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Abstract: Intuitionistic fuzzy (IF) β-minimal description operators can deal with noise data in the
IF covering-based rough set theory. That is to say, they can be used to find data that we need in
IF environments. For an IF β-covering approximation space (i.e., an IF environment) with a high
cardinality, it would be tedious and complicated to use IF set representations to calculate them.
Therefore, it is necessary to find a quick method to obtain them. In this paper, we present the notion
of IF β-maximal description based on the definition of IF β-minimal description, along with the
concepts of IF granular matrix and IF reduction. Moreover, we propose matrix calculation methods
for IF covering-based rough sets, such as IF β-minimal descriptions, IF β-maximal descriptions, and
IF reductions. Firstly, the notion of an IF granular matrix is presented, which is used to calculate
IF β-minimal description. Secondly, inspired by IF β-minimal description, we give the notion of IF
β-maximal description. Furthermore, the matrix representations of IF β-maximal descriptions are
presented. Next, two types of reductions for IF β-covering approximation spaces via IF β-minimal
and fuzzy β-minimal descriptions are presented, along with their matrix representations. Finally,
the new calculation methods are compared with corresponding set representations by carrying out
several experiments.

Keywords: IF covering-based rough set; IF β-minimal description; IF β-maximal description; IF
granular matrix; IF reduction

MSC: 03E72

1. Introduction

Covering-based rough set theory [1] was proposed to deal with the type of covering
data, which enriched classical rough set theory [2]. Nearly forty covering rough set mod-
els [3–5] have been developed in covering approximation space. These models popularized
their application to practical problems such as decision rule synthesis [6–8], knowledge
reduction [9–11] and other fields [12–14]. Using set representations to investigate issues in
real-life problems would be complicated and tedious in a covering approximation space
with a high cardinality. As computer-implemented methods, matrix approaches are the
ideal tools for managing this problem; these include matrices for axiomatizing three types
of covering approximation operators [15], matrices for studying knowledge reduction in
dynamic covering decision information systems [16], matrices for representing 32 pairs
of neighborhood-based upper and lower approximation operators [17], and matrices for
minimal and maximal descriptions in covering-based rough sets [18].

Fuzzy set theory [19] addresses the issue of how to understand and manipulate imper-
fect knowledge. It and rough set theory are related, but distinct and complementary [20].
The first type of fuzzy rough set model based on an fuzzy similarity relation was estab-
lished in [21]. Then, some essential research on fuzzy rough set models was finished by
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different fuzzy logical connectives [22,23] and fuzzy relations [24,25]. Recently, some fuzzy
rough set models were constructed under a fuzzy covering approximation space [26,27].
In particular, Ma [28] presented the concept of a fuzzy β-covering approximation space
by replacing “1” with a parameter β, where “1” is a condition for the definition of fuzzy
covering. Inspired by Ma’s work, many fuzzy covering-based rough set models were estab-
lished. For example, several newly important notions and other types of fuzzy β-covering
rough set models are presented in [29]. Multigranulation fuzzy rough covering models
based on fuzzy β-neighborhoods were used to solve the problem of multi-criteria group
decision making in [30]. At the same time, the matrix approaches are the most used in
these studies. For example, Ma [28] proposed the matrix representations of two pairs of
fuzzy β-covering approximation operators. Yang and Hu [31] used matrices to represent
three pairs of L-fuzzy covering-based approximation operators, as well as other fuzzy
covering approximation operators in [32]. Wang et al. [33] used matrices to calculate fuzzy
β-minimal descriptions, β-maximal descriptions and fuzzy β-neighborhoods.

As a generalization of fuzzy set theory, intuitionistic fuzzy (IF) set theory [34] ex-
presses stronger information uncertainty. Therefore, IF β-covering rough set models [35]
were first presented in IF β-covering approximation spaces. They were extended to other
models [36,37], which were used in decision making and feature selection. Since an IF
set explains the degrees of membership and non-membership of an element, it is difficult
to use matrices to study these IF β-covering rough sets. To solve this problem, we use
matrix approaches in IF β-covering approximation spaces, providing a new viewpoint to
investigate IF β-covering rough set models and optimize complex computations expressed
by IF sets. The motivations and contents of this paper are listed as follows:

• Huang et al. [35] presented the notion of IF β-minimal description. But the dual notion
of IF β-maximal description is not proposed. Therefore, this new notion will be given in
this paper, which reflects a different method of information screening.

• In [33], matrix methods are used for calculating minimal and maximal descriptions in
covering approximation spaces. In [33,38], fuzzy matrix methods are used for calcu-
lating fuzzy β-minimal and fuzzy β-maximal descriptions in fuzzy β-covering approx-
imation spaces. Therefore, we can also present IF matrix methods for calculating IF
β-minimal and IF β-maximal descriptions in IF β-covering approximation spaces.

• There are many different notions of reductions in covering and fuzzy β-covering ap-
proximation spaces, respectively. It is interesting to define reductions in IF β-covering
approximation spaces by IF β-minimal and IF β-maximal descriptions in this paper,
respectively. Based on the matrix representations of IF β-minimal and β-maximal
descriptions, these new notions of IF reductions can be represented by matrices.

The rest of this article is arranged as follows: Section 2 reviews some basic definitions
about coverings, IF sets and IF β-covering approximation space. In Section 3, the notion
of an IF granular matrix is presented in an IF β-covering approximation space. Then, IF
matrix approaches are used to calculate the IF β-minimal and β-maximal descriptions. In
Section 4, two types of reductions in an IF β-covering approximation space are presented
through IF β-minimal and β-maximal descriptions, respectively. Moreover, these two types
of reductions are represented in the IF granular matrix. Section 5 compares the existing set
representation method with the new IF matrix method through a number of experiments.
The advantages and efficiency of the new method are explained from different viewpoints.
Section 6 provides the conclusion and prospects.

2. Basic Definitions

This section recalls some fundamental definitions related to coverings, IF sets and
IF covering-based rough sets. Suppose U is a nonempty and finite set called a “universe”
unless stated to the contrary.
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Definition 1 ([39,40]). Let U be a universe and C be a family of subsets of U. If no element in
C is empty and

⋃
C = U, then C is called a covering of U. We call (U, C) a covering approxima-

tion space.

We show the notions of minimal and maximal descriptions in the covering approxima-
tion space as follows:

Let C be a covering of U. For any x ∈ U, we call

MdC(x) = {K ∈ C : x ∈ K ∧ (∀S ∈ C)(x ∈ S ∧ S ⊆ K ⇒ K = S)}

the minimal description of x [1,41], and call

MDC(x) = {K ∈ C : x ∈ K ∧ (∀S ∈ C)(x ∈ S ∧ K ⊆ S ⇒ K = S)}

the maximal description of x [42].
In [18], we showed the advantages of matrix approaches for obtaining the minimal

description and the maximal description in covering rough sets. Moreover, in [33], we showed
the advantages of fuzzy minimal description and fuzzy maximal description in fuzzy covering
rough sets. For example, they can be used in granular reductions (see Example 17 in [33]), and
can also be used to obtain fuzzy neighborhoods (see Figure 4 in [33]).

In the following, we introduce some basic notions of IF set theory.

Definition 2 ([34]). Let U be a universe. An intuitionistic fuzzy set (IFS) A in U is defined
as follows:

A = {⟨x, µA(x), νA(x)⟩ : x ∈ U},

where µA : U → [0, 1] is called the degree of membership of the element x ∈ U to A, νA : U → [0, 1]
is called the degree of non-membership. They satisfy µA(x) + νA(x) ≤ 1 for all x ∈ U. The family
of all intuitionistic fuzzy sets in U is denoted by IF(U).

We call ⟨a, b⟩ with 0 < a, b ≤ 1 and a + b ≤ 1 an IF value. As is well known, for two IF
values α = ⟨a, b⟩ and β = ⟨c, d⟩ , α ≤ β ⇔ a ≤ c and b ≥ d.

For any family γi ∈ [0, 1], i ∈ I, I ⊆ N+ (N+ is the set of all positive integers), we write
∨i∈Iγi for the supremum of {γi : i ∈ I}, and ∧i∈Iγi for the infimum of {γi : i ∈ I}. Some
basic operations on IF(U) are listed as follows [34]: A, B ∈ IF(U),

(1) A ⊆ B iff µA(x) ≤ µB(x) and νB(x) ≤ νA(x) for all x ∈ U;
(2) A = B iff A ⊆ B and B ⊆ A;
(3) A ∪ B = {⟨x, µA(x) ∨ µB(x), νA(x) ∧ νB(x)⟩ : x ∈ U};
(4) A ∩ B = {⟨x, µA(x) ∧ µB(x), νA(x) ∨ νB(x)⟩ : x ∈ U};
(5) A′ = {⟨x, νA(x), µA(x)⟩ : x ∈ U}.

Definition 3 ([35]). Let U be a universe and β = ⟨a, b⟩ be an IF value. Then, we call
Ĉ = {C1, C2, . . . , Cm}, with Ci ∈ IF(U)(i = 1, 2, . . . , m), an IF β-covering of U, if for any
x ∈ U there exists Ci ∈ Ĉ such that Ci(x) ≥ β. We also call (U, Ĉ) an IF β-covering approxima-
tion space.

Finally, we introduce some notions in the IF β-covering approximation space.

Definition 4 ([35]). Let (U, Ĉ) be an IF β-covering approximation space. For each x ∈ U, the IF
β-neighborhood Ñβ

Ĉ(x)
of x induced by Ĉ can be defined as follows:

Ñβ

Ĉ(x)
=

⋂{C ∈ Ĉ : C(x) ≥ β}.

Definition 5 ([35]). Let (U, Ĉ) be an IF β-covering approximation space. For any x ∈ U, its IF

β-minimal description M̃d
β

Ĉ(x) is defined as follows:
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M̃d
β

Ĉ(x) = {C ∈ Ĉ : C(x) ≥ β ∧ (∀D ∈ Ĉ)(D(x) ≥ β ∧ D ⊆ C ⇒ C = D)}.

For better reading and understanding, we explain relevant symbols in Table 1.

Table 1. Relevant symbols in this paper.

Full Name Relevant Symbol

Original Symbols

Covering approximation space (U, C)

Minimal description of x MdC(x)

Maximal description of x MDC(x)

IF β-covering approximation space (U, Ĉ)

IF β-neighborhood Ñβ

Ĉ(x)

IF β-minimal description of x M̃d
β
(Ĉ, x)

New Symbols

IF β-maximal description of x M̃D
β
(Ĉ, x)

IF granular matrix representation of Ĉ MĈ

IF eigenmatrix of x MĈ(x)

IF β-covering number matrix of Ĉ MĈ

3. Matrix Representations of IF β-Minimal and β-Maximal Descriptions

In this section, IF β-minimal and β-maximal descriptions are computed by matrices.
First, some new matrices and corresponding operations are proposed in an IF β-covering
approximation space. Then, several properties of these new matrices are presented. Finally,
we give the matrix representations of IF β-minimal and β-maximal descriptions based on
the results above.

3.1. Matrix Representations of IF β-Minimal Descriptions

In this subsection, we present some new matrices and matrix operations in the IF
β-covering approximation space. Moreover, the matrix representations of IF β-minimal
and β-maximal descriptions are presented.

Definition 6. Let (U, Ĉ) be an IF β-covering approximation space, where U = {x1, · · · , xn} and
Ĉ = {C1, C2, . . . , Cm}. We call MĈ = (Cj(xi))n×m an IF granular matrix representation of Ĉ.

Example 1. Let U = {x1, x2, x3, x4, x5, x6} and Ĉ = {C1, C2, C3, C4, C5}, where

C1 = ⟨0.6,0.3⟩
x1

+ ⟨0.5,0.2⟩
x2

+ ⟨0.7,0.3⟩
x3

+ ⟨0.6,0.4⟩
x4

+ ⟨0.7,0.3⟩
x5

+ ⟨0.6,0.2⟩
x6

,

C2 = ⟨0.7,0.3⟩
x1

+ ⟨0.2,0.6⟩
x2

+ ⟨0.1,0.7⟩
x3

+ ⟨0.6,0.2⟩
x4

+ ⟨0.5,0.2⟩
x5

+ ⟨0.5,0.3⟩
x6

,

C3 = ⟨0.7,0.2⟩
x1

+ ⟨0.6,0.1⟩
x2

+ ⟨0.8,0.1⟩
x3

+ ⟨0.6,0.3⟩
x4

+ ⟨0.8,0.1⟩
x5

+ ⟨0.6,0.1⟩
x6

,

C4 = ⟨0.3,0.5⟩
x1

+ ⟨0.5,0.5⟩
x2

+ ⟨0.5,0.3⟩
x3

+ ⟨0.4,0.5⟩
x4

+ ⟨0.6,0.2⟩
x5

+ ⟨0.5,0.3⟩
x6

,

C5 = ⟨0.5,0.1⟩
x1

+ ⟨0.6,0.4⟩
x2

+ ⟨0.7,0.2⟩
x3

+ ⟨0.6,0.3⟩
x4

+ ⟨0.7,0.2⟩
x5

+ ⟨0.6,0.2⟩
x6

.

Suppose β = ⟨0.6, 0.3⟩. By Definition 3, we know Ĉ is an IF β-covering of U. By Definition 6,
we have



Axioms 2024, 13, 411 5 of 20

MĈ =



C1 C2 C3 C4 C5

x1 ⟨0.6, 0.3⟩ ⟨0.7, 0.3⟩ ⟨0.7, 0.2⟩ ⟨0.3, 0.5⟩ ⟨0.5, 0.1⟩
x2 ⟨0.5, 0.2⟩ ⟨0.2, 0.6⟩ ⟨0.6, 0.1⟩ ⟨0.5, 0.5⟩ ⟨0.6, 0.4⟩
x3 ⟨0.7, 0.3⟩ ⟨0.1, 0.7⟩ ⟨0.8, 0.1⟩ ⟨0.5, 0.3⟩ ⟨0.7, 0.2⟩
x4 ⟨0.6, 0.4⟩ ⟨0.6, 0.2⟩ ⟨0.6, 0.3⟩ ⟨0.4, 0.5⟩ ⟨0.6, 0.3⟩
x5 ⟨0.7, 0.3⟩ ⟨0.5, 0.2⟩ ⟨0.8, 0.1⟩ ⟨0.6, 0.2⟩ ⟨0.7, 0.2⟩
x6 ⟨0.6, 0.2⟩ ⟨0.5, 0.3⟩ ⟨0.6, 0.1⟩ ⟨0.5, 0.3⟩ ⟨0.6, 0.2⟩

.

Based on Definition 6, another two matrices about MĈ are proposed in the follow-
ing definition.

Definition 7. Let (U, Ĉ) be an IF β-covering approximation space and MĈ = (Cj(xi))n×m be a
matrix representation of Ĉ, where U = {x1, · · · , xn} and Ĉ = {C1, C2, . . . , Cm}.

(1) For any 1 ≤ j ≤ m, MĈ(xi) = (αkj)n×m is called an IF eigenmatrix of xi, where 1 ≤ k ≤ n,

αkj =
{

Cj(xk), Cj(xi) ≥ β;
⟨0, 0⟩, otherwise.

(2) MĈ = (n)m×m is called the IF β-covering number matrix of Ĉ.

Remark 1. In Definition 7, for MĈ(xi), if Cj(xi) ≥ β, then the jth column of MĈ(xi) is the jth of
MĈ; otherwise, all elements in the jth column of MĈ(xi) are ⟨0, 0⟩.

Example 2 (Continued from Example 1). By Definition 7, we have

MĈ(x1) =



⟨0.6, 0.3⟩ ⟨0.7, 0.3⟩ ⟨0.7, 0.2⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0.5, 0.2⟩ ⟨0.2, 0.6⟩ ⟨0.6, 0.1⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0.7, 0.3⟩ ⟨0.1, 0.7⟩ ⟨0.8, 0.1⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0.6, 0.4⟩ ⟨0.6, 0.2⟩ ⟨0.6, 0.3⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0.7, 0.3⟩ ⟨0.5, 0.2⟩ ⟨0.8, 0.1⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0.6, 0.2⟩ ⟨0.5, 0.3⟩ ⟨0.6, 0.1⟩ ⟨0, 0⟩ ⟨0, 0⟩

,

MĈ(x2) =



⟨0, 0⟩ ⟨0, 0⟩ ⟨0.7, 0.2⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0, 0⟩ ⟨0, 0⟩ ⟨0.6, 0.1⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0, 0⟩ ⟨0, 0⟩ ⟨0.8, 0.1⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0, 0⟩ ⟨0, 0⟩ ⟨0.6, 0.3⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0, 0⟩ ⟨0, 0⟩ ⟨0.8, 0.1⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0, 0⟩ ⟨0, 0⟩ ⟨0.6, 0.1⟩ ⟨0, 0⟩ ⟨0, 0⟩

,

MĈ(x3) =



⟨0.6, 0.3⟩ ⟨0, 0⟩ ⟨0.7, 0.2⟩ ⟨0, 0⟩ ⟨0.5, 0.1⟩
⟨0.5, 0.2⟩ ⟨0, 0⟩ ⟨0.6, 0.1⟩ ⟨0, 0⟩ ⟨0.6, 0.4⟩
⟨0.7, 0.3⟩ ⟨0, 0⟩ ⟨0.8, 0.1⟩ ⟨0, 0⟩ ⟨0.7, 0.2⟩
⟨0.6, 0.4⟩ ⟨0, 0⟩ ⟨0.6, 0.3⟩ ⟨0, 0⟩ ⟨0.6, 0.3⟩
⟨0.7, 0.3⟩ ⟨0, 0⟩ ⟨0.8, 0.1⟩ ⟨0, 0⟩ ⟨0.7, 0.2⟩
⟨0.6, 0.2⟩ ⟨0, 0⟩ ⟨0.6, 0.1⟩ ⟨0, 0⟩ ⟨0.6, 0.2⟩

,

MĈ(x4) =



⟨0, 0⟩ ⟨0.7, 0.3⟩ ⟨0.7, 0.2⟩ ⟨0, 0⟩ ⟨0.5, 0.1⟩
⟨0, 0⟩ ⟨0.2, 0.6⟩ ⟨0.6, 0.1⟩ ⟨0, 0⟩ ⟨0.6, 0.4⟩
⟨0, 0⟩ ⟨0.1, 0.7⟩ ⟨0.8, 0.1⟩ ⟨0, 0⟩ ⟨0.7, 0.2⟩
⟨0, 0⟩ ⟨0.6, 0.2⟩ ⟨0.6, 0.3⟩ ⟨0, 0⟩ ⟨0.6, 0.3⟩
⟨0, 0⟩ ⟨0.5, 0.2⟩ ⟨0.8, 0.1⟩ ⟨0, 0⟩ ⟨0.7, 0.2⟩
⟨0, 0⟩ ⟨0.5, 0.3⟩ ⟨0.6, 0.1⟩ ⟨0, 0⟩ ⟨0.6, 0.2⟩

,

MĈ(x5) =



⟨0.6, 0.3⟩ ⟨0, 0⟩ ⟨0.7, 0.2⟩ ⟨0.3, 0.5⟩ ⟨0.5, 0.1⟩
⟨0.5, 0.2⟩ ⟨0, 0⟩ ⟨0.6, 0.1⟩ ⟨0.5, 0.5⟩ ⟨0.6, 0.4⟩
⟨0.7, 0.3⟩ ⟨0, 0⟩ ⟨0.8, 0.1⟩ ⟨0.5, 0.3⟩ ⟨0.7, 0.2⟩
⟨0.6, 0.4⟩ ⟨0, 0⟩ ⟨0.6, 0.3⟩ ⟨0.4, 0.5⟩ ⟨0.6, 0.3⟩
⟨0.7, 0.3⟩ ⟨0, 0⟩ ⟨0.8, 0.1⟩ ⟨0.6, 0.2⟩ ⟨0.7, 0.2⟩
⟨0.6, 0.2⟩ ⟨0, 0⟩ ⟨0.6, 0.1⟩ ⟨0.5, 0.3⟩ ⟨0.6, 0.2⟩

,
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MĈ(x6) =



⟨0.6, 0.3⟩ ⟨0, 0⟩ ⟨0.7, 0.2⟩ ⟨0, 0⟩ ⟨0.5, 0.1⟩
⟨0.5, 0.2⟩ ⟨0, 0⟩ ⟨0.6, 0.1⟩ ⟨0, 0⟩ ⟨0.6, 0.4⟩
⟨0.7, 0.3⟩ ⟨0, 0⟩ ⟨0.8, 0.1⟩ ⟨0, 0⟩ ⟨0.7, 0.2⟩
⟨0.6, 0.4⟩ ⟨0, 0⟩ ⟨0.6, 0.3⟩ ⟨0, 0⟩ ⟨0.6, 0.3⟩
⟨0.7, 0.3⟩ ⟨0, 0⟩ ⟨0.8, 0.1⟩ ⟨0, 0⟩ ⟨0.7, 0.2⟩
⟨0.6, 0.2⟩ ⟨0, 0⟩ ⟨0.6, 0.1⟩ ⟨0, 0⟩ ⟨0.6, 0.2⟩

,

MĈ =


6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6

.

Then, a new matrix operation is presented in the following definition.

Definition 8. Let A = (αik)n×m and B = (γkj)m×s be two matrices, where αik = ⟨a+ik , a−ik⟩ and
γkj = ⟨b+kj , b−kj⟩. We define C = A ⊵ B = (cij)n×s, where

cij =


m
∑

k=1
(αik ⊵ γkj), row i of A and column j of B are not 0;

0, otherwise,
and

αik ⊵ γkj =

{
1, a+ik ≥ b+kj ∧ a−ik ≤ b−kj ;
0, otherwise.

In Definition 8, 0 denotes the vector with any element ⟨0, 0⟩. Then, two characteristics
of MT

Ĉ
(x)⊵ MĈ(x) (∀x ∈ U) are presented in the following two propositions, respectively.

Proposition 1. Let (U, Ĉ) be an IF β-covering approximation space and MT
Ĉ
(xk)⊵ MĈ(xk) =

(aij)m×m, where xk ∈ U (k = 1, 2, · · · , n) and Ĉ = {C1, C2, . . . , Cm}. Then, aij = |{x ∈ U :
(Ci ∩ Cj)(xk) ≥ β ∧ Ci(x) ≥ Cj(x)}|.

Proof.

aij =

{
∑

x∈U
(Ci(x)⊵ Cj(x)), Ci(xk) ≥ β and Cj(xk) ≥ β;

0, otherwise.

=

{
|{x ∈ U : Ci(x) ≥ Cj(x)}|, (Ci ∩ Cj)(xk) ≥ β;
0, otherwise.

= |{x ∈ U : (Ci ∩ Cj)(xk) ≥ β ∧ Ci(x) ≥ Cj(x)}|.

Proposition 2. Let (U, Ĉ) be an IF β-covering approximation space, xk ∈ U, MT
Ĉ
(xk)⊵ MĈ(xk) =

(aij)m×m and MĈ = (bij)m×m. For any (t ∈ {1, 2, · · · , m}), att = btt if and only if att > 0.

Proof. Suppose U = {x1, · · · , xn} and Ĉ = {C1, C2, . . . , Cm}. Then,

att = |{x ∈ U : Ct(xk) ≥ β}| = btt = n = |{x : x ∈ U}| ⇔ Ct(xk) ≥ β ⇔ att > 0.

Finally, the matrix representation of the IF β-minimal description is presented in
Theorem 1. Let A = (aij)n×n and B = (bij)n×n be two matrices. We define C = A⊕
B = (ci)n×1, where

ci =

{
1, aij = bij ⇔ i = j;
0, otherwise.
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Let Ĉ = {C1, C2, . . . , Cm} be an IF β-covering of U and Ĉ1 ⊆ Ĉ. We call f (Ĉ1) =
(yi)m×1 the membership function of Ĉ1 in Ĉ, where

yi =

{
1, Ci ∈ Ĉ1;
0, Ci /∈ Ĉ1.

Note that “⊵” is before “⊕” in operations.

Theorem 1. Let (U, Ĉ) be an IF β-covering approximation space, where U = {x1, · · · , xn} and
Ĉ = {C1, C2, . . . , Cm}. Then,

f (M̃d
β

Ĉ(xk)) = MT
Ĉ
(xk)⊵ MĈ(xk)⊕ MĈ, k = 1, 2, · · · , n.

Proof. Suppose MT
Ĉ
(xk)⊵ MĈ(xk) = (aij)m×m, MĈ = (bij)m×m and f (M̃d

β

Ĉ(xk)) = (yj)m×1.
For any Ct ∈ C,

Ct ∈ M̃d
β

Ĉ(xk) ⇔ (Ct(xk) ≥ β) ∧ (∀Cj ∈ Ĉ ∧ (Cj(xk) ≥ β) ∧ (Cj ⊆ Ct ⇒ Ct = Cj))

⇔ (Ct(xk) ≥ β) ∧ (∀j ∈ {1, 2, · · · , m} ∧ (Cj(xk) ≥ β) ∧ (Cj ⊆ Ct ⇒ Ct = Cj))

⇔ (Ct(xk) ≥ β) ∧ (∀j ∈ {1, 2, · · · , m} ∧ (Cj(xk) ≥ β)∧

(|{x ∈ U : Ct(x) ≥ Cj(x)}| = n ⇒ Ct = Cj))

⇔ (Ct(xk) ≥ β) ∧ (∀j ∈ {1, 2, · · · , m} ∧ (atj = btj ⇒ t = j))

⇔ (att > 0) ∧ (atj = btj ⇒ t = j)

⇔ (att = btt) ∧ (atj = btj ⇒ t = j)

⇔ yt = 1.

Hence, f (M̃d
β

Ĉ(xk)) = MT
Ĉ
(xk)⊵ MĈ(xk)⊕ MĈ.

Example 3 (Continued from Example 1). All MĈ(xk) (k = 1, 2, · · · , 6) and MĈ are calculated
in Examples 1 and 2. Hence,

f (M̃d
β

Ĉ(x1)) = MT
Ĉ
(x1)⊵ MĈ(x1)⊕ MĈ

=


⟨0.6, 0.3⟩ ⟨0.5, 0.2⟩ ⟨0.7, 0.3⟩ ⟨0.6, 0.4⟩ ⟨0.7, 0.3⟩ ⟨0.6, 0.2⟩
⟨0.7, 0.3⟩ ⟨0.2, 0.6⟩ ⟨0.1, 0.7⟩ ⟨0.6, 0.2⟩ ⟨0.5, 0.2⟩ ⟨0.5, 0.3⟩
⟨0.7, 0.2⟩ ⟨0.6, 0.1⟩ ⟨0.8, 0.1⟩ ⟨0.6, 0.3⟩ ⟨0.8, 0.1⟩ ⟨0.6, 0.1⟩
⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩

⊵



⟨0.6, 0.3⟩ ⟨0.7, 0.3⟩ ⟨0.7, 0.2⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0.5, 0.2⟩ ⟨0.2, 0.6⟩ ⟨0.6, 0.1⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0.7, 0.3⟩ ⟨0.1, 0.7⟩ ⟨0.8, 0.1⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0.6, 0.4⟩ ⟨0.6, 0.2⟩ ⟨0.6, 0.3⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0.7, 0.3⟩ ⟨0.5, 0.2⟩ ⟨0.8, 0.1⟩ ⟨0, 0⟩ ⟨0, 0⟩
⟨0.6, 0.2⟩ ⟨0.5, 0.3⟩ ⟨0.6, 0.1⟩ ⟨0, 0⟩ ⟨0, 0⟩

⊕


6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6



=


6 3 0 0 0
2 6 1 0 0
6 5 6 0 0
0 0 0 0 0
0 0 0 0 0

⊕


6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6

 =


1
1
0
0
0

,
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i.e., M̃d
β

Ĉ(x1) = {C1, C2}.

f (M̃d
β

Ĉ(x2)) = MT
Ĉ
(x2)⊵ MĈ(x2)⊕ MĈ

=


0 0 0 0 0
0 0 0 0 0
0 0 6 0 0
0 0 0 0 0
0 0 0 0 0

⊕


6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6

 =


0
0
1
0
0

,

i.e., M̃d
β

Ĉ(x2) = {C3}.

f (M̃d
β

Ĉ(x3)) = MT
Ĉ
(x3)⊵ MĈ(x3)⊕ MĈ

=


6 0 0 0 1
0 0 0 0 0
6 0 6 0 5
0 0 0 0 0
4 0 1 0 6

⊕


6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6

 =


1
0
0
0
1

,

i.e., M̃d
β

Ĉ(x3) = {C1, C5}.

f (M̃d
β

Ĉ(x4)) = MT
Ĉ
(x4)⊵ MĈ(x4)⊕ MĈ

=


0 0 0 0 0
0 6 1 0 1
0 5 6 0 5
0 0 0 0 0
0 4 1 0 6

⊕


6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6

 =


0
1
1
0
1

,

i.e., M̃d
β

Ĉ(x4) = {C2, C3, C5}.

f (M̃d
β

Ĉ(x5)) = MT
Ĉ
(x5)⊵ MĈ(x5)⊕ MĈ

=


6 0 0 5 1
0 0 0 0 0
6 0 6 6 5
0 0 0 6 0
4 0 1 6 6

⊕


6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6

 =


1
0
0
1
0

,

i.e., M̃d
β

Ĉ(x5) = {C1, C4}.

f (M̃d
β

Ĉ(x6)) = MT
Ĉ
(x6)⊵ MĈ(x6)⊕ MĈ

=


6 0 0 0 1
0 0 0 0 0
6 0 6 0 5
0 0 0 0 0
4 0 1 0 6

⊕


6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6

 =


1
0
0
0
1

,

i.e., M̃d
β

Ĉ(x6) = {C1, C5}.
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3.2. Matrix Representations of IF β-Maximal Descriptions

Based on Section 3.1, we present the matrix representation of the IF β-maximal de-
scription in this subsection. Firstly, the concept of IF β-maximal description is given in the
following definition.

Definition 9. Let (U, Ĉ) be an IF β-covering approximation space. For any x ∈ U, its IF

β-maximal description M̃D
β

Ĉ(x) is defined as follows:

M̃D
β

Ĉ(x) = {C ∈ Ĉ : C(x) ≥ β ∧ (∀D ∈ Ĉ)(D(x) ≥ β ∧ C ⊆ D ⇒ C = D)}.

To investigate the matrix representation of the IF β-maximal description, another new
matrix operation is presented in the following definition.

Definition 10. Let A = (αik)n×m and B = (γkj)m×s be two matrices, where αik = ⟨a+ik , a−ik⟩ and
γkj = ⟨b+kj , b−kj⟩. We define C = A ⊴ B = (cij)n×s, where

cij =


m
∑

k=1
(αik ⊴ γkj), row i of A and column j of B are not 0;

0, otherwise,
and

αik ⊴ γkj =

{
1, a+ik ≤ b+kj ∧ a−ik ≥ b−kj ;
0, otherwise.

By Definition 10, two characteristics of MT
Ĉ
(x)⊴ MĈ(x) (∀x ∈ U) are presented in the

following two propositions.

Proposition 3. Let Ĉ = {C1, C2, . . . , Cm} be an IF β-covering of U = {x1, · · · , xn}, xk ∈ U and
MT

Ĉ
(xk)⊴ MĈ(xk) = (aij)m×m. Then, aij = |{x ∈ U : (Ci ∩ Cj)(xk) ≥ β ∧ Ci(x) ≤ Cj(x)}|.

Proof.

aij =

{
∑

x∈U
(Ci(x)⊴ Cj(x)), Ci(xk) ≥ β and Cj(xk) ≥ β;

0, otherwise.

=

{
|{x ∈ U : Ci(x) ≤ Cj(x)}|, (Ci ∩ Cj)(xk) ≥ β;
0, otherwise.

= |{x ∈ U : (Ci ∩ Cj)(xk) ≥ β ∧ Ci(x) ≤ Cj(x)}|.

Proposition 4. Let Ĉ = {C1, C2, . . . , Cm} be an IF β-covering of U = {x1, · · · , xn}, xk ∈
U, MT

Ĉ
(xk) ⊴ MĈ(xk) = (aij)m×m and MĈ = (bij)m×m. att = btt if and only if att > 0

(t ∈ {1, 2, · · · , m}).

Proof. att = |{x ∈ U : Ct(xk) ≥ β}| = btt = n = |{x : x ∈ U}| ⇔ Ct(xk) ≥ β ⇔ att > 0.

Finally, the matrix representation of the IF β-maximal description is presented in the
following theorem. Note that “⊴” is before “⊕” in operations.

Theorem 2. Let Ĉ = {C1, C2, . . . , Cm} be an IF β-covering of U = {x1, · · · , xn}. Then,

f (M̃D
β

Ĉ(xk)) = MT
Ĉ
(xk)⊴ MĈ(xk)⊕ MĈ, k = 1, 2, · · · , n.

Proof. Suppose MT
Ĉ
(xk) ⊴ MĈ(xk) = (aij)m×m, MĈ = (bij)m×m and f (M̃D

β

Ĉ(xk)) =

(yj)m×1. For any Ct ∈ C,
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Ct ∈ M̃D
β

Ĉ(xk) ⇔ (Ct(xk) ≥ β) ∧ (∀Cj ∈ Ĉ ∧ (Cj(xk) ≥ β) ∧ (Cj ⊇ Ct ⇒ Ct = Cj))

⇔ (Ct(xk) ≥ β) ∧ (∀j ∈ {1, 2, · · · , m} ∧ (Cj(xk) ≥ β) ∧ (Cj ⊇ Ct ⇒ Ct = Cj))

⇔ (Ct(xk) ≥ β) ∧ (∀j ∈ {1, 2, · · · , m} ∧ (Cj(xk) ≥ β)∧

(|{x ∈ U : Ct(x) ≤ Cj(x)}| = n ⇒ Ct = Cj))

⇔ (Ct(xk) ≥ β) ∧ (∀j ∈ {1, 2, · · · , m} ∧ (atj = btj ⇒ t = j))

⇔ (att = btt) ∧ (atj = btj ⇒ t = j)

⇔ yt = 1.

Hence, f (M̃D
β

Ĉ(xk)) = MT
Ĉ
(xk)⊴ MĈ(xk)⊕ MĈ.

Example 4 (Continued from Example 1). All MĈ(xk) (k = 1, 2, · · · , 6) and MĈ are calculated
in Example 2. Then,

f (M̃D
β

Ĉ(x1)) = MT
Ĉ
(x1)⊴ MĈ(x1)⊕ MĈ

=


6 2 6 0 0
3 6 5 0 0
0 1 6 0 0
0 0 0 0 0
0 0 0 0 0

⊕


6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6

 =


0
1
1
0
0

,

i.e., M̃D
β

Ĉ(x1) = {C2, C3}.

f (M̃D
β

Ĉ(x2)) = MT
Ĉ
(x2)⊴ MĈ(x2)⊕ MĈ

=


0 0 0 0 0
0 0 0 0 0
0 0 6 0 0
0 0 0 0 0
0 0 0 0 0

⊕


6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6

 =


0
0
1
0
0

,

i.e., M̃D
β

Ĉ(x2) = {C3}.

f (M̃D
β

Ĉ(x3)) = MT
Ĉ
(x3)⊴ MĈ(x3)⊕ MĈ

=


6 0 6 0 4
0 0 0 0 0
0 0 6 0 1
0 0 0 0 0
1 0 5 0 6

⊕


6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6

 =


0
0
1
0
1

,

i.e., M̃D
β

Ĉ(x3) = {C3, C5}.

f (M̃D
β

Ĉ(x4)) = MT
Ĉ
(x4)⊴ MĈ(x4)⊕ MĈ

=


0 0 0 0 0
0 6 5 0 4
0 1 6 0 1
0 0 0 0 0
0 1 5 0 6

⊕


6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6

 =


0
1
1
0
1

,
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i.e., M̃D
β

Ĉ(x4) = {C2, C3, C5}.

f (M̃D
β

Ĉ(x5)) = MT
Ĉ
(x5)⊴ MĈ(x5)⊕ MĈ

=


6 0 6 0 4
0 0 0 0 0
0 0 6 0 1
5 0 6 6 6
1 0 5 0 6

⊕


6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6

 =


0
0
1
0
1

,

i.e., M̃D
β

Ĉ(x5) = {C3, C5}.

f (M̃D
β

Ĉ(x6)) = MT
Ĉ
(x6)⊴ MĈ(x6)⊕ MĈ

=


6 0 6 0 4
0 0 0 0 0
0 0 6 0 1
0 0 0 0 0
1 0 5 0 6

⊕


6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6

 =


0
0
1
0
1

,

i.e., M̃D
β

Ĉ(x6) = {C3, C5}.

4. Matrix Approaches for Reductions in IF β-Covering Approximation Spaces

In this section, we present two kinds of reductions in IF β-covering approximation
spaces based on IF β-minimal and β-maximal descriptions, respectively. Moreover, they
are calculated by matrices.

4.1. Reductions of IF β-Covering Approximation Spaces via IF β-Minimal Descriptions

The definitions of IF β-minimal reduction and corresponding matrix approaches are
mainly presented in this subsection. Firstly, the notion of the subspace of the original IF
β-covering approximation space is presented in the following definition.

Definition 11. Let (U, Ĉ) be an IF β-covering approximation space and D̂ ⊆ Ĉ. We call (U, D̂)
an IF sub-β-covering approximation space of (U, Ĉ) if D̂ is also an IF β-covering of U. The family
of all IF sub-β-covering approximation spaces of (U, Ĉ) is denoted by S(Ĉ).

By Definition 11, Ĉ ∈ S(Ĉ) for any IF β-covering approximation space (U, Ĉ). We
denote Ñ β

Ĉ
(x) = {C ∈ Ĉ : C(x) ≥ β}. Then, Propositions 5 and 6 show two properties of

IF β-minimal descriptions in the IF sub-β-covering approximation space.

Proposition 5. Let (U, Ĉ) be an IF β-covering approximation space and D̂ ∈ S(Ĉ). For any

x ∈ U, if |Ñ β

Ĉ
(x)| = 1, then M̃d

β

Ĉ(x) = M̃d
β

D̂(x).

Proof. If |Ñ β

Ĉ
(x)| = 1, then we suppose Ñ β

Ĉ
(x) = {C′}, where C′ ∈ Ĉ and C′(x) ≥ β. Since

D̂ ∈ S(Ĉ), C′ ∈ D̂. Hence, Ñ β

D̂
(x) = {C′}. By Definition 5, M̃d

β

Ĉ(x) = {C ∈ Ĉ : C(x) ≥
β ∧ (∀D ∈ Ĉ)(D(x) ≥ β ∧ D ⊆ C ⇒ C = D)} = {C ∈ Ñ β

Ĉ
(x) : ∀D ∈ Ñ β

Ĉ
(x) ∧ D ⊆ C ⇒

C = D)} = {C′} and M̃d
β

D̂(x) = {C ∈ Ñ β

D̂
(x) : ∀D ∈ Ñ β

D̂
(x)∧D ⊆ C ⇒ C = D)} = {C′}.

Therefore, M̃d
β

Ĉ(x) = M̃d
β

D̂(x).

Proposition 6. Let (U, Ĉ) be an IF β-covering approximation space and D̂ ∈ S(Ĉ). For any

x ∈ U, if Ñ β

Ĉ
(x) = Ñ β

D̂
(x), then M̃d

β

Ĉ(x) = M̃d
β

D̂(x).
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Proof. Since Ñ β

Ĉ
(x) = Ñ β

D̂
(x), M̃d

β

Ĉ(x) = {C ∈ Ĉ : C(x) ≥ β ∧ (∀D ∈ Ĉ)(D(x) ≥
β ∧ D ⊆ C ⇒ C = D)} = {C ∈ Ñ β

Ĉ
(x) : ∀D ∈ Ñ β

Ĉ
(x) ∧ D ⊆ C ⇒ C = D)} = {C ∈

Ñ β

D̂
(x) : ∀D ∈ Ñ β

D̂
(x) ∧ D ⊆ C ⇒ C = D)} = M̃d

β

D̂(x).

The converse of Proposition 6 is incorrect. That is to say, “for any x ∈ U, if M̃d
β

Ĉ(x) =

M̃d
β

D̂(x), then Ñ β

Ĉ
(x) = Ñ β

D̂
(x)” is not true. We use the following example to explain this.

Example 5 (Continued from Example 1). In Example 1, Ĉ = {C1, · · · , C5} is an IF β-covering

of U. In Example 3, we have f (M̃d
β

Ĉ(x5)) = (1, 0, 0, 1, 0)T , i.e., M̃d
β

Ĉ(x5) = {C1, C4}. Suppose
D̂ = {C1, · · · , C4}. Then, D̂ ∈ S(Ĉ).

MD̂ =



C1 C2 C3 C4

x1 ⟨0.6, 0.3⟩ ⟨0.7, 0.3⟩ ⟨0.7, 0.2⟩ ⟨0.3, 0.5⟩
x2 ⟨0.5, 0.2⟩ ⟨0.2, 0.6⟩ ⟨0.6, 0.1⟩ ⟨0.5, 0.5⟩
x3 ⟨0.7, 0.3⟩ ⟨0.1, 0.7⟩ ⟨0.8, 0.1⟩ ⟨0.5, 0.3⟩
x4 ⟨0.6, 0.4⟩ ⟨0.6, 0.2⟩ ⟨0.6, 0.3⟩ ⟨0.4, 0.5⟩
x5 ⟨0.7, 0.3⟩ ⟨0.5, 0.2⟩ ⟨0.8, 0.1⟩ ⟨0.6, 0.2⟩
x6 ⟨0.6, 0.2⟩ ⟨0.5, 0.3⟩ ⟨0.6, 0.1⟩ ⟨0.5, 0.3⟩

 and

f (M̃d
β

D̂(x5)) = MT
D̂
(x5)⊵ MD̂(x5)⊕ MD̂ =


6 0 0 5
0 0 0 0
6 0 6 6
0 0 0 6

⊕


6 6 6 6
6 6 6 6
6 6 6 6
6 6 6 6

 =


1
0
0
1

,

i.e., M̃d
β

D̂(x5) = {C1, C4}. Hence, M̃d
β

Ĉ(x5) = M̃d
β

D̂(x5) = {C1, C4}. But Ñ β

Ĉ
(x5) =

{C1, C3, C4, C5} and Ñ β

D̂
(x5) = {C1, C3, C4}, i.e., Ñ β

Ĉ
(x5) ̸= Ñ β

D̂
(x5).

Definition 12. Let (U, Ĉ) be an IF β-covering approximation space and D̂ ∈ S(Ĉ). D̂ is called
the IF β-minimal reduction of Ĉ if D̂ satisfies the following conditions:

(1) For any x ∈ U, M̃d
β

Ĉ(x) = M̃d
β

D̂(x);

(2) For any Ê ∈ S(D̂)− {D̂}, there exists x ∈ U such that M̃d
β

Ê(x) ̸= M̃d
β

D̂(x).

Let A be a family of subsets of IF(U). We denote Min(A) = {X ∈ A : ∀Y ∈ A, Y ⊆
X ⇒ X = Y}.

Proposition 7. Let (U, Ĉ) be an IF β-covering approximation space. D̂ is the IF β-minimal

reduction of Ĉ if and only if D̂ ∈ Min({Ê ∈ S(Ĉ) : ∀x ∈ U, M̃d
β

Ĉ(x) = M̃d
β

Ê(x)}).

Proof. By Definition 12, it is immediate.

Theorem 3. Let (U, Ĉ) be an IF β-covering approximation space. The IF β-minimal reduction of
Ĉ is unique.

Proof. By Definition 12, the existence of the IF β-minimal reduction is true. Then, we use
proof by contradiction to prove uniqueness. Suppose D̂1 is an IF β-minimal reduction of Ĉ

and D̂2 is the other one. Then, M̃d
β

Ĉ(x) = M̃d
β

D̂1
(x) = M̃d

β

D̂2
(x) for any x ∈ U. Hence, there

exists K ∈ D̂2 − D̂1 such that K /∈ M̃d
β

D̂1
(x) for any x ∈ U. That is to say, K /∈ M̃d

β

D̂2
(x) for

any x ∈ U. D̂2 −{K} is also an IF β-covering, since for any x ∈ U there exists C ∈ M̃d
β

D̂2
(x)

such that C(x) ≥ β. Therefore, M̃d
β

D̂2−{K}(x) = M̃d
β

D̂2
(x) for any x ∈ U. So, D̂2 is not an IF
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β-minimal reduction of Ĉ, which is contradictory with D̂2 being an IF β-minimal reduction
of Ĉ. Thus, the IF β-minimal reduction of Ĉ is unique.

By Proposition 7 and Theorem 3, the steps of calculating all IF β-minimal reductions
in the IF β-covering approximation space (U, Ĉ) are presented as follows:

Step 1: Compute the family of all IF sub-β-covering approximation spaces of (U, Ĉ)
according to Definition 11, i.e., S(Ĉ).

Step 2: For any x ∈ U and D̂ ∈ S(Ĉ), compute M̃d
β

D̂(x) according to Theorem 1, i.e.,

f (M̃d
β

D̂(x)) = MT
D̂
(x)⊵ MD̂(x)⊕ MD̂.

Step 3: Compute F = Min({D̂ ∈ S(Ĉ) : ∀x ∈ U, M̃d
β

Ĉ(x) = M̃d
β

D̂(x)}). The element
of F is the IF β-minimal reduction of Ĉ according to Proposition 7 and Theorem 3.

Hence, the IF β-minimal reduction of Ĉ belongs to F.

4.2. Reductions of IF β-Covering Approximation Spaces via IF β-Maximal Descriptions

Based on Section 4.1, we present the definition of IF β-maximal reduction and corre-
sponding matrix approaches in this subsection. Firstly, we present two properties of IF
β-minimal descriptions in the IF sub-β-covering approximation space in the following two
propositions, respectively.

Proposition 8. Let (U, Ĉ) be an IF β-covering approximation space and D̂ ∈ S(Ĉ). For any

x ∈ U, if |Ñ β

Ĉ
(x)| = 1, then M̃D

β

Ĉ(x) = M̃D
β

D̂(x).

Proof. If |Ñ β

Ĉ
(x)| = 1, then we suppose Ñ β

Ĉ
(x) = {C′}, where C′ ∈ Ĉ and C′(x) ≥ β. Since

D̂ ∈ S(Ĉ), C′ ∈ D̂. Hence, Ñ β

D̂
(x) = {C′}. By Definition 9, M̃D

β

Ĉ(x) = {C ∈ Ĉ : C(x) ≥
β ∧ (∀D ∈ Ĉ)(D(x) ≥ β ∧ C ⊆ D ⇒ C = D)} = {C ∈ Ñ β

Ĉ
(x) : ∀D ∈ Ñ β

Ĉ
(x) ∧ C ⊆ D ⇒

C = D)} = {C′} and M̃d
β

D̂(x) = {C ∈ Ñ β

D̂
(x) : ∀D ∈ Ñ β

D̂
(x)∧C ⊆ D ⇒ C = D)} = {C′}.

Therefore, M̃D
β

Ĉ(x) = M̃D
β

D̂(x).

Proposition 9. Let (U, Ĉ) be an IF β-covering approximation space and D̂ ∈ S(Ĉ). For any

x ∈ U, if Ñ β

Ĉ
(x) = Ñ β

D̂
(x), then M̃D

β

Ĉ(x) = M̃D
β

D̂(x).

Proof. Since Ñ β

Ĉ
(x) = Ñ β

D̂
(x), M̃D

β

Ĉ(x) = {C ∈ Ĉ : C(x) ≥ β ∧ (∀D ∈ Ĉ)(D(x) ≥
β ∧ C ⊆ D ⇒ C = D)} = {C ∈ Ñ β

Ĉ
(x) : ∀D ∈ Ñ β

Ĉ
(x) ∧ C ⊆ D ⇒ C = D)} = {C ∈

Ñ β

D̂
(x) : ∀D ∈ Ñ β

D̂
(x) ∧ C ⊆ D ⇒ C = D)} = M̃D

β

D̂(x).

The converse of Proposition 9 is incorrect. That is to say, “for any x ∈ U, if M̃D
β

Ĉ(x) =

M̃D
β

D̂(x), then Ñ β

Ĉ
(x) = Ñ β

D̂
(x)” is not true. We use the following example to explain this.

Example 6. (Continued from Example 1.) In Example 1, Ĉ = {C1, · · · , C5} is an IF β-covering

of U. In Example 4, we have f (M̃D
β

Ĉ(x1)) = (0, 1, 1, 0, 0)T , i.e., M̃D
β

Ĉ(x1) = {C2, C3}. Suppose
D̂ = {C′

1, C′
2, C′

3}, where C′
1 = C2, C′

2 = C3, C′
3 = C5}. Then, D̂ ∈ S(Ĉ).

MD̂ =



C′
1 C′

2 C′
3

x1 ⟨0.7, 0.3⟩ ⟨0.7, 0.2⟩ ⟨0.5, 0.1⟩
x2 ⟨0.2, 0.6⟩ ⟨0.6, 0.1⟩ ⟨0.6, 0.4⟩
x3 ⟨0.1, 0.7⟩ ⟨0.8, 0.1⟩ ⟨0.7, 0.2⟩
x4 ⟨0.6, 0.2⟩ ⟨0.6, 0.3⟩ ⟨0.6, 0.3⟩
x5 ⟨0.5, 0.2⟩ ⟨0.8, 0.1⟩ ⟨0.7, 0.2⟩
x6 ⟨0.5, 0.3⟩ ⟨0.6, 0.1⟩ ⟨0.6, 0.2⟩

 =



C2 C3 C5

x1 ⟨0.7, 0.3⟩ ⟨0.7, 0.2⟩ ⟨0.5, 0.1⟩
x2 ⟨0.2, 0.6⟩ ⟨0.6, 0.1⟩ ⟨0.6, 0.4⟩
x3 ⟨0.1, 0.7⟩ ⟨0.8, 0.1⟩ ⟨0.7, 0.2⟩
x4 ⟨0.6, 0.2⟩ ⟨0.6, 0.3⟩ ⟨0.6, 0.3⟩
x5 ⟨0.5, 0.2⟩ ⟨0.8, 0.1⟩ ⟨0.7, 0.2⟩
x6 ⟨0.5, 0.3⟩ ⟨0.6, 0.1⟩ ⟨0.6, 0.2⟩

 and
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f (M̃D
β

D̂(x1)) = MT
D̂
(x1)⊴ MD̂(x1)⊕ MD̂ =

 6 5 0
1 6 0
0 0 0

⊕

 6 6 6
6 6 6
6 6 6

 =

 1
1
0

,

i.e., M̃D
β

D̂(x1) = {C′
1, C′

2} = {C2, C3}. Hence, M̃D
β

Ĉ(x1) = M̃D
β

D̂(x1) = {C2, C3}. But

Ñ β

Ĉ
(x1) = {C1, C2, C3} and Ñ β

D̂
(x1) = {C2, C3}, i.e., Ñ β

Ĉ
(x1) ̸= Ñ β

D̂
(x1).

Definition 13. Let (U, Ĉ) be an IF β-covering approximation space and D̂ ∈ S(Ĉ). D̂ is called an
IF β-maximal reduction of Ĉ if D̂ satisfies the following conditions:

(1) For any x ∈ U, M̃D
β

Ĉ(x) = M̃D
β

D̂(x);

(2) For any Ê ∈ S(D̂)− {D̂}, there exists x ∈ U such that M̃D
β

Ê(x) ̸= M̃D
β

D̂(x).

Proposition 10. Let (U, Ĉ) be an IF β-covering approximation space. D̂ is an IF β-maximal

reduction of Ĉ if and only if D̂ ∈ Min({Ê ∈ S(Ĉ) : ∀x ∈ U, M̃D
β

Ĉ(x) = M̃D
β

Ê(x)}).

Proof. By Definition 13, it is immediate.

Theorem 4. Let (U, Ĉ) be an IF β-covering approximation space and D̂ ∈ S(Ĉ). The IF β-maximal
reduction of Ĉ is unique.

Proof. By Definition 13, the existence of the IF β-maximal reduction is true. Then, we use
proof by contradiction to prove the uniqueness. Suppose D̂1 is an IF β-maximal reduction

of Ĉ and D̂2 is the other one. Then, M̃D
β

Ĉ(x) = M̃D
β

D̂1
(x) = M̃D

β

D̂2
(x) for any x ∈ U.

Hence, there exists K ∈ D̂2 − D̂1 such that K /∈ M̃D
β

D̂1
(x) for any x ∈ U. That is to say,

K /∈ M̃D
β

D̂2
(x) for any x ∈ U. D̂2 − {K} is also an IF β-covering, since for any x ∈ U, there

exists C ∈ M̃D
β

D̂2
(x) such that C(x) ≥ β. Therefore, M̃D

β

D̂2−{K}(x) = M̃D
β

D̂2
(x) for any

x ∈ U. So, D̂2 is not an IF β-maximal reduction of Ĉ, which is contradictory with D̂2 is an
IF β-maximal reduction. Thus, the IF β-maximal reduction of Ĉ is unique.

By Proposition 10 and Theorem 4, the steps of calculating the IF β-maximal reduction
in the IF β-covering approximation space (U, Ĉ) are presented as follows:

Step 1: Compute the family of all IF sub-β-covering approximation spaces of (U, Ĉ)
according to Definition 11, i.e., S(Ĉ).

Step 2: For any x ∈ U and D̂ ∈ S(Ĉ), compute M̃D
β

D̂(x) according to Theorem 2, i.e.,

f (M̃D
β

D̂(x)) = MT
D̂
(x)⊴ MD̂(x)⊕ MD̂.

Step 3: Compute F = Min({D̂ ∈ S(Ĉ) : ∀x ∈ U, M̃D
β

Ĉ(x) = M̃D
β

D̂(x)}). The element
of F is the IF β-maximal reduction of Ĉ according to Proposition 10 and Theorem 4.

Example 7. A customer wants to choose suitable attributes to evaluate a house. Let
U = {x1, x2, · · · , x6} be a set of houses and Ĉ = {C1, C2, · · · , C5} be five attributes given by
merchants, where C1, C2, · · · , C5 represent expensive, beautiful, large, convenient traffic and green
surroundings, respectively. Suppose Cj(xi) = ⟨µCj(xi)

, νCj(xi)
⟩, (i = 1, 2, · · · , 6; j = 1, 2, · · · , 5),

where µCj(xi)
and νCj(xi)

are the degrees of membership and non-membership of the alternative xi

to the attribute Cj, respectively. Let β = ⟨0.6, 0.3⟩ be the critical value. Suppose that for each
alternative xi there exists the attribute Cj such that Cj(xi) ≥ β. It is obvious that Ĉ is an IF
β-covering presented in Example 1.
Step 1: S(Ĉ) = {{C1, C2, C3, C4, C5}, {C1, C3, C4, C5}, {C1, C2, C3, C5}, {C2, C3, C4, C5},
{C1, C2, C3, C4}, {C3, C4, C5}, {C1, C2, C3}, {C1, C3, C4}, {C1, C3, C5}, {C2, C3, C5}, {C2, C3,
C4}, {C3, C4, C5}, {C1, C3}, {C2, C3}, {C2, C5}, {C3, C4}, {C3, C5}, {C3}}.
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Step 2: For any x ∈ U and D̂ ∈ S(Ĉ), we compute M̃D
β

D̂(x) by matrices. All M̃D
β

Ĉ(x) for any
x ∈ U were calculated in Example 4. Here, we show the process about D̂ = {C2, C3, C4, C5} only.

Suppose D̂ = {C′
1, C′

2, C′
3, C′

4}, where C′
1 = C2, C′

2 = C3, C′
3 = C4, C′

4 = C5. Then,

MD̂ =



C′
1 C′

2 C′
3 C′

4
x1 ⟨0.7, 0.3⟩ ⟨0.7, 0.2⟩ ⟨0.3, 0.5⟩ ⟨0.5, 0.1⟩
x2 ⟨0.2, 0.6⟩ ⟨0.6, 0.1⟩ ⟨0.5, 0.5⟩ ⟨0.6, 0.4⟩
x3 ⟨0.1, 0.7⟩ ⟨0.8, 0.1⟩ ⟨0.5, 0.3⟩ ⟨0.7, 0.2⟩
x4 ⟨0.6, 0.2⟩ ⟨0.6, 0.3⟩ ⟨0.4, 0.5⟩ ⟨0.6, 0.3⟩
x5 ⟨0.5, 0.2⟩ ⟨0.8, 0.1⟩ ⟨0.6, 0.2⟩ ⟨0.7, 0.2⟩
x6 ⟨0.5, 0.3⟩ ⟨0.6, 0.1⟩ ⟨0.5, 0.3⟩ ⟨0.6, 0.2⟩

 =



C2 C3 C4 C5

x1 ⟨0.7, 0.3⟩ ⟨0.7, 0.2⟩ ⟨0.3, 0.5⟩ ⟨0.5, 0.1⟩
x2 ⟨0.2, 0.6⟩ ⟨0.6, 0.1⟩ ⟨0.5, 0.5⟩ ⟨0.6, 0.4⟩
x3 ⟨0.1, 0.7⟩ ⟨0.8, 0.1⟩ ⟨0.5, 0.3⟩ ⟨0.7, 0.2⟩
x4 ⟨0.6, 0.2⟩ ⟨0.6, 0.3⟩ ⟨0.4, 0.5⟩ ⟨0.6, 0.3⟩
x5 ⟨0.5, 0.2⟩ ⟨0.8, 0.1⟩ ⟨0.6, 0.2⟩ ⟨0.7, 0.2⟩
x6 ⟨0.5, 0.3⟩ ⟨0.6, 0.1⟩ ⟨0.5, 0.3⟩ ⟨0.6, 0.2⟩

.

Hence,

f (M̃D
β

D̂(x1)) = MT
D̂
(x1)⊴ MD̂(x1)⊕ MD̂ =


6 5 0 0
1 6 0 0
0 0 0 0
0 0 0 0

⊕


6 6 6 6
6 6 6 6
6 6 6 6
6 6 6 6

 =


1
1
0
0

,

i.e., M̃D
β

D̂(x1) = {C′
1, C′

2} = {C2, C3}.

f (M̃D
β

D̂(x2)) = MT
D̂
(x2)⊴ MD̂(x2)⊕ MD̂ =


0 0 0 0
0 6 0 0
0 0 0 0
0 0 0 0

⊕


6 6 6 6
6 6 6 6
6 6 6 6
6 6 6 6

 =


0
1
0
0

,

i.e., M̃D
β

D̂(x2) = {C′
2} = {C3}.

f (M̃D
β

D̂(x3)) = MT
D̂
(x3)⊴ MD̂(x3)⊕ MD̂ =


0 0 0 0
0 6 0 1
0 0 0 0
0 5 0 6

⊕


6 6 6 6
6 6 6 6
6 6 6 6
6 6 6 6

 =


0
1
0
1

,

i.e., M̃D
β

D̂(x3) = {C′
2, C′

4} = {C3, C5}.

f (M̃D
β

D̂(x4)) = MT
D̂
(x4)⊴ MD̂(x4)⊕ MD̂ =


6 5 0 4
1 6 0 1
0 0 0 0
1 5 0 6

⊕


6 6 6 6
6 6 6 6
6 6 6 6
6 6 6 6

 =


1
1
0
1

,

i.e., M̃D
β

D̂(x4) = {C′
1, C′

2, C′
4} = {C2, C3, C5}.

f (M̃D
β

D̂(x5)) = MT
D̂
(x5)⊴ MD̂(x5)⊕ MD̂ =


0 0 0 0
0 6 0 1
0 6 6 6
0 5 0 6

⊕


6 6 6 6
6 6 6 6
6 6 6 6
6 6 6 6

 =


0
1
0
1

,

i.e., M̃D
β

D̂(x5) = {C′
2, C′

4} = {C3, C5}.
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f (M̃D
β

D̂(x6)) = MT
D̂
(x6)⊴ MD̂(x6)⊕ MD̂ =


0 0 0 0
0 6 0 1
0 0 0 0
0 5 0 6

⊕


6 6 6 6
6 6 6 6
6 6 6 6
6 6 6 6

 =


0
1
0
1

,

i.e., M̃D
β

D̂(x6) = {C′
2, C′

4} = {C3, C5}.

Step 3: Min({D̂ ∈ S(Ĉ) : ∀x ∈ U, M̃D
β

Ĉ(x) = M̃D
β

D̂(x)}) = Min({{C1, C2, C3, C5},
{C2, C3, C4, C5}, {C2, C3, C5}}) = {{C2, C3, C5}}. Therefore, {C2, C3, C5} is the IF β-maximal
reduction of Ĉ.

5. Experimental Evaluations

Compared with the set representations, it is necessary to show the advantage of matrix rep-
resentations of IF β-minimal and β-maximal descriptions. In this section, we call the presented
matrix methods of IF β-minimal and β-maximal descriptions as “M-IFMin” and “M-IFMax”,
respectively. Hence, we compare them with the set-based algorithms of IF β-minimal and
β-maximal descriptions (which are named “S-IFMin” and “S-IFMax”, respectively) through
several experiments.

5.1. The Process of Experiments

We construct some IF β-covering approximation spaces to run M-IFMin, M-IFMax, S-
IFMin and S-IFMax on them. In Definition 6, we know that any IF β-covering approximation
space can be seen as an IF granular matrix. The procedure of constructing the IF β-matrix is
as follows: (1) The elements of the matrix are IF numbers, which are randomly chosen from
{0, 0.1, 0.2, · · · , 0.9, 1}. (2) For any row of the matrix, if the maximal number of the row is
less than β, then we denote β as its maximal number. Hence, the matrix is the IF β-matrix,
i.e., an IF β-covering approximation space.

Finally, we compare the computational time of M-IFMin, M-IFMax, S-IFMin and S-IFMax
with different values of β, sizes of a universe and sizes of an IF β-covering. All of the experiments
were carried out on a personal computer with 64-bit Windows 10, Intel(R) Core(TM) i7-8565U
CPU @1.80 GHz 1.99 GHz, and 8 GB memory. The programming language was Matlab r2016a.

5.2. Results and Analysis

To compare the computational time of M-IFMin, M-IFMax, S-IFMin and S-IFMax with
different values of β in Figure 1, we set the size of U to 200 and the size of Ĉ to 600. The one
value of β ranges from 0.2 to 0.6, gradually increasing by a step of 0.1, and the other value
is 0.3. Figure 1a,c show the computational time of M-IFMin and S-IFMin. In Figure 1a,
the first value of β ranges from 0.2 to 0.6, gradually increasing by a step of 0.1, and the
second value is 0.3. In Figure 1c, the first value is 0.3 and the second value of β ranges
from 0.2 to 0.6, gradually increasing by a step of 0.1. Figure 1b,d show the computational
time of M-IFMax and S-IFMax. In Figure 1b, the first value of β ranges from 0.2 to 0.6,
gradually increasing by a step of 0.1, and the second value is 0.3. In Figure 1d, the first
value is 0.3 and the second value of β ranges from 0.2 to 0.6, gradually increasing by a step
of 0.1. In Figure 1, we can see that the computational time of M-IFMin, M-IFMax, S-IFMin
and S-IFMax decreases with the gradual increase in the value of β. M-IFMin (or M-IFMax)
is more efficient than S-IFMin (or S-IFMax) with different values of β, especially with small
values of β.
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(a) Comparison of S-IFMin and M-IFMin with
different β (the first value changes, the other is
0.3).

(b) Comparison of S-IFMax and M-IFMax with
different β (the first value changes, the other is
0.3).

(c) Comparison of S-IFMin and M-IFMin with dif-
ferent β (the first value is 0.3, the other changes).

(d) Comparison of S-IFMax and M-IFMax with
different β (the first value is 0.3, the other
changes).

Figure 1. Computational time of M-IFMin, M-IFMax, S-IFMin and S-IFMax with different β (|U| = 200,
|Ĉ| = 600).

To compare the computational time of M-IFMin, M-IFMax, S-IFMin and S-IFMax with
different sizes of U in Figure 2, we set the value of β to ⟨0.6, 0.3⟩ and the size of Ĉ to 200.
The size of U ranges from 200 to 600, gradually increasing by a step of 100. In Figure 2, we
can see that the computational time of M-IFMin, M-IFMax, S-IFMin and S-IFMax increases
with the gradual increase in the size of U. M-IFMin (or M-IFMax) is more efficient than
S-IFMin (or S-IFMax) with different sizes of U. Hence, for large universe sizes, M-IFMin
(or M-IFMax) is feasible.

To compare the computational time of M-IFMin, M-IFMax, S-IFMin and S-IFMax with
different sizes of Ĉ in Figure 3, we set the value of β to ⟨0.6, 0.3⟩ and the size of U to 200.
The size of Ĉ ranges from 100 to 500, gradually increasing by a step of 100. In Figure 3, we
can see that the computational time of M-IFMin, M-IFMax, S-IFMin and S-IFMax increases
with the gradual increase in the size of U. M-IFMin (or M-IFMax) is more efficient than
S-IFMin (or S-IFMax) with different sizes of Ĉ, especially with large Ĉ.
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(a) Comparison of S-IFMin and M-IFMin with
different sizes of U.

(b) Comparison of S-IFMax and M-IFMax with
different sizes of U.

Figure 2. Computational time of M-IFMin, M-IFMax, S-IFMin and S-IFMax with different sizes of U
(β = ⟨0.6, 0.3⟩, |Ĉ| = 200).

(a) Comparison of S-IFMin and M-IFMin with
different sizes of Ĉ.

(b) Comparison of S-IFMin and M-IFMin with
different sizes of Ĉ.

Figure 3. Computational time of M-IFMin, M-IFMax, S-IFMin and S-IFMax with different sizes of Ĉ
(β = ⟨0.6, 0.3⟩, |U| = 200).

By Figures 2 and 3, we can see that M-IFMin and M-IFMax are feasible for large U and
Ĉ, respectively. That is to say, they are scalable on big data sets.

6. Conclusions

In this paper, we mainly use matrix approaches to study IF β-covering rough sets
by IF β-minimal and β-maximal descriptions. Moreover, the feasibility of the proposed
matrix approaches is studied by several experiments. The main conclusions of this paper
are as follows:

1. The matrix representations of IF β-minimal and β-maximal descriptions are proposed.
Moreover, the comparative analysis illustrates that the proposed calculus based on
matrices is feasible for large IF β-coverings as well as big data sets.

2. Two new types of reductions of IF β-covering approximation spaces are proposed via IF
β-minimal and β-maximal descriptions, respectively. They are calculated based on the
matrix representations of IF β-minimal and β-maximal descriptions. It is a new view-
point to study IF β-covering rough sets using IF β-minimal and β-maximal descriptions.

Although the matrix method proposed by us is faster than the existing set method in IF
set theory, it is still somewhat time-consuming in the environment of big data, and further



Axioms 2024, 13, 411 19 of 20

faster calculation methods need to be proposed. In the future, the following research topics
are deserving of attention. These matrix approaches can be used in fuzzy soft covering-
based multi-granulation fuzzy rough sets [43]. Moreover, Choquet-like integrals [44,45]
were recently combined with fuzzy rough sets, which can connected with the content of
this paper in further research.
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