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Abstract: This paper investigates the inhomogeneous version of the pantograph equation. The
current model includes the exponential function as the inhomogeneous part of the pantograph
equation. The Maclaurin series expansion (MSE) is a well-known standard method for solving initial
value problems; it may be easier than any other approaches. Moreover, the MSE can be used in a
straightforward manner in contrast to the other analytical methods. Thus, the MSE is extended in
this paper to treat the inhomogeneous pantograph equation. The solution is obtained in a closed
series form with an explicit formula for the series coefficients and the convergence of the series is
proved. Also, the analytic solutions of some models in the literature are recovered as special cases
of the present work. The accuracy of the results is examined through several comparisons with the
available exact solutions of some classes in the relevant literature. Finally, the residuals are calculated
and then used to validate the accuracy of the present approximations for some classes which have no
exact solutions.
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1. Introduction

Delay differential equations (DDEs) play a vital role in describing various scien-
tific models in physics, biology, and engineering sciences. A well-known delay model
is the pantograph equation which contains a proportional delay parameter c and is ex-
pressed as y′(t) = ay(t) + by(ct). This standard model is homogeneous and it has been
solved utilizing several numerical approaches such as the Taylor method [1], the Cheby-
shev polynomials [2], the Bernoulli operational matrix [3], the shifted orthonormal Bern-
stein polynomials [4], the Spectral Methods [5], and the transferred Legendre pseudospec-
tral method [6]. In addition, the multi and generalized forms of this model have been
solved in references [7,8]. Numerous applications of the pantograph equation can be
found in the literature such as the behaviour of an overhead catenary system for railway
electrification [9–11]. Applications also include the dynamic behaviour of a trolley wire
overhead contact system for electric railways [12] and the dynamics of a current collection
system for an electric locomotive [13].

Recently, some analytical solutions have been derived for the standard pantograph equa-
tion using different analytical methods such as the Adomian decomposition method [14], the
Homotopy Perturbation Method [15], the ansatz approach [16], the Laplace transform [17],
and the series method [18]. Moreover, it has been shown in Ref. [19] that the solution of the
standard pantograph equation is periodic when the proportional delay parameter c equals
negative one. A famous special case of the standard pantograph equation is known as the
Ambartsumian equation which has been investigated in classical form by Bakodah and
Ebaid [20] and in fractional forms by Ebaid et al. [21].
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This paper focuses on the inhomogeneous version of the pantograph equation in the
following form:

y′(t) = ay(t) + by(ct) + αeβt, y(0) = λ, t ≥ 0, (1)

where a, b, β, c, and λ are real constants. The case α = 0 reduces the problem (1) to the
homogeneous version of the pantograph equation. If b = 0, the model (1) transforms to the
initial value problem (IVP) y′(t)− ay(t) = αeβt, y(0) = λ in which can be easily solved in
exact form. The same applies for the case c = 1, which reduces Equation (1) to the ODE
y′(t)− (a + b)y(t) = αeβt.

Although the problem (1) can be treated utilizing the Laplace method, we may face
some difficulties when inverting the problem in the final step as pointed out by some
authors when applying this method on various physical/engineering models [22–25]. So,
searching for a simple but effective approach to solve Equation (1) is the main objective of
this work. As a method of solution, the Maclaurin series expansion (MSE) may be easier
than any other approaches. Furthermore, the MSE [26] can be used in a straightforward
manner in contrast to the other analytical methods. The main difference between our study
and the published work [26] is the type of the equation. The authors [26] applied the MSE
to solve a particular version of the homogeneous pantograph equation (with specific values
of the involved parameters) while the present study addresses the inhomogeneous version
of the pantograph equation with arbitrary parameters. So, the MSE is proposed in this
paper to deal with the present inhomogeneous model.

The structure of the paper is as follows. In Section 2, the solution is to be obtained in a
closed series form with an explicit formula for the series coefficients. The convergence of
the series solution is to be proved theoretically in Section 3. Section 4 is devoted to show
that the analytic solutions of some problems in the literature can be recovered as special
cases of the current results. Section 5 focuses on validating the main results including the
accuracy through several comparisons with the available exact solutions of some classes in
the relevant literature. Also, in this section, the residual errors will be calculated and then
used to validate the accuracy of the obtained approximations for some classes in which the
exact solutions are not available.

2. Solution in Closed Series Form

The MSE expresses the solution in the series form:

y(t) =
∞

∑
n=0

y(n)(0)
n!

tn. (2)

Equation (1) can be used to obtain the derivatives y(n)(0) (n ≥ 1) recurrently. At t = 0, one
can find from Equation (1) that

y(1)(0) = λ(a + b) + α. (3)

Differentiating Equation (1) once with respect to t we obtain

y(2)(t) = ay(1)(t) + bcy(1)(ct) + αβeβt, (4)

which gives
y(2)(0) = λ(a + b)(a + bc) + α(a + bc) + αβ. (5)

Differentiating Equation (4) yields

y(3)(t) = ay(2)(t) + bc2y(2)(ct) + αβ2eβt, (6)
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and hence,

y(3)(0) = λ(a + b)(a + bc)(a + bc2) + α(a + bc)(a + bc2) + αβ(a + bc2) + αβ2. (7)

Similarly, we obtain

y(4)(0) = λ(a + b)(a + bc)(a + bc2)(a + bc3) + α(a + bc)(a + bc2)(a + bc3) +

αβ(a + bc2)(a + bc3) + αβ2(a + bc3) + αβ3. (8)

In view of these calculations, one can derive a compact formula for the n-th derivative at
t = 0, i.e., y(n)(0) as

y(n)(0) = λ
n−1

∏
k=0

(a + bck) + α
n−2

∑
j=0

βj
n−1

∏
k=j+1

(a + bck) + αβn−1, n ≥ 1. (9)

It may be important to refer to the fact that the product in the right hand side becomes
unity if n − 1 < k and the summation is so if n − 2 < j. Accordingly, the solution reads

y(t) = y(0) +
∞

∑
n=1

y(n)(0)
n!

tn,

y(t) = λ + λ
∞

∑
n=1

tn

n!

n−1

∏
k=0

(a + bck) + α
∞

∑
n=1

tn

n!

(
n−2

∑
j=0

βj
n−1

∏
k=j+1

(a + bck)

)
+ α

∞

∑
n=1

βn−1tn

n!
, (10)

or

y(t) = λ +
α

β

(
eβt − 1

)
+ λ

∞

∑
n=1

tn

n!

n−1

∏
k=0

h(k) + α
∞

∑
n=1

tn

n!

(
n−2

∑
j=0

βj
n−1

∏
k=j+1

h(k)

)
, (11)

where
h(k) = a + bck. (12)

Using the property
n−1

∏
k=j+1

h(k) =
∏n−1

k=0 h(k)

∏
j
k=0 h(k)

, (13)

we can rewrite Equation (11) as

y(t) = λ +
α

β

(
eβt − 1

)
+

∞

∑
n=1

tn

n!

(
λ +

n−2

∑
j=0

αβj

∏
j
k=0 h(k)

)
n−1

∏
k=0

h(k). (14)

The closed form solution (14) will be implemented in the next section to derive the exact
solutions in special cases. Moreover, it will be used in a subsequent section to validate the
current approximations through various comparisons with the available exact solutions in
the literature.

3. Convergence Analysis

In order to study the convergence of the series solution, it may be easier/useful to
implement the series form in (11) instead of the form (14). In the form (11), there are two
infinite series which have to be addressed for convergence. The proof of convergence of the
first series in the right hand side is accomplished through Theorem 1 below.

Theorem 1. The series ∑∞
n=1

tn

n! ∏n−1
k=0 h(k) converges for all t > 0 if |c| ≤ 1.
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Proof. Assume that

ρn(t) =
tn

n!

n−1

∏
k=0

h(k). (15)

Applying the ratio test, then

lim
n→∞

∣∣∣∣ρn+1(t)
ρn(t)

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ t
n + 1

× ∏n
k=0 h(k)

∏n−1
k=0 h(k)

∣∣∣∣∣,
= t lim

n→∞

∣∣∣∣ a + bcn

n + 1

∣∣∣∣ = 0 if |c| < 1.

At c = 1, we obtain

lim
n→∞

∣∣∣∣ρn+1(t)
ρn(t)

∣∣∣∣ = t lim
n→∞

∣∣∣∣ a + b
n + 1

∣∣∣∣ = 0.

For c = −1, we find that cn = ±1 based on the value n (odd/even), thus,

lim
n→∞

∣∣∣∣ρn+1(t)
ρn(t)

∣∣∣∣ = t lim
n→∞

∣∣∣∣ a ± b
n + 1

∣∣∣∣ = 0,

which completes the proof.

Theorem 2. For a, β, c ∈ R such that
∣∣∣ β

a

∣∣∣ ≤ 1 and |c| ≤ 1, the series ∑∞
n=1

tn

n!

(
∑n−2

j=0 βj ∏n−1
k=j+1 h(k)

)
converges for all t > 0.

Proof. Suppose that

σn(t) =
tn

n!

(
n−2

∑
j=0

βj
n−1

∏
k=j+1

h(k)

)
. (16)

The ratio test gives

lim
n→∞

∣∣∣∣σn+1(t)
σn(t)

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ t
n + 1

×
∑n−1

j=0 βj ∏n
k=j+1 h(k)

∑n−2
j=0 βj ∏n−1

k=j+1 h(k)

∣∣∣∣∣,
= lim

n→∞

∣∣∣∣ t
n + 1

∣∣∣∣× lim
n→∞

∣∣∣∣∣1 + βn−1h(n)

∑n−2
j=0 βj ∏n−1

k=j+1 h(k)

∣∣∣∣∣. (17)

The first limit in (17) tends to zero for all t > 0.
Moreover, it can be shown that the second limit has a finite value provided that

∣∣∣ β
a

∣∣∣ ≤ 1
and |c| ≤ 1, where h(n) = a+ bcn. For declaration, we rewrite the product in Equation (17) as

n−1

∏
k=j+1

h(k) =
n−1

∏
k=j+1

a
(

1 +
b
a

ck
)
= an−j−1

(
− b

a
cj+1 : c

)
n−j−1

,

where (p : q)n stands for the Pochhammer symbol for the product (p : q)n = ∏n−1
k=0 (1− pqk).

Hence, the second limit in Equation (17) becomes

lim = lim
n→∞

∣∣∣∣∣∣∣1 +
βn−1h(n)

∑n−2
j=0 an−1(β/a)j

(
− b

a cj+1 : c
)

n−j−1

∣∣∣∣∣∣∣ = 1 + lim
n→∞

∣∣∣∣∣∣∣
(β/a)n−1h(n)

∑n−2
j=0 (β/a)j

(
− b

a cj+1 : c
)

n−j−1

∣∣∣∣∣∣∣,

= 1 + lim
n→∞

∣∣∣∣∣∣∣
(β/a)n−1(a + bcn)(

− b
a c : c

)
n−1

+ (β/a)
(
− b

a c2 : c
)

n−2
+ · · ·+ (β/a)n−3

(
− b

a cn−2 : c
)

2
+ (β/a)n−2

(
− b

a cn−1 : c
)

1

∣∣∣∣∣∣∣.
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The quantities
(
− b

a c : c
)

n−1
, (β/a)

(
− b

a c2 : c
)

n−2
, . . . , are bounded as n → ∞ if |c| < 1;

see Ref. [27]. For
∣∣∣ β

a

∣∣∣ < 1 and |c| < 1, we have limn→∞(β/a)n−1(a + bcn) = 0. Thus, the
limit in the last equation equals one and the limit in Equation (17) is zero ∀ t > 0.

By similar analysis, one can also find that the limit in Equation (17) vanishes in the
cases

∣∣∣ β
a

∣∣∣ < 1 & c = ±1, β
a = ±1 & |c| < 1, and β

a = ±1 & c = ±1; this completes the
proof.

4. Exact Solutions at Special Cases

Let us begin this section with the case c = 1. In such a case, the given model reduces
to the classical ordinary differential equation (ODE):

y′(t)− (a + b)y(t) = αeβt, y(0) = λ, (18)

which has the exact solution

y(t) =
(

λ − α

β − a − b

)
e(a+b)t +

α

β − a − b
eβt. (19)

In view of the previous section, we have from (12) at c = 1 that h(k) = a + b and hence,

∏n−1
k=0 h(k) = (a + b)n, and similarly, ∏

j
k=0 h(k) = (a + b)j+1. Thus,

y(t) = λ +
α

β

(
eβt − 1

)
+

∞

∑
n=1

tn

n!

(
λ +

n−2

∑
j=0

αβj

(a + b)j+1

)
(a + b)n, (20)

or

y(t) = λ +
α

β

(
eβt − 1

)
+

∞

∑
n=1

((a + b)t)n

n!

(
λ +

α

a + b

n−2

∑
j=0

(
β

a + b

)j
)

. (21)

It can be easily shown that

n−2

∑
j=0

(
β

a + b

)j
=

a + b − βn−1(a + b)−n+2

a + b − β
. (22)

Inserting (22) into (21) and simplifying gives

y(t) = λ +
α

β

(
eβt − 1

)
+

∞

∑
n=1

((a + b)t)n

n!

(
λ +

α

a + b − β

(
1 − βn−1(a + b)−n+1

))
, (23)

i.e.,

y(t) = λ +
α

β

(
eβt − 1

)
+

(
λ +

α

a + b − β

) ∞

∑
n=1

((a + b)t)n

n!
−

∞

∑
n=1

((a + b)t)n

n!

(
αβn−1(a + b)−n+1

a + b − β

)
, (24)

which is equivalent to

y(t) = λ +
α

β

(
eβt − 1

)
+

(
λ +

α

a + b − β

)(
e(a+b)t − 1

)
− α(a + b)

β(a + b − β)

(
eβt − 1

)
, (25)

which can be simplified to give the exact solution (19).
At b = 0, the formula (14) becomes

y(t) = λ +
α

β

(
eβt − 1

)
+

∞

∑
n=1

tn

n!

(
λ +

n−2

∑
j=0

αβj

∏
j
k=0 a

)
n−1

∏
k=0

a, (26)
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which can be written as

y(t) = λ +
α

β

(
eβt − 1

)
+

∞

∑
n=1

(at)n

n!

(
λ +

α

a

n−2

∑
j=0

(β/a)j

)
. (27)

Employing the property
n−2

∑
j=0

(
β

a

)j
=

a − βn−1a−n+2

a − β
, (28)

into (27) and simplifying, we obtain

y(t) = λ +
α

β

(
eβt − 1

)
+ λ

(
eat − 1

)
+

α

a − β

(
eat − 1

)
− αa

β(a − β)

(
eβt − 1

)
. (29)

Thus,

y(t) =
(

λ − α

β − a

)
eat +

α

β − a
eβt, (30)

which agrees with the exact solution of the ODE y′(t) = ay(t) + αeβt.
In addition, the case α = 0 reduces Equation (1) to the standard homogeneous panto-

graph equation y′(t) = ay(t) + by(ct) which has the closed form solution [9,10,13]:

y(t) = λ
∞

∑
n=0

tn

n!

n−1

∏
k=0

(
a + bck

)
. (31)

This solution can be directly obtained from our result in Equation (14) by setting α = 0.

5. Results and Validations

The objective of the first part of this section is to invest the preceding analysis to derive
the exact solutions of some classes in the literature. It will be shown that exact solution of
the problem (1) is available and can be directly obtained from (14) under specific selection
of the parameters a, b, α, β, and λ. In other situations in which the formula (14) does not
lead to the exact solution, the accuracy of the present approximations will be checked and
examined through calculations of the residual errors.

5.1. Exact Solutions of Some Classes

In Ref. [6], the authors used a numerical method to analyze the problem:

y′(t) = −y(t) +
1
2

y(ct)− 1
2

e−ct, y(0) = 1. (32)

They have compared their numerical results with the available exact solution for this
problem, given by y(t) = e−t. For this problem, we have a = −1, b = 1

2 , α = − 1
2 , β = −c,

and λ = 1. We will show that the closed series form (14) transforms to the exact solution at
these values without resorting to any of the numerical approaches.

To achieve this target, we will expand the series part in (14) but for simplicity we will
show only the first five terms when a = −1, α = −b, and β = −c as

y(t) = λ +
b
c
(
e−ct − 1

)
− λ(1 − b)t + (−1 + bc)[b(−1 + λ)− λ]

t2

2
+

(−1 + bc2)[b(−1 + (−1 + b)c)(−1 + λ) + λ]
t3

6
+ (−1 + bc3)×

[b(1 + c(−1 + b)(−1 + c(−1 + bc)))(−1 + λ)− λ]
t4

24
+ (−1 + bc4)×[

b(−1 + (−1 + b)c(1 + c(−1 + bc)(−1 − c + bc3)))(−1 + λ)− λ
] t5

120
+ . . . , (33)
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which reduces to the following form at λ = 1:

y(t) = 1 +
b
c
(
e−ct − 1

)
− (1 − b)t + (1 − bc)

t2

2
− (1 − bc2)

t3

6
+ (1 − bc3)

t4

24
−

(1 − bc4)
t5

120
+ . . . , (34)

or

y(t) =
b
c
(
e−ct − 1

)
+

(
1 − t +

t2

2
− t3

6
+

t4

24
− t5

120
+ . . .

)
+

b
c

(
ct − c2t2

2
+

c3t3

6
− c4t4

24
+

c5t5

120
− . . .

)
,

=
b
c
(
e−ct − 1

)
+ e−t − b

c
(
e−ct − 1

)
. (35)

It can be observed from Equation (35) that the solution in final form is y(t) = e−t whatever
the values of the parameters b and c. So, the the exact solution y(t) = e−t of the problem
(32) is obtained directly from our closed form solution (14). In view of the above analysis,
one can easily arrive at the fact that the class

y′(t) = −y(t) + by(ct)− be−ct, y(0) = 1, (36)

has the exact solution y(t) = e−t for all real values of b and c. This fact can also be confirmed
through another example in the literature. The authors [1] stated that the exact solution of
the problem

y′(t) = −y(t) +
c
2

y(ct)− c
2

e−ct, y(0) = 1, (37)

is given by y(t) = e−t. The initial value problem (IVP) (37) follows the pattern (36) by
noting that b = c

2 . Accordingly, the expression y(t) = e−t is also the exact solution of
the IVP (37) for any real value of the proportional parameter c without any additional or
further analysis.

Another form for the exact solution can be obtained under a certain relationship
between the involved parameters. Let us consider the case β = ac and λ = − α

b for the class

y′(t) = ay(t) + by(ct) + αeact, y(0) = −α

b
. (38)

Expanding the series part in (14) up to t5 at β = ac and λ = − α
b yields

y(t) = −α

b
+

α

ac
(
eact − 1

)
− α

b
(a + b)t − αa

b
(a + bc)

t2

2
− αa2

b
(a + bc2)

t3

6
−

αa3

b
(a + bc3)

t4

24
− αa4

b
(a + bc4)

t5

120
+ . . . , (39)

or

y(t) = −α

b
+

α

ac
(
eact − 1

)
− α

b

(
at +

a2t2

2!
+

a3t3

3!
+

a4t4

4!
+

a5t5

5!
+ . . .

)
−

α

(
t +

act2

2!
+

a2c2t3

3!
+

a3c3t4

4!
+

a5c5t5

5!
+ . . .

)
, (40)

which is equivalent to

y(t) = −α

b
+

α

ac
(
eact − 1

)
− α

b
(
eat − 1

)
− α

ac
(
eact − 1

)
= −α

b
eat. (41)
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It is noted that the solution (41) is independent of the proportional parameter c. Moreover,
it can be checked by direct substitution that the exact solution (41) satisfies the IVP (38) for
any real values of the parameters a, b, c, and α. The above results reveal that our closed
form solution (14) has many advantages to achieve the exact solutions in some cases of the
selected parameters.

5.2. Validation of Accuracy

This part is devoted to examining the validity of the closed form series solution (14) to
give accurate approximations. The m-term approximate solution Φm(t) can be extracted
from (14) by replacing infinity by a finite number of terms, thus,

Φm(t) = λ +
α

β

(
eβt − 1

)
+

m

∑
n=1

tn

n!

(
λ +

n−2

∑
j=0

αβj

∏
j
k=0 h(k)

)
n−1

∏
k=0

h(k), m ≥ 2. (42)

Figure 1 shows the comparison between the approximations Φm(t), m = 11, 16, 21 and
the exact solution y(t) = e−t for the model (32) at c = 3

4 . It is clear from this figure that
the approximations Φm(t) approaches the exact solution and the domain of agreement is
enlarged by increasing the number of terms m. In addition, Figures 2 and 3 confirm this
conclusion at different values of the involved parameters.

The accuracy of the approximations Φm(t) can be examined/validated by calculating
the residual error REm(t) defined by

REm(t) =
∣∣∣Φ′

m(t)− aΦm(t)− bΦm(ct)− αeβt
∣∣∣, m ≥ 2. (43)

In Figures 4 and 5, the residual errors REm(t), m = 30, 31, 32 are displayed at λ = 1, a = − 1
2 ,

b = 1
3 , α = 1

4 , β = − 1
2 when c = 1

5 (Figure 4) and c = 9
10 (Figure 5). The numerical results

show acceptable accuracy, especially when the number of terms increases. Furthermore,
the influence of the parameter a on the residual error RE20(t) is depicted in Figure 6 at
λ = 1, b = 1

3 , c = − 1
2 , α = 1

4 , and β = − 1
20 . This figure indicates that the residual

RE20(t) increases by the increase in a while Figure 7 declares a converse behaviour for the
influence of the parameter b on the residual error RE20(t). The above discussion reveals the
effectiveness and efficiency of the proposed analysis which can be implemented to analyze
other forms of the inhomogeneous pantograph equation.

2 4 6 8
t

0.2

0.4

0.6

0.8

1.0
FmHtL

Exact

F21HtL
F16HtL
F11HtL

Figure 1. Comparison between the approximations Φm(t), m = 11, 16, 21 and the exact solution
y(t) = e−t for the model (33) at c = 3

4 .
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1 2 3 4 5 6
t

1

2

3

4

FmHtL

Exact

F25HtL
F20HtL
F15HtL

Figure 2. Comparison between the approximations Φm(t), m = 15, 20, 25 and the exact solution
y(t) = 9

2 e−
3t
2 for the model (39) at a = − 3

2 , b = 2, α = −9, and c = 1
2 .

0 2 4 6 8 10 12
t

5000

10 000

15 000

20 000

25 000

30 000
FmHtL

Exact

F16HtL
F13HtL
F10HtL

Figure 3. Comparison between the approximations Φm(t), m = 10, 13, 16 and the exact solution
y(t) = et for the model (39) at a = 1, b = 1

2 , α = − 1
2 , and c = 1

3 .

2 4 6 8 10 12
t

1. ´ 10-9

2. ´ 10-9

3. ´ 10-9

4. ´ 10-9

5. ´ 10-9

6. ´ 10-9

REmHtL

RE32HtL

RE31HtL

RE30HtL

Figure 4. The residual errors REm(t), m = 30, 31, 32 at λ = 1, a = − 1
2 , b = 1

3 , α = 1
4 , β = − 1

2 , and
c = 1

5 .
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2 4 6 8 10 12 14
t

5. ´ 10-8

1. ´ 10-7

1.5 ´ 10-7

2. ´ 10-7

2.5 ´ 10-7

REmHtL

RE32HtL

RE31HtL

RE30HtL

Figure 5. The residual errors REm(t), m = 30, 31, 32 at λ = 1, a = − 1
2 , b = 1

3 , α = 1
4 , β = − 1

2 , and
c = 9

10 .

2 4 6 8 10
t

5. ´ 10-7

1. ´ 10-6

1.5 ´ 10-6

2. ´ 10-6

2.5 ´ 10-6

RE20HtL

a=0.4

a=0.3

a=0.2

a=0.1

Figure 6. Influence of the parameter a on the residual errors RE20(t) at λ = 1, b = 1
3 , c = − 1

2 , α = 1
4 ,

and β = − 1
20 .

2 4 6 8
t

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

RE20HtL

b=0.7

b=0.5

b=0.3

b=0.1

Figure 7. Influence of the parameter b on the residual errors RE20(t) at λ = 0, a = −1, c = 1
2 , α = 1

4 ,
and β = − 1

2 .
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6. Conclusions

The inhomogeneous version of the pantograph equation was investigated in this paper.
The exponential function was incorporated as an inhomogeneous term of the pantograph
equation. The MSE is applied in a straightforward manner to solve the present model of the
inhomogeneous pantograph equation. The solution was successfully obtained in a closed
series form, where a general/unified formula was given for the series coefficients. The con-
vergence issue was addressed and proved theoretically. The results obtained in this article
generalize previously obtained/known results in the relevant literature . The accuracy of
the current calculations are verified via performing several comparisons with the available
exact solutions of some mathematical models in the relevant literature. The calculated
residuals showed that the the present approximations enjoyed acceptable accuracy.

The effectiveness and efficiency of the proposed approach deserves further extension
to include other complex models including different types of inhomogeneous terms and
also other ways of describing delay, namely the memory effect. The current approach can
also be used to describe delayed processes within mathematical models using fractional
derivatives [28].
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