l = 3, ω = 1 (as shown in Figure 6b);
(s3) l = 2 and two consecutive adjacent special faces share common (∆, 3)-edge, ω = 1;

(s4) l = 2 and two consecutive adjacent special faces share common (∆, 2)-edge, ω ≤
⌊

∆
2

⌋
;

(s5) l = 1, ω ≤
⌊

∆
2

⌋
.

(a) (s1) (b) (s2)

Figure 6. (s1) and (s2) in Observation 1.

Note that if there is some 3-face in F, there is exactly one 3-face in F since there are
no intersecting triangles in G. Now we will consider three cases based on the existence
of special faces in F. Assume that Fi ∩ F = ∅ for i ∈ [2]. By the (R2), (R3), (R4) and
(R5), v sends at most 2 to the possible unique 3-face and at most 5

4 to 4+-faces. Thus,
ch∗(v) ≥ 2∆ − 6 − 2 − 5

4 (∆ − 1) ≥ 0 since ∆ ≥ 9. Assume that there is some spe-
cial 4-face of Type I in F, say f1 ∈ F1 ∩ F. By (d) in Lemma 8, the degree of ui is at
least 3, for i ∈ {3, 4, . . . , ∆}. If one of f2 and f∆ is 3-face, say f2, then v sends 2 to
f1, at most 2 to f2, at most 3

2 to f∆, and at most 1 to fi, i ∈ [3, 4, . . . , ∆ − 1] by rules
(R3.5). So, ch∗(v) ≥ 2∆ − 6 − 2 − 2 − 3

2 − 1 × (∆ − 3) > 0 since ∆ ≥ 9. Otherwise, v
sends 2 to f1, at most 3

2 to f2, f∆ and possible 3-face, and at most 1 to other fi ∈ F. So,
ch∗(v) ≥ 2∆ − 6 − 2 − 3 × 3

2 − 1 × (∆ − 4) ≥ 0.
In the following, we will assume that F ∩ F1 = ∅ and F ∩ F2 ̸= ∅, i.e., there is some

fi ∈ F2 for i ∈ [∆]. It suffices to consider all situations in Observation 1. Note that v sends
3
2 to each f ∈ F2 ∩ F.

(s1) (see in Figure 6a): As every vertex ui that is not incident to faces in F2 ∩ F is
3+-vertex, v sends at most 3

2 to the possible 3-face and at most 1 to every 4+-faces not
contained in the petal. Thus, ch∗(v) ≥ 2∆ − 6 − (4 + 1)× 3

2 − 1 × (∆ − 5) ≥ 0 since ∆ ≥ 9.
(s2) Assume v has a petal P = { f1, f2, f3} (as shown in Figure 6b). By (e) in Lemma 8,

the degree of ui is at least 3 for i ∈ [4, ∆]. If | f∆| = 3, then f1 has a chord vu∆. So that is
impossible and f∆ must be a 4+-face. Therefore, v sends at most 3

2 to the possible 3-face, at
most 5

4 to f∆, at most 1 to other 4+-faces, and so ch∗(v) ≥ 2∆ − 6 − (3 + 1)× 3
2 − 5

4 − 1 ×
(∆ − 5) > 0 since ∆ ≥ 9.

(s3) Assume v has exactly one petal P = { f1, f2}. Similarly, v sends 3
2 to fi for i ∈ [2]

and the degree of ui is at least 3, for i ∈ [4, ∆]. If one of f3 and f∆ is a 3-face, say f3, then f2
as a face has a chord vu4, a contradiction. So f3 and f∆ are 4+-face. Therefore, v sends at
most 5

4 to f3, f∆, sends at most 3
2 to the possible 3-face and sends at most 1 to other 4+-faces.

So, ch∗(v) ≥ 2∆ − 6 − 2 × 3
2 − 2 × 5

4 − 3
2 − 1 × (∆ − 5) ≥ 0 since ∆ ≥ 9.

Before the analysis of (s4) and (s5), let Pi be the set of all petals of v with size i and
|Pi| = ωi for i ∈ [2]. Set P = P1 ∪ P2. Then, |P| = ω1 + ω2 = ω. Let F′ = { fi ∈ F : fi /∈
P ∈ P and fi shares an (∆, 3)-edge with a face in F ∩ F2} and set |F′| = α. Note that for
any f ∈ F:

• If f ∈ F′ and | f | ≥ 4, then v sends at most 1 to f .
• If f ∈ F′ and | f | = 3, then v sends 3

2 to f .
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• If f ∈ P for some P ∈ P , then v sends 3
2 to f .

• Otherwise, v sends at most 5
4 to every 4+-face f .

Now we consider two cases based on the existence of a 3-face.

Case 1. For any i ∈ [∆], | fi| ≥ 4.

(s4) Note that ω2 ̸= 0 and each P ∈ P2 is sharing (∆, 3)-edges with two faces in F′.
When α ≤ ω2, the only possibility is that α = ω2 and ω1 = 0. In this situation, every face
in F′ shares (∆, 3)-edge with two different petals in P2 respectively. Hence, α = ω2 = ∆

3
implies that ch∗(v) = 2∆ − 6 − 3ω2 − ∆

3 = 2
3 ∆ − 6 ≥ 0 by ∆ ≥ 9.

Thus, α is at least ω2 + 1. So,

ch∗(v) ≥ 2∆ − 6 − 3
2

ω1 − 3ω2 − (ω2 + 1)− 5
4
(∆ − ω1 − 2ω2 − (ω2 + 1))

=
3
4

∆ − 23
4

− 1
4

ω2 −
1
4

ω1 ≥ 0,

since ∆ ≥ 9 and ω1 + ω2 = ω ≤
⌊

∆
2

⌋
.

(s5) Note that ω1 ̸= 0, ω2 = 0. As each P ∈ P is sharing an (∆, 3)-edge with some face
in F′, α ≥

⌈ω1
2
⌉
. Thus, we have

ch∗(v) ≥ 2∆ − 6 − 3
2

ω1 −
⌈ω1

2

⌉
− 5

4
(∆ − ω1 −

⌈ω1

2

⌉
)

=
3
4

∆ − 6 − 1
4

ω1 +
1
4

⌈ω1

2

⌉
≥ 0,

since ∆ ≥ 9 and ω1 = ω ≤
⌊

∆
2

⌋
.

Case 2. There is some i ∈ [∆] such that fi is a 3-face. We may assume that | f1| = 3 and
d(u1) ≤ d(u2).

(s4) Similarly, we have α is at least ω2 + 1 and ω2 ̸= 0. Note that v sends at most
3
2 to each petal in P1 and sends at most 3 to each petal in P2. Assume that f1 is not a
(2, ∆, ∆)-face. If f1 /∈ F′, then v sends at most 3

2 to f1, sends at most 1 to w2 + 1 faces in F′,
and sends at most 5

4 to other 4+-face. Thus, we have

ch∗(v) ≥ 2∆ − 6 − 3
2
− 3

2
ω1 − 3ω2 − (ω2 + 1)− 5

4
(∆ − 1 − ω1 − 2ω2 − ω2 − 1)

=
3
4

∆ − 24
4

− 1
4

ω1 −
1
4

ω2 (1)

If f1 ∈ F′, then f1 contains a (∆, 3)-edge and one of f2, f∆ ∈ F2, say f∆ ∈ F2. Thus, f2
is a 4+-face containing a (∆, (∆ − 1)+)-edge. If f2 /∈ F′, then v sends at most 3

2 to f1, sends
at most 1 to f2 and w2 faces in F′. Thus, we have

ch∗(v) ≥ 2∆ − 6 − 3
2
− 3

2
ω1 − 3ω2 − ω2 − 1 − 5

4
(∆ − 1 − ω1 − 2ω2 − ω2 − 1)

=
3
4

∆ − 24
4

− 1
4

ω1 −
1
4

ω2. (2)

Otherwise, f2 ∈ F′ and f2 is a 4+-face containing a (∆, 3)-edge. Thus, f2 receives at
most 3

4 from v by (R2), (R4) and (R5). And so,
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ch∗(v) ≥ 2∆ − 6 − 3
2
− 3

2
ω1 − 3ω2 − (ω2 − 1)− 3

4
− 5

4
(∆ − 1 − ω1 − 2ω2 − (ω2 − 1)− 1)

=
3
4

∆ − 24
4

− 1
4

ω1 −
1
4

ω2. (3)

As ∆ ≥ 9 and ω1 + ω2 = ω ≤
⌊

∆
2

⌋
, Equations (1)–(3) are not negative except when

∆ = 9 and ω2 = 1, ω1 = 3. Then, f1 is adjacent to some P ∈ P1 and some P ∈ P2, and so
there is a (2, 3)-edge or (3, 3)-edge in f1. It is a contradiction since d(u) + d(v) ≥ ∆ + 2 for
any uv ∈ E(G).

Assume that f1 is a (2, ∆, ∆)-face. Clearly, we have f1 /∈ F′ and one of f2, f∆ contains a
(∆, ∆)-edge. Without loss of generality, we may assume that f2 is a 4+-face with a (∆, ∆)-
edge. Similarly, if f2 /∈ F′, then f2 receives at most 1 from v by (R2), (R4) and (R5). Thus,

ch∗(v) ≥ 2∆ − 6 − 2 − 3
2

ω1 − 3ω2 − (ω2 + 1)− 1 − 5
4
(∆ − 1 − ω1 − 2ω2 − (ω2 + 1)− 1)

=
3
4

∆ − 25
4

− 1
4

ω1 −
1
4

ω2. (4)

Otherwise, f2 ∈ F′ and f2 is a 4+-face containing a (∆, 3)-edge. Thus, each f ∈ F′ − f2
receives at most 1 from v and f2 receives at most 3

4 from v by (R2), (R4) and (R5). So,

ch∗(v) ≥ 2∆ − 6 − 2 − 3
2

ω1 − 3ω2 − ω2 −
3
4
− 5

4
(∆ − 1 − ω1 − 2ω2 − ω2 − 1)

=
3
4

∆ − 25
4

− 1
4

ω1 −
1
4

ω2. (5)

As ∆ ≥ 9, ω1 + ω2 = ω ≤
⌊

∆
2

⌋
and the existence of the 3-face, Equations (4) and (5)

are not negative unless when ∆ = 9 and ω2 = 2, ω1 = 1, or ω2 = 1, ω1 = 2. Note that v
sends 2 to face f1, sends 3 to each petal in P2 and sends 3

2 to each petal in P1.
When ∆ = 9 and ω2 = 2, ω1 = 1, it suffices to consider the structure in Figure 7a by

symmetry and the existence of (2, ∆, ∆)-face. Note that f5 and f8 are not 4-faces due to (f)
in Lemma 8. So, f5 and f8 receive at most 1

3 from v by (R5.2) respectively. Thus, we have
ch∗(v) ≥ 12 − 6 − 3

2 − 2 − 1 − 1
3 × 2 ≥ 0.

Now, we consider the situation when ∆ = 9 and ω2 = 1, ω1 = 2. Note that for any
4+-face f ∈ F′, f receives at most 1 from v. By all degree conditions and the absence of
chord in any face, the unique (2, ∆, ∆)-face does not share any edge with any petals. All
situations are shown in Figure 7b–h. Based on F ∩ F1 = ∅ and (R4.1, R5.1). Thus, we have
ch∗(v) ≥ 12 − 6 − 2 − 4 ∗ 1 = 0.

(s5) Note that ω1 = ω ≤
⌊

∆
2

⌋
and α ≥

⌈ω1
2
⌉
.

Assume f1 is not a (2, ∆, ∆)-face. If f1 /∈ F′, then

ch∗(v) ≥ 2∆ − 6 − 3
2
− 3

2
ω1 −

⌈ω1

2

⌉
− 5

4
(∆ − 1 − ω1 −

⌈ω1

2

⌉
)

=
3
4

∆ − 25
4

− 1
4

ω1 +
1
4

⌈ω1

2

⌉
≥ 0,

since ∆ ≥ 9.
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(a) ω2 = 2, ω1 = 1 (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. When ∆ = 9 and ω2 = 2, ω1 = 1, or ω2 = 1, ω1 = 2.

If f1 ∈ F′, then we can assume that f∆ ∈ F2, and so f2 is a 4+-face containing a
(∆, (∆ − 1)+)-edge. Note that |F′ − f1| ≥

⌈
ω1−1

2

⌉
. If f2 /∈ F′, then f2 receives at most 1

from v by (R2), (R4) and (R5). Thus,



Axioms 2024, 13, 375 14 of 15

ch∗(v) ≥ 2∆ − 6 − 3
2
− 3

2
ω1 −

⌈
ω1 − 1

2

⌉
− 1 − 5

4
(∆ − 1 − ω1 −

⌈
ω1 − 1

2

⌉
− 1)

=
3
4

∆ − 24
4

− 1
4

ω1 +
1
4

⌈
ω1 − 1

2

⌉
≥ 0,

since ∆ ≥ 9.
Otherwise, f2 ∈ F′ and f2 is a 4+-face containing a (∆, 3)-edge. Then, |F′ − { f1, f2}| ≥⌈

ω1−2
2

⌉
and each f ∈ F′ − { f1, f2} receives at most 1 from v and f2 receives at most 3

4 from
v by (R2), (R4), and (R5). So,

ch∗(v) ≥ 2∆ − 6 − 3
2
− 3

2
ω1 −

⌈
ω1 − 2

2

⌉
− 3

4
− 5

4
(∆ − 1 − ω1 −

⌈
ω1 − 2

2

⌉
− 1)

=
3
4

∆ − 23
4

− 1
4

ω1 +
1
4

⌈
ω1 − 2

2

⌉
≥ 0,

since ∆ ≥ 9.
Assume that f1 is a (2, ∆, ∆)-face. Clearly, we have f1 /∈ F′. Similarly, if f2 /∈ F′, then

f2 receives at most 1 from v by (R4) and (R5). Thus,

ch∗(v) ≥ 2∆ − 6 − 2 − 3
2

ω1 −
⌈ω1

2

⌉
− 1 − 5

4
(∆ − 1 − ω1 −

⌈ω1

2

⌉
− 1)

=
3
4

∆ − 26
4

− 1
4

ω1 +
1
4

⌈ω1

2

⌉
. (6)

Otherwise, f2 ∈ F′ and f2 is a 4+-face containing a (∆, 3)-edge. Thus, each f ∈ F′ − f2
receives at most 1 from v and f2 receives at most 3

4 from v by (R2), (R4) and (R5). Thus,

ch∗(v) ≥ 2∆ − 6 − 2 − 3
2

ω1 −
⌈

ω1 − 1
2

⌉
− 3

4
− 5

4
(∆ − 1 − ω1 −

⌈
ω1 − 1

2

⌉
− 1)

=
3
4

∆ − 25
4

− 1
4

ω1 +
1
4

⌈
ω1 − 1

2

⌉
. (7)

Combined with ∆ ≥ 9 and ω1 ≤
⌊

∆
2

⌋
, Equations (6) and (7) are not negative unless

∆ = 9, ω1 = 4 and α = 2 (shown in Figure 8). Similarly, by all degree conditions and the
absence of chord of any face, the unique 3-face f1 does not appear in any position.

Figure 8. ∆ = 9, ω1 = 4 and α = 2.

By Claims 1 and 2, for d ∈ [3, ∆], the final charge of d-vertex is nonnegative. The proof
of Theorem 7 is completed.
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5. Conclusions

Theorems 6 and 7 are two main results in our paper, we study the edge DP-chromatic
number of K4-minor free graphs and planar graph with ∆ ≥ 9, respectively. Moreover, we
also prove that the upper bound in Theorem 6 is sharp by one example.

For K4-minor free graphs. On the one hand, by Theorem 6, the corresponding edge DP-
chromatic number is ∆ or ∆ + 1. On the other hand, we give one example to demonstrate
that there exists some K4-minor free graph satisfying with the edge DP-chromatic number
is not ∆. It reflects that the upper bound in Theorem 6 is sharp.

For a planar graph G with ∆ ≥ 9, some researchers proved χ′
DP(G) ≤ ∆ + 1. One

sufficient condition is given for G such that χ′
DP(G) = ∆ in Theorem 7.

Author Contributions: Methodology and original manuscript writing, J.H.; Review and editing, M.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study.

Acknowledgments: The authors would like to thank Xuding Zhu for his helpful supervision
and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
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