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Abstract: In this paper, a survey of the most interesting conditions for the oscillation of all solutions
to first-order linear differential equations with a retarded argument is presented in chronological
order, especially in the case when well-known oscillation conditions are not satisfied. The essential
improvement and the importance of these oscillation conditions is also indicated.
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1. Introduction

Consider the first-order nonautonomous differential equation with a retarded argu-
ment of the form

x′(t) + p(t)x(τ(t)) = 0, t ≥ t0, (1.1)

where the functions p, τ ∈ C([t0,∞),R+), (here R+ = [0, ∞)), τ(t) ≤ t for t ≥ t0 and
limt→∞ τ(t) = ∞.

By a solution of Equation (1.1), we understand a continuously differentiable function
defined on [τ(T0),+∞) for some T0 ≥ t and such that Equation (1.1) is satisfied for t ≥ T0.
Such a solution is called oscillatory if it has arbitrarily large zeros, and otherwise, it is
called nonoscillatory.

Note that a first-order linear differential equation of the form (1.1) without delay
(τ(t) ≡ t) does not possess ocillatory solutions. Indeed, it is known that all solutions of the
first-order linear differential equation

x′(t) + p(t)x(t) = 0, t ≥ t0,

are of the form x(t) = Ce−
∫

p(t)dt, where C is an arbitrary constant. That is, all non-trivial
solutions are decreasing and positive. Therefore, the investigation of oscillatory solutions
is of interest for equations of the form (1.1). Furthermore, the mathematical modeling of
several real-world problems leads to differential equations that depend on the past history
(like equations of the form (1.1)) rather than only the current state. For the general theory,
the reader is referred to [1–4].

In this paper, we present in chronological order a survey on the oscillation of this
equation especially in the case where the well-known oscillation conditions

lim sup
t→∞

∫ t

τ(t)
p(s)ds > 1 and lim inf

t→∞

∫ t

τ(t)
p(s)ds >

1
e

.

are not satisfied.

2. Oscillation Criteria for Equation (1.1)

Consider the scalar first-order linear nonautonomous retarded differential equation
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x′(t) + p(t)x(τ(t)) = 0, t ≥ t0,

where the functions p, τ ∈ C([t0,∞),R+), τ(t) < t for t ≥ t0 and limt→∞ τ(t) = ∞.
The problem of establishing sufficient conditions for the oscillation of all solutions to

the retarded differential Equation (1.1) has been the subject of many investigations. See,
for example, refs. [1–34] and the references cited therein.

In 1950, Myshkis [27] was the first to study the oscillation of all solutions to Equation (1.1)
He proved that every solution of Equation (1.1) oscillates if

lim sup
t→∞

[t − τ(t)] < ∞ and lim inf
t→∞

[t − τ(t)] lim inf
t→∞

p(t) >
1
e

.

In 1972, Ladas, Lakshmikantham and Papadakis [23] proved that the same conclusion
holds if

τ is a non-decreasing function and A := lim sup
t→∞

∫ t

τ(t)
p(s)ds > 1. (C1)

In 1979, Ladas [22] established integral conditions for the oscillation of all solutions
to the equation with constant delay of the form x′(t) + p(t)x(t − τ) = 0, while in 1982,
Koplatadze and Canturija [19] established the following result for Equation (1.1). If

a := lim inf
t→∞

∫ t

τ(t)
p(s)ds >

1
e

, (C2)

then all solutions of Equation (1.1) oscillate; If

lim sup
t→∞

∫ t

τ(t)
p(s)ds <

1
e

, (N1)

then Equation (1.1) has a non-oscillatory solution.
In the special case of the retarded differential equation with a constant positive coeffi-

cient p and a constant positive delay τ, that is in the case of the equation

x′(t) + px(t − τ) = 0, t ≥ t0, (1.1)′

a necessary and sufficient condition [24] for all solutions of the above equation to oscillate is

pτ >
1
e

(C2)
′

At this point, it should be pointed out that in the case of Equation (1.1)′, the above-
mentioned condition (C2) reduces to the necessary and sufficient condition (C2)

′.

Observe that there is a gap between the conditions (C1) and (C2) when the limit
lim
t→∞

∫ t
τ(t) p(s)ds does not exist. How to fill this gap is an interesting problem which has

been investigated by several authors in the last 35 years.

In 1988, Erbe and Zhang [13] developed new oscillation criteria by employing the
upper bound of the ratio x(τ(t))/x(t) for possible non-oscillatory solutions x(t) of
Equation (1.1). Their result says that all the solutions of Equation (1.1) oscillate if
0 < a ≤ 1

e and

A > 1 − a2

4
. (C3)

Since then, several authors tried to obtain better results by improving the upper bound for
x(τ(t))/x(t).
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In 1991, Jian [17] obtained the condition

A > 1 − a2

2(1 − a)
, (C4)

while in 1992, Yu, Wang, Zhang and Qian [32] improved the above condition as follows

A > 1 − 1 − a−
√

1 − 2a− a2

2
. (C5)

In 1990, Elbert and Stavroulakis [10] and in 1991, Kwong [21], using different tech-
niques, improved (C3), in the case where 0 < a ≤ 1

e , to the conditions

A > 1 − (1 − 1√
λ1

)2 (C6)

and
A >

ln λ1 + 1
λ1

, (C7)

respectively, where λ1 is the smaller real root of the exponential equation λ = eaλ.

In 1998, Philos and Sficas [28] and in 1999, Zhou and Yu [34] and Jaroš and Stavroulakis [16]
improved further the above conditions in the case where 0 < a ≤ 1

e as follows

A > 1 − a2

2(1 − a)
− a2

2
λ1, (C8)

A > 1 − 1 − a−
√

1 − 2a− a2

2
− (1 − 1√

λ1
)2, (C9)

and

A >
ln λ1 + 1

λ1
− 1 − a−

√
1 − 2a− a2

2
, (C10)

respectively.
Consider Equation (1.1) and assume that τ(t) is continuously differentiable and

that there exists θ > 0 such that p(τ(t))τ′(t) ≥ θp(t) eventually for all t. Under this
additional assumption, in 2000, Kon, Sficas and Stavroulakis [18] and in 2003, Sficas and
Stavroulakis [29] established the conditions

A > 2a+
2

λ1
− 1, (C11)

and

A >
ln λ1 − 1 +

√
5 − 2λ1 + 2aλ1

λ1
, (C12)

respectively. In the case where a = 1
e , then λ1 = e, and (C12) leads to

A >

√
7 − 2e

e
≈ 0.459987065.

It is to be noted that for small values of a (a → 0), all the previous conditions
(C3)− (C11) reduce to the condition (C1), i.e.

A > 1,

while the condition (C12) leads to

A >
√

3 − 1 ≈ 0.732,
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which is a significant improvement. Moreover, (C12) improves all the above conditions for
all values of a ∈ (0, 1

e ]. Note that the value of the lower bound on A cannot be less than
1
e ≈ 0.367879441. Thus, the aim is to establish a condition which leads to a value as close as
possible to 1

e .
For illustrative purposes, we give the values of the lower bound on A under these

conditions when (i) a =1/1000 and (ii) a = 1/e (Table 1).

Table 1. Values of the lower bound on A.

(i) (ii)

(C3): 0.999999750 0.966166179
(C4): 0.999999499 0.892951367
(C5): 0.999999499 0.863457014
(C6): 0.999999749 0.845181878
(C7): 0.999999499 0.735758882
(C8): 0.999998998 0.709011646
(C9): 0.999999249 0.708638892
(C10): 0.999998998 0.599215896
(C11): 0.999999004 0.471517764
(C12): 0.733050517 0.459987065

We see that the condition (C12) significantly improves all the analogous known results
in the literature.

Moreover, in 1994, Koplatadze and Kvinikadze [20] improved (C5) as follows: Assume

σ(t) := sup
s≤t

τ(s), t ≥ 0. (2.1)

Clearly, σ(t) is non-decreasing and τ(t) ≤ σ(t) for all t ≥ 0. Define

ψ1(t) = 0, ψi(t) = exp
{∫ t

τ(t)
p(ξ)ψi−1(ξ)dξ

}
, i = 2, 3, ... for t ∈ R+. (2.2)

Then, the following theorem was established in [20].

Theorem 1 ([20]). Let k ∈ {1, 2, ...} exist such that

lim sup
t→∞

∫ t

σ(t)
p(s) exp

{∫ σ(t)

σ(s)
p(ξ)ψk(ξ)dξ

}
ds > 1 − c(a), (2.3)

where σ, ψk, a are defined by (2.1), (2.2), (C2) respectively, and

c(a) =

{
0 if a > 1

e ,
1
2

(
1 − a−

√
1 − 2a− a2 ) if 0 < a ≤ 1

e .
(2.4)

Then, all solutions of Equation (1.1) oscillate.

Concerning the constants 1 and 1
e , which appear in the conditions (C1), (C2) and (N1),

in 2011, Berezansky and Braverman [7] established the following:

Theorem 2 ([7]). For any α ∈ (1/e, 1), there exists a non-oscillatory equation

x′(t) + p(t)x(t − τ) = 0, τ > 0

with p(t) ≥ 0 such that

lim sup
t→∞

∫ t

t−τ
p(s)ds = α.
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Also in 2011, Braverman and Karpuz [8] investigated Equation (1.1) in the case of a
general argument (τ is not assumed monotone) and proved that:

Theorem 3 ([8]). There is no constant K > 0 such that

lim sup
t→∞

∫ t

τ(t)
p(s)ds > K (2.5)

implies oscillation of Equation (1.1) for arbitrary (not necessarly non-decreasing) argument
τ(t) ≤ t.

Remark 1. Observe that in view of the condition (N1), the constant K in the above inequality
makes sense for K > 1/e.

Furthermore, in [8], condition (C1) was improved as follows

Theorem 4 ([8]). Assume that

B := lim sup
t→∞

∫ t

σ(t)
p(s) exp

{∫ σ(t)

τ(s)
p(ξ)dξ

}
ds > 1, (2.6)

where σ(t) is defined by (2.1). Then, all solutions of Equation (1.1) oscillate.

In 2014, using the upper bound of the ratio x(τ(t))
x(t) for possible non-oscillatory solutions

x(t) of Equation (1.1), presented in [10,16,18,29], the above result was essentially improved
in [30].

Theorem 5 ([30]). Assume that 0 < a ≤ 1
e and

B := lim sup
t→∞

∫ t

σ(t)
p(s) exp

{∫ σ(t)

τ(s)
p(ξ)dξ

}
ds > 1 − 1

2

(
1 − a−

√
1 − 2a− a2

)
(2.7)

where σ(t) is defined by (2.1). Then, all solutions of Equation (1.1) oscillate.

Remark 2 ([30]). Note that as a → 0, then condition (2.7) reduces to (2.6). However, the
improvement is clear as a → 1

e . Actually, when a = 1
e , the value of the lower bound on B is equal

to ≈ 0.863457014. That is, (2.7) significantly improves (2.6).

Remark 3 ([30]). Observe that under the additional assumption that τ(t) is continuously differen-
tiable and that there exists θ > 0 such that p(τ(t))τ′(t) ≥ θp(t) eventually for all t, (see [18,29])
the condition (2.7) of Theorem 5 reduces to

B > 1 − 1
2

(
1 − a−

√
(1 − a)2 − 4M

)
, (2.7)′

where M is given by

M =
eλ1θa − λ1θa− 1

(λ1θ)2

and λ1 is the smaller root of the equation λ = eλa. In the case that θ = 1 from [30], it follows that

M =
eλ1θa − λ1θa− 1

(λ1θ)2
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and λ1 is the smaller root of the equation λ = eλa. When θ = 1, from [30], it follows that

1
2

(
1 − a−

√
(1 − a)2 − 4M

)
= 1 − a− 1

λ1

and in the case that a = 1
e , then λ1 = e and (2.7)′ leads to

B > 1 −
(

1 − 2
e

)
=

2
e
≈ 0.735758882.

That is, condition (2.7)′ significantly improves (2.7) but of course under the additional (stronger)
assumptions on τ(t) and p(t).

In 2015 , Infante, Koplatadze and Stavroulakis [15] proved that all solutions of Equa-
tion (1.1) oscillate if one of the following conditions is satisfied:

lim sup
t→∞

∫ t

g(t)
p(s) e

∫ g(t)
τ(s) p(u) e

∫ u
τ(u) p(v)dv

duds > 1, (2.8)

or

lim sup
ϵ→0+

(
lim sup

t→∞

∫ t

g(t)
p(s)e(λ(k)−ϵ)

∫ g(t)
τ(s) p(u)duds

)
> 1, (2.9)

where g(t) is a non-decreasing function satisfying that τ(t) ≤ g(t) ≤ t for all t ≥ t1 and
some t1 ≥ t0.

In 2016, El-Morshedy and Attia [12] proved that Equation (1.1) is oscillatory if there
exists a positive integer n such that

lim sup
t→∞

(∫ t

g(t)
qn(s)ds + c(k∗)e

∫ t
g(t) ∑n−1

i=0 qi(s)ds
)
> 1, (2.10)

where

k∗ := lim inf
t→∞

∫ t

g(t)
p(s) ds,

c, g are defined as before and the sequence {qn(t)} is given by

q0(t) = p(t), q1(t) = q0(t)
∫ t

τ(t)
q0(s)e

∫ t
τ(s) q0(u)duds,

qn(t) = qn−1(t)
∫ t

g(t)
qn−1(s)e

∫ t
g(s) qn−1(u)duds, n = 2, 3, . . . .

In 2018, Chatzarakis, Purnaras and Stavroulakis [9] improved the above conditions
as follows.

Theorem 6 ([9]). Assume that for some j ∈ N

lim sup
t→∞

∫ t

σ(t)
p(s) exp

(∫ σ(t)

τ(s)
Pj(u)du

)
ds > 1, (2.11)

or

lim sup
t→∞

∫ t

σ(t)
p(s) exp

(∫ σ(t)

τ(s)
Pj(u)du

)
ds > 1 − 1 − a−

√
1 − 2a− a2

2
, (2.12)

or

lim sup
t→∞

∫ t

σ(t)
p(s) exp

( ∫ t

τ(s)
Pj(u)du

)
ds >

2

1 − a−
√

1 − 2a− a2
, (2.13)
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or

lim sup
t→∞

∫ t

σ(t)
p(s) exp

(∫ σ(s)

τ(s)
Pj(u)du

)
ds >

1 + ln λ1

λ1
− 1 − a−

√
1 − 2a− a2

2
, (2.14)

where

Pj(t) = p(t)
[

1 +
∫ t

τ(t)
p(s) exp

(∫ t

τ(s)
p(u) exp

(∫ u

τ(u)
Pj−1(ξ)dξ

)
du
)

ds
]

, (2.15)

with P0(t) = p(t). 0 < a ≤ 1
e , and λ1 is the smaller root of the equation λ = eaλ. Then, all

solutions of Equation (1.1) oscillate.

Theorem 7 ([9]). Assume that for some j ∈ N

lim inf
t→∞

∫ t

σ(t)
p(s) exp

(∫ σ(s)

τ(s)
Pj(u)du

)
ds >

1
e

, (2.16)

where Pj is defined by (2.15). Then, all solutions of Equation (1.1) oscillate.

It is easy to see that the conditions (2.11), (2.12), (2.14), and (2.16) substantially improve
the conditions (C1), (2.6), (2.7), (C10) and (C2). That improvement can immediately be
observed if we compare the corresponding parts on the left-hand side of these conditions.

In 2019, Bereketoglu et al. [6] proved that all solutions of Equation (1.1) oscillate if for
some ℓ ∈ N, the following condition holds

lim sup
t→∞

∫ t

g(t)
p(s)e

∫ g(t)
τ(s) Pℓ(u)duds > 1 − c(k∗), (2.17)

where

Pℓ(t) = p(t)
[

1 +
∫ t

g(t)
p(s)e

∫ t
τ(s) Pℓ−1(u)duds

]
, P0(t) = p(t).

In 2020, Attia, El-Morshedy and Stavroulakis [5] obtained new sufficient criteria of
recursive type for the oscillation of Equation (1.1),

Assume that c, g, k∗, λ, t1 are defined as above and gi(t) stands for the ith composition
of g. For fixed n ∈ N, define {Rm,n(t)}, {Qm,n(t)}, eventually, as follows:

Rm,n(t) = 1 +
∫ t

τ(t) p(s)e
∫ t

τ(s) p(u)Qm−1,n(u)duds, m = 1, 2, . . . ,

Qi,j(t) = e
∫ t

τ(t) p(s)Qi,j−1(s)ds, i = 1, 2, . . . , m − 1, j = 1, 2, . . . , n

where
Q0,0(t) = (λ(k∗)− ϵ)

(
1 + (λ(k∗)− ϵ)

∫ g(t)
τ(t) p(s)ds

)
,

Q0,r(t) = e
∫ t

τ(t) p(s)Q0,r−1(s)ds, r = 1, 2, . . . , n

Qi,0(t) = Ri,n, i = 1, 2, . . . , m − 1

and ϵ ∈ (0, λ(k∗)).

Theorem 8 ([5]). Assume that k∗ ≤ 1
e and m, n ∈ N such that

lim sup
t→∞

∫ t

g(t)
p(s)e

∫ g(t)
τ(s) p(u)e

∫ u
τ(u) p(v)Rm,n(v)dv

duds > 1 − c(k∗). (2.18)
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Then, all solutions of Equation (1.1) oscillate.

Theorem 9 ([5]). Assume that k∗ ≤ 1
e and

lim sup
t→∞

∫ t

g(t)
p(s)e(λ(k

∗)−ϵ)
∫ g(t)

τ(s) p(u)du+(λ(k∗)−ϵ)2 ∫ g(t)
τ(s) p(u)

∫ g(u)
τ(u) p(v)dvduds > 1 − c(k∗), (2.19)

where ϵ ∈ (0, λ(k∗)). Then, all solutions of Equation (1.1) oscillate.

Theorem 10 ([5]). Assume that k∗ ≤ 1
e and m, n ∈ N such that

lim sup
t→∞

∫ t

g(t)
p(s)e

∫ g(t)
τ(s) p(u)Rm,n(u)duds > 1 − c(k∗). (2.20)

Then, all solutions of Equation (1.1) oscillate..

Theorem 11 ([5]). Assume that k∗ ≤ 1
e and m, n ∈ N such that

lim sup
t→∞

(∫ t

g(t)
p(s) + (λ(k∗)− ϵ)

∫ t

g(t)
p(s)

∫ g(t)

τ(s)
p(u)e

∫ g2(t)
τ(u) p(v)Rm,n(v)dvduds

)
> 1 − c(k∗), (2.21)

where ϵ ∈ (0, λ(k∗)). Then, all solutions of Equation (1.1) oscillate.

Theorem 12 ([5]). Let A∗ := lim sup
t→∞

∫ t
g(t) p(s)ds < 1, 0 < k ∗ ≤ 1

e∫ g(t)

g(s)
p(u)du ≥

∫ t

s
p(u)du, for all s ∈ [g(t), t], (2.22)

and

α := lim inf
t→∞

∫ g(t)

τ(t)
p(s)ds. (2.23)

If one of the following conditions is satisfied:

(i) A∗ >
−1−αλ(k∗)+

√
2+(1+αλ(k∗))2+2k∗λ(k∗)

λ(k∗)

(ii) A∗ > 1 + k∗ + 1
λ(k∗) + α −

√(
1 + k∗ + 1

λ(k∗) + α
)2

− 2
(

k∗ + 1
λ(k∗)

)
then all solutions of Equation (1.1) oscillate.

Remark 4 ([5]).
(i) Condition (2.22) is satisfied if (see [6,18])

p(g(t))g′(t) ≥ p(t) eventually for all t.

(ii) It is easily shown that the conclusion of Theorem 12 is valid if p(t) > 0 and condition
(2.22) is replaced by

lim inf
t→∞

p(g(t))g′(t)
p(t)

= 1.

Corollary 1 ([5]). Assume that 0 < a ≤ 1/e, A < 1 and τ(t) is a non-decreasing continuous
function such that

∫ τ(t)

τ(s)
p(u)du ≥

∫ t

s
p(u)du, for all s ∈ [τ(t), t].



Axioms 2024, 13, 407 9 of 10

If

A > min

−1 +
√

3 + 2aλ(a)
λ(a)

, 1 + a+
1

λ(a)
−

√
1 +

(
a+

1
λ(a)

)2
 (2.24)

then all solutions of Equation (1.1) oscillate.

Remark 5 ([5]). 1. Condition (2.18), with n = 1 and n = 2, improves conditions (C1), (2.6),
(2.7) and (2.8) respectively.

2. Condition (2.19) improves condition (2.9).
3. Condition (2.20) with n = 1 improves condition (2.17) with ℓ = 1.
4. It is easy to see that

−1 +
√

3 + 2aλ(a)
λ(a)

≤ ln λ(a)− 1+
√

5 − 2λ(a) + 2aλ(a)
λ(a)

for all λ(a) ∈ [1, e]. Therefore, condition (2.24) improves condition (C12).

3. Discussion

In this survey paper, the first-order linear non-autonomous retarded differential equation

x′(t) + p(t)x(τ(t)) = 0, t ≥ t0,

is considered. The most interesting oscillation conditions since 1950 are presented in
chronological order, especially in the case where the well-known oscillation conditions

lim sup
t→∞

∫ t

τ(t)
p(s)ds > 1 and lim inf

t→∞

∫ t

τ(t)
p(s)ds >

1
e

.

are not satisfied. The improvement and significance of the presented conditions is indicated
in detail in several remarks.

As it has been mentioned above, the lower bound on A = lim supt→∞
∫ t

τ(t) p(s)ds

cannot be less than 1
e ≈ 0.367879441. Therefore, it would be of paramount importance to

establish a condition which leads to a value of A (cf. values on Table 1) as close as possible to
1
e . Thus, the following very interesting open problem arises.

4. Open Problem

Does the condition

lim sup
t→∞

∫ t

τ(t)
p(s)ds >

1
e

, where τ is a non-decreasing function (C1)
′

(without additional assumption on p(t)) imply that all solutions of Equation (1.1) oscillate?
Observe that, in view of condition (N1), the above condition (C1)

′ would be a necessary
and sufficient condition for the oscillation of all solutions to Equation (1.1).
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