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1. Introduction

Let N denote the set of all natural numbers. A sequence of numbers is said to be
statistically convergent to a certain number if the terms of that sequence which are far from
the limit are indexed by a subset of N of natural density zero. The notion of statistical
convergence was originally proposed by Zygmund [1] in the first edition of his 1935
monograph published in Warsaw. A few years later, Fast [2] introduced the notion of
statistical convergence of number sequences via the density of subsets of N [3,4]. The
literature of statistical convergence has, ever since, been developed and enriched in the
recent past years with deep and beautiful results provided by many authors [5–13].

The notion of partial metric space was introduced by Matthews [14] as a generalization
of a usual metric space in 1994, and he studied its more relevant properties. In particular,
he investigated the concept of weightable quasi-metric spaces and provided a partial metric
generalization of Banach’s contraction principle. Later, O’Neill [15] and Heckmann [16]
provided some other generalizations of partial metric spaces. Recently, the concepts
of q-Cesàro and statistical convergence in partial metric spaces were introduced in [17],
obtaining basic and essential results. Very recently, the authors of [18,19] introduced and
studied other several types of convergence in partial metric spaces.

The purpose of this manuscript is to advance one step further on statistical conver-
gence theory and partial metric space theory by introducing and studying f -statistical
convergence in partial metric spaces, that is, statistical convergence in partial metric spaces
by means of a modulus function f .

2. Materials and Methods

This section is aimed at introducing the necessary tools upon which we will base our
results. It is divided into two subsections: modulus statistical convergence and partial
metric spaces.

2.1. Modulus Statistical Convergence

According to [20], a function f : [0, ∞) → [0, ∞) is called a modulus when it satisfies
the following:

• f (x) = 0 ⇔ x = 0.

Axioms 2024, 13, 388. https://doi.org/10.3390/axioms13060388 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13060388
https://doi.org/10.3390/axioms13060388
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-6208-6071
https://orcid.org/0000-0003-3520-1227
https://doi.org/10.3390/axioms13060388
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13060388?type=check_update&version=2


Axioms 2024, 13, 388 2 of 11

• f (x + y) ≤ f (x) + f (y) ∀x, y ≥ 0.
• f is increasing.
• f is continuous from the right at 0.

The above properties force f to be everywhere continuous on [0, ∞). Also, f (Mx) ≤
M f (x) for all M ∈ N and all x ≥ 0, and f ( x

k ) ≥
1
k f (x) for every x ∈ R+ and every k ∈ N.

A modulus may be unbounded or bounded. For instance, f (x) = x
x+1 is bounded, whereas

f (x) = xp (0 < p < 1) is unbounded.
A modulus function f is said to be compatible [21] provided that for any ε > 0 there

can be found ε̃ > 0 and n0 = n0(ε) such that
f (nε̃)

f (n)
< ε for all n ≥ n0. According to [21],

f (x) = x + log(x + 1) and f (x) = x +
x

x + 1
are compatible. However, f (x) = log(x + 1)

and f (x) = W(x), where W is the W-Lambert function restricted to [0, ∞) (in other words,
the inverse of xex), are not compatible. For the study related to a modulus function, one
may refer to [22–29] and many others.

The notion of f -density for subsets of N was originally coined in [30]. In this sense,
the f -density of a subset A of N is defined by

d f (A) := lim
n→∞

f (card(A ∩ [1, n]))
f (n)

provided that the limit exists. When f is the identity, the classical version of density [31] of
subsets of N, denoted by d(A), is obtained. Some basic properties of d f follow:

• Increasingness: d f (A) ≤ d f (B) whenever A ⊆ B ⊆ N and d f (A), d f (B) exist.
• d f (∅) = 0.
• d f (N) = 1.
• 0 ≤ d f (A) ≤ 1 for every A ⊆ N if d f (A) exists.
• Subadditivity: d f (A ∪ B) ≤ d f (A) + d f (B) for every A, B ⊆ N if d f (A), d f (B) exist.
• If A ⊆ N and d f (A) = 0, then d f (N \ A) = 1 (the converse does not hold [30] (Example

2.1)).
• d f (A) = 0 implies d(A) = 0 for each A ⊆ N.
• If A ⊆ N is finite and f is unbounded, then d f (A) = 0.

From the above properties, it is not hard to infer that the collection of all subsets of N
with f -density 0 is an ideal of P(N). Even more, if f is unbounded, then all finite subsets
of N have null f -density, meaning that the union of all sets with null f -density is the whole
of N; therefore, under the assumption that f be unbounded, the collection of all subsets of
N with f -density 0 is a bornology of P(N).

The next lemma can be found in [30] (Lemma 3.4) and will be exploited later on.

Lemma 1. For each infinite subset H of N there is an unbounded modulus function f satisfying
d f (H) = 1.

In [30], by means of the f -density of a subset of N, the following non-matrix concept
of convergence is defined: A sequence (xn)n∈N is said to be f -statistically convergent to x0
if for every ε > 0, {n ∈ N : |xn − x0| ≥ ε} has null f -density; in other words,

lim
n→∞

f (card{k ≤ n : |xk − x0| ≥ ε})
f (n)

= 0,

written as f -st limn xn = x0.
As previously mentioned, the collection of all subsets of N with f -density 0 is a

bornology of P(N) (for f unbounded). Therefore, f -statistical convergence is a particular
case of ideal convergence.

All modulus functions considered throughout the rest of this manuscript will be
assumed to be unbounded by default.
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2.2. Partial Metric Spaces

This subsection is devoted to introducing some basic definitions and properties related
to partial metric spaces [14,15].

Definition 1. A partial metric on a nonempty set X is a function p : X × X → R such that for all
x, y, z ∈ X:

• Indistancy implies equality: p(x, x) = p(x, y) = p(y, y) ⇔ x = y;
• Non-negativity and small self-distances: 0 ≤ p(x, x) ≤ p(x, y);
• Symmetry: p(x, y) = p(x, y);
• Triangularity: p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The pair (X, p) is called a partial metric space.

Every metric space is obviously a partial metric space, but the converse is not true.
The following examples of non-metric partial metric spaces can be found in [14,17,32].

Example 1. (X, p) is a non-metric partial metric space, where X := [0, ∞) and p(x, y) :=
max{x, y} for all x, y ∈ X.

Example 2. (X, p) is a non-metric partial metric space, where X := R and p(x, y) := 2max{x,y}

for all x, y ∈ X.

Example 3. (X, p) is a non-metric partial metric space, where X is the collection of all finite
sequences and all infinite sequences of a given set S and p(x, y) := 2−k for k the largest positive
integer (possibly ∞) such that xi = yi for each i < k being x, y ∈ X with x = (x0, x1, . . . ) and
y = (y0, y1, . . . ).

Example 4. (X, p) is a non-metric partial metric space, where X stands for the set of all intervals
[a, b] for any real numbers a ≤ b and p([a, b], [c, d]) := max{b, d} − min{a, c}.

Not necessarily, an element in a partial metric space has a zero distance from itself.
However, if we take p(x, x) = 0 for every x ∈ X, then (X, p) is precisely a metric space.
On the other hand, every partial metric space induces a metric space. Indeed, if (X, p) is a
partial metric space, then (X, pm) is a metric space, where

pm : X × X → R
(x, y) 7→ pm(x, y) := 2p(x, y)− p(x, x)− p(y, y).

(1)

It is well known that each partial metric p on X generates a T0 topology τp on X for
which the family of open p-balls

{Up(x, δ) : x ∈ X, δ > 0},

where Up(x, δ) := {y ∈ X : p(x, y) < p(x, x) + δ}, is a base of the topology.

Remark 1. Let (X, p) be a partial metric space. Let (xn)n∈N be a sequence in X and let x0 ∈ X.
Then:

i. (xn)n∈N is bounded by definition whenever there exists M > 0 such that p(xn, xm) < M for
all n, m ∈ N.

ii. (xn)n∈N is τp-convergent to x0 if and only if p(x0, x0) = lim
n→∞

p(x0, xn).

iii. (xn)n∈N is a Cauchy sequence by definition whenever lim
n,m→∞

p(xn, xm) exists.

A partial metric space (X, p) is said to be a complete partial metric space if every
Cauchy sequence (xn)n∈N in X τp-converges to a certain x0 ∈ X such that p(x0, x0) =

lim
n,m→∞

p(xn, xm). According to [14], a sequence is Cauchy in the partial-metric sense pre-

cisely when it is Cauchy, in the metric sense of the word, with respect to pm. As a conse-
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quence, a partial metric p is complete precisely when pm is complete in the metric sense of
the word.

In [33], (Corollary 3.8), completeness of uniform spaces with a countable base of en-
tourages (like, for instance, pseudometric spaces) was characterized through the f -statistical
convergence of the f -statistically Cauchy sequences.

Throughout the rest of the manuscript, whenever we talk about convergence in a
partial metric space, we mean τp-convergence.

3. Results

In [17], the definition of statistical convergence in a partial metric space X was given
as follows: A sequence (xn)n∈N ⊆ X is called statistically convergent to x0 ∈ X if for every
ε > 0,

lim
n→∞

1
n

card{k ≤ n : p(xk, x0)− p(x0, x0) ≥ ε} = 0,

and it is denoted as st limn p(xn, x0) = p(x0, x0).
Our first step is to introduce the definition of f -statistical convergence in partial

metric spaces.

Definition 2. Let X be a partial metric space, (xn)n∈N ⊆ X, and f an unbounded modulus
function. We say that the sequence (xn)n∈N is f -statistically convergent to x0 ∈ X if for every
ε > 0,

lim
n→∞

f (card{k ≤ n : p(xk, x0)− p(x0, x0) ≥ ε})
f (n)

= 0,

and we denote it by f -st limn p(xn, x0) = p(x0, x0).

Let us display a representative example of an f -statistically convergent sequence in a
non-metric partial metric space.

Example 5. Consider the compatible unbounded modulus f (x) = x +
x

1 + x
[21]. Notice that

A := {n3 : n ∈ N} satisfies that d f (A) = 0. Indeed, card(A ∩ [1, n]) = ⌊ 3
√

n⌋ for all n ∈ N.
Then

0 ≤ d f (A) = lim
n→∞

f (card(A ∩ [1, n]))
f (n)

= lim
n→∞

f
(
⌊ 3
√

n⌋
)

f (n)
≤ lim

n→∞

f
(

3
√

n
)

f (n)
= lim

n→∞

3
√

n +
3√n

1+ 3√n

n + n
1+n

= 0.

Consider the non-metric partial metric space X := [0, ∞) endowed with the partial metric p(x, y) :=
max{x, y} for all x, y ∈ X. Consider the sequence (xn)n∈N defined by

xn :=
{

3
√

n, n ∈ A,
0, n ∈ N \ A.

Notice that (xn)n∈N is f -statistically convergent to 1 in X. Indeed,

p(xn, 1) =
{

3
√

n, n ∈ A,
1 n ∈ N \ A.

Therefore, for every ε > 0, {n ∈ N : p(xn, 1)− p(1, 1) ≥ ε} ⊆ A, so

d f ({n ∈ N : p(xn, 1)− p(1, 1) ≥ ε}) ≤ d f (A) = 0.

The following remark establishes the relation between convergence and f -statistical
convergence in partial metric spaces.
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Remark 2. Let X be a partial metric space and let (xn)n∈N ⊆ X be convergent to some x0 ∈ X.
Take ε > 0. There exists n0 ∈ N such that for all n ≥ n0, p(xn, x0)− p(x0, x0) < ε. Therefore,
card{k ≤ n : p(xk, x0)− p(x0, x0) ≥ ε} ≤ n0 for all n ∈ N. Since for all f unbounded, the
f -density of any finite set is zero, this means that (xn)n∈N is f -statistically convergent to x0.
Therefore, we obtain that

lim
n

p(xn, x0) = p(x0, x0) ⇒ ∀ f unbounded f -st lim
n

p(xn, x0) = p(x0, x0). (2)

Conversely, suppose that (xn)n∈N is not convergent to x0. In this case, there exists ε > 0 for which
the set H := {k ∈ N : p(xk, x0)− p(x0, x0) ≥ ε} is infinite. In view of Lemma 1, there exists an
unbounded modulus function f such that d f (H) = 1. In other words, (xn)n∈N is not f -statistically
convergent to x0. As a consequence, we have that

∀ f unbounded f -st lim
n

p(xn, x0) = p(x0, x0) ⇒ lim
n

p(xn, x0) = p(x0, x0). (3)

The following remark establishes the relation between statistical convergence and
f -statistical convergence in partial metric spaces.

Remark 3. Let X be a partial metric space and let (xn)n∈N ⊆ X be f -statistically convergent to
some x0 ∈ X. For every ε > 0 and r > 0, there exists nr ∈ N such that

f (card{k ≤ n : p(xk, x0)− p(x0, x0) ≥ ε})
f (n)

≤ 1
r

for n ≥ nr, hence

f (card{k ≤ n : p(xk, x0)− p(x0, x0) ≥ ε}) ≤ f (n)
r

≤ f
(n

r

)
.

By relying on the increasingness of f , we obtain that
1
n

card{k ≤ n : p(xk, x0)− p(x0, x0) ≥ ε} ≤ 1
r

for n ≥ nr. This means that st limn p(xn, x0) = p(x0, x0). Therefore, we have that

∃ f unbounded f -st lim
n

p(xn, x0) = p(x0, x0) ⇒ st lim
n

p(xn, x0) = p(x0, x0). (4)

Conversely, assume that f is a compatible modulus function and that (xn)n∈N is statistically
convergent to x0. Take an arbitrary ε > 0. Note that f is compatible; thus, we can find ε̃ > 0
and n0 = n0(ε) such that f (nε̃)

f (n) < ε for all n ≥ n0. Fix another arbitrary ε1 > 0. Since
st limn p(xn, x0) = p(x0, x0), there exists n1 = n1(ε) such that if n > n1, then card{k ≤ n :
p(xk, x0)− p(x0, x0) ≥ ε1} ≤ nε̃. From the increasingness of f , we have

f (card{k ≤ n : p(xk, x0)− p(x0, x0) ≥ ε1})
f (n)

≤ f (nε̃)

f (n)
< ε

for n ≥ max{n0, n1}. As a consequence, f -st limn p(xn, x0) = p(x0, x0). Therefore, we have that

st lim
n

p(xn, x0) = p(x0, x0) ⇒ ∀ f compatible f -st lim
n

p(xn, x0) = p(x0, x0). (5)

The following definition serves to introduce the notion of proper f -statistical conver-
gence in partial metric spaces. This notion is specific for non-metric partial metric spaces.

Definition 3. Let (xn)n∈N be a sequence in a partial metric space X, f an unbounded modulus
function, and x0 ∈ X. If f -st limn xn = x0 in (X, pm), then we say that the sequence (xn)n∈N is
properly f -statistically convergent to x0 and it is denoted by fpr-st limn xn = x0.

The next step is to relate proper f -statistical convergence with f -statistical convergence
in partial metric spaces.

Theorem 1. Let X be a partial metric space, (xn)n∈N ⊆ X, f an unbounded modulus function,
and x0 ∈ X. Then
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fpr-st lim
n

xn = x0 ⇔ f -st lim
n

p(xn, x0) = f -st lim
n

p(xn, xn) = p(x0, x0).

Proof. First off, notice that, in accordance with [33] (Theorem 3.6), for any sequence (yn)n∈N
and any y0 in any metric space Y, f -st limn yn = y0 if and only if there exists A ⊆ N such
that d f (A) = 0 and limn∈N\A yn = y0.

⇒ Suppose first that (xn)n∈N is properly f -statistically convergent to x0. Since (X, pm)
is a metric space, according to [33] (Theorem 3.6), we can take A ⊆ N such that
d f (A) = 0 and limn∈N\A xn = x0. Fix an arbitrary ε > 0. There exists n0 ∈ N such that
if n ∈ N \ A and n ≥ n0, then pm(xn, x0) < ε. Then

p(xn, x0)− p(x0, x0) ≤ 2p(xn, x0)− p(x0, x0)− p(xn, xn) = pm(xn, x0) < ε

and

|p(xn, xn)− p(x0, x0)| ≤ 2p(xn, x0)− p(x0, x0)− p(xn, xn) = pm(xn, x0) < ε

for all n ∈ N \ A with n ≥ n0, meaning that f -st limn p(xn, x0) = p(x0, x0) and
f -st limn p(xn, xn) = p(x0, x0) in view again of [33] (Theorem 3.6).

⇐ Conversely, suppose next that f -st limn p(xn, x0) = f -st limn p(xn, xn) = p(x0, x0). By
relying again on [33] (Theorem 3.6), we may assume the existence of A ⊆ N such that
d f (A) = 0 and limn∈N\A p(xn, x0) = limn∈N\A p(xn, xn) = p(x0, x0). Take an arbitrary
ε > 0 and n0 ∈ N such that if n ∈ N \ A and n ≥ n0, then p(xn, x0)− p(x0, x0) <

ε
3

and p(xn, xn)− p(x0, x0) <
ε
3 . Then for each n ∈ N \ A with n ≥ n0, we have that

pm(xn, x0) = 2p(xn, x0)− p(x0, x0)− p(xn, xn)

= 2(p(xn, x0)− p(x0, x0)) + (p(x0, x0)− p(xn, xn))

< 2
ε

3
+

ε

3
= ε.

As a consequence, by again applying [33] (Theorem 3.6), f -st limn pm(xn, x0) = 0, that
is, fpr-st limn xn = x0.

In [17] (Definition 4.1), the definition of strong q-Cesàro summability in a partial metric
space X was given as follows: A sequence (xn)n∈N ⊆ X is called strong q-Cesàro summable
to x0 ∈ X if

lim
n→∞

1
n

n

∑
k=1

(p(xk, x0)− p(x0, x0))
q = 0,

and it is denoted as [Cesq]- limn p(xn, x0) = p(x0, x0).
The following definition introduces the notion of f -strong q-Cesàro summability in

partial metric spaces.

Definition 4. Let X be a partial metric space, (xn)n∈N ⊆ X, f an unbounded modulus function,
and q a positive real number. We say that the sequence (xn)n∈N is f -strongly q-Cesàro summable
to x0 ∈ X provided that

lim
n→∞

f (∑n
k=1(p(xk, x0)− p(x0, x0))

q)

f (n)
= 0

and it is denoted as [Cesq
f ]- limn p(xn, x0) = p(x0, x0).

Next, we discuss the corresponding notion of proper f -strong q-Cesàro summability
in partial metric spaces.

Definition 5. Let X be a partial metric space, (xn)n∈N ⊆ X, f an unbounded modulus function,
and q a positive real number. We say that the sequence (xn)n∈N is properly f -strongly q-Cesàro
summable to x0 ∈ X provided that
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lim
n→∞

f (∑n
k=1 pm(xk, x0)

q)

f (n)
= 0

and we write [Cesq
fpr
]- limn xn = x0.

The following theorem serves to characterize proper f -strong q-Cesàro summability
via f -strong q-Cesàro summability in partial metric spaces.

Theorem 2. Let X be a partial metric space, (xn)n∈N ⊆ X, f an unbounded modulus function, q
a positive real number, and x0 ∈ X. Then

[Cesq
fpr
]- lim

n
xn = x0 ⇒ [Cesq

f ]- lim
n

p(xn, x0) = [Cesq
f ]- lim

n
p(xn, xn) = p(x0, x0).

Proof. The following inequalities hold for all n ∈ N:

pm(xn, x0) = 2p(xn, x0)− p(x0, x0)− p(xn, xn)

= 2(p(xn, x0)− p(x0, x0)) + (p(x0, x0)− p(xn, xn))

≤ 2(p(xn, x0)− p(x0, x0)) + |p(x0, x0)− p(xn, xn)|,

p(xn, x0)− p(x0, x0) ≤ 2p(xn, x0)− p(x0, x0)− p(xn, xn) = pm(xn, x0),

and
|p(xn, xn)− p(x0, x0)| ≤ 2p(xn, x0)− p(x0, x0)− p(xn, xn) = pm(xn, x0).

As a consequence,

f (∑n
k=1(p(xk, x0)− p(x0, x0))

q)

f (n)
≤ f (∑n

k=1 pm(xk, x0)
q)

f (n)

and
f (∑n

k=1 |p(xk, xk)− p(x0, x0)|q)
f (n)

≤ f (∑n
k=1 pm(xk, x0)

q)

f (n)

for each n ∈ N.

The next theorem relates f -strong q-Cesàro summability with strong q-Cesàro summa-
bility in partial metric spaces.

Theorem 3. Let X be a partial metric space, (xn)n∈N ⊆ X, f an unbounded modulus function,
and q a positive real number. If (xn)n∈N is f -strongly q-Cesàro summable to some x0 ∈ X, then it
is strongly q-Cesàro summable to x0 and f -statistically convergent to x0.

Proof. Since (xn)n∈N is f -strongly q-Cesàro summable to x0 ∈ X, there exists nr ∈ N for
every r ∈ N, satisfying that

f (∑n
k=1(p(xn, x0)− p(x0, x0))

q)

f (n)
≤ 1

r

for every n ≥ nr. From the properties of the modulus function f ,

f

(
n

∑
k=1

(p(xn, x0)− p(x0, x0))
q

)
≤ 1

r
f (n) ≤ f

(n
r

)
.

for every n ≥ nr. From the increasingness of f , we obtain the following inequality:

1
n

n

∑
k=1

(p(xn, x0)− p(x0, x0))
q ≤ 1

r
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for every n ≥ nr, which gives that (xn)n∈N is strongly q-Cesàro summable to x0. Next, let
us prove that (xn)n∈N is f -statistically convergent to x0. Let ε > 0 (of the form 1/r for r ∈ N
sufficiently large) and denote

Kn := {k ≤ n : (p(xk, x0)− p(x0, x0))
q ≥ ε}

for every n ∈ N. The following inequality holds for every n ∈ N:

f

(
n

∑
k=1

(p(xn, x0)− p(x0, x0))
q

)

= f

(
n

∑
k∈Kn

(p(xn, x0)− p(x0, x0))
q +

n

∑
k/∈Kn

(p(xn, x0)− p(x0, x0))
q

)

≥ f

(
n

∑
k∈Kn

(p(xn, x0)− p(x0, x0))
q

)

≥ f

(
n

∑
k∈Kn

ε

)
≥ ε f

(
n

∑
k∈Kn

1

)
= ε f (card{k ≤ n : (p(xk, x0)− p(x0, x0))

q ≥ ε}).

If both sides of the above inequality are divided by f (n) and by taking the limit as n → ∞,
we obtain that the sequence (xn)n∈N is f -statistically convergent to x0.

With some additional conditions, the converse of the above theorem is also satisfied.

Theorem 4. Let X be a partial metric space, (xn)n∈N ⊆ X, f a compatible modulus function,
and q a positive real number. Let x0 ∈ X. If (xn)n∈N is strongly q-Cesàro summable to x0 or
f -statistically convergent to x0 and bounded, then it is f -strongly q-Cesàro summable to x0.

Proof. Let us assume first that (xn)n∈N is strongly q-Cesàro summable to x0. Fix an arbitrary
ε > 0. Since f is a compatible modulus function, there exist ε̃ > 0 and n0 = n0(ε) such that
f (nε̃)
f (n) < ε for all n ≥ n0. On the other hand, (xn)n∈N is strongly q-Cesàro summable to x0,

meaning that there exists n1 = n1(ε) ∈ N such that
n

∑
k=1

(p(xn, x0)− p(x0, x0))
q ≤ nε̃

for every n ≥ n1. By the increasingness of f , we have

f

(
n

∑
k=1

(p(xn, x0)− p(x, x0))
q

)
≤ f (nε̃).

for every n ≥ n1. By dividing both sides of the above inequality by f (n), we obtain

f (∑n
k=1(p(xn, x0)− p(x0, x0))

q)

f (n)
≤ f (nε̃)

f (n)
≤ ε

for every n ≥ max{n0, n1}. This shows that f -strongly q-Cesàro is summable to x0. Next,
let us assume that (xn)n∈N is f -statistically convergent to x0 and bounded. Fix again
an arbitrary ε > 0. Since (xn)n∈N is bounded, there exists M ∈ N sufficiently large for
which (p(xn, x0)− p(x0, x0))

q < M for each n ∈ N. Also, by hypothesis, f is a compatible
modulus function, so, again, there are ε̃ > 0 and n0 = n0(ε) such that f (nε̃)

f (n) < ε for all
n ≥ n0. Denote

Kn := {k ≤ n : (p(xk, x0)− p(x0, x0))
q ≥ ε̃}

for every n ∈ N and let Hn := N \ Kn. The properties satisfied by f allow the following
inequalities:
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f (∑n
k=1(p(xn, x0)− p(x0, x0))

q)

f (n)

=
f
(
∑k∈Kn(p(xn, x0)− p(x0, x0))

q + ∑k∈Hn(p(xn, x0)− p(x0, x0))
q)

f (n)

≤
f
(

M ∑k∈Kn 1 + ∑k∈Hn(p(xn, x0)− p(x0, x0))
q)

f (n)

≤ M
f (card{k ≤ n : (p(xk, x0)− p(x0, x0))

q ≥ ε̃})
f (n)

+
f (nε̃)

f (n)

< M
f (card{k ≤ n : (p(xk, x0)− p(x0, x0))

q ≥ ε̃})
f (n)

+ ε

for every n ≥ n0. Since (xn)n∈N is f -statistically convergent to x0,

lim
n→∞

f (card{k ≤ n : (p(xk, x0)− p(x0, x0))
q ≥ ε̃})

f (n)
= 0.

Therefore, by taking the limit as n → ∞ in the above inequality and from the arbitrariness
of ε > 0, we obtain that

lim
n→∞

f (∑n
k=1(p(xn, x0)− p(x0, x0))

q)

f (n)
= 0,

which implies that (xn)n∈N is f -strongly q-Cesàro summable to x0.

4. Discussion

Recently, in [33], f -statistical convergence was transported to the scope of uniform
spaces. It is well known that pseudometric spaces are uniform spaces. However, partial
metric spaces need not necessarily be uniform spaces.

Uniformities provide the right structure to define notions such as uniform continuity,
uniform convergence, Cauchy sequences or nets, and completeness. For instance, a function
f : X → Y between uniform spaces X, Y is said to be uniformly continuous provided that
for every entourage V of Y there exists an entourage U of X such that f (U) ⊆ V, where
f (U) := {( f (x1), f (x2) ∈ Y × Y : (x1, x2) ∈ U}. A sequence (xn)n∈N in a uniform space
X is said to be a Cauchy sequence provided that for every entourage U in X there exists
nU ∈ N in such a way that (xp, xq) ∈ U for all p, q ∈ N with p, q ≥ nU . A net ( fλ)λ∈Λ of
functions from a given set I, endowed with a bornology G, to a uniform space X converges
to some f0 ∈ X I if and only if for every G ∈ G and every entourage V of X there exists
λG,U ∈ Λ such that ( fλ(i), f0(i)) ∈ V for all i ∈ G and all λ ∈ Λ with λ ≥ λG,U (this is
precisely the topology of uniform convergence on elements of G).

As mentioned before, every pseudometric space X is a uniform space, where a base of
entourages is given by Uδ := {(x, y) ∈ X × X : d(x, y) < δ}, for each δ > 0. Next, suppose
that X is a partial metric space. If we define

Uδ := {(x, y) ∈ X × X : p(x, y) < δ}
for every δ > 0, then there is no guarantee that the diagonal ∆X of X will be contained in
Uδ because it might occur that p(x, x) > δ. A way to overcome this issue is by setting

Uδ := {(x, y) ∈ X × X : 2p(x, y) < p(x, x) + p(y, y) + δ},

but this is precisely the metric uniformity derived from the metric space (X, pm). Observe
that the metric topology of (X, pm) is not necessarily the same as the partial metric topology
of X.

The next proposition is another way to see that non-metric partial metric spaces are
not necessarily uniform spaces.
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Proposition 1. Let X be a partial metric space. If there exist x, y ∈ X such that x ̸= y and
p(x, y) = p(y, y), then X is not Hausdorff; hence, it is not regular. As a consequence, X is not a
uniform space.

Proof. For every δ > 0, p(x, y) = p(y, y) < p(y, y) + δ, meaning that x ∈ Up(y, δ). There-
fore, no disjoint open sets contain x and y separately. Notice that T0 and regular imply
Hausdorff, therefore X cannot be regular (recall that it was mentioned in Section 2 that
partial metric topologies are T0). Finally, it is well known that every uniform space is
regular; hence, X cannot be a uniform space.

Notice that, under the settings of the previous proposition, it must necessarily occur
that p(x, x) < p(x, y). The settings of the above proposition are satisfied by most of the
non-metric partial metric spaces, in particular, by the partial metric given by p(x, y) :=
max{x, y} in X := [0, ∞).

As a consequence, non-metric partial metric spaces are not necessarily uniform spaces;
hence, the results provided in [33] on f -statistical convergence do not necessarily apply to
partial metric spaces.

5. Conclusions

The field of summability and convergence is constantly being enriched with extensions
of statistical convergence by moduli to very different ambiences. This manuscript takes
one leap further in this trend by transporting statistical convergence by moduli to general
partial metric spaces. As we discussed in the previous section, non-metric partial metric
spaces need not necessarily be uniform spaces, which shows the relevance and importance
of developing statistical convergence by moduli in partial metric spaces.

Author Contributions: Conceptualization, F.J.G.-P. and R.K.; methodology, F.J.G.-P. and R.K.; formal
analysis, F.J.G.-P. and R.K.; investigation, F.J.G.-P. and R.K.; writing—original draft preparation,
F.J.G.-P. and R.K.; writing—review and editing, F.J.G.-P. and R.K.; visualization, F.J.G.-P. and R.K.;
supervision, F.J.G.-P. and R.K.; project administration, F.J.G.-P. and R.K.; funding acquisition, F.J.G.-P.
and R.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Consejería de Universidad, Investigación e Innovación
de la Junta de Andalucía: ProyExcel00780 (Operator Theory: An interdisciplinary approach) and
ProyExcel01036 (Multifísica y optimización multiobjetivo de estimulación magnética transcraneal).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Zygmund, A. Trigonometric Series, 3rd ed.; Cambridge Mathematical Library, Cambridge University Press: Cambridge, UK, 2003;

Volumes I and II combined. [CrossRef]
2. Fast, H. Sur la convergence statistique. Colloq. Math. 1951, 2, 241–244. [CrossRef]
3. Steinhaus, H. Sur la convergence ordinarie et la convergence asymptotique. Colloq. Math. 1951, 2, 73–74.
4. Schoenberg, I.J. The integrability of certain functions and related summability methods. Am. Math. Mon. 1959, 66, 361–375.

[CrossRef]
5. Šalát, T. On statistically convergent sequences of real numbers. Math. Slovaca 1980, 30, 139–150.
6. Maddox, I.J. Statistical convergence in a locally convex space. In Mathematical Proceedings of the Cambridge Philosophical Society;

Cambridge University Press: Cambridge, UK, 1988; Volume 104, pp. 141–145. [CrossRef]
7. Connor, J.S. The statistical and strong p-Cesàro convergence of sequences. Analysis 1988, 8, 47–63. [CrossRef]

http://doi.org/10.1017/CBO9781316036587
http://dx.doi.org/10.4064/cm-2-3-4-241-244
http://dx.doi.org/10.2307/2308747
http://dx.doi.org/10.1017/S0305004100065312
http://dx.doi.org/10.1524/anly.1988.8.12.47


Axioms 2024, 13, 388 11 of 11

8. Connor, J. On strong matrix summability with respect to a modulus and statistical convergence. Can. Math. Bull. 1989, 32, 194–198.
[CrossRef]

9. Fridy, J.A. On statistical convergence. Analysis 1985, 5, 301–313. [CrossRef]
10. Fridy, J.A.; Orhan, C. Lacunary statistical convergence. Pac. J. Math. 1993, 160, 43–51. [CrossRef]
11. Kolk, E. The statistical convergence in Banach spaces. Acta Comment. Univ. Tartueneis 1991, 928, 41–52.
12. Nuray, F. Cesàro and statistical derivative. Facta Univ. Ser. Math. Inform. 2020, 35, 1393–1398. [CrossRef]
13. Miller, H.I. A measure theoretical subsequence characterization of statistical convergence. Trans. Am. Math. Soc. 1995, 347,

1811–1819. [CrossRef]
14. Matthews, S.G. Partial metric topology. In Papers on General Topology and Applications (Flushing, NY, 1992); The New York Academy

of Sciences: New York, NY, USA, 1994; Volume 728, pp. 183–197. [CrossRef]
15. O’Neill, S.J. Partial metrics, valuations, and domain theory. In Papers on General Topology and Applications (Gorham, ME, 1995); The

New York Academy of Sciences: New York, NY, USA, 1996; Volume 806, pp. 304–315. [CrossRef]
16. Heckmann, R. Approximation of metric spaces by partial metric spaces. Appl. Categ. Struct. 1999, 7, 71–83. [CrossRef]
17. Nuray, F. Statistical convergence in partial metric spaces. Korean J. Math. 2022, 30, 155–160. [CrossRef]
18. Gülle, E.; Dündar, E.; Ulusu, U. Lacunary Summability and Lacunary Statistical Convergence Concepts in Partial Metric Spaces.

Res. Sq. 2022. [CrossRef]
19. Gülle, E.; Dündar, E.; Ulusu, U. Ideal convergence in partial metric spaces. Soft Comput. 2023, 27, 13789–13795. [CrossRef]
20. Nakano, H. Concave modulars. J. Math. Soc. Jpn. 1953, 5, 29–49. [CrossRef]
21. León-Saavedra, F.; Listán-García, M.d.C.; Pérez Fernández, F.J.; Romero de la Rosa, M.P. On statistical convergence and strong

Cesàro convergence by moduli. J. Inequal. Appl. 2019, 298. [CrossRef]
22. Ruckle, W.H. FK spaces in which the sequence of coordinate vectors is bounded. Can. J. Math. 1973, 25, 973–978. [CrossRef]
23. Maddox, I.J. Sequence spaces defined by a modulus. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge

University Press: Cambridge, UK, 1986; Volume 100, pp. 161–166. [CrossRef]
24. Aizpuru, A.; Listán-García, M.C.; Rambla-Barreno, F. Double density by moduli and statistical convergence. Bull. Belg.

Math.-Soc.-Simon Stevin 2012, 19, 663–673. [CrossRef]
25. Altin, Y.; Et, M. Generalized difference sequence spaces defined by a modulus function in a locally convex space. Soochow J. Math.

2005, 31, 233–243.
26. Bhardwaj, V.K.; Dhawan, S. f -statistical convergence of order α and strong Cesàro summability of order α with respect to a

modulus. J. Inequal. Appl. 2015, 332. [CrossRef]
27. Listán-García, M.C. f -statistical convergence, completeness and f -cluster points. Bull. Belg. Math.-Soc.-Simon Stevin 2016,

23, 235–245. [CrossRef]
28. Malkowsky, E.; Savas, E. Some λ-sequence spaces defined by a modulus. Arch. Math. 2000, 36, 219–228.
29. Raj, K.; Sharma, S.K. Difference sequence spaces defined by a sequence of modulus functions. Proyecciones 2011, 30, 189–199.

[CrossRef]
30. Aizpuru, A.; Listán-García, M.C.; Rambla-Barreno, F. Density by moduli and statistical convergence. Quaest. Math. 2014,

37, 525–530. [CrossRef]
31. Freedman, A.R.; Sember, J.J. Densities and summability. Pac. J. Math. 1981, 95, 293–305. [CrossRef]
32. Bukatin, M.; Kopperman, R.; Matthews, S.; Pajoohesh, H. Partial metric spaces. Am. Math. Mon. 2009, 116, 708–718. [CrossRef]
33. García-Pacheco, F.J.; Kama, R. f -statistical convergence on topological modules. Electron. Res. Arch. 2022, 30, 2183–2195.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.4153/CMB-1989-029-3
http://dx.doi.org/10.1524/anly.1985.5.4.301
http://dx.doi.org/10.2140/pjm.1993.160.43
http://dx.doi.org/10.22190/fumi2005393n
http://dx.doi.org/10.2307/2154976
http://dx.doi.org/10.1111/j.1749-6632.1994.tb44144.x
http://dx.doi.org/10.1111/j.1749-6632.1996.tb49177.x
http://dx.doi.org/10.1023/ A:1008684018933
http://dx.doi.org/10.11568/kjm.2022.30.1.155
http://dx.doi.org/10.21203/rs.3.rs-2393033/v1
http://dx.doi.org/10.1007/s00500-023-08994-0
http://dx.doi.org/10.2969/jmsj/00510029
http://dx.doi.org/10.1186/s13660-019-2252-y
http://dx.doi.org/10.4153/CJM-1973-102-9
http://dx.doi.org/10.1017/S0305004100065968
http://dx.doi.org/10.36045/bbms/1353695907
http://dx.doi.org/10.1186/s13660-015-0850-x
http://dx.doi.org/10.36045/bbms/1464710116
http://dx.doi.org/10.4067/S0716-09172011000200005
http://dx.doi.org/10.2989/16073606.2014.981683
http://dx.doi.org/10.2140/pjm.1981.95.293
http://dx.doi.org/10.4169/193009709X460831
http://dx.doi.org/10.3934/era.2022110

	Introduction
	Materials and Methods
	Modulus Statistical Convergence
	Partial Metric Spaces

	Results
	Discussion
	Conclusions
	References

